JP2013124325A - Method for producing ashless coal - Google Patents

Method for producing ashless coal Download PDF

Info

Publication number
JP2013124325A
JP2013124325A JP2011274705A JP2011274705A JP2013124325A JP 2013124325 A JP2013124325 A JP 2013124325A JP 2011274705 A JP2011274705 A JP 2011274705A JP 2011274705 A JP2011274705 A JP 2011274705A JP 2013124325 A JP2013124325 A JP 2013124325A
Authority
JP
Japan
Prior art keywords
coal
particle size
raw material
solvent
ashless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011274705A
Other languages
Japanese (ja)
Other versions
JP5710459B2 (en
Inventor
Koji Sakai
康爾 堺
Takahiro Shishido
貴洋 宍戸
Noriyuki Okuyama
憲幸 奥山
Maki Hamaguchi
眞基 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011274705A priority Critical patent/JP5710459B2/en
Publication of JP2013124325A publication Critical patent/JP2013124325A/en
Application granted granted Critical
Publication of JP5710459B2 publication Critical patent/JP5710459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ashless coal, with which the yield of the ashless coal is improved even when the ashless coal is produced in a coal-producing area where there is no room for selecting various kinds of raw materials (coal).SOLUTION: A raw material fractionation process to fractionate the coal according to respective predetermined particle sizes is added to the production process of the ashless coal. In order to conduct a series of treatment processes such as an extraction process etc., by using the coal in a predetermined particle size range determined based on the analytical result of the raw material analysis stage to analyze properties of the coal according to the respective predetermined particle sizes, the coal is fractionated by the raw material fractionation process according to the respective particle sizes.

Description

本発明は、石炭から灰分を除去した無灰炭を得るための無灰炭の製造方法に関する。   The present invention relates to a method for producing ashless coal for obtaining ashless coal from which ash is removed from coal.

無灰炭の製造方法として、例えば特許文献1に記載されたものがある。特許文献1に記載の無灰炭の製造方法は、石炭と溶剤とを混合してスラリーを調製し、得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出し、石炭成分が抽出されたスラリーを、溶剤に可溶な石炭成分を含む溶液部と、溶剤に不溶な石炭成分を含む非溶液部とに分離した後、分離された溶液部から溶剤を分離して無灰炭を得る、というものである。特許文献1に記載の無灰炭の製造方法は、溶液部と非溶液部との分離に重力沈降法を採用するに際し、一般炭に粘結炭を混合した石炭を無灰炭の原料として用いることを特徴としている。   As a method for producing ashless coal, for example, there is one described in Patent Document 1. The method for producing ashless coal described in Patent Document 1 is prepared by mixing coal and a solvent to prepare a slurry, heating the resulting slurry to extract a coal component soluble in the solvent, and extracting the coal component. The slurry is separated into a solution part containing a coal component soluble in the solvent and a non-solution part containing a coal component insoluble in the solvent, and then the solvent is separated from the separated solution part to remove ashless coal. It is to get. The method for producing ashless coal described in Patent Document 1 uses, as a raw material for ashless coal, coal obtained by mixing caking coal with general coal when adopting the gravity sedimentation method for separating the solution portion and the non-solution portion. It is characterized by that.

特許文献1に記載の製造方法によると、重力沈降法の実施に際し、溶剤不溶成分の沈降速度が向上し、その結果、灰分が十分に除去された無灰炭を高効率、かつ安価に製造することができる。   According to the production method described in Patent Document 1, the sedimentation rate of the solvent-insoluble component is improved when the gravity sedimentation method is performed, and as a result, ashless coal from which ash is sufficiently removed is produced with high efficiency and at low cost. be able to.

特開2009−227718号公報JP 2009-227718 A

ここで、無灰炭を製造する際の無灰炭の収率は、原料(石炭)の炭種によってほぼ決定される。特許文献1に記載の製造方法によると、重力沈降法の実施に際し、溶液部と非溶液部との分離性が向上するので、溶剤に可溶な石炭成分が非溶液部に残ったり、溶剤に不溶な灰分が溶液部に残ったりすることを防止でき、その分、無灰炭の収率が向上するが、一般炭に粘結炭を混合した石炭を原料として用いなければならない。   Here, the yield of ashless coal when producing ashless coal is almost determined by the coal type of the raw material (coal). According to the manufacturing method described in Patent Document 1, since the separability between the solution part and the non-solution part is improved when the gravity sedimentation method is carried out, coal components soluble in the solvent remain in the non-solution part, Insoluble ash can be prevented from remaining in the solution part, and the yield of ashless coal is improved correspondingly. However, coal obtained by mixing caking coal with ordinary coal must be used as a raw material.

一方、石炭の産地で無灰炭を製造する場合には、原料(石炭)の炭種を種々選択できる余地はない。すなわち、石炭の産地で無灰炭を製造する場合には、特許文献1に記載されているように、一般炭に粘結炭を混合することは困難である。   On the other hand, when producing ashless coal in the coal production area, there is no room for selecting various types of raw material (coal). That is, when producing ashless coal in the coal production region, as described in Patent Document 1, it is difficult to mix caking coal with general coal.

なお、本願でいう「収率」とは、例えば、原料である石炭の質量に対する製造された無灰炭の質量の比率のことであり、「製造効率」と換言してもよい。例えば、溶剤に可溶な石炭成分を多く含有する原料(石炭)の場合には「収率」は高まる。また、溶剤に不溶な灰分が少ない原料(石炭)の場合にも「収率」は高まる。   The “yield” in the present application is, for example, the ratio of the mass of ashless coal produced to the mass of coal as a raw material, and may be referred to as “production efficiency”. For example, in the case of a raw material (coal) containing many coal components soluble in a solvent, the “yield” is increased. The “yield” is also increased in the case of a raw material (coal) having a small amount of ash insoluble in the solvent.

本発明は、上記事情に鑑みてなされたものであって、その目的は、原料(石炭)の炭種を種々選択できる余地がない石炭の産地で無灰炭を製造する場合であっても、無灰炭の収率を向上させることができる無灰炭の製造方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to produce ashless coal in a coal production area where there is no room for selecting various types of raw material (coal). It is providing the manufacturing method of ashless coal which can improve the yield of ashless coal.

本発明は、所定の粒度別に石炭を分別する原料分別工程と、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、前記抽出工程にて前記石炭成分が抽出されたスラリーから前記石炭成分を含む溶液部を分離する分離工程と、前記分離工程で分離された溶液部から溶剤を蒸発分離して無灰炭を得る無灰炭取得工程と、を備える無灰炭の製造方法である。この無灰炭の製造方法は、所定の粒度別に石炭の性状分析を行う原料分析段階を有し、前記原料分析段階の分析結果に基づいて決定した所定の粒度域の石炭を用いて前記抽出工程を行うように、前記原料分別工程で石炭を粒度別に分別することを特徴とする。   The present invention includes a raw material separation step of separating coal according to a predetermined particle size, an extraction step of extracting a coal component soluble in a solvent by heating a slurry obtained by mixing coal and a solvent, and the extraction step. A separation step of separating the solution portion containing the coal component from the slurry from which the coal component has been extracted, and an ashless coal acquisition step of obtaining ashless coal by evaporating and separating the solvent from the solution portion separated in the separation step And a method for producing ashless coal. The method for producing ashless coal has a raw material analysis stage for analyzing the properties of coal according to a predetermined particle size, and uses the coal in a predetermined particle size range determined based on the analysis result of the raw material analysis stage, In the raw material separation step, coal is classified according to particle size.

本発明によれば、例えば原料(石炭)の炭種を種々選択できる余地がない石炭の産地で無灰炭を製造する場合であっても、無灰炭の収率を向上させることができる。なお、特許文献1に記載の粘結炭は一般炭よりも高価である。本発明によれば、高価な粘結炭を用いなくても無灰炭の収率を向上させることができる。   According to the present invention, the yield of ashless coal can be improved even when ashless coal is produced in a coal production area where there is no room for various types of raw material (coal) to be selected. Note that the caking coal described in Patent Document 1 is more expensive than steam coal. According to the present invention, the yield of ashless coal can be improved without using expensive caking coal.

本発明の無灰炭の製造方法を説明するための無灰炭製造設備を示すブロック図である。It is a block diagram which shows the ashless coal manufacturing equipment for demonstrating the manufacturing method of the ashless coal of this invention.

以下、本発明を実施するための形態について図面を参照しつつ説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1に示すように、無灰炭製造設備100は、無灰炭(HPC)製造工程の上流側から順に、石炭ホッパ1・溶剤タンク2、スラリー調製槽3、移送ポンプ4、予熱器5、抽出槽6、重力沈降槽7、フィルターユニット8、および溶剤分離器9を備えている。また、重量沈降槽7の下流側には、分離工程で分離された溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を蒸発分離して副生炭を得るための(溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を分離・回収するための)溶剤分離器10が配置されている。   As shown in FIG. 1, the ashless coal production facility 100 includes a coal hopper 1, a solvent tank 2, a slurry preparation tank 3, a transfer pump 4, a preheater 5, in order from the upstream side of the ashless coal (HPC) production process. An extraction tank 6, a gravity sedimentation tank 7, a filter unit 8, and a solvent separator 9 are provided. Further, on the downstream side of the weight settling tank 7, a solvent insoluble component concentrate (solid insoluble component concentrate) for obtaining a by-product charcoal by evaporating and separating the solvent from the solvent insoluble component concentrate (solid content concentrate) separated in the separation step. A solvent separator (for separating and recovering the solvent from the solid content concentrate) is disposed.

ここで、本実施形態の無灰炭の製造方法は、原料分析段階、原料分別工程、抽出工程、分離工程、および無灰炭取得工程を有する。以下、原料分析段階および各工程について説明する。   Here, the manufacturing method of ashless coal of this embodiment has a raw material analysis stage, a raw material separation process, an extraction process, a separation process, and an ashless coal acquisition process. Hereinafter, the raw material analysis stage and each process will be described.

(原料分析段階)
原料分析段階は、所定の粒度別の石炭の性状分析と、粒度別に分けていない石炭の性状分析と、を行う段階である。なお、必要に応じて、石炭を粉砕した上で原料分析を行う。
(Raw material analysis stage)
The raw material analysis step is a step of performing a property analysis of coal according to a predetermined particle size and a property analysis of coal that is not divided according to particle size. If necessary, raw material analysis is performed after pulverizing coal.

石炭の性状分析としては、使用する溶剤に可溶な石炭成分の割合(以下、「抽出率」という)分析、原料(石炭)の灰分濃度の分析などが挙げられる。抽出率が高い粒度域の石炭を原料に用いると無灰炭の収率は向上する。また、灰分濃度が低い粒度域の石炭を原料に用いると無灰炭の収率は向上する。なお、石炭の性状分析は、無灰炭の収率の向上に寄与する性状分析であればよく、抽出率分析、灰分濃度の分析に限られるものではない。抽出率は、石炭の性能の一つであり、灰分濃度は、石炭の成分の一つである。   Examples of coal property analysis include analysis of the proportion of coal components soluble in the solvent used (hereinafter referred to as “extraction rate”), analysis of the ash content of the raw material (coal), and the like. The yield of ashless coal is improved by using coal with a high extraction rate as the raw material. Moreover, the yield of ashless coal will improve if the coal of the particle size range with a low ash content is used as a raw material. In addition, the property analysis of coal should just be the property analysis which contributes to the improvement of the yield of ashless coal, and is not restricted to an extraction rate analysis and an analysis of ash content. The extraction rate is one of the performances of coal, and the ash concentration is one of the components of coal.

石炭の性状分析として抽出率の分析を行う場合、原料分析段階は、原料(石炭)について、予め、抽出率と石炭の粒度との関係の基礎データを取得しておく段階であり、石炭の性状分析として灰分濃度の分析を行う場合、原料分析段階は、原料(石炭)について、予め、灰分濃度と石炭の粒度との関係の基礎データを取得しておく段階である。後に示す表1に示したデータは、基礎データの一例である。   When analyzing the extraction rate as a property analysis of coal, the raw material analysis stage is a step in which basic data on the relationship between the extraction rate and the coal particle size is acquired in advance for the raw material (coal). When analyzing the ash concentration as an analysis, the raw material analysis stage is a stage in which basic data on the relationship between the ash concentration and the coal particle size is acquired in advance for the raw material (coal). The data shown in Table 1 shown below is an example of basic data.

この原料分析段階で得られた分析結果(基礎データ)に基づいて、石炭ホッパ1からスラリー調製槽3に投入する石炭の粒度域を決定する。例えば、所定の粒度別に分別した石炭のそれぞれの性状分析の結果と、粒度別に分別を行っていない状態のすなわちそのままの石炭の性状分析の結果とを比較して、分別を行っていない石炭をそのまま原料として使用して無灰炭を製造した場合の無灰炭の収率よりも、分別を行って得た所定の粒度域の石炭を原料として使用して無灰炭を製造した場合の無灰炭の収率のほうが高くなるように、スラリー調製槽3に投入する石炭の粒度域を決定する(見出す)。   Based on the analysis result (basic data) obtained in the raw material analysis stage, the particle size range of coal to be input from the coal hopper 1 to the slurry preparation tank 3 is determined. For example, by comparing the results of the analysis of the properties of each coal classified according to a predetermined particle size with the results of the properties analysis of the coal that has not been classified according to particle size, that is, as-is, the coal that has not been classified Rather than the yield of ashless coal when producing ashless coal as a raw material, ashless when producing ashless coal using coal of a predetermined particle size range obtained by fractionation as a raw material The particle size range of coal to be charged into the slurry preparation tank 3 is determined (finds) so that the yield of charcoal is higher.

スラリー調製槽3に投入する石炭の粒度域を決定するに際し、無灰炭の収率をより確実に向上させるために、前記したように、比較対象として、分別を行っていない(粒度別に分けていない)石炭の性状分析を行うことが好ましいが、分別を行っていない石炭の性状分析は必須ではない。後述する実施例で示すように、原料(石炭)の粒度が異なれば、抽出率、灰分濃度なども異なる。よって、所定の粒度別に分けた石炭のそれぞれの性状分析のみを行い、その結果に基づいて、例えば、抽出率が最も高い粒度の石炭を原料として使用すれば、粒度別に分けていない石炭をそのまま原料として使用する場合よりも無灰炭の収率は向上する。   In determining the particle size range of the coal to be charged into the slurry preparation tank 3, as described above, in order to improve the yield of ashless coal more reliably, as a comparison target, fractionation is not performed (separated by particle size). None) It is preferable to analyze the properties of coal, but it is not essential to analyze the properties of coal that has not been fractionated. As shown in the examples described later, if the particle size of the raw material (coal) is different, the extraction rate, the ash concentration, and the like are also different. Therefore, only the property analysis of each coal classified according to the predetermined particle size is performed, and based on the result, for example, if the coal with the highest extraction rate is used as the raw material, the coal not divided according to the particle size is used as the raw material. As a result, the yield of ashless coal is improved.

なお、抽出工程、分離工程、および無灰炭取得工程は、毎回行われる一連の連続する工程であるが、この原料分析段階は、毎回行われる一連の連続する工程として行われる必要はない。例えば、原料分析段階は、無灰炭の製造において同じ原料(石炭)を使用し続ける場合は、少なくとも1回行えばよいものである。   In addition, although an extraction process, a separation process, and an ashless coal acquisition process are a series of continuous processes performed each time, this raw material analysis stage does not need to be performed as a series of continuous processes performed each time. For example, the raw material analysis step may be performed at least once when the same raw material (coal) is continuously used in the production of ashless coal.

また、原料分析段階における抽出率の分析は、後述する抽出工程(溶剤可溶成分抽出工程)で使用する溶剤を用い、加熱温度や圧力も溶剤可溶成分抽出工程と同等の条件となるように条件設定を行う。   In addition, the analysis of the extraction rate in the raw material analysis stage uses the solvent used in the extraction step (solvent soluble component extraction step) described later, and the heating temperature and pressure are the same conditions as in the solvent soluble component extraction step. Set the conditions.

また、原料分析段階において、所定の粒度は、原料石炭全体の粒度分布等に応じ適宜設定すれば良く、粒度範囲を変えて複数回の分析を繰り返し行い、所定の粒度域を決定することもできる。   Further, in the raw material analysis stage, the predetermined particle size may be appropriately set according to the particle size distribution of the entire raw coal, etc., and the predetermined particle size region can be determined by repeating the analysis a plurality of times while changing the particle size range. .

原料とする石炭には、特に制限はなく、抽出率(無灰炭回収率)の高い瀝青炭を用いても良いし、より安価な劣質炭(亜瀝青炭、褐炭)を用いても良い。   There is no restriction | limiting in particular in the coal used as a raw material, Bituminous coal with a high extraction rate (ashless coal recovery rate) may be used, and cheaper inferior quality coal (subbituminous coal, lignite) may be used.

(原料分別工程)
原料分別工程は、所定の粒度別に石炭を分別する工程である。具体的には、篩い分け等が挙げられる。前記したように、原料分析段階で得られた分析結果(基礎データ)に基づいて、スラリー調製槽3に投入する石炭の粒度域を決定する(見出す)。原料分別工程では、この決定した(見出した)粒度域の石炭が石炭ホッパ1からスラリー調製槽3に投入されるように(原料として用いられるように)石炭を分別する。例えば、石炭ホッパ1とスラリー調製槽3との間に、篩(不図示)を設置し、決定した粒度域の石炭がスラリー調製槽3に投入されるように石炭を篩い分けする。原料分別工程では、収率の低い(例えば抽出率の低い)粒度域の石炭を原料から除くように石炭を分別する。なお、必要に応じて、石炭を粉砕した上で原料の分別を行う。
(Raw material separation process)
The raw material separation step is a step of separating coal according to a predetermined particle size. Specific examples include sieving. As described above, based on the analysis result (basic data) obtained in the raw material analysis stage, the particle size range of coal to be charged into the slurry preparation tank 3 is determined (found). In the raw material separation step, the coal is separated so that the coal in the determined (found) particle size range is input from the coal hopper 1 to the slurry preparation tank 3 (so as to be used as a raw material). For example, a sieve (not shown) is installed between the coal hopper 1 and the slurry preparation tank 3, and the coal is sieved so that coal in the determined particle size range is put into the slurry preparation tank 3. In the raw material fractionation step, the coal is fractionated so that coal in a particle size range with a low yield (for example, a low extraction rate) is excluded from the raw material. If necessary, the raw materials are separated after pulverizing the coal.

なお、石炭ホッパ1よりも上流側に篩(不図示)を設置し、決定した粒度域の石炭が石炭ホッパ1に投入されるように石炭を篩い分けしてもよい。   Note that a sieve (not shown) may be installed upstream of the coal hopper 1, and the coal may be sieved so that coal in the determined particle size range is input to the coal hopper 1.

(抽出工程)
抽出工程は、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する工程である。本実施形態において、この抽出工程は、石炭と溶剤とを混合してスラリーを調製するスラリー調製工程と、スラリー調製工程で得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出する溶剤可溶成分抽出工程とに分かれている。
(Extraction process)
An extraction process is a process of extracting the coal component soluble in a solvent by heating the slurry obtained by mixing coal and a solvent. In this embodiment, this extraction step includes a slurry preparation step for preparing a slurry by mixing coal and a solvent, and a solvent for extracting a coal component soluble in the solvent by heating the slurry obtained in the slurry preparation step. It is divided into the soluble component extraction process.

石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出するにあたっては、石炭に対して大きな溶解力を持つ溶媒、多くの場合、芳香族溶剤(水素供与性あるいは非水素供与性の溶剤)と石炭を混合して、それを加熱し、石炭中の有機成分を抽出することになる。   When extracting coal components that are soluble in the solvent by heating the slurry obtained by mixing coal and solvent, a solvent with a large dissolving power for coal, often an aromatic solvent (hydrogen donating property) Or a non-hydrogen-donating solvent) and coal are mixed and heated to extract organic components in the coal.

非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分(ここでは石炭成分)の割合(以下、抽出率ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤である。非水素供与性溶剤の主な成分としては、2環芳香族であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等が挙げられ、その他の非水素供与性溶剤の成分として、脂肪族側鎖を有するナフタレン類、アントラセン類、フルオレン類、また、これらにビフェニルや長鎖脂肪族側鎖を有するアルキルベンゼンが含まれる。
尚、上記の説明では非水素供与性化合物を溶剤として用いる場合について述べたが、テトラリンを代表とする水素供与性の化合物(石炭液化油を含む)を溶剤として用いても良いことは勿論である。水素供与性溶剤を用いた場合、無灰炭の収率が向上する。
The non-hydrogen donating solvent is a coal derivative which is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product. This non-hydrogen-donating solvent is stable even in a heated state and has excellent affinity with coal. Therefore, the proportion of soluble components (herein, coal components) extracted into the solvent (hereinafter also referred to as extraction rate) In addition, it is a solvent that can be easily recovered by a method such as distillation. Main components of the non-hydrogen donating solvent include bicyclic aromatic naphthalene, methyl naphthalene, dimethyl naphthalene, trimethyl naphthalene and the like, and other non-hydrogen donating solvent components have aliphatic side chains. Naphthalenes, anthracenes, fluorenes, and these include biphenyl and alkylbenzenes having long aliphatic side chains.
In the above description, the case where a non-hydrogen donating compound is used as a solvent has been described, but it is needless to say that a hydrogen donating compound (including coal liquefied oil) typified by tetralin may be used as a solvent. . When a hydrogen donating solvent is used, the yield of ashless coal is improved.

また、溶剤の沸点は特に制限されるものではない。抽出工程および分離工程での圧力低減、抽出工程での抽出率、無灰炭取得工程等での溶剤回収率などの観点から、例えば、180〜300℃、特に240〜280℃の沸点の溶剤が好ましく使用される。   Further, the boiling point of the solvent is not particularly limited. From the viewpoint of pressure reduction in the extraction step and separation step, extraction rate in the extraction step, solvent recovery rate in the ashless coal acquisition step, etc., for example, a solvent having a boiling point of 180 to 300 ° C., particularly 240 to 280 ° C. Preferably used.

<スラリー調製工程>
スラリー調製工程は、図1中、スラリー調製槽3で実施される。石炭ホッパ1から所定の粒度域の石炭がスラリー調製槽3に投入されるとともに、溶剤タンク2から溶剤がスラリー調製槽3に投入される。スラリー調製槽3に投入された石炭および溶剤は、攪拌機3aで混合され、所定の粒度域の石炭と溶剤とからなるスラリーとなる。
<Slurry preparation process>
The slurry preparation step is performed in the slurry preparation tank 3 in FIG. Coal having a predetermined particle size range is input from the coal hopper 1 to the slurry preparation tank 3, and the solvent is input from the solvent tank 2 to the slurry preparation tank 3. The coal and the solvent charged into the slurry preparation tank 3 are mixed by the stirrer 3a to become a slurry composed of coal and a solvent having a predetermined particle size range.

溶剤に対する石炭の混合比率は、例えば、乾燥炭基準で10〜50重量%であり、より好ましくは、20〜35重量%である。   The mixing ratio of coal with respect to the solvent is, for example, 10 to 50% by weight on the basis of dry coal, and more preferably 20 to 35% by weight.

<溶剤可溶成分抽出工程>
溶剤可溶成分抽出工程は、図1中、予熱器5および抽出槽6で実施される。スラリー調製槽3にて調製されたスラリーは、移送ポンプ4によって、一旦、予熱器5に供給されて所定温度まで加熱された後、抽出槽6に供給され、攪拌機6aで攪拌されながら所定温度で保持されて抽出が行われる。
<Solvent soluble component extraction process>
The solvent-soluble component extraction step is performed in the preheater 5 and the extraction tank 6 in FIG. The slurry prepared in the slurry preparation tank 3 is once supplied to the preheater 5 by the transfer pump 4 and heated to a predetermined temperature, then supplied to the extraction tank 6, and stirred at the predetermined temperature while being stirred by the stirrer 6a. It is retained and extracted.

溶剤可溶成分抽出工程でのスラリーの加熱温度は、溶剤可溶成分が溶解され得る限り特に制限されず、溶剤可溶成分の十分な溶解と抽出率の向上の観点から、例えば、300〜420℃であり、より好ましくは、360〜400℃である。   The heating temperature of the slurry in the solvent-soluble component extraction step is not particularly limited as long as the solvent-soluble component can be dissolved. From the viewpoint of sufficient dissolution of the solvent-soluble component and improvement of the extraction rate, for example, 300 to 420 It is 360 degreeC, More preferably, it is 360-400 degreeC.

また、加熱時間(抽出時間)もまた特に制限されるものではないが、十分な溶解と抽出率の向上の観点から、例えば、10〜60分間である。加熱時間は、図1中、予熱器5および抽出槽6での加熱時間を合計したものである。   Also, the heating time (extraction time) is not particularly limited, but is, for example, 10 to 60 minutes from the viewpoint of sufficient dissolution and improvement of the extraction rate. The heating time is the total heating time in the preheater 5 and the extraction tank 6 in FIG.

なお、溶剤可溶成分抽出工程は、窒素などの不活性ガスの存在下で行う。抽出槽6内の圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、1.0〜2.0MPaが好ましい。抽出槽6内の圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して液相に閉じ込められず、抽出できない。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。   The solvent-soluble component extraction step is performed in the presence of an inert gas such as nitrogen. The pressure in the extraction tank 6 is preferably 1.0 to 2.0 MPa, although it depends on the temperature at the time of extraction and the vapor pressure of the solvent used. When the pressure in the extraction tank 6 is lower than the vapor pressure of the solvent, the solvent volatilizes and is not confined in the liquid phase, so that extraction cannot be performed. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.

なお、本実施形態のように、石炭と溶剤とを混合した後に、得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出するのではなく、溶剤のみを先に加熱し、加熱された高温(例えば380℃)の溶剤中に石炭を供給(乾燥状態のまま供給)して、石炭を混合・加熱し、石炭中の溶剤可溶成分を溶剤で抽出するようにしてもよい。   As in this embodiment, after mixing coal and solvent, the obtained slurry is not heated to extract coal components soluble in the solvent, but only the solvent is heated first and heated. Alternatively, coal may be supplied into a solvent at a high temperature (for example, 380 ° C.) (supplied in a dry state), the coal may be mixed and heated, and solvent-soluble components in the coal may be extracted with the solvent.

溶剤のみを先に加熱し、加熱された高温(例えば380℃)の溶剤中に石炭を供給する(乾燥状態のまま供給する)方法としては、例えば次のような方法がある。移送ポンプ4の上流側には石炭ホッパ1を配置せず、予熱器5と抽出槽6とを接続する管24の中に、または抽出槽6内に、石炭を直接供給できるように石炭ホッパ1を配置する。このとき、例えば、管24または抽出槽6と、石炭ホッパ1との接続部を窒素などの不活性ガスで加圧して、溶剤などが石炭ホッパ1内へ逆流してこないようにする。なお、この方法によると、溶剤などが石炭ホッパ1内へ逆流してこないように、管24または抽出槽6と、石炭ホッパ1との接続部を窒素などの不活性ガスで加圧する必要があるが、スラリー調製槽3を省略できる。   As a method of heating only the solvent first and supplying coal into the heated high-temperature (for example, 380 ° C.) solvent (supplying in a dry state), for example, the following methods are available. The coal hopper 1 is not arranged on the upstream side of the transfer pump 4, so that the coal can be directly supplied into the pipe 24 connecting the preheater 5 and the extraction tank 6 or into the extraction tank 6. Place. At this time, for example, the connection portion between the pipe 24 or the extraction tank 6 and the coal hopper 1 is pressurized with an inert gas such as nitrogen so that the solvent does not flow back into the coal hopper 1. According to this method, it is necessary to pressurize the connecting portion between the pipe 24 or the extraction tank 6 and the coal hopper 1 with an inert gas such as nitrogen so that the solvent does not flow back into the coal hopper 1. However, the slurry preparation tank 3 can be omitted.

(分離工程)
分離工程は、抽出工程にて石炭成分が抽出されたスラリーから、溶剤に溶解している石炭成分を含む溶液部を分離する工程である。換言すれば、分離工程は、抽出工程にて石炭成分が抽出されたスラリーを、溶剤に溶解している石炭成分を含む溶液部と、溶剤不溶成分濃縮液(固形分濃縮液ともいう)とに分離する工程である。この分離工程は、図1中、重力沈降槽7で実施される。抽出工程にて石炭成分が抽出されたスラリーは、重力沈降槽7内で、重力にて、溶液部としての上澄み液と、固形分濃縮液とに分離される(重力沈降法)。重力沈降槽7の上部の上澄み液は、必要に応じてフィルターユニット8を経て、溶剤分離器9へ排出されるとともに、重力沈降槽7の下部に沈降した固形分濃縮液は溶剤分離器10へ排出される。
(Separation process)
The separation step is a step of separating the solution portion containing the coal component dissolved in the solvent from the slurry from which the coal component has been extracted in the extraction step. In other words, in the separation step, the slurry from which the coal component is extracted in the extraction step is divided into a solution portion containing the coal component dissolved in the solvent, and a solvent-insoluble component concentrate (also referred to as a solid content concentrate). It is a process of separating. This separation step is performed in the gravity settling tank 7 in FIG. The slurry from which the coal component has been extracted in the extraction step is separated into a supernatant liquid as a solution part and a solid content concentrate by gravity in the gravity sedimentation tank 7 (gravity sedimentation method). The supernatant liquid in the upper part of the gravity settling tank 7 is discharged to the solvent separator 9 through the filter unit 8 as necessary, and the solid concentrate settled in the lower part of the gravity settling tank 7 is sent to the solvent separator 10. Discharged.

重力沈降法は、スラリーを槽内に保持することにより、重力を利用して溶剤不溶成分を沈降・分離させる方法である。スラリーを槽内に連続的に供給しながら、上澄み液を上部から、固形分濃縮液を下部から連続的に排出することにより、連続的な分離処理が可能である。   The gravitational sedimentation method is a method in which a slurry is retained in a tank to settle and separate solvent-insoluble components using gravity. A continuous separation process is possible by continuously discharging the supernatant from the top and the solid concentrate from the bottom while continuously supplying the slurry into the tank.

重力沈降槽7内は、石炭から溶出した溶剤可溶成分の再析出を防止するため、加熱または/および加圧しておくことが好ましい。加熱温度は、例えば、300〜370℃であり、槽内圧力は、例えば、1.0〜2.0MPaとされる。   The gravity settling tank 7 is preferably heated or / and pressurized in order to prevent reprecipitation of solvent-soluble components eluted from coal. The heating temperature is, for example, 300 to 370 ° C., and the tank internal pressure is, for example, 1.0 to 2.0 MPa.

なお、抽出工程にて石炭成分が抽出されたスラリーから、溶剤に溶解している石炭成分を含む溶液部を分離する方法として、重力沈降法以外に、濾過法、遠心分離法などがある。   As a method for separating the solution portion containing the coal component dissolved in the solvent from the slurry from which the coal component has been extracted in the extraction step, there are a filtration method, a centrifugal separation method, and the like in addition to the gravity sedimentation method.

(無灰炭取得工程)
無灰炭取得工程は、分離工程で分離された溶液部から溶剤を蒸発分離して無灰炭を得る工程である。この無灰炭取得工程は、図1中、溶剤分離器9で実施される。
(Ashless coal acquisition process)
The ashless coal acquisition step is a step of obtaining ashless coal by evaporating and separating the solvent from the solution part separated in the separation step. This ashless charcoal acquisition process is performed by the solvent separator 9 in FIG.

溶液部(上澄み液)から溶剤を分離する方法は、一般的な蒸留法や蒸発法を用いることができ、分離して回収された溶剤はスラリー調製槽3へ循環して繰り返し使用することができる。溶剤の分離・回収により、上澄み液からは、実質的に灰分を含まない無灰炭(HPC)を得ることができる。無灰炭は、灰分をほとんど含まず、水分は皆無であり、原料石炭よりも高い発熱量を示す。さらに、製鉄用コークスの原料として特に重要な品質である軟化溶融性が大幅に改善され、原料石炭が軟化溶融性を有しなくとも、得られた無灰炭(HPC)は良好な軟化溶融性を有する。したがって、無灰炭は、例えばコークス原料の配合炭として使用することができる。   As a method for separating the solvent from the solution part (supernatant liquid), a general distillation method or an evaporation method can be used, and the separated and recovered solvent can be circulated to the slurry preparation tank 3 and repeatedly used. . By separating and collecting the solvent, ashless coal (HPC) substantially free of ash can be obtained from the supernatant. Ashless coal contains almost no ash, has no moisture, and exhibits a higher calorific value than raw coal. Furthermore, the softening and melting property, which is a particularly important quality as a raw material for coke for iron making, has been greatly improved, and the obtained ashless coal (HPC) has good softening and melting properties even if the raw material coal does not have softening and melting properties. Have Therefore, ashless coal can be used, for example, as a blended coal for coke raw materials.

(副生炭取得工程)
副生炭取得工程は、分離工程で分離された溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を蒸発分離して副生炭を得る工程である。この副生炭取得工程は、溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を蒸発分離して回収するための工程でもあり、図1中、溶剤分離器10で実施される。なお、副生炭取得工程は、必須の工程ではない。
(By-product coal acquisition process)
The byproduct charcoal acquisition step is a step of obtaining byproduct charcoal by evaporating and separating the solvent from the solvent-insoluble component concentrate (solid content concentrate) separated in the separation step. This byproduct charcoal acquisition process is also a process for evaporating and recovering the solvent from the solvent-insoluble component concentrate (solid content concentrate), and is performed by the solvent separator 10 in FIG. In addition, a byproduct charcoal acquisition process is not an essential process.

溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を分離する方法は、前記した無灰炭取得工程と同様に、一般的な蒸留法や蒸発法を用いることができ、分離して回収された溶剤は、スラリー調製槽3へ循環して繰り返し使用することができる。溶剤の分離・回収により、固形分濃縮液からは灰分などを含む溶剤不溶成分が濃縮された副生炭(RC、残渣炭ともいう)を得ることができる。副生炭は、灰分が含まれるものの水分が皆無であり、発熱量も十分に有している。副生炭は軟化溶融性を示さないが、含酸素官能基が脱離されているため、配合炭として用いた場合に、この配合炭に含まれる他の石炭の軟化溶融性を阻害するようなものではない。したがって、この副生炭は、通常の非微粘結炭と同様に、コークス原料の配合炭の一部として使用することができ、また、コークス原料炭とせずに、各種の燃料用として使用することも可能である。なお、副生炭は、回収せずに廃棄してもよい。   As for the method for separating the solvent from the solvent-insoluble component concentrate (solid content concentrate), a general distillation method or evaporation method can be used as in the above-described ashless coal acquisition step, and the solvent is separated and recovered. The solvent can be circulated to the slurry preparation tank 3 and used repeatedly. By separation and recovery of the solvent, by-product coal (also referred to as RC or residual coal) in which solvent-insoluble components including ash and the like are concentrated can be obtained from the solid concentrate. By-product charcoal contains ash, but has no water and has a sufficient calorific value. By-product coal does not exhibit softening and melting properties, but the oxygen-containing functional groups are eliminated, so that when used as a blended coal, it inhibits the softening and melting properties of other coals contained in this blended coal. It is not a thing. Therefore, this by-product coal can be used as a part of the blended coal of the coke raw material, as in the case of ordinary non-slightly caking coal, and is used for various fuels without using the coke raw coal. It is also possible. The by-product coal may be discarded without being collected.

(実施例)
原料炭として用いる瀝青炭について、粉砕することなく、粒度別(1.0mm、2.0mm、3.0mm、4.75mm)に分別して原料炭の性状を分析した。粒度別に分別していない(そのままの)原料炭の性状分析も行った。具体的には、各粒度別の原料炭、および分別(篩い分け)を行っていない(そのままの)原料炭に、それぞれ溶剤を混合してスラリーを調製し、調製したスラリーを、2.0MPaの圧力で窒素加圧して、オートクレーブ中、400℃、20分の条件で抽出処理を行い、抽出率および灰分濃度を測定した。結果を表1に示す。なお、表1に示したデータは、抽出率および灰分濃度と石炭の粒度との関係を示す、本発明でいう基礎データの一例である。
(Example)
The bituminous coal used as the raw coal was classified by particle size (1.0 mm, 2.0 mm, 3.0 mm, 4.75 mm) without being pulverized, and the properties of the raw coal were analyzed. The properties of raw coals that were not sorted by particle size (as they were) were also analyzed. Specifically, a raw material coal for each particle size and a raw material coal not subjected to separation (sieving) (as it is) are mixed with a solvent to prepare a slurry, and the prepared slurry is 2.0 MPa. Nitrogen was applied under pressure, and an extraction treatment was performed in an autoclave at 400 ° C. for 20 minutes, and the extraction rate and ash concentration were measured. The results are shown in Table 1. The data shown in Table 1 is an example of basic data in the present invention, which shows the relationship between the extraction rate, ash concentration, and coal particle size.

なお、原料炭として使用した瀝青炭は、発電用途として使用される一般炭であり、日本の石炭分類法(JIS M1002−1978)において区分Cに分類されるものである。   In addition, the bituminous coal used as coking coal is a general coal used for a power generation use, and is classified into Category C in Japanese coal classification method (JIS M1002-1978).

Figure 2013124325
Figure 2013124325

表1に示したように、篩い分けを行っていない(そのままの)原料炭では、抽出率(溶剤に可溶な石炭成分の割合)54.1重量%dafを示した。daf(dry ash free)とは、無水無灰のことをいう。抽出率は石炭の無水無灰、つまり有機成分に対する抽出された有機成分割合を示した。   As shown in Table 1, the extraction rate (ratio of coal components soluble in the solvent) of 54.1% by weight was shown for the raw coal that was not sieved (as it was). daf (dry ash free) means anhydrous ashless. The extraction rate showed anhydrous ashless coal, that is, the ratio of extracted organic component to organic component.

これに対して、1.0mm以下の粒度の原料炭は、篩い分けを行っていない(そのままの)原料炭の抽出率よりも低い抽出率49.5重量%dafを示した。一方、3.0mmを超え4.75mm以下の粒
度の原料炭は、篩い分けを行っていない(そのままの)原料炭の抽出率よりも高い抽出率58.2重量%dafを示した。このように、粒度別で抽出率にバラつきがあるこがわかる。なお、これは瀝青炭に限ったことではなく、他の種類の石炭にも当てはまる。
On the other hand, the raw coal having a particle size of 1.0 mm or less showed an extraction rate of 49.5% by weight daf, which was lower than the extraction rate of the raw coal without sieving (as it was). On the other hand, the raw coal having a particle size of more than 3.0 mm and not more than 4.75 mm showed an extraction rate of 58.2% by weight daf higher than the extraction rate of the raw coal without sieving (as it is). Thus, it can be seen that the extraction rate varies depending on the particle size. This is not limited to bituminous coal, but also applies to other types of coal.

なお、1.0mm以下の粒度の原料炭とは、目開きが1.0mmの篩を通過した原料炭のことであり、3.0mmを超え4.75mm以下の粒度の原料炭とは、目開きが3.0mmの篩は通過せず、目開きが4.75mmの篩を通過した原料炭のことをいう。表1に示した、他の粒度の原料炭についても同様である。   In addition, the raw coal with a particle size of 1.0 mm or less is a raw coal that has passed through a sieve having an opening of 1.0 mm, and the raw coal with a particle size of more than 3.0 mm and 4.75 mm or less It refers to raw coal that does not pass through a sieve with an opening of 3.0 mm and passes through a sieve with an opening of 4.75 mm. The same applies to the raw coals of other particle sizes shown in Table 1.

本実施例の原料炭の場合、例えば、2.0mm以下の粒度の原料炭を篩い分けして除去し、2.0mmを超える粒度の原料炭を用いて前記した抽出工程、分離工程、および無灰炭取得工程を実施すると、表1より計算して抽出率は55.6重量%dafになり、篩い分けを行っていない(そのままの)原料炭を原料とする場合よりも、1.5重量%daf程度、抽出率を向上させることができる。このように、篩い分けされた石炭のうち、篩い分けを行っていない場合の石炭の抽出率よりも全体として高い抽出率となる粒度域の石炭を用いることで、抽出率を向上させることができる。すなわち、無灰炭の収率を向上させることができる。なお、低い抽出率を示した粒度域の石炭は、発電用などの燃料として使用することで全体として効率的な石炭の利用を行える。なお、単純に1.0mm以下の粒度の原料炭を篩い分けして除去し、1.0mmを超える粒度の原料炭を用いて前記した抽出工程、分離工程、および無灰炭取得工程を実施してもよい。   In the case of the raw coal of this example, for example, the raw coal with a particle size of 2.0 mm or less is screened and removed, and the extraction step, the separation step, and the When the ash coal acquisition process is performed, the extraction rate calculated from Table 1 is 55.6% by weight daf, which is 1.5 wt. Than when raw coal is used as it is without sieving (as is). The extraction rate can be improved by about% daf. Thus, the extraction rate can be improved by using coal having a particle size range that is higher than the extraction rate of coal when sieving is not performed among the screened coals. . That is, the yield of ashless coal can be improved. In addition, the coal of the particle size range which showed the low extraction rate can be efficiently used as a whole by using it as a fuel for power generation. In addition, the coking coal having a particle size of 1.0 mm or less is simply removed by sieving, and the above-described extraction process, separation process, and ashless coal acquisition process are performed using the coking coal having a particle size exceeding 1.0 mm. May be.

また、表1に示したように、篩い分けを行っていない(そのままの)原料炭では、灰分濃度11.3重量%を示した。これに対して、4.75mmを超える粒度の原料炭は、篩い分けを行っていない(そのままの)原料炭の灰分濃度よりも高い灰分濃度14.4重量%を示した。一方、1.0mmを超え2.0mm以下の粒度の原料炭は、篩い分けを行っていない(そのままの)原料炭の灰分濃度よりも低い灰分濃度8.98重量%を示した。このように、粒度別で灰分濃度にもバラつきがあるこがわかる。なお、これは瀝青炭に限ったことではなく、他の種類の石炭にも当てはまる。   Moreover, as shown in Table 1, the ash content concentration of 11.3 wt% was shown for the raw coal that was not sieved (as it was). On the other hand, the raw coal having a particle size exceeding 4.75 mm showed an ash concentration of 14.4% by weight, which was higher than the ash concentration of the raw coal without sieving (as it was). On the other hand, the raw coal having a particle size of more than 1.0 mm and not more than 2.0 mm showed an ash concentration of 8.98% by weight, which is lower than the ash concentration of raw coal without sieving (as it is). Thus, it can be seen that the ash concentration varies depending on the particle size. This is not limited to bituminous coal, but also applies to other types of coal.

本実施例の原料炭の場合、例えば、4.75mmを超える粒度の原料炭を篩い分けして除去し、4.75mm以下の粒度の原料炭とすることで、表1より計算して、原料炭に含まれる灰分濃度が9.15重量%になり、篩い分けを行っていない(そのままの)原料炭を原料とする場合よりも、灰分濃度が2.15重量%低い原料となる。この原料炭を用いて、前記した抽出工程、分離工程、および無灰炭取得工程を実施すると、原料炭に含まれる灰分量が少ないので、篩い分けを行っていない(そのままの)原料炭を原料とする場合よりも、無灰炭の収率を向上させることができる。篩い分けして灰分濃度が低い原料炭とすることで、無灰炭を得るための上記一連の処理工程に投入する灰分量を削減できる、という効果もある。   In the case of the raw coal of the present example, for example, the raw coal having a particle size exceeding 4.75 mm is removed by sieving to obtain a raw coal having a particle size of 4.75 mm or less. The ash concentration contained in the charcoal is 9.15% by weight, which is a raw material having an ash concentration of 2.15% by weight lower than that of raw coal that is not sieved (as is). When this extraction coal, the above-described extraction step, separation step, and ashless coal acquisition step are carried out, the amount of ash contained in the raw coal is small, so the raw coal that has not been sieved (as it is) is used as raw material Thus, the yield of ashless coal can be improved. By sieving and using raw coal with a low ash concentration, there is also an effect that the amount of ash to be input to the above-described series of processing steps for obtaining ashless coal can be reduced.

このように、篩い分けされた石炭のうち、篩い分けを行っていない場合の石炭の灰分濃度よりも全体として低い灰分濃度の粒度域の石炭を用いることで、無灰炭の収率を向上させることができるとともに、無灰炭を得るための上記一連の処理工程に投入する灰分量を削減できる。   Thus, among sieved coal, the yield of ashless coal is improved by using coal having a particle size range having an ash concentration lower than the ash concentration of coal when sieving is not performed. In addition, it is possible to reduce the amount of ash input to the above series of processing steps for obtaining ashless coal.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. .

1:石炭ホッパ
2:溶剤タンク
3:スラリー調製槽
4:移送ポンプ
5:予熱器
6:抽出槽
7:重力沈降槽
8:フィルターユニット
9、10:溶剤分離器
100:無灰炭製造設備
1: Coal hopper 2: Solvent tank 3: Slurry preparation tank 4: Transfer pump 5: Preheater 6: Extraction tank 7: Gravity settling tank 8: Filter unit 9, 10: Solvent separator 100: Ashless coal production equipment

Claims (4)

所定の粒度別に石炭を分別する原料分別工程と、
石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、
前記抽出工程にて前記石炭成分が抽出されたスラリーから前記石炭成分を含む溶液部を分離する分離工程と、
前記分離工程で分離された溶液部から溶剤を蒸発分離して無灰炭を得る無灰炭取得工程と、
を備える、無灰炭の製造方法において、
所定の粒度別に石炭の性状分析を行う原料分析段階を有し、
前記原料分析段階の分析結果に基づいて決定した所定の粒度域の石炭を用いて前記抽出工程を行うように、前記原料分別工程で石炭を粒度別に分別することを特徴とする、無灰炭の製造方法。
A raw material separation step of separating coal according to a predetermined particle size;
An extraction step of heating a slurry obtained by mixing coal and a solvent to extract a coal component soluble in the solvent;
A separation step of separating the solution portion containing the coal component from the slurry from which the coal component has been extracted in the extraction step;
Ashless coal acquisition step for obtaining ashless coal by evaporating and separating the solvent from the solution portion separated in the separation step;
In a method for producing ashless coal,
It has a raw material analysis stage to analyze the properties of coal according to a predetermined particle size,
The ashless coal is characterized in that coal is classified according to particle size in the raw material separation step so that the extraction step is performed using coal of a predetermined particle size range determined based on the analysis result of the raw material analysis stage. Production method.
請求項1に記載の無灰炭の製造方法において、
粒度別に分けていない石炭の性状分析を前記原料分析段階においてさらに行い、
所定の粒度別の石炭の性状分析の結果と、粒度別に分けていない石炭の性状分析の結果と、を比較して前記粒度域を決定し、当該粒度域の石炭を用いて前記抽出工程を行うことを特徴とする、無灰炭の製造方法。
In the manufacturing method of ashless coal of Claim 1,
Further analysis of the properties of coal not divided according to particle size is performed in the raw material analysis stage,
The result of the property analysis of coal according to a predetermined particle size is compared with the result of the property analysis of coal not divided according to particle size to determine the particle size range, and the extraction step is performed using coal in the particle size range A method for producing ashless coal, characterized in that
請求項2に記載の無灰炭の製造方法において、
前記原料分別工程で分別された石炭のうち、粒度別に分けていない場合の前記石炭成分の抽出率よりも全体として高い前記石炭成分の抽出率となる前記粒度域の石炭を用いて前記抽出工程を行うことを特徴とする、無灰炭の製造方法。
In the manufacturing method of the ashless coal of Claim 2,
Among the coals separated in the raw material separation step, the extraction step is performed using coal in the particle size region that has a higher extraction rate of the coal component as a whole than the extraction rate of the coal component when not classified according to particle size. A method for producing ashless charcoal, characterized in that it is performed.
請求項1〜3のいずれかに記載の無灰炭の製造方法において、
前記原料分析段階において、石炭について、予め、前記石炭成分の抽出率と石炭の粒度の関係の基礎データを取得しておき、前記基礎データに基づき、前記石炭成分の抽出率が高くなる所定の粒度域を見出し、前記原料分別工程で、前記見出した所定の粒度の石炭を原料として用いるように分別を行うことを特徴とする、無灰炭の製造方法。
In the manufacturing method of the ashless coal in any one of Claims 1-3,
In the raw material analysis stage, for coal, the basic data on the relationship between the extraction rate of the coal component and the particle size of the coal is acquired in advance, and the extraction rate of the coal component is increased based on the basic data. A method for producing ashless coal, characterized in that, in the raw material fractionation step, fractionation is performed so as to use the found coal having a predetermined particle size as a raw material.
JP2011274705A 2011-12-15 2011-12-15 Production method of ashless coal Active JP5710459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274705A JP5710459B2 (en) 2011-12-15 2011-12-15 Production method of ashless coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274705A JP5710459B2 (en) 2011-12-15 2011-12-15 Production method of ashless coal

Publications (2)

Publication Number Publication Date
JP2013124325A true JP2013124325A (en) 2013-06-24
JP5710459B2 JP5710459B2 (en) 2015-04-30

Family

ID=48775792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274705A Active JP5710459B2 (en) 2011-12-15 2011-12-15 Production method of ashless coal

Country Status (1)

Country Link
JP (1) JP5710459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745312A (en) * 2013-12-25 2016-07-06 株式会社神户制钢所 Method for producing ashless coal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026791A (en) * 1999-07-13 2001-01-30 Univ Tohoku Production of ash-less coal
JP2009221340A (en) * 2008-03-14 2009-10-01 Kobe Steel Ltd Method for producing ashless coal
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2013112813A (en) * 2011-12-01 2013-06-10 Kobe Steel Ltd Method for producing ashless coal formed article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026791A (en) * 1999-07-13 2001-01-30 Univ Tohoku Production of ash-less coal
JP2009221340A (en) * 2008-03-14 2009-10-01 Kobe Steel Ltd Method for producing ashless coal
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2013112813A (en) * 2011-12-01 2013-06-10 Kobe Steel Ltd Method for producing ashless coal formed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745312A (en) * 2013-12-25 2016-07-06 株式会社神户制钢所 Method for producing ashless coal
CN105745312B (en) * 2013-12-25 2018-02-27 株式会社神户制钢所 The manufacture method of ashless coal

Also Published As

Publication number Publication date
JP5710459B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5334433B2 (en) Production method of ashless coal
JP4045229B2 (en) Production method of ashless coal
JP5657510B2 (en) Production method of ashless coal
CN102165049B (en) Method for manufacturing hyper-coal
JP6035559B2 (en) Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP5241105B2 (en) Coke manufacturing method and pig iron manufacturing method
JP2013249360A (en) Method for producing ashless coal
JP5710459B2 (en) Production method of ashless coal
JP5328180B2 (en) Production method of ashless coal
JP4971955B2 (en) Production method of ashless coal
JP5639402B2 (en) Production method of ashless coal
JP6000887B2 (en) Production method of ashless coal
JP2014189739A (en) Apparatus and method for production of ashless coal
WO2012176896A1 (en) Method for producing ashless coal
JP3920899B1 (en) Method for producing modified coal
JP6199020B2 (en) Production method of ashless coal
JP2014065823A (en) Production method of ashless coal
JP2009227729A (en) Manufacturing method for ashless coal
JP2014185264A (en) Method for controlling softening and melting properties of ashless coal, and method for producing ashless coal
JP2014189740A (en) Apparatus and method for production of ashless coal
AU2013321344B2 (en) Method for manufacturing ashless coal
JP2014152308A (en) Method for producing by-produced coal
JP5719283B2 (en) Production method of by-product coal molding
JP2013136692A (en) Production method for ashless coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150