JP2013122286A - Continuously variable transmission pulley and continuously variable transmission - Google Patents

Continuously variable transmission pulley and continuously variable transmission Download PDF

Info

Publication number
JP2013122286A
JP2013122286A JP2011270981A JP2011270981A JP2013122286A JP 2013122286 A JP2013122286 A JP 2013122286A JP 2011270981 A JP2011270981 A JP 2011270981A JP 2011270981 A JP2011270981 A JP 2011270981A JP 2013122286 A JP2013122286 A JP 2013122286A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
content
mass
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011270981A
Other languages
Japanese (ja)
Other versions
JP5957714B2 (en
Inventor
Makoto Yoshida
吉田  誠
Atsushi Ikeda
篤史 池田
Yoichi Tsuji
洋一 辻
Hiroaki Toyoda
宏章 豊田
Yohei Ogawa
洋平 小川
Jun Konishi
純 小西
Noburo Kino
伸朗 木野
Keisuke Inoue
圭介 井上
Ryohei Ishikura
亮平 石倉
Yusuke Tozawa
雄介 登澤
Tomoyuki Nakajima
智之 中島
Kazuhisa Ishida
和久 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
JATCO Ltd
Original Assignee
Daido Steel Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, JATCO Ltd filed Critical Daido Steel Co Ltd
Priority to JP2011270981A priority Critical patent/JP5957714B2/en
Publication of JP2013122286A publication Critical patent/JP2013122286A/en
Application granted granted Critical
Publication of JP5957714B2 publication Critical patent/JP5957714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously variable transmission pulley suppressing softening when a temperature rises due to heat generation associated with frictional contact with a belt and improving wear resistance of a sheave surface so that it is durable for the use at a high surface pressure.SOLUTION: In a continuously variable transmission pulley with a sheave surface using steel containing at least silicon (Si) and chromium (Cr) and subjected to surface hardening heat treatment and in frictional contact with a continuously variable transmission belt, the Si content is set to 0.35-1.2 mass%, the Cr content is set to 0.30-1.25 mass%, carburizing and quenching and tempering are performed in the surface hardening heat treatment, the surface carbon C content of the sheave surface after the surface hardening heat treatment is set to 0.65-1.0 mass%, and relations of H=160×C+65×Si+30×Cr+455>625 (Hv) are satisfied, where the surface hardness H of the sheave surface after the tempering at the maximum use environment temperature is obtained in terms of Vickers hardness.

Description

本発明は、少なくともシリコン(Si)と、クロム(Cr)とを含有する鋼を用いた無段変速機用プーリ及びこれを備えた無段変速機に係り、高面圧の負荷においても耐久性に優れた無段変速機用プーリ及びこれを備えた無段変速機に関するものである。   The present invention relates to a pulley for a continuously variable transmission using steel containing at least silicon (Si) and chromium (Cr) and a continuously variable transmission provided with the pulley, and is durable even under a high surface pressure load. The present invention relates to a pulley for a continuously variable transmission and an continuously variable transmission including the pulley.

無段変速機は、無段変速機用プーリと無段変速機用ベルトを備えている。ここで、前記無段変速機用プーリは、入力側プーリと出力側プーリの二組から構成されている。一方、前記無段変速機用ベルトは、入力側プーリと出力側プーリの間に掛け渡した無端ベルトである。そして、入力側プーリ及び出力側プーリは、無段変速機用ベルトをそのシーブ面で両側から挟みこみ、このときの押し付け力によって、入力側プーリから無段変速機用ベルトを介して出力側プーリへとトルクを伝達する。   The continuously variable transmission includes a continuously variable transmission pulley and a continuously variable transmission belt. Here, the continuously variable transmission pulley includes two sets of an input pulley and an output pulley. On the other hand, the continuously variable transmission belt is an endless belt stretched between an input pulley and an output pulley. The input side pulley and the output side pulley have the continuously variable transmission belt sandwiched between the sheave surfaces from both sides, and the pressing force at this time causes the input side pulley to pass through the continuously variable transmission belt to the output side pulley. Torque is transmitted to

現在、環境保全や資源保護の観点から自動車の燃費性能の向上が要求されており、変速機において燃費性能の向上を図るためには、変速比幅を拡大することが有効である。無段変速機では、プーリ径を拡大することで入力側プーリと出力側プーリに対する無段変速機用ベルトの巻き付き径の差を大きく取ることができ、変速比幅を拡大することが可能となる。しかし、プーリ径を拡大すると無段変速機全体が大型化してしまい搭載性の悪化や重量の増加等の問題が生じて、燃費性能の向上の効果を小さくしてしまう。   Currently, there is a demand for improving the fuel efficiency of automobiles from the viewpoint of environmental protection and resource protection, and it is effective to increase the gear ratio range in order to improve the fuel efficiency of a transmission. In the continuously variable transmission, by increasing the pulley diameter, the difference in the winding diameter of the continuously variable transmission belt with respect to the input-side pulley and the output-side pulley can be increased, and the gear ratio range can be increased. . However, when the pulley diameter is increased, the entire continuously variable transmission is increased in size, causing problems such as deterioration in mountability and an increase in weight, thereby reducing the effect of improving fuel efficiency.

この問題を回避するために、よりプーリの内側部分(より中心に近い位置)に無段変速機用ベルトが巻き付くようにすることで変速比幅を拡大する方法がある。この場合、無段変速機用ベルトとシーブ面との接触面積が小さくなる。そのため、トルクを伝達させるためには、無段変速機用ベルトとシーブ面の間に作用する面圧をより高くして作動する必要があり、プーリのシーブ面に強い耐久性が要求される。   In order to avoid this problem, there is a method of enlarging the speed ratio width by allowing the continuously variable transmission belt to be wound around the inner portion (position closer to the center) of the pulley. In this case, the contact area between the continuously variable transmission belt and the sheave surface is reduced. Therefore, in order to transmit the torque, it is necessary to operate with a higher surface pressure acting between the continuously variable transmission belt and the sheave surface, and a strong durability is required for the sheave surface of the pulley.

プーリのシーブ面の耐久性を確保するためには、シーブ面の表面に高い硬さが必要である。一般的には、JIS G 4053に規定されるクロム鋼又はクロムモリブデン鋼を用いて浸炭焼入れ焼戻しの熱処理を行い、その後に研削加工とショットピーニング処理を実施したものが用いられている。   In order to ensure the durability of the sheave surface of the pulley, a high hardness is required on the surface of the sheave surface. Generally, chrome steel or chrome molybdenum steel stipulated in JIS G 4053 is used for carburizing, quenching, and tempering, followed by grinding and shot peening.

従来、JIS G 4053に規定されているクロム鋼やクロムモリブデン鋼のシリコン(Si)含有量の範囲を、0.35を超え1.0質量%以下に増加し、浸炭窒化処理後のシーブ面の表面の炭素含有量の範囲を0.65〜1.40質量%にし、浸炭窒化処理後のシーブ面の表面の窒素含有濃度N%と表面硬さHとの関係を、H≧−320×N+700に設定した無段変速機用プーリが提案されている(特許文献1参照)。   Conventionally, the silicon (Si) content range of chromium steel and chromium molybdenum steel specified in JIS G 4053 has been increased to more than 0.35 and less than 1.0% by mass, and the sheave surface after carbonitriding has been increased. The range of carbon content on the surface is set to 0.65 to 1.40% by mass, and the relationship between the nitrogen content concentration N% of the surface of the sheave surface after carbonitriding and the surface hardness H is expressed as H ≧ −320 × N + 700. Has been proposed (see Patent Document 1).

また、上記特許文献1に規定される同組成の鋼にて、浸炭処理とショットピーニングを行い、シーブ面の表面の硬さを800Hv以上と高い硬さにした無段変速機用プーリが提案されている(特許文献2参照)。   In addition, a pulley for continuously variable transmission is proposed in which carburization and shot peening are performed on steel having the same composition as defined in Patent Document 1 and the hardness of the surface of the sheave surface is as high as 800 Hv or more. (See Patent Document 2).

また、上記特許文献1に規定される同組成の鋼にて、浸炭処理とショットピーニングを行い、シーブ面の表面硬さHと表面粗さRaとの関係を、H≧500×Ra+650に設定した無段変速機用プーリが提案されている(特許文献3参照)。   In addition, carburizing treatment and shot peening were performed on the steel having the same composition defined in Patent Document 1 above, and the relationship between the surface hardness H of the sheave surface and the surface roughness Ra was set to H ≧ 500 × Ra + 650. A pulley for a continuously variable transmission has been proposed (see Patent Document 3).

特開2009-68608号公報JP 2009-68608 JP 特開2009-68609号公報JP 2009-68609 A 特開2009-185321号公報JP 2009-185321 A

無段変速機用プーリのシーブ面は、ベルトからシーブ面へ繰り返し高面圧が負荷される場合、プーリのシーブ面に疲労亀裂を伴う摩耗が発生し、損傷が生じる。さらに、シーブ面は、作動時における無段変速機用ベルトとの摩擦接触によって発熱して温度上昇し、シーブ面の軟化が起こり疲労亀裂を伴なう摩耗を促進してしまう。プーリの未動作時にはベルトとの摩擦接触がなくなり自然冷却されて温度が低下する。すなわち、作動時による発熱と未作動時の自然冷却にてシーブ面がいわゆる焼戻し処理を行った状態になる。   When a high surface pressure is repeatedly applied from the belt to the sheave surface, the sheave surface of the pulley for the continuously variable transmission is worn with fatigue cracks on the sheave surface of the pulley, and is damaged. Further, the sheave surface generates heat and increases in temperature due to frictional contact with the continuously variable transmission belt during operation, and the sheave surface is softened to promote wear accompanied by fatigue cracks. When the pulley is not in operation, there is no frictional contact with the belt, and the pulley is naturally cooled to lower the temperature. That is, the sheave surface is subjected to a so-called tempering process by heat generation during operation and natural cooling during non-operation.

これに対し、上記特許文献1,2,3に記載の無段変速機用プーリにあっては、シーブ面の表面硬さの範囲を含有する窒素濃度、圧縮残留応力、表面粗さとの関係を示してシーブ面の摩耗低減を図っていると共に、摩擦発熱による高温の使用環境下での硬さの軟化抑制の考え方は示されている。又、耐摩耗性を確保する影響因子としては初期硬さを用いてそれぞれの関係を定義している。   On the other hand, in the continuously variable transmission pulleys described in Patent Documents 1, 2, and 3, the relationship between the nitrogen concentration, the compressive residual stress, and the surface roughness including the range of the surface hardness of the sheave surface is shown. In addition to reducing the wear on the sheave surface, the idea of suppressing the softening of the hardness in a high temperature use environment due to frictional heat generation is shown. In addition, as an influencing factor for ensuring wear resistance, each relationship is defined using initial hardness.

すなわち、上記特許文献1,2,3に記載の無段変速機用プーリにあっては、シリコン(Si)・クロム(Cr)・浸炭窒化処理後の炭素(C)の各含有量を規定(増加)することで、シーブ面硬度を上げることが述べられている。また、浸炭窒化熱処理により同様にシーブ面の硬度を上げる技術も述べられている。
また、使用時はベルトとの摩擦接触による発熱で温度上昇し、その熱によりシーブ面の硬さが軟化する。この結果としてシーブ面の摩耗が促進することが考えられるが、従来文献ではそれらが考慮されていない。
That is, in the continuously variable transmission pulleys described in Patent Documents 1, 2, and 3, the respective contents of silicon (Si), chromium (Cr), and carbon (C) after carbonitriding are defined ( Increasing) increases the sheave surface hardness. A technique for increasing the hardness of the sheave surface in the same manner by carbonitriding is also described.
In use, the temperature rises due to heat generated by frictional contact with the belt, and the heat softens the sheave surface. As a result, it is considered that the wear of the sheave surface is promoted, but these are not considered in the conventional literature.

本発明は、ベルトとの摩擦接触に伴う発熱によるプーリシーブ面の硬さの軟化抑制が必要である考えは上記特許文献1,2,3と同様である。しかしながら、本発明は、使用環境での熱履歴であり、更に高温硬さと相関がある焼戻し硬さに着目し、鋼材の合金成分及び表面硬化熱処理後の炭素含有量の範囲を設定することにより、耐摩耗性を向上させることができるとの新たな知見を得た。その範囲は、上記特許文献1,2,3に記載の無段変速機用プーリにおける範囲とは異なる範囲である。   In the present invention, the idea that it is necessary to suppress the softening of the pulley sheave surface due to heat generated by frictional contact with the belt is the same as in Patent Documents 1, 2, and 3. However, the present invention is a thermal history in the environment of use, and further paying attention to tempering hardness correlated with high temperature hardness, by setting the range of the carbon content after the alloy component of the steel material and the surface hardening heat treatment, We obtained new knowledge that the wear resistance can be improved. The range is different from the range of the pulley for continuously variable transmissions described in Patent Documents 1, 2, and 3.

本発明は、上記問題に着目してなされたもので、ベルトとの摩擦接触に伴う発熱によって温度上昇した際の軟化を抑制し、シーブ面の耐摩耗性を向上して高面圧での使用に耐え得ることができる無段変速機用プーリ及びこれを備えた無段変速機を提供することが解決しようとする課題である。   The present invention has been made paying attention to the above-mentioned problems, and suppresses softening when the temperature rises due to heat generated by frictional contact with the belt, improves wear resistance of the sheave surface, and is used at a high surface pressure. It is a problem to be solved to provide a continuously variable transmission pulley capable of withstanding the above and a continuously variable transmission including the pulley.

上記目的を達成するため、本発明では、少なくともシリコン(Si)と、クロム(Cr)と、を含有し、表面硬化熱処理を実施する鋼を使用し、無段変速機用ベルトと摩擦接触するシーブ面を備えた無段変速機用プーリにおいて、
前記鋼は、前記シリコン(Si)の含有量を、Si:0.35〜1.2質量%に設定し、
前記クロム(Cr)の含有量を、Cr:0.30〜1.25質量%に設定し、
前記表面硬化熱処理は、浸炭焼入れ、焼戻しを実施し、
前記表面硬化熱処理後の、前記シーブ面の表面の炭素(C)の含有量を、C:0.65〜1.0質量%に設定し、
最大使用環境温度での焼戻し後の前記シーブ面の表面硬さをマイクロビッカース硬度でH、前記シーブ面の表面の炭素(C)の含有量をC質量%、前記シリコン(Si)の含有量をSi質量%、前記クロム(Cr)の含有量をCr質量%としたとき、
H=160×C+65×Si+30×Cr+455>625(Hv)
の関係を満たすことを特徴とする。
To achieve the above object, the present invention uses a steel containing at least silicon (Si) and chromium (Cr) and subjected to surface hardening heat treatment, and is in frictional contact with a continuously variable transmission belt. In a continuously variable transmission pulley having a surface,
In the steel, the content of the silicon (Si) is set to Si: 0.35 to 1.2% by mass,
The chromium (Cr) content is set to Cr: 0.30 to 1.25% by mass,
The surface hardening heat treatment includes carburizing quenching and tempering,
The content of carbon (C) on the surface of the sheave surface after the surface curing heat treatment is set to C: 0.65 to 1.0% by mass,
The surface hardness of the sheave surface after tempering at the maximum use environment temperature is H in micro Vickers hardness, the carbon (C) content on the surface of the sheave surface is C mass%, and the silicon (Si) content is Si mass%, when the chromium (Cr) content is Cr mass%,
H = 160 × C + 65 × Si + 30 × Cr + 455> 625 (Hv)
It is characterized by satisfying the relationship.

軟化抵抗性の高い、シリコン(Si)とクロム(Cr)を上述する範囲にすることで、シーブ面へ高面圧が負荷される無段変速機用プーリにおいて、摺動発熱によるシーブ面の温度上昇に起因するシーブ面の硬さの軟化が抑制される。このため、シーブ面に疲労亀裂が生じることを抑制し、シーブ面の耐摩耗性を向上させることができる。すなわち、本発明の無段変速機用プーリでは、ベルトとの摩擦接触に伴う発熱によって温度上昇した際の軟化を抑制し、シーブ面の耐摩耗性を向上して高面圧での使用に耐え得ることができる。   Sieve surface temperature due to sliding heat generation in continuously variable transmission pulleys where high surface pressure is applied to the sheave surface by making silicon (Si) and chromium (Cr), which have high softening resistance, within the above-mentioned range. Softening of the hardness of the sheave surface due to the rise is suppressed. For this reason, it is possible to suppress the occurrence of fatigue cracks on the sheave surface and to improve the wear resistance of the sheave surface. That is, the continuously variable transmission pulley of the present invention suppresses softening when the temperature rises due to heat generated by frictional contact with the belt, improves the wear resistance of the sheave surface, and can withstand use at high surface pressure. Can be obtained.

実施例1の無段変速機用プーリを備えた無段変速機で最大減速状態を示す斜視図である。It is a perspective view which shows the maximum deceleration state with the continuously variable transmission provided with the pulley for continuously variable transmission of Example 1. FIG. 無段変速機用ベルトの一部分を示す拡大斜視図である。It is an expansion perspective view which shows a part of belt for continuously variable transmission. 実施例1の無段変速機用プーリを形成する鋼におけるシリコン(Si)含有量とクロム(Cr)含有量、及び最大使用環境温度焼戻し硬さとの関係を示すグラフであり、(a)は熱処理後の炭素(C)含有量が0.65質量%の場合を示し、(b)は熱処理後の炭素(C)含有量が0.8質量%の場合を示す。It is a graph which shows the relationship between silicon (Si) content in chromium which forms the pulley for continuously variable transmission of Example 1, chromium (Cr) content, and maximum use environment temperature tempering hardness, (a) is heat processing. The case where the subsequent carbon (C) content is 0.65% by mass is shown, and (b) shows the case where the carbon (C) content after the heat treatment is 0.8% by mass. 実施例1の無段変速機用プーリを形成する鋼におけるクロム(Cr)含有量と熱処理後の炭素(C)含有量との関係をシリコン(Si)含有量ごとに示すグラフである。It is a graph which shows the relationship between chromium (Cr) content in the steel which forms the pulley for continuously variable transmission of Example 1, and carbon (C) content after heat processing for every silicon (Si) content. 実施例1の摩耗試験用試験体及び比較例の試験体における鋼の組成、熱処理後炭素含有量、最大使用環境温度焼戻し硬さを示す表である。It is a table | surface which shows the composition of the steel in the test body for abrasion tests of Example 1, and the test body of a comparative example, carbon content after heat processing, and maximum use environment temperature tempering hardness. 実施例1及び比較例の摩耗試験後の摩耗深さを示す表である。It is a table | surface which shows the wear depth after the abrasion test of Example 1 and a comparative example. 実施例1及び比較例の摩耗試験の結果を示すマップ図である。It is a map figure which shows the result of the abrasion test of Example 1 and a comparative example.

以下、本発明の無段変速機用プーリ及びそれを備えた無段変速機を実施するための形態を、図面に示す実施例1に基づいて説明する。   EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the continuously variable transmission pulley of this invention and the continuously variable transmission provided with the same is demonstrated based on Example 1 shown in drawing.

[無段変速機の構成]
図1は、実施例1の無段変速機用プーリを備えた無段変速機で最大減速状態を示す斜視図である。図2は、無段変速機用ベルトの一部分を示す拡大斜視図である。以下、実施例1の無段変速機用プーリを備えた無段変速機の構成について説明する。
[Configuration of continuously variable transmission]
FIG. 1 is a perspective view showing a maximum deceleration state in a continuously variable transmission including a continuously variable transmission pulley according to a first embodiment. FIG. 2 is an enlarged perspective view showing a part of a continuously variable transmission belt. Hereinafter, the structure of the continuously variable transmission provided with the pulley for continuously variable transmission of Example 1 is demonstrated.

実施例1の無段変速機Mは、図1に示すように、無段変速機用プーリPと、無段変速機用ベルトVとを備えている。   As shown in FIG. 1, the continuously variable transmission M according to the first embodiment includes a continuously variable transmission pulley P and a continuously variable transmission belt V.

前記無段変速機用プーリPは、入力側プーリ1と出力側プーリ2の二組から構成されている。ここで、図外のエンジンからのトルクは、トルクコンバータ及び前後進切替機構を通して入力側プーリ1に伝わり、無段変速機用ベルトVを介して、出力側プーリ2から図外の減速歯車及びドライブシャフトを通じてタイヤに伝わる。前記入力側プーリ1は、固定プーリ11とスライドプーリ12を有し、入力軸方向にプーリ間隔を可変とする。前記出力側プーリ2は、固定プーリ21とスライドプーリ22を有し、出力軸方向にプーリ間隔を可変とする。そして、スライドプーリ12,22は、ピストン油圧により無段変速機用ベルトVを狭持する方向に押し付け力を発生させる。さらに、各プーリ11,12,21,22は、無段変速機用ベルトVと接触するシーブ面11a,12a,21a,22aを有している。なお、実施例1の無段変速機用プーリPでは、各シーブ面11a,12a,21a,22aの傾斜であるシーブ角度を、例えば11°程度に設定している。   The continuously variable transmission pulley P includes two sets of an input pulley 1 and an output pulley 2. Here, the torque from the engine (not shown) is transmitted to the input pulley 1 through the torque converter and the forward / reverse switching mechanism, and from the output pulley 2 to the reduction gear and drive (not shown) via the continuously variable transmission belt V. It is transmitted to the tire through the shaft. The input-side pulley 1 has a fixed pulley 11 and a slide pulley 12, and the pulley interval is variable in the input shaft direction. The output side pulley 2 has a fixed pulley 21 and a slide pulley 22, and the pulley interval is variable in the output shaft direction. The slide pulleys 12 and 22 generate a pressing force in a direction in which the continuously variable transmission belt V is pinched by piston hydraulic pressure. Furthermore, each pulley 11, 12, 21, 22 has a sheave surface 11a, 12a, 21a, 22a that contacts the continuously variable transmission belt V. In the continuously variable transmission pulley P of the first embodiment, the sheave angle, which is the inclination of each sheave surface 11a, 12a, 21a, 22a, is set to about 11 °, for example.

前記無段変速機用ベルトVは、入力側プーリ1と出力側プーリ2の間に掛け渡した無端ベルトである。この無段変速機用ベルトVは、図2に示すように、環状リングを内から外へ多数重ね合わせた積層リング3と、両側に2組のプーリ1,2のシーブ面11a,12a,21a,22bと接触するフランク面4aを有する板状のエレメント4と、を備えている。そして、無段変速機用ベルトVは、図2に示すように、2組の積層リング3,3を、板厚方向に多数枚重ねたエレメント4,…のサドル溝4b,4bに両側から挟み込み、これら多数のエレメント4,…を束ねることで構成する。そして、この無段変速機用ベルトVを固定プーリ11,21とスライドプーリ12,22の間に挟みこんでのトルク伝達時、エレメント4が外径方向に広がろうとする力を積層リング3が支え、2組のプーリ1,2からの押し付け力をエレメント4が支える。前記積層リング3は、厚さ0.2mmほどのマレージング鋼相当の最高強度材料の薄板を溶接して環状リングとし、僅かに径を異ならせた複数の環状リングを内から外へ層状に重ね合わせることで構成する。前記エレメント4は、厚さ2mm程度の鋼板を、打ち抜き金型により打ち抜いた打ち抜き成形品である。   The continuously variable transmission belt V is an endless belt stretched between the input side pulley 1 and the output side pulley 2. As shown in FIG. 2, the continuously variable transmission belt V includes a laminated ring 3 in which a large number of annular rings are stacked from inside to outside, and sheave surfaces 11a, 12a, 21a of two sets of pulleys 1, 2 on both sides. , 22b and a plate-like element 4 having a flank surface 4a in contact with it. As shown in FIG. 2, the continuously variable transmission belt V is sandwiched from both sides in saddle grooves 4b, 4b of elements 4,. These multiple elements 4 are combined to form a bundle. When the continuously variable transmission belt V is sandwiched between the fixed pulleys 11 and 21 and the slide pulleys 12 and 22, when the torque is transmitted, the laminated ring 3 generates a force that causes the element 4 to spread in the outer diameter direction. The element 4 supports the pressing force from the two sets of pulleys 1 and 2. The laminated ring 3 is formed by welding a thin plate of the highest strength material equivalent to maraging steel having a thickness of about 0.2 mm to form an annular ring, and laminating a plurality of annular rings having slightly different diameters from inside to outside. Consists of. The element 4 is a punched molded product obtained by punching a steel plate having a thickness of about 2 mm with a punching die.

[無段変速機用プーリを形成する鋼の組成範囲]
図3は、実施例1の無段変速機用プーリを形成する鋼におけるシリコン(Si)含有量とクロム(Cr)含有量、及び最大使用環境温度焼戻し硬さとの関係を示すグラフであり、(a)は熱処理後の炭素(C)含有量が0.65質量%の例を示し、(b)は熱処理後の炭素(C)含有量が0.8質量%の例を示す。
[Composition range of steel forming pulley for continuously variable transmission]
FIG. 3 is a graph showing the relationship between the silicon (Si) content and the chromium (Cr) content in the steel forming the continuously variable transmission pulley of Example 1 and the maximum operating environment temperature tempering hardness. a) shows an example in which the carbon (C) content after heat treatment is 0.65 mass%, and (b) shows an example in which the carbon (C) content after heat treatment is 0.8 mass%.

前記無段変速機用プーリPは、少なくともシリコン(Si)と、クロム(Cr)と、を含有する鋼により形成する。   The continuously variable transmission pulley P is made of steel containing at least silicon (Si) and chromium (Cr).

この鋼は、図3に示すように、シリコン(Si)の含有量を0.35〜1.2質量%の範囲に設定し、クロム(Cr)の含有量を0.30〜1.25質量%の範囲に設定する。また、浸炭焼入れ、焼戻しを実施する表面硬化熱処理後のシーブ面11a,12a,21a,22aの表面の炭素(C)の含有量を0.65〜1.0質量%の範囲に設定する。そして、最大使用環境温度での焼戻し後のシーブ面11a,12a,21a,22aの表面硬さをマイクロビッカース硬度でH、熱処理後シーブ面11a,12a,21a,22aの表面の炭素(C)含有量をC質量%、シリコン(Si)含有量をSi質量%、クロム(Cr)含有量をCr質量%としたとき、シリコン(Si)・クロム(Cr)・熱処理後炭素(C)の各含有量を、上記範囲内にあって、下記式(1)の関係を満たすように設定する。
H=160×C+65×Si+30×Cr+455>625(Hv) ・・・(1)
ここで、最大使用環境温度は、無段変速機Mの使用中に、無段変速機用ベルトVとの摩擦により上昇するシーブ面温度の最大値に応じて設定される温度である。
As shown in FIG. 3, the steel has a silicon (Si) content of 0.35 to 1.2 mass% and a chromium (Cr) content of 0.30 to 1.25 mass. Set to the range of%. Further, the carbon (C) content on the surfaces of the sheave surfaces 11a, 12a, 21a, and 22a after the surface hardening heat treatment for performing carburizing and tempering is set in the range of 0.65 to 1.0 mass%. And, the surface hardness of the sheave surfaces 11a, 12a, 21a, 22a after tempering at the maximum use environment temperature is H as micro Vickers hardness, and the surface of the sheave surfaces 11a, 12a, 21a, 22a after heat treatment contains carbon (C). When the amount is C mass%, the silicon (Si) content is Si mass%, and the chromium (Cr) content is Cr mass%, each content of silicon (Si), chromium (Cr), and carbon (C) after heat treatment The amount is set to be within the above range and satisfy the relationship of the following formula (1).
H = 160 × C + 65 × Si + 30 × Cr + 455> 625 (Hv) (1)
Here, the maximum use environment temperature is a temperature set according to the maximum value of the sheave surface temperature that rises due to friction with the continuously variable transmission belt V during use of the continuously variable transmission M.

図3では、同じ焼戻し硬さが得られる成分位置が右下がりの直線で示される。そして、前記無段変速機用プーリPを形成する鋼の成分範囲は、シーブ面硬さが625Hv以上となり、且つ、シリコン(Si)含有量及びクロム(Cr)含有量がそれぞれ上記範囲に該当するエリア(斜線で示すエリア)である。
なお、熱処理後炭素(C)の含有量が変化に伴い該当するエリアは変化する。熱処理後炭素(C)が増加する場合は、該当するエリア(斜線で示すエリア)が広がる。
In FIG. 3, the component position where the same tempering hardness can be obtained is indicated by a straight line with a lower right. And the component range of the steel forming the pulley P for continuously variable transmission has a sheave surface hardness of 625 Hv or more, and the silicon (Si) content and the chromium (Cr) content correspond to the above ranges, respectively. This is an area (area indicated by diagonal lines).
Note that the area corresponding to the change in the content of carbon (C) after the heat treatment changes. When carbon (C) increases after the heat treatment, the corresponding area (area shown by diagonal lines) expands.

無段変速機用プーリPを形成する鋼の成分は、モリブデン(Mo)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ホウ素(B)を以下の範囲で1種類以上を含有してもよい。
モリブデン(Mo)の含有量 Mo:0.01〜0.30質量%、
ニオブ(Nb)の含有量 Nb:0.005〜0.2質量%、
チタン(Ti)の含有量を Ti:0.005〜0.2質量%、
ニッケル(Ni)の含有量を Ni:0.05〜3.0質量%、
ホウ素(B)の含有量を、B:0.0005〜0.005質量%。
The steel component forming the continuously variable transmission pulley P contains one or more of molybdenum (Mo), niobium (Nb), titanium (Ti), nickel (Ni), and boron (B) within the following ranges. May be.
Molybdenum (Mo) content Mo: 0.01 to 0.30 mass%,
Niobium (Nb) Content Nb: 0.005 to 0.2% by mass,
The content of titanium (Ti) is Ti: 0.005 to 0.2% by mass,
The content of nickel (Ni) is Ni: 0.05-3.0 mass%,
The content of boron (B) is B: 0.0005 to 0.005 mass%.

シリコン(Si)は、焼戻し軟化抵抗性を向上させるために有用である。シリコン(Si)含有量は、0.35質量%以上に設定することで、焼戻し軟化抵抗性を向上させることができる。しかしながら、シリコン(Si)含有量を1.2質量%より多く設定すると、靭性を低下させるおそれがあると共に、プーリ製造時の熱間鍛造を行う際、金型への攻撃性を高め、製造性を悪化させる。又、表面硬化熱処理としてガス浸炭処理を施す場合、浸炭性の阻害の恐れがある。このため、シリコン(Si)含有量を、0.35〜1.2質量%に設定した。   Silicon (Si) is useful for improving temper softening resistance. The temper softening resistance can be improved by setting the silicon (Si) content to 0.35% by mass or more. However, if the silicon (Si) content is set to more than 1.2% by mass, the toughness may be lowered, and when hot forging is performed at the time of pulley manufacture, the aggressiveness to the mold is increased and the productivity is increased. Worsen. Further, when a gas carburizing treatment is performed as a surface hardening heat treatment, there is a risk of inhibiting the carburizing property. For this reason, silicon (Si) content was set to 0.35-1.2 mass%.

クロム(Cr)は、焼戻し軟化抵抗性を向上させる元素であり、シリコン(Si)含有量との組み合わせにより、その含有量を0.30質量%以上に設定する。また、クロム(Cr)含有量を1.25質量%より多く設定すると、加工性が低下するおそれがある。このため、クロム(Cr)含有量を、0.30〜1.25質量%に設定した。   Chromium (Cr) is an element that improves temper softening resistance, and its content is set to 0.30% by mass or more in combination with the silicon (Si) content. On the other hand, if the chromium (Cr) content is set to more than 1.25% by mass, the workability may be lowered. For this reason, chromium (Cr) content was set to 0.30 to 1.25 mass%.

モリブデン(Mo) は焼戻し軟化抵抗を向上させる元素であり、含有すると焼戻し耐摩耗性を向上させる。含有により耐摩耗性を劣化させることは無いため、鋼材の製造における不可避不純物元素としての含有量0.01質量%からJIS鋼で設定の上限値0.30質量%の範囲にて含有してもよい。   Molybdenum (Mo) is an element that improves temper softening resistance, and when contained, improves temper wear resistance. Since the wear resistance is not deteriorated by inclusion, even if it is contained in the range of 0.01 mass% as an inevitable impurity element in the production of steel materials to the upper limit of 0.30 mass% set in JIS steel Good.

ニオブ(Nb)は、鋼中の炭素及び窒素と結合して炭窒化物を形成し、浸炭処理における結晶粒の粗大化抑制の働きがあり、耐衝撃性の低下を抑制する効果を発揮する。この効果を期待するには、ニオブ(Nb)含有量を0.005質量%以上に設定する必要がある。一方、ニオブ(Nb)含有量が0.2質量%を越えると粗大化抑制効果が飽和する。このため、ニオブ(Nb)の含有量は0.005〜0.2質量%に設定する。   Niobium (Nb) combines with carbon and nitrogen in the steel to form carbonitrides, has a function of suppressing the coarsening of crystal grains in the carburizing process, and exhibits the effect of suppressing a decrease in impact resistance. In order to expect this effect, it is necessary to set the niobium (Nb) content to 0.005 mass% or more. On the other hand, when the niobium (Nb) content exceeds 0.2 mass%, the coarsening suppression effect is saturated. For this reason, the content of niobium (Nb) is set to 0.005 to 0.2% by mass.

チタン(Ti)は、鋼中の炭素及び窒素と結合して炭窒化物を形成し、浸炭処理における結晶粒の粗大化抑制の働きがあり耐衝撃性の低下を抑制する効果を発揮する。この効果を期待するには、チタン(Ti)含有量を0.005質量%以上に設定する必要がある。一方、チタン(Ti)含有量が0.2質量%を越えると、結晶粒の粗大化抑制効果が飽和する。このため、チタン(Ti)含有量は0.005〜0.2質量%に設定する。   Titanium (Ti) combines with carbon and nitrogen in the steel to form carbonitrides, has the effect of suppressing the coarsening of crystal grains in the carburizing process, and exhibits the effect of suppressing the reduction in impact resistance. In order to expect this effect, it is necessary to set the titanium (Ti) content to 0.005 mass% or more. On the other hand, when the titanium (Ti) content exceeds 0.2% by mass, the effect of suppressing the coarsening of crystal grains is saturated. For this reason, titanium (Ti) content is set to 0.005-0.2 mass%.

ニッケル(Ni)は、鋼の焼入れ性を確保するために有効な元素である。しかし、この効果を期待するには、ニッケル(Ni)含有量を0.05質量%以上に設定する必要がある。一方、ニッケル(Ni)含有量が3.0質量%を越えると、加工性を低下させる。このため、ニッケル(Ni)含有量は0.05〜3.0質量%に設定する。   Nickel (Ni) is an effective element for ensuring the hardenability of steel. However, in order to expect this effect, it is necessary to set the nickel (Ni) content to 0.05 mass% or more. On the other hand, if the nickel (Ni) content exceeds 3.0% by mass, the workability is lowered. For this reason, nickel (Ni) content is set to 0.05-3.0 mass%.

ホウ素(B)は、鋼の焼入れ性を確保するために有効な元素である。しかし、この効果を期待するには、ホウ素(B)含有量を0.0005質量%以上に設定する必要がある。一方、ホウ素(B)含有量が0.005質量%を越えると、加工性を低下させる。このため、ホウ素(B)含有量は0.0005〜0.005質量%に設定する。   Boron (B) is an effective element for ensuring the hardenability of steel. However, in order to expect this effect, it is necessary to set the boron (B) content to 0.0005 mass% or more. On the other hand, if the boron (B) content exceeds 0.005 mass%, the workability is lowered. Therefore, the boron (B) content is set to 0.0005 to 0.005 mass%.

ここで、シーブ面の硬さを決定する浸炭焼入れ、焼戻しを実施する表面硬化熱処理において、鋼製品を真空炉において減圧した浸炭性ガスの中で加熱して浸炭する真空浸炭(減圧浸炭)を行うことが望ましい。通常のガス浸炭処理(雰囲気浸炭処理)を施す場合、シリコン(Si)の含有量とクロム(Cr)の含有量によって浸炭性が影響される。そのため、ガス浸炭処理性能を向上させるためには、シリコン(Si)含有量及びクロム(Cr)含有量を最適範囲にする必要がある。
ガス浸炭(雰囲気浸炭)にて、炭素(C)含有量を0.65質量%確保するためには、シリコン(Si)含有量を0.85質量%以下に設定すると共に、クロム(Cr)含有量を0.8質量%以下に設定することが望ましい。
Here, in carburizing quenching and tempering for determining the hardness of the sheave surface, vacuum carburization (vacuum carburizing) is performed in which the steel product is carburized by heating in a carburizing gas decompressed in a vacuum furnace. It is desirable. When performing a normal gas carburizing process (atmosphere carburizing process), the carburizing property is affected by the silicon (Si) content and the chromium (Cr) content. Therefore, in order to improve the gas carburizing performance, it is necessary to make the silicon (Si) content and the chromium (Cr) content within the optimum ranges.
In order to ensure the carbon (C) content of 0.65 mass% by gas carburizing (atmosphere carburizing), the silicon (Si) content is set to 0.85 mass% or less and the chromium (Cr) content is set. It is desirable to set the amount to 0.8% by mass or less.

図5に示すように異なったシリコン(Si)、クロム(Cr)を含有する鋼材(実施例1は鋼材No.1〜19、比較例は鋼材No.20〜28)を用いて、熱間鍛造、機械加工、真空浸炭焼入れ処理、焼戻し処理、シーブ面の研削加工及び研摩加工、シーブ面へのショットピーニング処理、フィルムラップ加工を行い、図1に示す無段変速機用プーリPを製作した。このとき、シーブ面の表面粗さは、算出平均粗さRaで0.15〜0.2μmの範囲とした。同成分と同製造条件にて複数個の無段変速機用プーリを製作し、一部を摩耗試験に使用し、一部を最大使用環境温度での1時間の空冷の焼戻しを行った上でシーブ面の硬さを測定した。このときのシーブ面の熱処理後炭素含有量と、最大使用環境温度焼戻し硬さはそれぞれ図5に示す通りとなっている。   As shown in FIG. 5, steel materials containing different silicon (Si) and chromium (Cr) (Example 1 is steel materials No. 1-19, comparative example is steel materials No. 20-28), and hot forging. Then, machining, vacuum carburizing and quenching treatment, tempering treatment, sheave surface grinding and polishing, shot peening treatment on the sheave surface, and film lapping were performed to produce a pulley P for continuously variable transmission shown in FIG. At this time, the surface roughness of the sheave surface was in the range of 0.15 to 0.2 μm in terms of the calculated average roughness Ra. After producing several pulleys for continuously variable transmissions with the same components and under the same manufacturing conditions, partly used for wear tests, and partly air-tempered for 1 hour at the maximum operating environment temperature. The hardness of the sheave surface was measured. At this time, the carbon content after heat treatment of the sheave surface and the maximum use environment temperature tempering hardness are as shown in FIG.

[摩耗試験]
上述のように製作した試験用プーリを搭載した無段変速機を、入力トルクを任意に変更できる装置に取り付け、摩耗試験を行った。プーリの使用環境条件として最も変速比が最大となるように入力側プーリ1のシーブ面11a,12aの小径部に無段変速機用ベルトVの巻き付け位置を固定し、入力トルク及びシーブ面11a,12aにかかる面圧を過負荷になる状態にしてシーブ面摩耗試験を行った。
[Abrasion test]
The continuously variable transmission equipped with the test pulley manufactured as described above was attached to a device capable of arbitrarily changing the input torque, and a wear test was performed. The winding position of the continuously variable transmission belt V is fixed to the small-diameter portion of the sheave surfaces 11a, 12a of the input-side pulley 1 so that the gear ratio becomes the maximum as an operating condition of the pulley, and the input torque and the sheave surfaces 11a, 11a, The sheave surface wear test was conducted with the surface pressure applied to 12a being overloaded.

摩耗試験は、入力トルク300Nm、入力側プーリ1の入力回転数6000rpm、油温100℃の条件下で、50時間運転することで行った。そして、入力側プーリ1のシーブ面11a,12aに生じた摩耗による段付き深さを形状測定機を用いて測定した。この段付き深さを「摩耗深さ」と定義する。   The abrasion test was performed by operating for 50 hours under the conditions of an input torque of 300 Nm, an input rotation speed of the input pulley 1 of 6000 rpm, and an oil temperature of 100 ° C. And the stepped depth by the abrasion which arose on the sheave surfaces 11a and 12a of the input side pulley 1 was measured using the shape measuring machine. This step depth is defined as “wear depth”.

この結果を図6及び図7に示す。   The results are shown in FIGS.

この結果より、シーブ面11a,12a,21a,22aの摩耗深さは、最大使用環境温度焼戻し硬さと強い相関があることが分かる。すなわち、最大使用環境温度焼戻し硬さの増加により、シーブ面11a,12a,21a,22aの摩耗深さが減少する傾向がある。そのため、シーブ面摩耗量を無段変速機としての機能に支障がない程度に抑えるためには、最大使用環境温度焼戻し硬さが、マイクロビッカース硬度で625Hvより大きい値にする必要があることが分かる。   From this result, it is understood that the wear depth of the sheave surfaces 11a, 12a, 21a, and 22a has a strong correlation with the maximum use environment temperature tempering hardness. That is, the wear depth of the sheave surfaces 11a, 12a, 21a, and 22a tends to decrease due to the increase in the maximum use environment temperature tempering hardness. Therefore, it can be seen that the maximum operating environment temperature tempering hardness needs to be a value larger than 625 Hv in micro Vickers hardness in order to suppress the sheave surface wear amount to a level that does not hinder the function as a continuously variable transmission. .

さらに、この最大使用環境温度焼戻し硬さは、熱処理後炭素(C)含有量をC質量%、シリコン(Si)含有量をSi質量%、クロム(Cr)含有量をCr質量%としたとき、上述の式(1)より求められる。そのため、鋼の各組成の含有量は、熱処理後炭素(C)含有量を0.65〜1.0質量%に設定し、シリコン(Si)含有量を0.35〜1.2質量%に設定し、クロム(Cr)含有量を0.30〜1.25質量%に設定すると共に、上記式(1)を満たす値に設定しなければならないことが分かる。   Furthermore, this maximum use environment temperature tempering hardness, when carbon (C) content after heat treatment is C mass%, silicon (Si) content is Si mass%, chromium (Cr) content is Cr mass%, It is obtained from the above equation (1). Therefore, the content of each steel composition is set such that the carbon (C) content after heat treatment is set to 0.65 to 1.0 mass%, and the silicon (Si) content is set to 0.35 to 1.2 mass%. It is understood that the chromium (Cr) content must be set to 0.30 to 1.25% by mass and set to a value satisfying the above formula (1).

すなわち、比較例の鋼材(鋼材No.20〜No.28)によって製作した試験用プーリでは、いずれも最大使用環境温度焼戻し硬さが625Hv以下となっている。そのため、無段変速機の使用による発熱で、シーブ面11a,12a,21a,22aの表面が焼戻し処理を行った状態になると、このシーブ面11a,12a,21a,22aが軟化して、摩耗が進むと考えられる。   That is, in the test pulleys manufactured using the steel materials of the comparative examples (steel materials No. 20 to No. 28), the maximum operating environment temperature tempering hardness is 625 Hv or less. Therefore, when the surface of the sheave surfaces 11a, 12a, 21a, and 22a is tempered due to heat generated by the use of the continuously variable transmission, the sheave surfaces 11a, 12a, 21a, and 22a are softened and worn. It is thought to go forward.

これに対し、実施例1の鋼材(鋼材No.1〜No.19)によって製作した試験用プーリでは、最大使用環境温度焼戻し硬さがいずれも625Hvを超えている。このため、シーブ面11a,12a,21a,22aの摩擦によって焼戻し状態になった際のシーブ面軟化を抑制することができる。この結果、シーブ面11a,12a,21a,22aの耐摩耗性に優れ、高面圧での使用に耐え得ることができるので、摩耗を抑えることができると考えられる。   On the other hand, in the test pulleys manufactured using the steel materials of Example 1 (steel materials No. 1 to No. 19), the maximum operating environment temperature tempering hardness exceeds 625 Hv. For this reason, it is possible to suppress the sheave surface softening when the sheave surfaces 11a, 12a, 21a, and 22a are tempered by friction. As a result, the sheave surfaces 11a, 12a, 21a, and 22a are excellent in wear resistance and can withstand use at high surface pressure, so that it is considered that wear can be suppressed.

[実施例1の効果]
実施例1の無段変速機用プーリ及び無段変速機にあっては、下記に列挙する効果を得ることができる。
[Effect of Example 1]
In the continuously variable transmission pulley and the continuously variable transmission according to the first embodiment, the following effects can be obtained.

(1) 少なくともシリコン(Si)と、クロム(Cr)と、を含有し、表面硬化熱処理を実施する鋼を使用し、無段変速機用ベルトVと摩擦接触するシーブ面11a,12a,21a,22aを備えた無段変速機用プーリPにおいて、前記鋼は、前記シリコン(Si)の含有量を、Si:0.35〜1.2質量%に設定し、前記クロム(Cr)の含有量を、Cr:0.30〜1.25質量%に設定し、前記表面硬化熱処理は、浸炭焼入れ、焼戻しを実施し、前記表面硬化熱処理後の、前記シーブ面11a,12a,21a,22aの表面の炭素(C)の含有量を、C:0.65〜1.0質量%に設定し、最大使用環境温度での焼戻し後の前記シーブ面11a,12a,21a,22aの表面硬さをマイクロビッカース硬度でH、前記シーブ面の表面の炭素(C)の含有量をC質量%、前記シリコン(Si)の含有量をSi質量%、前記クロム(Cr)の含有量をCr質量%としたとき、H=160×C+65×Si+30×Cr+455>625(Hv)
の関係を満たす構成とした。
このため、ベルトVとの摩擦接触に伴う発熱によって温度上昇した際の軟化を抑制し、シーブ面11a,12a,21a,22aの耐摩耗性を向上して高面圧での使用に耐え得ることができる。
(1) Sheave surfaces 11a, 12a, 21a, which are made of steel containing at least silicon (Si) and chromium (Cr) and subjected to surface hardening heat treatment, and which are in frictional contact with the continuously variable transmission belt V. In the continuously variable transmission pulley P provided with 22a, the steel has a content of the silicon (Si) set to Si: 0.35 to 1.2 mass%, and a content of the chromium (Cr). Is set to Cr: 0.30 to 1.25% by mass, and the surface hardening heat treatment is performed by carburizing and tempering, and the surfaces of the sheave surfaces 11a, 12a, 21a, and 22a after the surface hardening heat treatment. The carbon (C) content of C is set to C: 0.65 to 1.0% by mass, and the surface hardness of the sheave surfaces 11a, 12a, 21a, and 22a after tempering at the maximum use environment temperature is micronized. H with Vickers hardness, carbon (C) content on the surface of the sheave surface When the amount is C mass%, the silicon (Si) content is Si mass%, and the chromium (Cr) content is Cr mass%, H = 160 × C + 65 × Si + 30 × Cr + 455> 625 (Hv)
It was set as the structure which satisfies the relationship.
For this reason, it is possible to suppress softening when the temperature rises due to heat generated by frictional contact with the belt V, improve wear resistance of the sheave surfaces 11a, 12a, 21a, and 22a, and endure use at a high surface pressure. Can do.

(2) 前記最大使用環境温度は、使用中に、前記無段変速機用ベルトVとの摩擦により上昇するシーブ面温度の最大値に応じて設定する構成とした。
このため、上記(1)に記載の効果に加え、シーブ面11a,12a,21a,22aが摩擦熱によって温度上昇しても、シーブ面11a,12a,21a,22aの耐摩耗性の低下を確実に防止することができる。
(2) The maximum use environment temperature is set according to the maximum value of the sheave surface temperature that rises due to friction with the continuously variable transmission belt V during use.
For this reason, in addition to the effect described in the above (1), even if the temperature of the sheave surfaces 11a, 12a, 21a, and 22a is increased by frictional heat, the wear resistance of the sheave surfaces 11a, 12a, 21a, and 22a is surely lowered. Can be prevented.

(3) 前記鋼は、前記シリコン(Si)の含有量を、Si:0.85質量%以下に設定し、前記クロム(Cr)の含有量を、Cr:0.8質量%以下に設定し、前記浸炭焼入れは、ガス浸炭焼入れとする構成とした。
このため、上記(1)又は(2)に記載の効果に加え、浸炭炉の管理が容易なガス浸炭焼入れにおいて、シーブ面11a,12a,21a,22aの表面の炭素C含有量を設定範囲にすることができ、浸炭性を確保することができる。
(3) In the steel, the silicon (Si) content is set to Si: 0.85 mass% or less, and the chromium (Cr) content is set to Cr: 0.8 mass% or less. The carburizing and quenching is configured to be gas carburizing and quenching.
For this reason, in addition to the effects described in (1) or (2) above, the carbon C content on the surfaces of the sheave surfaces 11a, 12a, 21a, and 22a is within a set range in gas carburizing and quenching that is easy to manage the carburizing furnace. And carburizing properties can be ensured.

(4) 前記鋼は、モリブデン(Mo)と、ニオブ(Nb)と、チタン(Ti)と、ニッケル(Ni)と、ホウ素(B)のうちの少なくとも一つを含有し、前記モリブデン(Mo)の含有量を、Mo:0.01〜0.30質量%に設定する第1条件、前記ニオブ(Nb)の含有量を、Nb:0.005〜0.2質量%に設定する第2条件、前記チタン(Ti)の含有量を、Ti:0.005〜0.2質量%に設定する第3条件、前記ニッケル(Ni)の含有量を、Ni:0.05〜3.0質量%に設定する第4条件、前記ホウ素(B)の含有量を、B:0.0005〜0.005質量%に設定する第5条件のうち、少なくとも一つの条件を満たす構成とした。
このため、上記(1)〜(3)のいずれかに記載の効果に加え、モリブデン(Mo)を添加すれば焼戻し軟化抵抗性を向上させることができ、ニオブ(Nb)又はチタン(Ti)を添加すれば結晶粒粗大化を抑制することができ、ニッケル(Ni)又はホウ素(B)を含有すれば、焼入れ性を確保することができる。
すなわち、上記の各条件を少なくとも一つ満足する元素を添加することにより、シーブ面の11a,12a,21a,22aの耐摩耗性を向上させることができる。
(4) The steel contains at least one of molybdenum (Mo), niobium (Nb), titanium (Ti), nickel (Ni), and boron (B), and the molybdenum (Mo). The first condition for setting the content of Mo to 0.01 to 0.30% by mass, the second condition for setting the content of niobium (Nb) to Nb: 0.005 to 0.2% by mass The third condition for setting the content of titanium (Ti) to Ti: 0.005 to 0.2 mass%, and the content of nickel (Ni) to Ni: 0.05 to 3.0 mass% The fourth condition is set to satisfy the condition of at least one of the fifth conditions in which the boron (B) content is set to B: 0.0005 to 0.005 mass%.
For this reason, in addition to the effect described in any one of (1) to (3) above, if molybdenum (Mo) is added, temper softening resistance can be improved, and niobium (Nb) or titanium (Ti) can be improved. If added, coarsening of crystal grains can be suppressed, and if nickel (Ni) or boron (B) is contained, hardenability can be ensured.
That is, the wear resistance of the sheave surfaces 11a, 12a, 21a, 22a can be improved by adding an element that satisfies at least one of the above conditions.

(5) 無段変速機用ベルトVが掛け渡され、この無段変速機用ベルトVと摩擦接触するシーブ面11a,12a,21a,22aを有する無段変速機用プーリPを備えた無段変速機Mにおいて、前記無段変速機用プーリPは、上記(1)又は(2)又は(3)又は(4)に記載した構成とした。
このため、ベルトVとの摩擦接触に伴う発熱によって温度上昇した際の軟化を抑制し、シーブ面11a,12a,21a,22aの耐摩耗性を向上して高面圧での使用に耐え得ることができる。
(5) A continuously variable transmission belt V, which is provided with a continuously variable transmission pulley P having sheave surfaces 11a, 12a, 21a, 22a that are in frictional contact with the continuously variable transmission belt V. In the transmission M, the continuously variable transmission pulley P is configured as described in (1) or (2) or (3) or (4) above.
For this reason, it is possible to suppress softening when the temperature rises due to heat generated by frictional contact with the belt V, improve wear resistance of the sheave surfaces 11a, 12a, 21a, and 22a, and endure use at a high surface pressure. Can do.

以上、本発明の無段変速機用プーリ及び無段変速機を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the pulley for continuously variable transmission and the continuously variable transmission of this invention were demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, Claim of Claim Design changes and additions are allowed without departing from the spirit of the invention according to each claim.

特に最大使用環境温度については、通常の変速機使用条件から予測するほか、例えば、無段変速機のユニット、車両等の入力トルク、環境条件(例えば、周辺外気温度等)、運転条件(例えば、登坂路走行、ワインディングロード走行、走行中の急加減速時、積載量等に応じた車両重量等)等の温度と、製造過程による焼戻し温度との相関によって設定される温度であればよい。   In particular, the maximum use environment temperature is predicted from normal transmission use conditions, for example, the input torque of a continuously variable transmission unit, vehicle, etc., environmental conditions (for example, ambient outside air temperature, etc.), operation conditions (for example, The temperature may be set based on the correlation between the temperature of the climbing road traveling, winding road traveling, sudden acceleration / deceleration during traveling, vehicle weight according to the loading amount, etc.) and the tempering temperature in the manufacturing process.

M 無段変速機
P 無段変速機用プーリ
V 無段変速機用ベルト
1 入力側プーリ
2 出力側プーリ
11a,12a,21a,22a シーブ面
3 積層リング
4 エレメント
4a フランク面
M continuously variable transmission P continuously variable transmission pulley V continuously variable transmission belt 1 input side pulley 2 output side pulley 11a, 12a, 21a, 22a sheave surface 3 laminated ring 4 element 4a flank surface

Claims (5)

少なくともシリコン(Si)と、クロム(Cr)と、を含有し、表面硬化熱処理を実施する鋼を使用し、無段変速機用ベルトと摩擦接触するシーブ面を備えた無段変速機用プーリにおいて、
前記鋼は、前記シリコン(Si)の含有量を、Si:0.35〜1.2質量%に設定し、
前記クロム(Cr)の含有量を、Cr:0.30〜1.25質量%に設定し、
前記表面硬化熱処理は、浸炭焼入れ、焼戻しを実施し、
前記表面硬化熱処理後の、前記シーブ面の表面の炭素(C)の含有量を、C:0.65〜1.0質量%に設定し、
最大使用環境温度での焼戻し後の前記シーブ面の表面硬さをマイクロビッカース硬度でH、前記シーブ面の表面の炭素(C)の含有量をC質量%、前記シリコン(Si)の含有量をSi質量%、前記クロム(Cr)の含有量をCr質量%としたとき、
H=160×C+65×Si+30×Cr+455>625(Hv)
の関係を満たすことを特徴とする無段変速機用プーリ。
In a pulley for a continuously variable transmission using a steel containing at least silicon (Si) and chromium (Cr) and subjected to surface hardening heat treatment and having a sheave surface in frictional contact with a continuously variable transmission belt ,
In the steel, the content of silicon (Si) is set to Si: 0.35 to 1.2% by mass,
The chromium (Cr) content is set to Cr: 0.30 to 1.25% by mass,
The surface hardening heat treatment includes carburizing quenching and tempering,
The content of carbon (C) on the surface of the sheave surface after the surface hardening heat treatment is set to C: 0.65 to 1.0% by mass,
The surface hardness of the sheave surface after tempering at the maximum use environment temperature is H in micro Vickers hardness, the carbon (C) content on the surface of the sheave surface is C mass%, and the silicon (Si) content is Si mass%, when the chromium (Cr) content is Cr mass%,
H = 160 × C + 65 × Si + 30 × Cr + 455> 625 (Hv)
A pulley for a continuously variable transmission characterized by satisfying the above relationship.
請求項1に記載された無段変速機用プーリにおいて、
前記最大使用環境温度は、使用中に、前記無段変速機用ベルトとの摩擦により上昇するシーブ面温度の最大値に応じて設定することを特徴とする無段変速機用プーリ。
In the pulley for continuously variable transmission according to claim 1,
The pulley for a continuously variable transmission, wherein the maximum use environment temperature is set according to a maximum value of a sheave surface temperature that rises due to friction with the continuously variable transmission belt during use.
請求項1又は請求項2に記載された無段変速機用プーリにおいて、
前記鋼は、前記シリコン(Si)の含有量を、Si:0.85質量%以下に設定し、
前記クロムCrの含有量を、(Cr):0.8質量%以下に設定し、
前記浸炭焼入れは、ガス浸炭焼入れとすることを特徴とする無段変速機用プーリ。
In the pulley for continuously variable transmission according to claim 1 or claim 2,
In the steel, the content of silicon (Si) is set to Si: 0.85 mass% or less,
The chromium Cr content is set to (Cr): 0.8% by mass or less,
The pulley for continuously variable transmission, wherein the carburizing and quenching is gas carburizing and quenching.
請求項1から請求項3のいずれか一項に記載された無段変速機用プーリにおいて、
前記鋼は、モリブデン(Mo)と、ニオブ(Nb)と、チタン(Ti)と、ニッケル(Ni)と、ホウ素(B)のうちの少なくとも一つを含有し、
前記モリブデン(Mo)の含有量を、Mo:0.01〜0.30質量%に設定する第1条件、
前記ニオブ(Nb)の含有量を、Nb:0.005〜0.2質量%に設定する第2条件、
前記チタン(Ti)の含有量を、Ti:0.005〜0.2質量%に設定する第3条件、
前記ニッケル(Ni)の含有量を、Ni:0.05〜3.0質量%に設定する第4条件、
前記ホウ素(B)の含有量を、B:0.0005〜0.005質量%に設定する第5条件のうち、少なくとも一つの条件を満たすことを特徴とする無段変速機用プーリ。
In the pulley for continuously variable transmission as described in any one of Claims 1-3,
The steel contains at least one of molybdenum (Mo), niobium (Nb), titanium (Ti), nickel (Ni), and boron (B),
A first condition in which the molybdenum (Mo) content is set to Mo: 0.01 to 0.30% by mass;
A second condition in which the content of the niobium (Nb) is set to Nb: 0.005 to 0.2% by mass;
Third condition for setting the content of titanium (Ti) to Ti: 0.005 to 0.2 mass%,
4th condition which sets content of the said nickel (Ni) to Ni: 0.05-3.0 mass%,
A pulley for a continuously variable transmission, characterized in that at least one of the fifth conditions for setting the boron (B) content to B: 0.0005 to 0.005 mass% is satisfied.
無段変速機用ベルトが掛け渡され、この無段変速機用ベルトと摩擦接触するシーブ面を有する無段変速機用プーリを備えた無段変速機において、
前記無段変速機用プーリは、請求項1から請求項4のいずれか一項に記載された無段変速機用プーリであることを特徴とする無段変速機。
In a continuously variable transmission comprising a continuously variable transmission pulley having a sheave surface in friction contact with a continuously variable transmission belt,
The continuously variable transmission pulley is a continuously variable transmission pulley according to any one of claims 1 to 4, wherein the continuously variable transmission pulley is the continuously variable transmission pulley.
JP2011270981A 2011-12-12 2011-12-12 Pulley for continuously variable transmission and continuously variable transmission Active JP5957714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270981A JP5957714B2 (en) 2011-12-12 2011-12-12 Pulley for continuously variable transmission and continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270981A JP5957714B2 (en) 2011-12-12 2011-12-12 Pulley for continuously variable transmission and continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013122286A true JP2013122286A (en) 2013-06-20
JP5957714B2 JP5957714B2 (en) 2016-07-27

Family

ID=48774355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270981A Active JP5957714B2 (en) 2011-12-12 2011-12-12 Pulley for continuously variable transmission and continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5957714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133574A (en) * 2016-01-27 2017-08-03 株式会社豊田中央研究所 Wet type continuous variable transmission
JP2020041199A (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface pressure resistant component and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163414A (en) * 2006-12-28 2008-07-17 Komatsu Ltd Rolling member and manufacturing method for the same
JP2009068608A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Pulley for continuously variable transmission and continuously variable transmission
JP2010222673A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Sliding member, pulley for continuously variable transmission, and continuously variable transmission
JP2011185415A (en) * 2010-03-11 2011-09-22 Aichi Steel Works Ltd Cvt sheave and steel product for cvt sheave
WO2011132722A1 (en) * 2010-04-19 2011-10-27 新日本製鐵株式会社 Steel component having excellent temper softening resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163414A (en) * 2006-12-28 2008-07-17 Komatsu Ltd Rolling member and manufacturing method for the same
JP2009068608A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Pulley for continuously variable transmission and continuously variable transmission
JP2010222673A (en) * 2009-03-25 2010-10-07 Toyota Motor Corp Sliding member, pulley for continuously variable transmission, and continuously variable transmission
JP2011185415A (en) * 2010-03-11 2011-09-22 Aichi Steel Works Ltd Cvt sheave and steel product for cvt sheave
WO2011132722A1 (en) * 2010-04-19 2011-10-27 新日本製鐵株式会社 Steel component having excellent temper softening resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133574A (en) * 2016-01-27 2017-08-03 株式会社豊田中央研究所 Wet type continuous variable transmission
JP2020041199A (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface pressure resistant component and manufacturing method therefor
WO2020054522A1 (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface-pressure resistant component and production method therefor
JP7154073B2 (en) 2018-09-12 2022-10-17 大同特殊鋼株式会社 High surface pressure resistant parts and manufacturing method thereof
US12129557B2 (en) 2018-09-12 2024-10-29 Daido Steel Co., Ltd. High surface-pressure resistant component and production method therefor

Also Published As

Publication number Publication date
JP5957714B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
US20160369370A1 (en) Bearing steel having improved fatigue durability and method of manufacturing the same
JP4420015B2 (en) Iron-based composite material and method for producing iron-based composite material
CN103374682A (en) Steel for belt-type cvt pulley and belt-type cvt pulley
JP5957714B2 (en) Pulley for continuously variable transmission and continuously variable transmission
JP2004011712A (en) Rolling bearing, and belt type continuously variable transmission using it
JP6410613B2 (en) Carburized material with excellent seizure resistance
KR20090042937A (en) Pulley for continuously variable transmission
CN108350984B (en) Metal ring component for drive belt of continuously variable transmission
JP4860583B2 (en) Pulley for continuously variable transmission and continuously variable transmission
US10618101B2 (en) Mechanical structural component and method for manufacturing same
KR100716344B1 (en) Heat treatment method of cr-mo alloy for transmission gear and shaft
US7488270B2 (en) Toroidal continuously variable transmission and method for producing torque transmitting member thereof
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP5430194B2 (en) Sliding member, continuously variable transmission pulley, and continuously variable transmission
JP2018172749A (en) Steel for cvt ring, and cvt ring material for nitriding, and method for manufacturing the same, and cvt ring member and method for manufacturing the same
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP4572797B2 (en) V-belt type continuously variable transmission pulley disk and manufacturing method thereof
JP6160054B2 (en) High surface pressure resistant parts
JP2009074110A (en) Gear part excellent in fitness
JP6410612B2 (en) Nitriding member and friction transmission using the same
CN110468325B (en) Endless metal belt and method for producing the same
JP5609171B2 (en) CVT sheave and steel for CVT sheave
JP2005076651A (en) Rolling bearing and belt-type continuously variable transmission using it
JP3541013B2 (en) Steel for power transmission components with excellent contact fatigue properties
JP2009001847A (en) Rolling member for transmission and rolling bearing for transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5957714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250