JP2013122177A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2013122177A
JP2013122177A JP2011270311A JP2011270311A JP2013122177A JP 2013122177 A JP2013122177 A JP 2013122177A JP 2011270311 A JP2011270311 A JP 2011270311A JP 2011270311 A JP2011270311 A JP 2011270311A JP 2013122177 A JP2013122177 A JP 2013122177A
Authority
JP
Japan
Prior art keywords
fuel ratio
exhaust gas
exhaust
cylinder group
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011270311A
Other languages
Japanese (ja)
Other versions
JP5653894B2 (en
Inventor
Takahiro Hayashi
高弘 林
Akira Morikawa
彰 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2011270311A priority Critical patent/JP5653894B2/en
Publication of JP2013122177A publication Critical patent/JP2013122177A/en
Application granted granted Critical
Publication of JP5653894B2 publication Critical patent/JP5653894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve deterioration in fuel consumption for NOreduction, in an exhaust emission control device for an internal combustion engine with a NOreduction catalyst device carrying a base metal catalyst and having low NOreduction performance.SOLUTION: A NOreduction catalyst device 40 carrying a base metal catalyst is disposed at a third exhaust passage 30 positioned at a downstream side of a confluence part 100 between a first exhaust passage 10 of a first cylinder group and a second exhaust passage 20 of a second cylinder group. A NOstorage device 50 is disposed at the second exhaust passage. A communication passage 60 communicating the second exhaust passage at a downstream side of the NOstorage device with the third exhaust passage at a downstream side of the NOstorage device is provided. When a combustion air-fuel ratio of the first cylinder group is made rich and when a combustion air-fuel ratio of the second cylinder group is made lean, exhaust gas flowing out from the NOstorage device passes through the communication passage. When the combustion air-fuel ratio of the second cylinder group is made rich, the exhaust gas flowing out from the NOstorage device passes through the NOreduction catalyst device.

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

排気ガス中のHC、CO、及びNOXを浄化するために、三元触媒装置を機関排気系に配置することが公知である。しかしながら、三元触媒装置に一般的に使用される白金等の貴金属触媒は高価であり、貴金属触媒に代えて卑金属触媒を使用することが提案されている(特許文献1参照)。 HC in exhaust gas, CO, and to purify NO X, it is known to place a three-way catalytic converter in the engine exhaust system. However, a noble metal catalyst such as platinum generally used in a three-way catalyst device is expensive, and it has been proposed to use a base metal catalyst instead of the noble metal catalyst (see Patent Document 1).

しかしながら、こうして三元触媒装置において、貴金属触媒を代えて卑金属触媒を使用したり、又は、貴金属触媒の一部を卑金属触媒に置き換えたりすると、NOX還元触媒装置としてNOXの還元性能が低下するために、燃焼空燃比を理論空燃比より僅かにリッチにして、排気ガス中にHC及びCO等の還元物質の濃度を高めてNOXを還元し易くすることが考えられる。 However, this way the three-way catalytic converter, or use a base metal catalyst instead of the noble metal catalyst, or, when a portion of a noble metal catalyst or replace the base metal catalyst, reduction performance of the NO X is reduced as NO X reducing catalyst device for the, the combustion air-fuel ratio in the slightly richer than the stoichiometric air-fuel ratio, it is considered possible to facilitate the reduction of NO X by increasing the concentration of the reducing substance such as HC and CO in the exhaust gas.

特開2011−125862JP2011-125862A

前述のように、卑金属触媒を担持してNOXの還元性能が低いNOX還元触媒装置を備える内燃機関の排気浄化装置において、NOXを良好に還元するのに燃焼空燃比を理論空燃比よりリッチにしたのでは、燃料消費が大幅に悪化してしまう。 As described above, in the exhaust purification system for an internal combustion engine having a reducing capability is low NO X reduction catalyst device of the NO X carries a base metal catalyst, the combustion air-fuel ratio to satisfactorily reduce NO X than the stoichiometric air-fuel ratio If it is made rich, fuel consumption will be greatly degraded.

従って、本発明の目的は、卑金属触媒を担持してNOXの還元性能が低いNOX還元触媒装置を備える内燃機関の排気浄化装置において、排気ガス中のNOXの還元のための燃料消費の悪化を改善することである。 Accordingly, the present invention purposes, in the exhaust purification system for an internal combustion engine having a reducing capability is low NO X reduction catalyst device of the NO X carries a base metal catalyst, the fuel consumption for the reduction of the NO X in the exhaust gas It is to improve the deterioration.

本発明による請求項1に記載の内燃機関の排気浄化装置は、少なくとも一気筒からなる第一気筒群と、その他の気筒からなる第二気筒群とを有する多気筒内燃機関の排気浄化装置であって、前記第一気筒群の第一排気通路と前記第二気筒群の第二排気通路との合流部より下流側に位置する第三排気通路に卑金属触媒を担持するNOX還元触媒装置が配置され、前記第二排気通路には排気ガスの空燃比が理論空燃比よりリーンであるときには排気ガス中のNOXを吸蔵し、排気ガスの空燃比が理論空燃比よりリッチとなると吸蔵したNOXを放出するNOX吸蔵装置が配置され、前記第二排気通路の前記NOX吸蔵装置の下流側と前記第三排気通路の前記NOX還元触媒装置の下流側とを連通する連通路が設けられ、前記第一気筒群の燃焼空燃比を理論空燃比よりリッチとし、前記第二気筒群の燃焼空燃比を理論空燃比よりリーンにするときには前記NOX吸蔵装置から流出する排気ガスは前記連通路を通過するようにされ、前記第二気筒群の燃焼空燃比を理論空燃比よりリッチにするときには前記NOX吸蔵装置から流出する排気ガスは前記NOX還元触媒装置を通過するようにされることを特徴とする。 An exhaust emission control device for an internal combustion engine according to claim 1 of the present invention is an exhaust purification device for a multi-cylinder internal combustion engine having at least a first cylinder group consisting of one cylinder and a second cylinder group consisting of other cylinders. Te, NO X reduction catalyst device arranged for carrying a base metal catalyst in the third exhaust passage located downstream from the merging portion of the second exhaust gas passage of the second cylinder group to the first exhaust passage of the first cylinder group is the the second exhaust gas passage occludes NO X in the exhaust gas when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, NO X air-fuel ratio of the exhaust gas which is occluded becomes richer than the stoichiometric air-fuel ratio the NO X storage device is arranged to release the communication passage for communicating the downstream side of the NO X reduction catalyst device at the downstream side of the third exhaust passage of the the NO X storage device of the second exhaust passage is provided , The combustion air-fuel ratio of the first cylinder group And richer than Ronsora ratio, exhaust gas flowing out of the the NO X storage device when the leaner than the combustion air-fuel ratio the stoichiometric air-fuel ratio of the second cylinder group is made to pass through the communication passage, said second cylinder When the combustion air-fuel ratio of the group is made richer than the stoichiometric air-fuel ratio, the exhaust gas flowing out from the NO x storage device is made to pass through the NO x reduction catalyst device.

本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記NOX吸蔵装置のNOX吸蔵量が設定量となると、前記第二気筒群の燃焼空燃比を理論空燃比よりリーンからリッチに切り換えることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 2 of the present invention, in the exhaust purification system of an internal combustion engine according to claim 1, when the NO X storage amount of the the NO X storage device is set amount, the second The combustion air-fuel ratio of the cylinder group is switched from lean to rich than the stoichiometric air-fuel ratio.

本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項1又は2に記載の内燃機関の排気浄化装置において、前記第三排気通路における前記連通路の接続位置より下流側には、酸化触媒装置が配置されていることを特徴とする。   An internal combustion engine exhaust gas purification apparatus according to a third aspect of the present invention is the internal combustion engine exhaust gas purification apparatus according to the first or second aspect, wherein the third exhaust path is located downstream of the connection position of the communication path. The oxidation catalyst device is arranged.

本発明による請求項4に記載の内燃機関の排気浄化装置は、請求項3に記載の内燃機関の排気浄化装置において、前記酸化触媒装置は、アンモニア吸蔵機能を備えていることを特徴とする。   According to a fourth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the third aspect, wherein the oxidation catalyst device has an ammonia storage function.

本発明による請求項1に記載の内燃機関の排気浄化装置によれば、少なくとも一気筒からなる第一気筒群と、その他の気筒からなる第二気筒群とを有する多気筒内燃機関の排気浄化装置であって、第一気筒群の第一排気通路と第二気筒群の第二排気通路との合流部より下流側に位置する第三排気通路に卑金属触媒を担持するNOX還元触媒装置が配置され、第二排気通路には排気ガスの空燃比が理論空燃比よりリーンであるときには排気ガス中のNOXを吸蔵し、排気ガスの空燃比が理論空燃比よりリッチとなると吸蔵したNOXを放出するNOX吸蔵装置が配置され、第二排気通路のNOX吸蔵装置の下流側と第三排気通路のNOX還元触媒装置の下流側とを連通する連通路が設けられ、第一気筒群の燃焼空燃比を理論空燃比よりリッチとし、第二気筒群の燃焼空燃比を理論空燃比よりリーンにするときにはNOX吸蔵装置から流出する排気ガスは連通路を通過するようにされている。それにより、理論空燃比よりリッチな第一気筒群の排気ガスは、第一排気通路を通って第三排気通路のNOX還元触媒装置へ流入し、卑金属触媒を担持してNOXの還元性能が低いNOX還元触媒装置でも、排気ガス中のNOXを排気ガス中のHC及びCOを使用して良好に還元浄化することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 1 of the present invention, an exhaust gas purification apparatus for a multi-cylinder internal combustion engine having at least a first cylinder group consisting of one cylinder and a second cylinder group consisting of other cylinders. An NO x reduction catalyst device carrying a base metal catalyst is disposed in a third exhaust passage located downstream from the junction of the first exhaust passage of the first cylinder group and the second exhaust passage of the second cylinder group. is, the second exhaust gas passage occludes NO X in the exhaust gas when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio, the NO X air-fuel ratio occluding becomes richer than the stoichiometric air-fuel ratio of the exhaust gas A NO x storage device for discharging is disposed, and a communication passage is provided for communicating the downstream side of the NO x storage device in the second exhaust passage and the downstream side of the NO x reduction catalyst device in the third exhaust passage, and the first cylinder group Make the combustion air-fuel ratio of the engine richer than the theoretical air-fuel ratio, Exhaust gas flowing out from the NO X storage device when the combustion air-fuel ratio of the second cylinder bank to leaner than the stoichiometric air-fuel ratio is adapted to pass through the communication passage. Thereby, the exhaust gas of the rich first cylinder group than the stoichiometric air-fuel ratio passes through the first exhaust passage flows into the NO X reduction catalyst device of the third exhaust passage, the reducing performance of the NO X carries a base metal catalyst Even with a low NO x reduction catalyst device, NO x in the exhaust gas can be reduced and purified well by using HC and CO in the exhaust gas.

一方、理論空燃比よりリーンな第二気筒群の排気ガス中のNOXは、NOXの還元性能が低いNOX還元触媒装置では良好に浄化することができないために、第二排気通路に配置されたNOX吸蔵装置に吸蔵される。こうして、内燃機関の各気筒から排出されるNOXの大気放出を十分に抑制することができ、全気筒の燃焼空燃比を理論空燃比よりリッチとする場合に比較してNOXの還元のための燃料消費の悪化を改善することができる。 On the other hand, NO X in the exhaust gas of lean second cylinder group than the stoichiometric air-fuel ratio, for reduction performance of the NO X can not be satisfactorily cleaned in the low NO X reduction catalyst device disposed in the second exhaust passage Is stored in the NO X storage device. In this way, atmospheric release of NO x discharged from each cylinder of the internal combustion engine can be sufficiently suppressed, and NO x can be reduced as compared with the case where the combustion air-fuel ratio of all cylinders is made richer than the stoichiometric air-fuel ratio. The deterioration of fuel consumption can be improved.

また、第二気筒群の燃焼空燃比を理論空燃比よりリッチにするときには、NOX吸蔵装置は吸蔵したNOXを放出するために、NOX吸蔵装置から流出する排気ガスはNOX還元触媒装置を通過するようにされ、第一気筒群から排出されるNOXと共にNOX吸蔵装置から放出されるNOXは、第一気筒群及び第二気筒群からの理論空燃比よりリッチな排気ガス中に含まれるHC及びCOを使用して、NOXの還元性能が低いNOX還元触媒装置においても良好に浄化することができる。 Further, when the rich than the stoichiometric air-fuel ratio of the combustion air-fuel ratio of the second cylinder group, in order the NO X storage device that releases NO X occluding the exhaust gas flowing out from the NO X storage devices NO X reduction catalyst device is adapted to pass through, NO X released from the NO X storage device with NO X discharged from the first cylinder group, rich exhaust gas the stoichiometric air-fuel ratio from the first cylinder group and the second cylinder group use HC and CO contained in the can reduced performance of the NO X is also well purified in low NO X reduction catalyst device.

また、本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、NOX吸蔵装置のNOX吸蔵量が設定量となると、第二気筒群の燃焼空燃比を理論空燃比よりリーンからリッチに切り換えるようになっている。それにより、NOX吸蔵装置のNOX吸蔵量が飽和しても第二気筒群の燃焼空燃比を理論空燃比よりリーンとし続けることは抑制される。 According to the exhaust purification device for an internal combustion engine according to claim 2 of the present invention, in the exhaust purification device for the internal combustion engine according to claim 1, when the NO x storage amount of the NO x storage device becomes a set amount, The combustion air-fuel ratio of the second cylinder group is switched from lean to rich than the stoichiometric air-fuel ratio. As a result, even if the NO X storage amount of the NO X storage device is saturated, the combustion air-fuel ratio of the second cylinder group is prevented from continuing to be leaner than the stoichiometric air-fuel ratio.

また、本発明による請求項3に記載の内燃機関の排気浄化装置によれば、請求項1又は2に記載の内燃機関の排気浄化装置において、第三排気通路における連通路の接続位置より下流側には、酸化触媒装置が配置されている。それにより、第二気筒群の燃焼空燃比が理論空燃比よりリーンとされているときに、理論空燃比よりリッチな第一気筒群の排気ガス中に含まれるHC及びCOの一部がNOX還元触媒装置から流出しても、酸化触媒装置において、理論空燃比よりリーンな第二気筒群の排気ガス中に含まれる酸素を使用して良好に酸化浄化することができる。 According to the exhaust purification device for an internal combustion engine according to claim 3 of the present invention, in the exhaust purification device for the internal combustion engine according to claim 1 or 2, the downstream side of the connection position of the communication passage in the third exhaust passage. Is provided with an oxidation catalyst device. Thereby, when the combustion air-fuel ratio of the second cylinder group is leaner than the stoichiometric air-fuel ratio, a part of the HC and CO contained in the exhaust gas of the first cylinder group richer than the stoichiometric air-fuel ratio is NO X. Even if it flows out from the reduction catalyst device, the oxidation catalyst device can be satisfactorily oxidized and purified using oxygen contained in the exhaust gas of the second cylinder group that is leaner than the stoichiometric air-fuel ratio.

また、本発明による請求項4に記載の内燃機関の排気浄化装置によれば、請求項3に記載の内燃機関の排気浄化装置において、酸化触媒装置は、アンモニア吸蔵機能を備えている。それにより、理論空燃比よりリッチな第一気筒群の排気ガス中のNOXがNOX還元触媒装置において還元されてアンモニアが生成されても、酸化触媒装置のアンモニア吸蔵機能により吸蔵することができる。こうして酸化触媒装置に吸蔵されたアンモニアは、NOX吸蔵装置のNOX吸蔵量が設定量となって第二気筒群の燃焼空燃比が理論空燃比よりリッチにされ、NOX吸蔵装置からNOXが放出されるときに、NOX還元触媒装置において一部のNOXが浄化されずに流出しても、酸化触媒装置において、吸蔵されているアンモニアによって良好に還元浄化することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 4 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 3, the oxidation catalyst device has an ammonia storage function. Thereby, even if NO x in the exhaust gas of the first cylinder group richer than the stoichiometric air-fuel ratio is reduced in the NO x reduction catalyst device and ammonia is generated, it can be occluded by the ammonia occlusion function of the oxidation catalyst device. . The ammonia occluded in the oxidation catalyst device thus becomes the set amount of the NO x occlusion amount of the NO x occlusion device, so that the combustion air-fuel ratio of the second cylinder group becomes richer than the stoichiometric air fuel ratio, and the NO x occlusion device removes the NO x when but released, even if outflow without some of the NO X is purified in NO X reduction catalyst device, in the oxidation catalyst device can be satisfactorily reduced and purified by ammonia being occluded.

本発明による内燃機関の排気浄化装置を示す概略図である。1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. 図1の排気浄化装置の制御を示すフローチャートである。It is a flowchart which shows control of the exhaust gas purification apparatus of FIG.

図1は本発明による内燃機関の排気浄化装置を示す概略図である。内燃機関は例えば筒内噴射式火花点火の四気筒内燃機関である。#1気筒は、少なくとも一気筒からなる第一気筒群であり、#2気筒及び#3気筒及び#4気筒は、その他の気筒からなる第二気筒群である。もちろん、全気筒数、第一気筒群を構成する気筒数、第二気筒群を構成する気筒数は、例であり、いずれも任意に設定可能である。   FIG. 1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. The internal combustion engine is, for example, an in-cylinder injection spark ignition four-cylinder internal combustion engine. The # 1 cylinder is a first cylinder group consisting of at least one cylinder, and the # 2 cylinder, # 3 cylinder and # 4 cylinder are a second cylinder group consisting of other cylinders. Of course, the total number of cylinders, the number of cylinders constituting the first cylinder group, and the number of cylinders constituting the second cylinder group are examples, and any of them can be set arbitrarily.

10は第一気筒群の第一排気通路であり、20は第二気筒群の第二排気通路である。第一排気通路10と第二排気通路20との合流部100より下流側に位置する第三排気通路30には、NOX還元触媒装置40が配置されている。NOX還元触媒装置40は、ハニカム構造の基体上に、一般的な三元触媒装置のような白金Pt等の高価な貴金属触媒ではなく、銅Cu、鉄Fe、銀Ag、又は、金Au等の卑金属触媒をアルミナ又はセリア等を担体として担持したものである。また、NOX還元触媒装置40は、一般的な三元触媒装置の貴金属触媒の一部を卑金属触媒に置換するなどして、高価な貴金属触媒の使用量を減少させたものでも良い。 10 is a first exhaust passage of the first cylinder group, and 20 is a second exhaust passage of the second cylinder group. A NO x reduction catalyst device 40 is disposed in the third exhaust passage 30 located downstream of the joining portion 100 between the first exhaust passage 10 and the second exhaust passage 20. The NO x reduction catalyst device 40 is not an expensive noble metal catalyst such as platinum Pt such as a general three-way catalyst device, but a copper Cu, iron Fe, silver Ag, gold Au or the like on a substrate having a honeycomb structure. The base metal catalyst is supported on alumina or ceria as a carrier. Further, the NO x reduction catalyst device 40 may be one in which the amount of expensive noble metal catalyst used is reduced by replacing a part of the noble metal catalyst of a general three-way catalyst device with a base metal catalyst.

また、第二排気通路20の排気マニホルド21の下流側には、NOX吸蔵装置50が配置されている。NOX吸蔵装置50は、例えば、ハニカム構造の基体上に、パラジウムPd等をジルコニアZrO2等を担体として担持したものであり、排気ガスの空燃比が理論空燃比よりリーンであるときには排気ガス中のNOXを吸蔵し、排気ガスの空燃比が理論空燃比よりリッチとなると吸蔵したNOXを放出するものである。NOX吸蔵装置50は、例えば、アルミナ等を担体としてアルカリ金属(K,Na)又はアルカリ土類金属(Ba,Sr)と貴金属(Pt,Pd,Rh)とを担持する一般的なNOX吸蔵還元触媒装置としても良い。 Further, a NO x storage device 50 is disposed on the downstream side of the exhaust manifold 21 in the second exhaust passage 20. The NO x storage device 50 is, for example, a device in which palladium Pd or the like is supported on a honeycomb structure substrate using zirconia ZrO 2 or the like as a carrier, and in the exhaust gas when the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio. of occluding NO X, those air-fuel ratio of the exhaust gas to release the NO X occluding becomes richer than the stoichiometric air-fuel ratio. The NO X storage device 50 is, for example, alkali metal (K, Na) and alumina or the like as a carrier or alkaline earth metal (Ba, Sr) and precious metals (Pt, Pd, Rh) and general the NO X storage bearing the A reduction catalyst device may be used.

第二排気通路20のNOX吸蔵装置50の下流側と第三排気通路30のNOX還元触媒装置40の下流側とを連通する連通路60が、第二排気通路20のNOX吸蔵装置50の下流側に配置された切換弁70を介して接続されている。切換弁70を第一位置とすることにより、第二気筒群の排気ガスは、実線矢印示すように、連通路60を通過し第三排気通路30のNOX還元触媒装置40の下流側において第三排気通路30へ合流する。一方、切換弁70を第二位置とすることにより、第二気筒群の排気ガスは、点線矢印で示すように、連通路60を通過せずに、第二排気通路20をそのまま通過して合流部100において第一気筒群の排気ガスと共に第三排気通路30へ流入する。 A communication passage 60 that communicates the downstream side of the NO x storage device 50 in the second exhaust passage 20 and the downstream side of the NO x reduction catalyst device 40 in the third exhaust passage 30 is a NO x storage device 50 in the second exhaust passage 20. Are connected via a switching valve 70 arranged on the downstream side. By setting the switching valve 70 to the first position, the exhaust gas of the second cylinder group passes through the communication passage 60 and reaches the downstream side of the NO x reduction catalyst device 40 in the third exhaust passage 30 as indicated by the solid line arrow. Merge into the three exhaust passages 30. On the other hand, by setting the switching valve 70 to the second position, the exhaust gas of the second cylinder group passes through the second exhaust passage 20 as it is and does not pass through the communication passage 60 as shown by the dotted arrows. In the part 100, the exhaust gas flows into the third exhaust passage 30 together with the exhaust gas of the first cylinder group.

前述のNOX還元触媒装置40は、貴金属触媒を担持する一般的な三元触媒装置に比較して、還元性能が低下するために、理論空燃比の排気ガスではNOXを十分に還元浄化することができず、燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にして排気ガス中の還元物質の濃度を高めてNOXを十分に還元できるようにしなければならない。しかしながら、全ての気筒において燃焼空燃比を理論空燃比よりリッチにしたのでは、燃料消費が悪化してしまう。 Above of the NO X reduction catalyst device 40, compared to the typical three-way catalytic converter which carries a noble metal catalyst, for reduction performance decreases, sufficiently reduces and purifies NO X in the exhaust gas of the stoichiometric air-fuel ratio Therefore, the combustion air-fuel ratio must be slightly richer than the stoichiometric air-fuel ratio (for example, air-fuel ratio 14) to increase the concentration of reducing substances in the exhaust gas so that NO x can be sufficiently reduced. However, if the combustion air-fuel ratio is made richer than the stoichiometric air-fuel ratio in all the cylinders, fuel consumption will deteriorate.

この問題を改善するために、本排気浄化装置は電子制御装置(図示せず)によって図2に示すフローチャートに従って制御される。先ず、ステップ101において、第一気筒群(#1気筒)の燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にする。このような第一気筒群の燃焼空燃比の制御を可能とするために、第一排気通路10の合流部100の上流側には、第一気筒群の排気ガスの空燃比を検出する第一空燃比センサ11が配置されている。   In order to improve this problem, the exhaust emission control device is controlled by an electronic control device (not shown) according to the flowchart shown in FIG. First, in step 101, the combustion air-fuel ratio of the first cylinder group (# 1 cylinder) is made slightly richer (for example, air-fuel ratio 14) than the stoichiometric air-fuel ratio. In order to enable such control of the combustion air-fuel ratio of the first cylinder group, the first air-fuel ratio of the exhaust gas of the first cylinder group is detected upstream of the merging portion 100 of the first exhaust passage 10. An air-fuel ratio sensor 11 is arranged.

次いで、ステップ102では、NOX吸蔵装置50のNOX吸蔵量Aが設定量A’に達したか否かが判断される。例えば、22はNOX吸蔵装置50の下流側に配置されたNOX濃度センサであり、NOX吸蔵装置50から流出するNOX濃度を検出することができる。それにより、NOX濃度センサ22により検出されたNOX濃度が設定濃度より高くなったときに、NOX吸蔵装置50のNOX吸蔵量Aが設定量A’に達して、NOX吸蔵装置50から流出するNOX量が増大したと判断することができる。 Next, at step 102, it is determined whether or not the NO X storage amount A of the NO X storage device 50 has reached the set amount A ′. For example, 22 is the NO X concentration sensor disposed downstream of the NO X storage device 50 can detect the NO X concentration flowing out from the NO X storage device 50. Thereby, when the NO X concentration detected by the NO X concentration sensor 22 has become higher than the set concentration, the NO X storage amount A of the NO X storage device 50 reaches the set amount A ', the NO X storage device 50 It can be determined that the amount of NO x flowing out from the fuel has increased.

ステップ102の判断が否定されるときには、ステップ103において、第二気筒群(#2気筒、#3気筒、及び#4気筒)の燃焼空燃比を理論空燃比よりリーン(例えば空燃比15)にする。このような第二気筒群の燃焼空燃比の制御を可能とするために、第二排気通路10の排気マニホルド21とNOX吸蔵装置50との間には、第二気筒群の排気ガスの空燃比を検出する第二空燃比センサ23が配置されている。次いで、ステップ104では、切換弁70を第一位置として、第二気筒群の排気ガスは、実線で示すように、連通路60を通過し第三排気通路30のNOX還元触媒装置40の下流側において第三排気通路30へ合流するようにする。 If the determination in step 102 is negative, in step 103, the combustion air-fuel ratio of the second cylinder group (# 2, # 3, and # 4) is made leaner than the stoichiometric air-fuel ratio (for example, air-fuel ratio 15). . In order to enable such control of the combustion air-fuel ratio of the second cylinder group, the exhaust gas empty of the second cylinder group is interposed between the exhaust manifold 21 of the second exhaust passage 10 and the NO x storage device 50. A second air-fuel ratio sensor 23 for detecting the fuel ratio is arranged. Next, at step 104, the switching valve 70 is set to the first position, and the exhaust gas of the second cylinder group passes through the communication passage 60 and downstream of the NO x reduction catalyst device 40 in the third exhaust passage 30 as shown by the solid line. It is made to merge with the 3rd exhaust passage 30 in the side.

例えば、NOX濃度センサ22を配置しなくても、NOX吸蔵装置50のNOX吸蔵量Aが0であるときから、各時間の第二気筒群のリーン空燃比運転におけるNOX吸蔵装置50へ新たに吸蔵されるNOX量(機関運転状態毎にマップ化することができる)を積算すれば、現在のNOX吸蔵量Aを推定することができる。 For example, without placing the NO X concentration sensor 22, NO since the NO X storage amount A of X storage device 50 is 0, the NO X storage device in the lean air-fuel ratio operation of the second cylinder bank each time 50 If the amount of NO X newly stored (which can be mapped for each engine operating state) is integrated, the current NO X storage amount A can be estimated.

理論空燃比よりリッチな第一気筒群の排気ガスは、第一排気通路10を通って第三排気通路30のNOX還元触媒装置40へ流入し、NOX還元触媒装置40が卑金属触媒を担持するものでも、排気ガス中のNOXを排気ガス中のHC及びCOを使用して良好に還元浄化することができる。 Exhaust gas rich first cylinder group than the stoichiometric air-fuel ratio passes through the first exhaust passage 10 flows into the third exhaust passage 30 of the NO X reduction catalyst device 40, NO X reduction catalyst device 40 is supported base metal catalyst However, NO x in the exhaust gas can be reduced and purified well by using HC and CO in the exhaust gas.

一方、理論空燃比よりリーンな第二気筒群の排気ガス中のNOXは、卑金属触媒を担持するNOX還元触媒装置40では良好に浄化することができないために、第二排気通路20に配置されたNOX吸蔵装置50に吸蔵される。こうして、内燃機関の各気筒から排出されるNOXの大気放出を十分に抑制することができ、全気筒の燃焼空燃比を理論空燃比よりリッチとする場合に比較して燃料消費の悪化を改善することができる。 On the other hand, NO x in the exhaust gas of the second cylinder group that is leaner than the stoichiometric air-fuel ratio cannot be purified well by the NO x reduction catalyst device 40 carrying the base metal catalyst, and is therefore disposed in the second exhaust passage 20. The NO x storage device 50 is stored. Thus, it is possible to sufficiently suppress the air release of the NO X discharged from each cylinder of the internal combustion engine, improve the deterioration of fuel consumption as compared with the case where a richer than the stoichiometric air-fuel ratio combustion air-fuel ratio of all cylinders can do.

このようなフローが繰り返されると、NOX吸蔵装置50のNOX吸蔵量Aが設定量A’となって、ステップ102の判断が肯定され、ステップ105において、第二気筒群の燃焼空燃比を理論空燃比より僅かにリッチ(例えば空燃比14)にする。次いで、ステップ106において、切換弁70を第二位置とし、第二気筒群の排気ガスは、点線矢印で示すように、連通路60を通過せずに、第二排気通路20をそのまま通過して合流部100において第一気筒群の排気ガスと共に第三排気通路30へ流入するようにする。 When such a flow is repeated, the NO x storage amount A of the NO x storage device 50 becomes the set amount A ′, the determination of step 102 is affirmed, and in step 105, the combustion air-fuel ratio of the second cylinder group is increased. The air / fuel ratio is made slightly richer (for example, air / fuel ratio 14) than the stoichiometric air / fuel ratio. Next, at step 106, the switching valve 70 is set to the second position, and the exhaust gas of the second cylinder group does not pass through the communication passage 60 but passes through the second exhaust passage 20 as it is, as indicated by a dotted arrow. The merging portion 100 flows into the third exhaust passage 30 together with the exhaust gas of the first cylinder group.

それにより、リッチ空燃比の排気ガスがNOX吸蔵装置50へ流入し、NOX吸蔵装置からNOXが放出され、こうして放出されたNOXはNOX還元触媒装置40へ流入し、第一気筒群から排出されるNOXと共に、第一気筒群及び第二気筒群からの理論空燃比よりリッチな排気ガス中に含まれるHC及びCOを使用して、卑金属触媒を担持するNOX還元触媒装置40において良好に浄化することができる。 Thereby, the exhaust gas of a rich air-fuel ratio flows into the NO X storage device 50 is NO X is released from the NO X storage device, thus released NO X flows into the NO X reduction catalyst device 40, the first cylinder NO x reduction catalyst device carrying base metal catalyst by using HC and CO contained in exhaust gas richer than stoichiometric air-fuel ratio from first cylinder group and second cylinder group together with NO x discharged from the group 40 can be purified well.

次いで、ステップ107において、第二気筒群の燃焼空燃比をリッチ空燃比としてからの経過時間tが設定時間t’に達したか否かが判断され、この判断が否定されるときには、吸蔵NOXの放出が不十分であり、NOX吸蔵装置50のNOX吸蔵量Aが0まで低下していないとして、ステップ105及び106の処理が継続される。一方、経過時間tが設定時間t’に達したときには、NOX吸蔵装置50のNOX吸蔵量Aが0まで低下したとして、ステップ103に進み、第二気筒群の燃焼空燃比を理論空燃比よりリーンにすると共に、ステップ104において、切換弁70を第一位置とする。 Next, at step 107, it is determined whether or not the elapsed time t since the rich air-fuel ratio of the second cylinder group has reached the set time t ′, and when this determination is negative, the storage NO X Is insufficient, and the NO X storage amount A of the NO X storage device 50 has not decreased to 0, the processing of steps 105 and 106 is continued. On the other hand, when the elapsed time t has reached the set time t 'is, NO as the NO X storage amount A of X storage device 50 is decreased to 0, the process proceeds to step 103, the stoichiometric air-fuel ratio of the combustion air-fuel ratio of the second cylinder group In step 104, the switching valve 70 is set to the first position.

ところで、本排気浄化装置において、第三排気通路30における連通路60の接続位置より下流側には、卑金属触媒(又は貴金属触媒)を担持する酸化触媒装置80が配置されている。それにより、第二気筒群の燃焼空燃比が理論空燃比よりリーンとされているときに、理論空燃比よりリッチな第一気筒群の排気ガス中に含まれるHC及びCOの一部がNOX還元触媒装置40から流出しても、酸化触媒装置80において、理論空燃比よりリーンな第二気筒群の排気ガス中に含まれる酸素を使用して良好に酸化浄化することができる。 By the way, in the present exhaust purification apparatus, an oxidation catalyst device 80 carrying a base metal catalyst (or a noble metal catalyst) is disposed downstream of the connection position of the communication passage 60 in the third exhaust passage 30. Thereby, when the combustion air-fuel ratio of the second cylinder group is leaner than the stoichiometric air-fuel ratio, a part of the HC and CO contained in the exhaust gas of the first cylinder group richer than the stoichiometric air-fuel ratio is NO X. Even if it flows out from the reduction catalyst device 40, the oxidation catalyst device 80 can be favorably oxidized and purified using oxygen contained in the exhaust gas of the second cylinder group that is leaner than the stoichiometric air-fuel ratio.

酸化触媒装置80は、例えば、ハニカム構造の基体上に、超強酸処理したジルコニアZrO2や、銅Cu又は鉄FeをゼオライトZSM5又はSAPOを担体として担持したものすることにより、アンモニア吸蔵機能を有するようにすることが好ましい。それにより、理論空燃比よりリッチな第一気筒群の排気ガス中のNOXがNOX還元触媒装置において還元されてアンモニアが生成されても(CO+H2O→H2+CO2,2NO+2CO+3H2→2NH3+2CO2)、酸化触媒装置80のアンモニア吸蔵機能により吸蔵することができる。こうして酸化触媒装置80に吸蔵されたアンモニアは、NOX吸蔵装置50のNOX吸蔵量Aが設定量A’となって第二気筒群の燃焼空燃比が理論空燃比よりリッチにされ、NOX吸蔵装置50からNOXが放出されるときに、NOX還元触媒装置40において一部のNOXが浄化されずに流出しても、酸化触媒装置80において、吸蔵されているアンモニアによって良好に還元浄化することができる(6NO+4NH3→5N2+6H2O)。また、第二気筒群の燃焼空燃比が理論空燃比よりリーンとされているときに、NOX吸蔵装置50から僅かにNOXが漏れ出ても、酸化触媒装置80において、吸蔵アンモニアにより還元浄化することができる。 The oxidation catalyst device 80 has an ammonia occlusion function by, for example, carrying a super strong acid-treated zirconia ZrO 2 , copper Cu or iron Fe as a support of zeolite ZSM5 or SAPO on a honeycomb structure substrate. It is preferable to make it. As a result, even if NO x in the exhaust gas of the first cylinder group richer than the stoichiometric air-fuel ratio is reduced in the NO x reduction catalyst device and ammonia is generated (CO + H 2 O → H 2 + CO 2 , 2NO + 2CO + 3H 2 → 2NH 3 + 2CO 2 ), and can be stored by the ammonia storage function of the oxidation catalyst device 80. Ammonia thus occluded in the oxidation catalyst device 80, the combustion air-fuel ratio of the second cylinder bank the NO X storage amount A of the NO X storage device 50 becomes a set amount A 'is richer than the stoichiometric air-fuel ratio, NO X Even when a part of the NO x flows out without being purified in the NO x reduction catalyst device 40 when NO x is released from the occlusion device 50, the oxidation catalyst device 80 satisfactorily reduces with the stored ammonia. It can be purified (6NO + 4NH 3 → 5N 2 + 6H 2 O). Further, when the combustion air-fuel ratio of the second cylinder group is leaner than the stoichiometric air-fuel ratio, even if a slight amount of NO x leaks from the NO x storage device 50, the oxidation catalyst device 80 performs reduction purification with the stored ammonia. can do.

10 第一排気通路
20 第二排気通路
30 第三排気通路
40 NOX還元触媒装置
50 NOX吸蔵装置
60 連通路
70 切換弁
80 酸化触媒装置
10 First exhaust passage 20 second exhaust gas passage 30 third exhaust passage 40 NO X reduction catalyst device 50 NO X occluding device 60 communication path 70 switch valve 80 oxidation catalyst device

Claims (4)

少なくとも一気筒からなる第一気筒群と、その他の気筒からなる第二気筒群とを有する多気筒内燃機関の排気浄化装置であって、前記第一気筒群の第一排気通路と前記第二気筒群の第二排気通路との合流部より下流側に位置する第三排気通路に卑金属触媒を担持するNOX還元触媒装置が配置され、前記第二排気通路には排気ガスの空燃比が理論空燃比よりリーンであるときには排気ガス中のNOXを吸蔵し、排気ガスの空燃比が理論空燃比よりリッチとなると吸蔵したNOXを放出するNOX吸蔵装置が配置され、前記第二排気通路の前記NOX吸蔵装置の下流側と前記第三排気通路の前記NOX還元触媒装置の下流側とを連通する連通路が設けられ、前記第一気筒群の燃焼空燃比を理論空燃比よりリッチとし、前記第二気筒群の燃焼空燃比を理論空燃比よりリーンにするときには前記NOX吸蔵装置から流出する排気ガスは前記連通路を通過するようにされ、前記第二気筒群の燃焼空燃比を理論空燃比よりリッチにするときには前記NOX吸蔵装置から流出する排気ガスは前記NOX還元触媒装置を通過するようにされることを特徴とする内燃機関の排気浄化装置。 An exhaust purification device for a multi-cylinder internal combustion engine having a first cylinder group consisting of at least one cylinder and a second cylinder group consisting of other cylinders, wherein the first exhaust passage and the second cylinder of the first cylinder group NO X reduction catalyst device carrying a base metal catalyst in the third exhaust passage is arranged to be positioned on the downstream side of the merging portion of the second exhaust gas passage of the group, said the second exhaust gas passage air-fuel ratio is the stoichiometric air-exhaust gas when more fuel ratio is lean to occlude NO X in the exhaust gas, the air-fuel ratio of the exhaust gas is arranged the NO X storage device that releases NO X occluding becomes richer than the stoichiometric air-fuel ratio, the second exhaust passage A communication passage is provided that communicates the downstream side of the NO X storage device and the downstream side of the NO X reduction catalyst device of the third exhaust passage, and the combustion air-fuel ratio of the first cylinder group is made richer than the stoichiometric air-fuel ratio. , The combustion air-fuel ratio of the second cylinder group When to leaner than Ronsora ratio exhaust gas flowing out of the the NO X storage device is adapted to pass through the communication passage, the NO X when the rich than the stoichiometric air-fuel ratio of the combustion air-fuel ratio of the second cylinder group An exhaust gas purification apparatus for an internal combustion engine, characterized in that exhaust gas flowing out from the storage device passes through the NO x reduction catalyst device. 前記NOX吸蔵装置のNOX吸蔵量が設定量となると、前記第二気筒群の燃焼空燃比を理論空燃比よりリーンからリッチに切り換えることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 2. The exhaust of the internal combustion engine according to claim 1, wherein when the NO X storage amount of the NO X storage device reaches a set amount, the combustion air-fuel ratio of the second cylinder group is switched from lean to rich than the stoichiometric air-fuel ratio. Purification equipment. 前記第三排気通路における前記連通路の接続位置より下流側には、酸化触媒装置が配置されていることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein an oxidation catalyst device is disposed downstream of the connection position of the communication passage in the third exhaust passage. 前記酸化触媒装置は、アンモニア吸蔵機能を備えていることを特徴とする請求項3に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 3, wherein the oxidation catalyst device has an ammonia storage function.
JP2011270311A 2011-12-09 2011-12-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5653894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270311A JP5653894B2 (en) 2011-12-09 2011-12-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270311A JP5653894B2 (en) 2011-12-09 2011-12-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013122177A true JP2013122177A (en) 2013-06-20
JP5653894B2 JP5653894B2 (en) 2015-01-14

Family

ID=48774288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270311A Expired - Fee Related JP5653894B2 (en) 2011-12-09 2011-12-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5653894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217596A (en) * 2021-07-21 2022-10-21 广州汽车集团股份有限公司 Engine and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019261A1 (en) * 1995-11-17 1997-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for internal combustion engines
JPH09317446A (en) * 1996-03-22 1997-12-09 Toyota Motor Corp Exhaust gas purifying device for internal combustion engine
JP2009221873A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2012026383A (en) * 2010-07-26 2012-02-09 Toyota Motor Corp Exhaust purification device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019261A1 (en) * 1995-11-17 1997-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for internal combustion engines
JPH09317446A (en) * 1996-03-22 1997-12-09 Toyota Motor Corp Exhaust gas purifying device for internal combustion engine
JP2009221873A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2012026383A (en) * 2010-07-26 2012-02-09 Toyota Motor Corp Exhaust purification device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217596A (en) * 2021-07-21 2022-10-21 广州汽车集团股份有限公司 Engine and control method thereof
CN115217596B (en) * 2021-07-21 2024-02-23 广州汽车集团股份有限公司 Engine and control method thereof

Also Published As

Publication number Publication date
JP5653894B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2006027904A1 (en) Guide structure and exhaust emission control device
JPH10238336A (en) Exhaust gas cleaning device for internal combustion engine
US8671661B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5999193B2 (en) Exhaust gas purification device for internal combustion engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
JP5626457B2 (en) Exhaust gas purification device for internal combustion engine
JP5900728B2 (en) Engine exhaust purification system
JP2011149360A (en) Exhaust emission control device for internal combustion engine
JP5994931B2 (en) Exhaust gas purification device for internal combustion engine
JP5610083B1 (en) Exhaust gas purification device for internal combustion engine
JP5653894B2 (en) Exhaust gas purification device for internal combustion engine
JP5811300B2 (en) Exhaust gas purification device for internal combustion engine
JP5610082B1 (en) Exhaust gas purification device for internal combustion engine
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP2013122179A (en) Exhaust emission control device for internal combustion engine
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP2010031730A (en) Exhaust emission control device for internal combustion engine
JP5880781B2 (en) Exhaust gas purification device for internal combustion engine
JP2016205351A (en) Exhaust emission control system of internal combustion engine
JP2010185347A (en) Exhaust gas purifying apparatus
US20150238902A1 (en) Exhaust gas purification system and exhaust gas purification method
JP2017223162A (en) Exhaust emission control device
JP2006266144A (en) Exhaust emission control device for internal combustion engine
JP2015014225A (en) Exhaust emission control device of internal combustion engine
JP2013238163A (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

LAPS Cancellation because of no payment of annual fees