JP2006266144A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2006266144A
JP2006266144A JP2005084003A JP2005084003A JP2006266144A JP 2006266144 A JP2006266144 A JP 2006266144A JP 2005084003 A JP2005084003 A JP 2005084003A JP 2005084003 A JP2005084003 A JP 2005084003A JP 2006266144 A JP2006266144 A JP 2006266144A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
sox
nox
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005084003A
Other languages
Japanese (ja)
Other versions
JP4552714B2 (en
Inventor
Kohei Yoshida
耕平 吉田
Yasuaki Nakano
泰彰 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005084003A priority Critical patent/JP4552714B2/en
Publication of JP2006266144A publication Critical patent/JP2006266144A/en
Application granted granted Critical
Publication of JP4552714B2 publication Critical patent/JP4552714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress sulfur poisoning of a NOx catalyst when fuel of high sulfur concentration is used while deterioration of fuel economy being avoided in a device having a SOx catalyst in an upstream of the NOx catalyst. <P>SOLUTION: This device is provided with a first catalyst 31 capable of collecting SOx composition in exhaust gas in an exhaust pipe 20. a second catalyst 32 provided in the exhaust pipe in a down stream side of the first catalyst and collecting particulate matters and eliminating NOx, the SOx concentration sensor 23 provided in an upstream of the first catalyst and detecting SOx concentration in exhaust gas, and a reducing agent injection valve 15 supplying reducing agent at a predetermined interval in the exhaust pipe at a middle of the first catalyst and the second catalyst. A bypass pipe 21 connects the upstream part of the first catalyst and the downstream part of the second catalyst of the exhaust pipe with bypassing the first catalyst and the second catalyst. An exhaust gas control valve 22 changes over a flow passage of exhaust gas between the exhaust pipe and the bypass pipe. If Sox concentration is higher than a predetermined value, the exhaust gas control valve is controlled to make exhaust gas pass through the bypass pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置、特にはディーゼル機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device for a diesel engine.

内燃機関より排出される排気ガス中のNOxを浄化する排気浄化装置として、吸蔵還元型NOx触媒に代表されるNOx吸収剤がある。NOx吸収剤は、流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出するものであり、このNOx吸収剤の一種である吸蔵還元型NOx触媒は流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出しN2に還元する触媒である。 As an exhaust purification device that purifies NOx in exhaust gas discharged from an internal combustion engine, there is a NOx absorbent represented by a NOx storage reduction catalyst. The NOx absorbent absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean (that is, in an oxygen-excess atmosphere), and releases the absorbed NOx when the oxygen concentration of the inflowing exhaust gas decreases, The NOx storage reduction catalyst, which is a kind of NOx absorbent, absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean (ie, in an oxygen-excess atmosphere) and absorbs when the oxygen concentration of the inflowing exhaust gas decreases. This catalyst releases released NOx and reduces it to N 2 .

この吸蔵還元型NOx触媒(以下、単に触媒あるいはNOx触媒ということもある)を内燃機関の排気管に配置すると、リーン空燃比の排気ガスが流れたときには排気ガス中のNOxが触媒に吸収され、ストイキ(理論空燃比)あるいはリッチ空燃比の排気ガスが流れたときに触媒に吸収されていたNOxがNO2として放出され、さらに排気ガス中のHCやCOなどの還元成分によってN2に還元され、即ちNOxが浄化される。 When this NOx storage reduction catalyst (hereinafter also referred to simply as a catalyst or NOx catalyst) is disposed in the exhaust pipe of an internal combustion engine, when exhaust gas having a lean air-fuel ratio flows, NOx in the exhaust gas is absorbed by the catalyst, When exhaust gas with stoichiometric (theoretical air / fuel ratio) or rich air / fuel ratio flows, NOx absorbed in the catalyst is released as NO 2 and further reduced to N 2 by reducing components such as HC and CO in the exhaust gas. That is, NOx is purified.

ところで、一般に、内燃機関の燃料には硫黄分が含まれており、内燃機関で燃料を燃焼すると、この燃料中の硫黄分が燃焼してSO2やSO3などの硫黄酸化物(SOx)が発生する。前記吸蔵還元型NOx触媒は、NOxの吸収作用を行うのと同じメカニズムで排気ガス中のSOxの吸収を行うので、内燃機関の排気管にこのNOx触媒を配置すると、このNOx触媒にはNOxのみならずSOxも吸収される。 By the way, in general, the fuel of the internal combustion engine contains a sulfur content. When the fuel is burned in the internal combustion engine, the sulfur content in the fuel is combusted to generate sulfur oxides (SOx) such as SO 2 and SO 3. appear. The NOx storage reduction catalyst absorbs SOx in the exhaust gas by the same mechanism that absorbs NOx. Therefore, when this NOx catalyst is arranged in the exhaust pipe of an internal combustion engine, only NOx is present in the NOx catalyst. SOx is also absorbed.

ところが、前記NOx触媒に吸収されたSOxは時間経過とともに安定な硫酸塩を形成するため、前記NOx触媒からNOxの放出・還元を行うのと同じ条件下では、分解、放出されにくく触媒内に蓄積され易い傾向がある。したがって、NOx触媒内のSOx蓄積量が増大すると、触媒のNOx吸収容量が減少して排気ガス中のNOxの除去を十分に行うことができなくなりNOx浄化効率が低下する。これが所謂SOx被毒である。   However, since SOx absorbed by the NOx catalyst forms a stable sulfate with time, it is difficult to decompose and release under the same conditions as NOx release / reduction from the NOx catalyst and accumulate in the catalyst. There is a tendency to be easily done. Therefore, if the amount of SOx accumulated in the NOx catalyst increases, the NOx absorption capacity of the catalyst decreases, and NOx in the exhaust gas cannot be sufficiently removed, resulting in a reduction in NOx purification efficiency. This is so-called SOx poisoning.

そこで、吸蔵還元型NOx触媒のNOx浄化能を長期に亘って高く維持するために、NOx触媒よりも上流に、排気ガス中のSOxを主に吸収するSOx吸収剤を配置し、NOx触媒にSOxが流れ込まないようにして吸蔵還元型NOx触媒のSOx被毒の防止を図った排気浄化装置が開発されている。
このようにNOx触媒よりも上流に、排気ガス中のSOxを主に吸収するSOx吸収剤を配置した排気浄化装置としては、例えば、特許文献1、特許文献2に記載の装置がある。
Therefore, in order to maintain the NOx purification capacity of the NOx storage reduction catalyst high over a long period of time, an SOx absorbent that mainly absorbs SOx in the exhaust gas is disposed upstream of the NOx catalyst, and the SOx is disposed in the NOx catalyst. Exhaust gas purification devices have been developed that prevent SOx poisoning of the NOx storage reduction catalyst so as not to flow in.
As an exhaust purification device in which the SOx absorbent that mainly absorbs SOx in the exhaust gas is arranged upstream of the NOx catalyst as described above, for example, there are devices described in Patent Literature 1 and Patent Literature 2.

前記SOx吸収剤は、流入ガスの空燃比がリーンのときにSOxを吸収し、流入ガスの酸素濃度が低いときに吸収したSOxをSO2として放出するものであるが、このSOx吸収剤のSOx吸収容量にも限りがあるため、SOx吸収剤がSOxで飽和する前にSOx吸収剤からSOxを放出させる処理、即ち再生処理を実行する必要がある。 Said SOx absorbent, the air-fuel ratio of the inflow gas absorbs SOx when the lean, but the SOx absorbed when the oxygen concentration in the inlet gas is low it is to release as SO 2, SOx in the SOx absorbent Since the absorption capacity is also limited, it is necessary to perform a process for releasing SOx from the SOx absorbent, that is, a regeneration process, before the SOx absorbent is saturated with SOx.

そのために、例えば、特許文献3に開示されているようにSOx吸収剤の上流側に燃料を噴射して流入排気ガスの空燃比をストイキまたはリッチにして酸素濃度を低下させてSOxを放出させるものがある。   For this purpose, for example, as disclosed in Patent Document 3, fuel is injected upstream of the SOx absorbent, and the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich to reduce the oxygen concentration and release SOx. There is.

ところが、この場合、SOx吸収剤からSOxが少しずつしか放出されない。したがって、SOx吸収剤から全ての吸収されたSOxを放出させるには長時間にわたって空燃比をリッチにせねばならず多量の燃料を必要とし、燃費が悪化する。   However, in this case, SOx is released little by little from the SOx absorbent. Therefore, in order to release all absorbed SOx from the SOx absorbent, the air-fuel ratio must be rich for a long time, and a large amount of fuel is required, resulting in a deterioration in fuel consumption.

特開2000−230419号公報JP 2000-230419 A 特開2004−92524号公報JP 2004-92524 A 特開平6−346768号公報JP-A-6-346768

本発明は上記問題に鑑み、S燃費の悪化を誘起することなくNOx触媒の硫黄被毒を抑制することを目的とする。   In view of the above problems, an object of the present invention is to suppress sulfur poisoning of a NOx catalyst without inducing deterioration of S fuel consumption.

請求項1の発明によれば、排気管に設けられる第1触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるSOxを捕獲し、流入する排気ガスの空燃比がリーンのもとで温度が上昇すると捕獲したSOxが次第に内部に拡散して表面側のSOx捕獲機能が回復する性質を有する第1触媒と、
第1触媒の後流側の排気管に設けられ粒子状物質の捕集とNOxの浄化をおこなう第2触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比またはリッチになると吸蔵したNOxを放出する第2触媒と、
第1触媒の上流に設けられ排気ガス中のSOx濃度を検出するSOx濃度検出手段と、
第1触媒と第2触媒の中間の排気管に所定のインターバルで還元剤を供給する還元剤供給手段を具備し、 SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、排気ガスが第1触媒と第2触媒に流入するのを制限することを特徴とする内燃機関の排気ガス浄化装置が提供される。
According to the first aspect of the present invention, the first catalyst provided in the exhaust pipe captures SOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the air-fuel ratio of the inflowing exhaust gas A first catalyst having the property that when the temperature rises under lean, the trapped SOx gradually diffuses into the interior and the SOx trapping function on the surface side recovers;
A second catalyst that is provided in an exhaust pipe on the downstream side of the first catalyst and collects particulate matter and purifies NOx. NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean A second catalyst that releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich,
SOx concentration detecting means provided upstream of the first catalyst for detecting the SOx concentration in the exhaust gas;
When the reducing agent supply means for supplying the reducing agent to the exhaust pipe between the first catalyst and the second catalyst at a predetermined interval is provided, and the SOx concentration detecting means detects SOx having a concentration higher than the predetermined value, An exhaust gas purifying device for an internal combustion engine is provided that restricts the exhaust gas from flowing into the first catalyst and the second catalyst.

請求項2の発明によれば、請求項1の発明において、第1触媒と第2触媒を迂回して排気管の第1触媒の上流部と第2触媒の下流部を接続するバイパス管と、排気ガスの流路を排気管とバイパス管の間で切り替える排気ガス制御弁とを具備し、
SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、排気ガスがバイパス通路を通るように排気ガス制御弁を制御する、排気ガス浄化装置が提供される。
According to the invention of claim 2, in the invention of claim 1, a bypass pipe that bypasses the first catalyst and the second catalyst and connects the upstream part of the first catalyst and the downstream part of the second catalyst in the exhaust pipe; An exhaust gas control valve that switches an exhaust gas flow path between an exhaust pipe and a bypass pipe;
An exhaust gas purification device is provided that controls the exhaust gas control valve so that the exhaust gas passes through the bypass passage when the SOx concentration detection means detects SOx having a concentration higher than a predetermined value.

請求項3の発明によれば、請求項2の発明において、バイパス通路の下流端の取り付け位置よりも下流側の排気管に酸化触媒を配設した、排気ガス浄化装置が提供される。   According to a third aspect of the present invention, there is provided the exhaust gas purifying apparatus according to the second aspect of the present invention, wherein the oxidation catalyst is disposed in the exhaust pipe downstream of the attachment position of the downstream end of the bypass passage.

請求項4の発明によれば、請求項1の発明において、SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段による還元剤の供給を停止するようにした、排気ガス浄化装置が提供される。   According to the invention of claim 4, in the invention of claim 1, when the SOx concentration detection means detects SOx having a concentration higher than a predetermined value, the supply of the reducing agent by the reducing agent supply means is stopped. Thus, an exhaust gas purification device is provided.

請求項5の発明によれば、請求項1の発明において、SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段が還元剤を供給するインターバルを長くするようにした、排気ガス浄化装置が提供される。   According to the invention of claim 5, in the invention of claim 1, when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the reducing agent supply means extends the interval for supplying the reducing agent. An exhaust gas purification apparatus configured as described above is provided.

請求項6の発明によれば、請求項1の発明において、SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段が還元剤を供給するときの供給量を減少するようにした、排気ガス浄化装置が提供される。   According to the invention of claim 6, in the invention of claim 1, when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the supply amount when the reducing agent supply means supplies the reducing agent. There is provided an exhaust gas purification device that reduces the amount of exhaust gas.

請求項7の発明によれば、請求項1の発明において、SOxによる第2触媒の被毒量を検出するSOx被毒検出手段を具備し、該被毒量が所定量を超えた場合には第1触媒のSOx捕獲機能を回復せしめる第1触媒機能回復処理をおこなう排気ガス浄化装置が提供される。   According to the invention of claim 7, in the invention of claim 1, it comprises SOx poisoning detection means for detecting the poisoning amount of the second catalyst by SOx, and when the poisoning amount exceeds a predetermined amount, Provided is an exhaust gas purifying apparatus that performs a first catalyst function recovery process for recovering the SOx capturing function of a first catalyst.

請求項8の発明によれば、請求項7の発明において、第1触媒機能回復処理は、空燃比がリーンの状態で、燃焼室への燃料噴射時期を圧縮上死点以降まで遅らせ排気ガスの温度を上昇せしめて成る排気ガス浄化装置が提供される。   According to the invention of claim 8, in the invention of claim 7, the first catalytic function recovery processing is performed by delaying the fuel injection timing to the combustion chamber after the compression top dead center with the air-fuel ratio being lean. There is provided an exhaust gas purifying apparatus having an increased temperature.

請求項9の発明によれば、請求項7の発明において、SOx被毒検出手段は、第2触媒の下流にNOx濃度を検出するNOx検出手段を設け、該NOx検出手段の検出したNOx濃度にもとづいて、SOxによる触媒の被毒量を検出する排気ガス浄化装置が提供される。   According to the ninth aspect of the invention, in the seventh aspect of the invention, the SOx poisoning detection means is provided with NOx detection means for detecting the NOx concentration downstream of the second catalyst, and the NOx concentration detected by the NOx detection means is adjusted. Based on the above, an exhaust gas purifying device for detecting the poisoning amount of a catalyst by SOx is provided.

本発明の排気ガス浄化装置は、排気管に設けられる第1触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるSOxを捕獲し、流入する排気ガスの空燃比がリーンのもとで温度が上昇すると捕獲したSOxが次第に内部に拡散して表面側のSOx捕獲機能が回復する性質を有する第1触媒と、第1触媒の後流側の排気管に設けられ粒子状物質の捕集とNOxの浄化をおこなう第2触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比またはリッチになると吸蔵したNOxを放出する第2触媒と、第1触媒の上流に設けられ排気ガス中のSOx濃度を検出するSOx濃度検出手段と、第1触媒と第2触媒の中間の排気管に所定のインターバルで還元剤を供給する還元剤供給手段を具備し、SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、排気ガスが第1触媒と第2触媒に流入するのを制限するようにされ、硫黄濃度が高い燃料が使用されたときの触媒の被毒が抑制される。   The exhaust gas purification apparatus of the present invention is a first catalyst provided in an exhaust pipe, captures SOx contained in exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and air-fuel ratio of the inflowing exhaust gas However, when the temperature rises under lean, the trapped SOx gradually diffuses into the interior and the SOx trapping function on the surface side recovers, and the exhaust pipe on the downstream side of the first catalyst is provided. A second catalyst that collects particulate matter and purifies NOx, and stores the NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the air-fuel ratio of the inflowing exhaust gas is theoretically A second catalyst that releases the stored NOx when it becomes air-fuel ratio or rich, SOx concentration detection means that is provided upstream of the first catalyst and detects the SOx concentration in the exhaust gas, and intermediate between the first catalyst and the second catalyst In the exhaust pipe When the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the exhaust gas flows into the first catalyst and the second catalyst. This limits the poisoning of the catalyst when a fuel having a high sulfur concentration is used.

以下、図面を参照して本発明の排気浄化装置の各実施の形態について説明する。
図1は本発明の排気浄化装置の第1の実施の形態のハード構成を示す図であって、筒内噴射型の圧縮自着火式のディーゼル内燃機関に適用した場合を示している。なお、本発明において用いられる排気浄化装置は火花点火式内燃機関にも搭載可能である。
Hereinafter, embodiments of the exhaust emission control device of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a hardware configuration of a first embodiment of an exhaust emission control device according to the present invention, and shows a case where the present invention is applied to an in-cylinder injection type compression ignition type diesel internal combustion engine. The exhaust purification device used in the present invention can also be mounted on a spark ignition internal combustion engine.

図1を参照すると、1は機関本体、2は吸気マニホールド、3は排気マニホールド、4は吸気管、20は排気管をそれぞれ示す。吸気マニホールド2は吸気管4を介して排気ターボチャージャ6のコンプレッサ6aに連結される。吸気管4にはモータ31により駆動されるスロットル弁30、および、排気ターボチャージャ6のコンプレッサ6aで加圧された空気を冷却するインタークーラー7が配置されている。
各燃料噴射弁10がコモンレール11に連結され、コモンレール11内へは電気制御式の吐出量可変な燃料ポンプ12により燃料が供給され、燃料ポンプ12へは燃料タンク13内に設けられた燃料ポンプ14で燃料が送給される。
Referring to FIG. 1, 1 is an engine body, 2 is an intake manifold, 3 is an exhaust manifold, 4 is an intake pipe, and 20 is an exhaust pipe. The intake manifold 2 is connected to a compressor 6 a of an exhaust turbocharger 6 through an intake pipe 4. The intake pipe 4 is provided with a throttle valve 30 driven by a motor 31 and an intercooler 7 for cooling air pressurized by the compressor 6 a of the exhaust turbocharger 6.
Each fuel injection valve 10 is connected to a common rail 11. Fuel is supplied into the common rail 11 by an electrically controlled fuel pump 12 having a variable discharge amount. A fuel pump 14 provided in a fuel tank 13 is connected to the fuel pump 12. Then fuel is delivered.

一方、排気マニホールド3は排気ターボチャージャ6のタービン6bに連結され、タービン6bの出口は排気管20に連結されている。排気管20には第1触媒31、第2触媒32が設けられており、バイパス通路21が第1触媒31、第2触媒32を迂回して、排気管20の第1触媒31の上流部と第2触媒32の下流部とを連通している。そして、バイパス通路21の上流側取り付け部に排気ガスの通路を切り替える排気制御弁22が設けられている。15は第2触媒32に還元剤を添加する還元剤噴射弁である。還元剤噴射弁15は燃料ポンプ12から送給される燃料をノズル15aから第1触媒31と第2触媒32の中間の排気管20内に噴射する。   On the other hand, the exhaust manifold 3 is connected to the turbine 6 b of the exhaust turbocharger 6, and the outlet of the turbine 6 b is connected to the exhaust pipe 20. A first catalyst 31 and a second catalyst 32 are provided in the exhaust pipe 20, and the bypass passage 21 bypasses the first catalyst 31 and the second catalyst 32, and the upstream portion of the first catalyst 31 in the exhaust pipe 20 The downstream portion of the second catalyst 32 is in communication. An exhaust control valve 22 for switching the exhaust gas passage is provided at the upstream attachment portion of the bypass passage 21. Reference numeral 15 denotes a reducing agent injection valve for adding a reducing agent to the second catalyst 32. The reducing agent injection valve 15 injects the fuel supplied from the fuel pump 12 into the exhaust pipe 20 between the first catalyst 31 and the second catalyst 32 from the nozzle 15a.

23は排気ガス中のSOxの濃度を検出するSOxセンサ23である。SOxセンサ23は、例えば、特開2004−239706号公報に示されているような構造のものとされる。すなわち、酸化物イオン導電性を有する固体電解質と、その固体電解質の表面の一部に形成された硫酸塩層であって、アルカリ金属元素及び、またはアルカリ土類金属元素と希土類元素とを構成要素とする複硫酸塩を主体とする硫酸塩層と、その硫酸塩層と電気的に接する電極と、硫酸塩層から離れた位置で固体電解質と電気的に接する電極とから構成され、排気ガス中のSOxの濃度に応じた信号を発する。   An SOx sensor 23 detects the concentration of SOx in the exhaust gas. The SOx sensor 23 has a structure as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-239706. That is, a solid electrolyte having oxide ion conductivity, and a sulfate layer formed on a part of the surface of the solid electrolyte, comprising an alkali metal element and / or an alkaline earth metal element and a rare earth element A sulfate layer mainly composed of a bisulfate, an electrode in electrical contact with the sulfate layer, and an electrode in electrical contact with the solid electrolyte at a position away from the sulfate layer. A signal corresponding to the concentration of SOx is generated.

50は電子制御ユニット(ECU)であって、電子制御ユニット50はデジタルコンピュータからなり、双方向性バス51により互いに接続されたROM(リードオンリメモリ)52、RAM(ランダムアクセスメモリ)53、CPU(マイクロプロセッサ)54、入力ポート55および出力ポート56を具備する。   Reference numeral 50 denotes an electronic control unit (ECU). The electronic control unit 50 includes a digital computer, and is connected to a ROM (read only memory) 52, a RAM (random access memory) 53, a CPU ( A microprocessor) 54, an input port 55, and an output port 56.

第1触媒31はSOxを捕集するための触媒である。例えば、ハニカム状のモノリス構造の担体の表面にコート層が形成され、コート層の上に白金(Pt)等の貴金属が分散して担持されている。担体はアルミナで形成され軸線方向に真っ直ぐに延伸する多数の排気ガス流通孔を有する。コート層はカリウム(K)、ナトリウム(Na)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類、ランタン(La)、イットリウム(Y)のような希土類の少なくとも1つを含有し、コート層は強塩基性を有する。   The first catalyst 31 is a catalyst for collecting SOx. For example, a coat layer is formed on the surface of a honeycomb monolithic carrier, and a noble metal such as platinum (Pt) is dispersed and supported on the coat layer. The carrier is formed of alumina and has a large number of exhaust gas flow holes extending straight in the axial direction. The coating layer is an alkali metal such as potassium (K), sodium (Na), cesium (Cs), alkaline earth such as barium (Ba), calcium (Ca), lanthanum (La), yttrium (Y), etc. The coating layer contains at least one rare earth element and has a strong basicity.

排気ガス中に含まれるSOx、すなわちSO2は白金(Pt)によって酸化され、次いでコート層内に捕獲される。すなわち、SO2はSO4 2-の形でコート層内に拡散し硫酸塩を形成する。コート層内におけるSOx濃度は表面近傍が最も高く、奥部にいくにしたがって次第に低くなっている。コート層の表面近傍のSOx濃度が高くなるとコート層の表面の塩基性が弱まりSOxの捕集能力が低下する。
そして、この第1触媒31は排気ガスの空燃比がリーンのもとで温度を上昇させるとコート層の表面近傍に集中的に存在するSOxがコート層におけるSOx濃度が均一となるようにコート層の奥部に向けて拡散していく。そしてコート層の表面近傍に集中的に存在していたSOxがコート層の奥部に向けて拡散するとコート層の表面近傍のSOx濃度が低下してSOx捕獲機能が回復する。
SOx contained in the exhaust gas, that is, SO 2 is oxidized by platinum (Pt) and then trapped in the coat layer. That is, SO 2 diffuses into the coat layer in the form of SO 4 2- to form a sulfate. The SOx concentration in the coat layer is highest near the surface, and gradually decreases toward the back. When the SOx concentration in the vicinity of the surface of the coat layer increases, the basicity of the surface of the coat layer weakens and the SOx collecting ability decreases.
The first catalyst 31 has a coating layer so that the SOx concentration existing in the vicinity of the surface of the coating layer becomes uniform in the coating layer when the temperature is raised while the air-fuel ratio of the exhaust gas is lean. It spreads toward the back of the. When SOx concentrated in the vicinity of the surface of the coat layer diffuses toward the inner part of the coat layer, the SOx concentration in the vicinity of the surface of the coat layer decreases and the SOx trapping function is restored.

第2触媒32はNOx吸蔵触媒であり、下流端部を閉鎖した細長い通路から成る排気ガス流入路と、上流端部を閉鎖した細長い通路から成る排気ガス流出路と、を薄肉の隔壁を介して交互に配置互いに隣接させて多数配置したフィルタ構造にされている。この隔壁は触媒の担体としてコージライトのような多孔質材料で形成されている。   The second catalyst 32 is a NOx storage catalyst, and an exhaust gas inflow passage comprising an elongated passage with the downstream end closed and an exhaust gas outflow passage comprising an elongated passage with the upstream end closed via a thin partition wall. Alternatingly arranged, a large number of filter structures are arranged adjacent to each other. This partition is made of a porous material such as cordierite as a catalyst carrier.

隔壁の両側表面、及び、両端部壁の表面の上に白金(Pt)のような貴金属と例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類金属、ランタン(La)、イットリウム(Y)のような希土類の少なくとも一つを含むNOx吸蔵剤が担持されている。   A noble metal such as platinum (Pt) and an alkali metal such as potassium (K), sodium (Na), lithium (Li), and cesium (Cs) on both side surfaces of the partition walls and the surfaces of both end walls; A NOx occlusion agent containing at least one of alkaline earth metals such as barium (Ba) and calcium (Ca), and rare earths such as lanthanum (La) and yttrium (Y) is supported.

排気ガスがリーンの時は排気ガス中に含まれるNOは白金(Pt)上で酸化されてNO2となり次いでNOx吸蔵剤に吸収されて、例えばNOx吸蔵剤がバリウム(Ba)を含む場合、酸化バリウム(BaO)と結合しながら硝酸イオンNO3 -の形でNOx吸蔵剤の内部に拡散する。このようにしてNOxがNOx吸蔵剤に吸収される。排気ガス中の酸素濃度が高い限り白金(Pt)の表面でNO2が生成され、NOx吸蔵剤のNOx吸蔵能力が飽和しない限りNO2がNOx吸蔵剤内に吸収されて硝酸イオンNO3 -が生成される。 When the exhaust gas is lean, NO contained in the exhaust gas is oxidized on platinum (Pt) to become NO 2 and then absorbed by the NOx storage agent. For example, when the NOx storage agent contains barium (Ba), it is oxidized. It diffuses into the inside of the NOx storage agent in the form of nitrate ions NO 3 while being combined with barium (BaO). In this way, NOx is absorbed by the NOx storage agent. As long as the oxygen concentration in the exhaust gas is high, NO 2 is generated on the surface of platinum (Pt). As long as the NOx storage capacity of the NOx storage agent is not saturated, NO 2 is absorbed in the NOx storage agent and nitrate ions NO 3 are generated. Generated.

これに対し、還元剤噴射弁15から還元剤としての燃料を排気ガス中に供給することによっては行きガスの空燃比をリッチあるいはストイキオにすると排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、NOx吸蔵剤内の硝酸イオンNO3 -がNO2の形でNOx吸蔵剤から放出され、放出されたNO2は排気ガス中に含まれる未燃のHC,COによって還元される。そこでこの実施の形態ではNOx吸蔵剤のNOx吸収能力が飽和する前に還元剤噴射弁15から還元剤としての燃料を排気ガス中に供給し排気ガスの空燃比を一時的にリッチにしNOx吸蔵剤からNOxを放出している。 On the other hand, when the fuel as the reducing agent is supplied from the reducing agent injection valve 15 into the exhaust gas, if the air-fuel ratio of the going gas is made rich or stoichiometric, the oxygen concentration in the exhaust gas decreases, so the reaction is reversed. In the direction (NO 3 → NO 2 ), nitrate ions NO 3 in the NOx storage agent are released from the NOx storage agent in the form of NO 2 , and the released NO 2 is unburned contained in the exhaust gas. Reduced by HC and CO. Therefore, in this embodiment, before the NOx absorption capacity of the NOx storage agent is saturated, the fuel as the reducing agent is supplied from the reducing agent injection valve 15 into the exhaust gas to temporarily enrich the air-fuel ratio of the exhaust gas, and thus the NOx storage agent. NOx is released from the air.

図5に示すのがこの第1の実施の形態の制御のフローチャートである。ステップS11でSOxセンサ23が検出したSOx濃度SOXを読み込み、ステップS12ではステップS11で読み込んだSOXがあらかじめ定めた判定値SOXAよりも大きいか否かを判定する。ステップS12で肯定判定された場合、すなわちSOXがあらかじめ定めた判定値SOXAよりも大きい場合には、ステップS13に進み排気制御弁22をバイパス管21に排気ガスが流れるように制御してからリターンする。一方、ステップS12で否定判定された場合、すなわちSOXがあらかじめ定めた判定値SOXAよりも小さい場合には、ステップS14に進み排気制御弁22を排気管20に排気ガスが流れるように制御して、すなわち通常運転できるように制御して、からリターンする。   FIG. 5 shows a flowchart of the control according to the first embodiment. In step S11, the SOx concentration SOX detected by the SOx sensor 23 is read. In step S12, it is determined whether the SOX read in step S11 is larger than a predetermined determination value SOXA. If an affirmative determination is made in step S12, that is, if SOX is larger than a predetermined determination value SOXA, the process proceeds to step S13, the exhaust control valve 22 is controlled so that the exhaust gas flows through the bypass pipe 21, and then the process returns. . On the other hand, if a negative determination is made in step S12, that is, if SOX is smaller than a predetermined determination value SOXA, the process proceeds to step S14 and the exhaust control valve 22 is controlled so that the exhaust gas flows through the exhaust pipe 20, That is, control is performed so that normal operation is possible, and then the process returns.

次に第1の実施の形態の変形例について説明する。図2に示すのが第1の実施の形態の変形例のハード構成であり、この第1の実施の形態の変形例は、上記の第1の実施の形態では排気ガスが第1触媒31、第2触媒32を通らずに浄化されずに排出されてしまうので、バイパス管21の下流取り付け部よりも下流の排気管20に酸化触媒から成る第3触媒33を配設し、この第3触媒33で少なくともHC、COを浄化するようにしたものである。   Next, a modification of the first embodiment will be described. FIG. 2 shows a hardware configuration of a modified example of the first embodiment. In the modified example of the first embodiment, the exhaust gas is the first catalyst 31 in the first embodiment. Since the second catalyst 32 is discharged without being purified without passing through the second catalyst 32, a third catalyst 33 made of an oxidation catalyst is disposed in the exhaust pipe 20 downstream of the downstream attachment portion of the bypass pipe 21, and this third catalyst is arranged. 33 is for purifying at least HC and CO.

次に第の実施の形態について説明する。図3が第2の実施の形態のハード構成を示す図である。図3に示されるようにこの第2の実施の形態は第1の実施の形態とは異なりバイパス管21を備えていない。そこで、この第2の実施の形態ではSOx濃度が高い場合には還元剤噴射弁15を閉じ、硫黄分の高い燃料で第2触媒32が汚染されるのを、防止する。
そして、図6に示すのがこの第2の実施の形態の制御のフローチャートであり、第1の実施の形態のフローチャートのステップS13が、ステップS13aとされこのステップS13aにおいて還元剤の供給を停止するようにされている点が異なるが他のステップは同じである。
Next, a second embodiment will be described. FIG. 3 is a diagram illustrating a hardware configuration of the second embodiment. As shown in FIG. 3, the second embodiment does not include the bypass pipe 21 unlike the first embodiment. Therefore, in the second embodiment, when the SOx concentration is high, the reducing agent injection valve 15 is closed to prevent the second catalyst 32 from being contaminated with fuel having a high sulfur content.
FIG. 6 is a flowchart of the control of the second embodiment. Step S13 of the flowchart of the first embodiment is set to step S13a, and the supply of the reducing agent is stopped in step S13a. The other steps are the same except for the difference.

図7に示すのは第2の実施の形態の第1の変形例の制御のフローチャートであり、第2の実施の形態のステップS13aがステップS13bとされて還元剤供給量を減少するようにされている点が第2の実施の形態と異なるが他のステップは同じである。このようにすることにより第2触媒32のSOxによる被毒を抑制はするがNOxの還元も完全に停止はしない。   FIG. 7 is a flowchart of the control of the first modification of the second embodiment. Step S13a of the second embodiment is changed to step S13b to reduce the reducing agent supply amount. However, the other steps are the same as in the second embodiment. By doing so, the poisoning of the second catalyst 32 by SOx is suppressed, but the reduction of NOx is not completely stopped.

図8に示すのは第2の実施の形態の第2の変形例の制御のフローチャートであり、第2の実施の形態のステップS13aがステップS13cとされて還元剤を供給するインターバルが拡大されている点が第2の実施の形態と異なるが他のステップは同じである。このようにすることにより第2触媒32のSOxによる被毒を抑制はするがNOxの還元も完全に停止はしない。図10に示すのがSOx濃度とインターバルの関係で、検出されたSOx濃度が高いほどインターバルは拡大される。   FIG. 8 is a flowchart of the control of the second modification of the second embodiment. Step S13a of the second embodiment is changed to step S13c, and the interval for supplying the reducing agent is expanded. However, the other steps are the same as in the second embodiment. By doing so, the poisoning of the second catalyst 32 by SOx is suppressed, but the reduction of NOx is not completely stopped. FIG. 10 shows the relationship between the SOx concentration and the interval, and the interval increases as the detected SOx concentration increases.

次に第3の実施の形態について説明する。
第1の実施の形態、および、第2の実施の形態(第1,2変形例を含む)では、第1触媒の機能回復処理をおこなわないようにされているが、この第3の実施の形態は第2触媒32のS被毒が大きくなった場合には第1触媒31のSOx捕獲機能を回復せしめる処理をおこなうようにされている。
Next, a third embodiment will be described.
In the first embodiment and the second embodiment (including the first and second modifications), the function recovery process of the first catalyst is not performed. In the embodiment, when the S poisoning of the second catalyst 32 becomes large, a process for recovering the SOx capturing function of the first catalyst 31 is performed.

そして図4がこの第3の実施の形態のハード構成であって、第2の実施の形態に比較して、第2触媒32の出口にNOxの濃度を検出するNOxセンサー24が設けられており、NOxセンサー24の検出したNOxの濃度が所定値よりも高い場合にはS被毒量が大きくなったものと考えて上述のようにSOx捕獲機能を回復せしめる処理を実施する。   FIG. 4 shows the hardware configuration of the third embodiment. Compared with the second embodiment, a NOx sensor 24 for detecting the concentration of NOx is provided at the outlet of the second catalyst 32. When the concentration of NOx detected by the NOx sensor 24 is higher than a predetermined value, it is assumed that the amount of S poisoning has increased, and the processing for recovering the SOx capturing function is performed as described above.

この第1触媒31のSOx捕獲機能の回復は、前述したように排気ガスの空燃比がリーンの状態で排気ガス温度を上昇せしめることによっておこなわれる。そのために、この第3の実施の形態では、燃料噴射時期を圧縮上死点以降まで遅角させる。このように、燃料噴射時期を遅角させると後燃え期間が長くなり、その結果排気ガス温度が上昇する。   The recovery of the SOx trapping function of the first catalyst 31 is performed by increasing the exhaust gas temperature while the air-fuel ratio of the exhaust gas is lean as described above. Therefore, in the third embodiment, the fuel injection timing is retarded until after the compression top dead center. Thus, if the fuel injection timing is retarded, the afterburning period becomes longer, and as a result, the exhaust gas temperature rises.

図9に示すのが第3の実施の形態の制御のフローチャートであり、図6に示した第2の実施の形態のフローチャートにNOx濃度を読み込むステップS15、読み込んだNOx濃度NOXが判定値NOXAより大きいか、否か、を判定するステップS16、ステップS16で肯定判定された場合に第1触媒31のSOx捕獲機能再生を実施するステップS17を加えたものである。   FIG. 9 is a flowchart of the control of the third embodiment. Step S15 for reading the NOx concentration in the flowchart of the second embodiment shown in FIG. 6, and the read NOx concentration NOX is obtained from the determination value NOXA. Step S16 for determining whether the catalyst is larger or not, and Step S17 for regenerating the SOx capturing function of the first catalyst 31 when an affirmative determination is made in Step S16, are added.

なお、NOxセンサーについては、すでに色々なものが提案されており、どのようなものを使用してもよい。例えば、特開平7−325059号公報に開示されているものでは、NOxガス感応体がストロンチウム、チタン、および、酸素から成るNOxセンサを開示している。   Various types of NOx sensors have already been proposed, and any type may be used. For example, Japanese Patent Laid-Open No. 7-325059 discloses a NOx sensor in which the NOx gas sensitive body is made of strontium, titanium, and oxygen.

本発明は内燃機関の排気ガス浄化装置に適用されるが、特にはディーゼル機関に適している。   The present invention is applied to an exhaust gas purification device for an internal combustion engine, but is particularly suitable for a diesel engine.

第1の実施の形態のハード構成を示す図である。It is a figure which shows the hardware constitutions of 1st Embodiment. 第1の実施の形態の変形例のハード構成を示す図である。It is a figure which shows the hardware constitutions of the modification of 1st Embodiment. 第2の実施の形態のハード構成を示す図である。It is a figure which shows the hardware constitutions of 2nd Embodiment. 第3の実施の形態の制御のフローチャートである。It is a flowchart of control of a 3rd embodiment. 第1の実施の形態の制御のフローチャートである。It is a flowchart of control of a 1st embodiment. 第2の実施の形態の制御のフローチャートである。It is a flowchart of control of a 2nd embodiment. 第2の実施の形態の第1変形例の制御のフローチャートである。It is a flowchart of control of the 1st modification of 2nd Embodiment. 第2の実施の形態の第2変形例の制御のフローチャートである。It is a flowchart of control of the 2nd modification of 2nd Embodiment. 第3の実施の形態の制御のフローチャートである。It is a flowchart of control of a 3rd embodiment. 第2の実施の形態の第2変形例におけるSOx濃度とインターバルの関係を示すグラフである。It is a graph which shows the relationship between SOx density | concentration and the interval in the 2nd modification of 2nd Embodiment.

符号の説明Explanation of symbols

1 機関本体
2 吸気マニホールド
3 排気マニホールド
4 吸気管
6 排気ターボチャージャ
10 燃料噴射弁
11 コモンレール
12 燃料ポンプ
15 還元剤噴射弁
16 還元剤噴射弁
20 排気管
21 バイパス管
22 排気制御弁
23 SOxセンサ
24 NOxセンサ
31 第1触媒
32 第2触媒
33 第3触媒
50 ECU
DESCRIPTION OF SYMBOLS 1 Engine main body 2 Intake manifold 3 Exhaust manifold 4 Intake pipe 6 Exhaust turbocharger 10 Fuel injection valve 11 Common rail 12 Fuel pump 15 Reducing agent injection valve 16 Reducing agent injection valve 20 Exhaust pipe 21 Bypass pipe 22 Exhaust control valve 23 SOx sensor 24 NOx Sensor 31 First catalyst 32 Second catalyst 33 Third catalyst 50 ECU

Claims (9)

排気管に設けられる第1触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるSOxを捕獲し、流入する排気ガスの空燃比がリーンのもとで温度が上昇すると捕獲したSOxが次第に内部に拡散して表面側のSOx捕獲機能が回復する性質を有する第1触媒と、
第1触媒の後流側の排気管に設けられ粒子状物質の捕集とNOxの浄化をおこなう第2触媒であって、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比またはリッチになると吸蔵したNOxを放出する第2触媒と、
第1触媒の上流に設けられ排気ガス中のSOx濃度を検出するSOx濃度検出手段と、
第1触媒と第2触媒の中間の排気管に所定のインターバルで還元剤を供給する還元剤供給手段を具備し、
SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、排気ガスが第1触媒と第2触媒に流入するのを制限することを特徴とする内燃機関の排気ガス浄化装置。
A first catalyst provided in the exhaust pipe that captures SOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the temperature rises when the air-fuel ratio of the inflowing exhaust gas is lean Then, the trapped SOx gradually diffuses into the inside, and the first catalyst having the property of recovering the surface-side SOx trapping function;
A second catalyst that is provided in an exhaust pipe on the downstream side of the first catalyst and collects particulate matter and purifies NOx. NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean A second catalyst that releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich,
SOx concentration detecting means provided upstream of the first catalyst for detecting the SOx concentration in the exhaust gas;
A reducing agent supply means for supplying a reducing agent to the exhaust pipe between the first catalyst and the second catalyst at a predetermined interval;
An exhaust gas purifying device for an internal combustion engine, wherein when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the exhaust gas is restricted from flowing into the first catalyst and the second catalyst.
第1触媒と第2触媒を迂回して排気管の第1触媒の上流部と第2触媒の下流部を接続するバイパス管と、排気ガスの流路を排気管とバイパス管の間で切り替える排気ガス制御弁とを具備し、
SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、排気ガスがバイパス通路を通るように排気ガス制御弁を制御する、ことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。
A bypass pipe that bypasses the first catalyst and the second catalyst and connects the upstream part of the first catalyst and the downstream part of the second catalyst in the exhaust pipe, and exhaust gas that switches the flow path of the exhaust gas between the exhaust pipe and the bypass pipe A gas control valve,
2. The internal combustion engine according to claim 1, wherein when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the exhaust gas control valve is controlled so that the exhaust gas passes through the bypass passage. Exhaust gas purification device.
バイパス通路の下流端の取り付け位置よりも下流側の排気管に酸化触媒を配設した、ことを特徴とする請求項2に記載の内燃機関の排気ガス浄化装置。   The exhaust gas purifying device for an internal combustion engine according to claim 2, wherein an oxidation catalyst is disposed in the exhaust pipe downstream of the attachment position of the downstream end of the bypass passage. SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段による還元剤の供給を停止する、ことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。   2. The exhaust gas purification of an internal combustion engine according to claim 1, wherein when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, supply of the reducing agent by the reducing agent supply means is stopped. apparatus. SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段が還元剤を供給するインターバルを長くする、ことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。   2. The exhaust of an internal combustion engine according to claim 1, wherein when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the reducing agent supplying means lengthens the interval for supplying the reducing agent. Gas purification device. SOx濃度検出手段が所定値よりも高い濃度のSOxを検出した場合には、還元剤供給手段が還元剤を供給するときの供給量を減少する、ことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。   2. The internal combustion engine according to claim 1, wherein when the SOx concentration detecting means detects SOx having a concentration higher than a predetermined value, the supply amount when the reducing agent supply means supplies the reducing agent is reduced. Engine exhaust gas purification device. SOxによる第2触媒の被毒量を検出するSOx被毒検出手段を具備し、該被毒量が所定量を超えた場合には第1触媒のSOx捕獲機能を回復せしめる第1触媒機能回復処理をおこなうことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。   SOx poisoning detection means for detecting the poisoning amount of the second catalyst by SOx, and when the poisoning amount exceeds a predetermined amount, a first catalyst function recovery process for recovering the SOx capturing function of the first catalyst The exhaust gas purifying device for an internal combustion engine according to claim 1, wherein 第1触媒機能回復処理は、空燃比がリーンの状態で、燃焼室への燃料噴射時期を圧縮上死点以降まで遅らせ排気ガスの温度を上昇せしめて成ることを特徴とする請求項7に記載の内燃機関の排気ガス浄化装置。   8. The first catalytic function recovery process is characterized in that the temperature of exhaust gas is increased by delaying the fuel injection timing into the combustion chamber after the compression top dead center with the air-fuel ratio being lean. Exhaust gas purification device for internal combustion engine. SOx被毒検出手段は、第2触媒の下流にNOx濃度を検出するNOx検出手段を設け、該NOx検出手段の検出したNOx濃度にもとづいて、SOxによる触媒の被毒量を検出することを特徴とする請求項7に記載の排気ガス浄化装置。   The SOx poisoning detection means is provided with NOx detection means for detecting the NOx concentration downstream of the second catalyst, and detects the poisoning amount of the catalyst due to SOx based on the NOx concentration detected by the NOx detection means. The exhaust gas purification device according to claim 7.
JP2005084003A 2005-03-23 2005-03-23 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4552714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084003A JP4552714B2 (en) 2005-03-23 2005-03-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084003A JP4552714B2 (en) 2005-03-23 2005-03-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006266144A true JP2006266144A (en) 2006-10-05
JP4552714B2 JP4552714B2 (en) 2010-09-29

Family

ID=37202380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084003A Expired - Fee Related JP4552714B2 (en) 2005-03-23 2005-03-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4552714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170138238A1 (en) * 2013-03-07 2017-05-18 Cummins Ip, Inc. Exhaust gas aftertreatment bypass system and methods
DE102016209358A1 (en) * 2016-05-31 2017-11-30 Continental Automotive Gmbh Method, apparatus for monitoring a nitrogen oxide trap, computer program and computer program product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045753A (en) * 1998-07-31 2000-02-15 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002195025A (en) * 2000-12-27 2002-07-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002221028A (en) * 2001-01-22 2002-08-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004060596A (en) * 2002-07-31 2004-02-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005133610A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045753A (en) * 1998-07-31 2000-02-15 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002195025A (en) * 2000-12-27 2002-07-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002221028A (en) * 2001-01-22 2002-08-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004060596A (en) * 2002-07-31 2004-02-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005133610A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Exhaust emission control device of compression ignition type internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170138238A1 (en) * 2013-03-07 2017-05-18 Cummins Ip, Inc. Exhaust gas aftertreatment bypass system and methods
US9964013B2 (en) * 2013-03-07 2018-05-08 Cummins Ip, Inc. Exhaust gas aftertreatment bypass system and methods
DE102016209358A1 (en) * 2016-05-31 2017-11-30 Continental Automotive Gmbh Method, apparatus for monitoring a nitrogen oxide trap, computer program and computer program product
DE102016209358B4 (en) 2016-05-31 2018-10-18 Continental Automotive Gmbh Method, apparatus for monitoring a nitrogen oxide trap, computer program and computer program product
US11181022B2 (en) 2016-05-31 2021-11-23 Vitesco Technologies GmbH Method and device for monitoring a nitrogen oxide trap

Also Published As

Publication number Publication date
JP4552714B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP2006077675A (en) Induction structure and exhaust emission control device
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP2004036450A (en) Exhaust emission control device for internal combustion engine
JP2000303878A (en) Exhaust emission control device for internal combustion engine
JP2010048134A (en) Exhaust emission control device for internal combustion engine
JP4552714B2 (en) Exhaust gas purification device for internal combustion engine
JP2001303937A (en) Exhaust emission control device for internal combustion engine
JP2017129105A (en) Exhaust emission control device for internal combustion engine
JP3570237B2 (en) Exhaust gas purification device for internal combustion engine
JP2004092431A (en) Emission control device
JP2003065036A (en) Exhaust emission control device for internal combustion engine
JP4396159B2 (en) NOx purification system
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4626439B2 (en) Exhaust gas purification device for internal combustion engine
JP4269919B2 (en) Exhaust gas purification device for internal combustion engine
JP4178797B2 (en) Exhaust gas purification device for internal combustion engine
JP4297762B2 (en) Exhaust gas purification device for internal combustion engine
JP2004150382A (en) Exhaust emission control device of internal combustion engine
JP2004144072A (en) Exhaust gas purifier for internal combustion engine
JP2004036405A (en) Exhaust emission control device
JP2006161668A (en) Exhaust emission control system and desulfurization control method for exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees