JP2013120361A - Charging member, and method for manufacturing charging member - Google Patents

Charging member, and method for manufacturing charging member Download PDF

Info

Publication number
JP2013120361A
JP2013120361A JP2011269478A JP2011269478A JP2013120361A JP 2013120361 A JP2013120361 A JP 2013120361A JP 2011269478 A JP2011269478 A JP 2011269478A JP 2011269478 A JP2011269478 A JP 2011269478A JP 2013120361 A JP2013120361 A JP 2013120361A
Authority
JP
Japan
Prior art keywords
base layer
fine powder
charging member
conductive base
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011269478A
Other languages
Japanese (ja)
Other versions
JP5828752B2 (en
Inventor
Seiji Tsuru
誠司 都留
Noribumi Muranaka
則文 村中
Satoshi Yamada
聡 山田
Kazuhiro Yamauchi
一浩 山内
Yuka Hirakoso
由夏 平社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011269478A priority Critical patent/JP5828752B2/en
Publication of JP2013120361A publication Critical patent/JP2013120361A/en
Application granted granted Critical
Publication of JP5828752B2 publication Critical patent/JP5828752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily provide a charging member in which a discharging surface of the charging member does not deteriorate even if it is used for a long period of time, and which maintains stable charging properties.SOLUTION: In a charging member, a conductive support, and a conductive base layer 2 provided on the outer periphery of the conductive support are included, and the conductive base layer 2 has, on its surface, insulating projections 3 derived from particles. In the stepped portions between the insulating projections 3 and the conductive base layer 2, non-adhesive fine powder 4 is held, and the fine powder 4 has its number average particle diameter smaller than that of the particles.

Description

本発明は、帯電部材とその製造方法に関する。   The present invention relates to a charging member and a manufacturing method thereof.

電子写真に用いられている帯電部材は、直流電流の長期に亘る印加によって、電気抵抗が徐々に変化していく場合がある。また、帯電部材の表面は、放電自体や放電に伴って発生するオゾンや窒素酸化物に曝されるため、その表面状態が経時的に変化していく。表面状態が経時的に変化していくことにより、電子写真画像に横スジ状の帯電ムラ等が発生してしまう。
特許文献1には、帯電部材の帯電を良好にするため、帯電部材の表面に粉体を塗布することが開示されている。特許文献2には、帯電部材の表面に粉体からなる突起を固定する方法が開示されている。
The charging member used in electrophotography may gradually change its electric resistance by applying a direct current over a long period of time. Further, since the surface of the charging member is exposed to the discharge itself or ozone or nitrogen oxide generated along with the discharge, the surface state thereof changes with time. When the surface state changes with time, horizontal streaky charging unevenness or the like occurs in the electrophotographic image.
Patent Document 1 discloses that a powder is applied to the surface of the charging member in order to improve the charging of the charging member. Patent Document 2 discloses a method of fixing a protrusion made of powder on the surface of a charging member.

特開平03−103878号公報Japanese Patent Laid-Open No. 03-103878 特開平04−116673号公報JP 04-116673 A

しかしながら、特許文献1の方法は、帯電部材の表面状態の経時的変化を抑制するには、未だ改善の余地があった。すなわち、特許文献1に係る帯電部材は、表面に保持可能な粉体の量自体が少なく、また、粉体の保持力も小さい。そのため、長期に亘る使用により、帯電部材の表面状態の変化を十分には抑制し得なかった。   However, the method of Patent Document 1 still has room for improvement in order to suppress the temporal change in the surface state of the charging member. That is, the charging member according to Patent Document 1 has a small amount of powder that can be held on the surface itself, and also has a small powder holding force. For this reason, changes in the surface state of the charging member could not be sufficiently suppressed due to long-term use.

また、特許文献2に記載の粉体を帯電部材表面に固定しただけの構成では、粉体を帯電部材表面に1層しか固定することができない。そのため、帯電部材の表面が、放電や放電生成物への暴露によっても表面状態の変化を抑制するに十分な量の粉体を表面に保持させることは困難であった。   Further, in the configuration in which the powder described in Patent Document 2 is only fixed on the surface of the charging member, only one layer of powder can be fixed on the surface of the charging member. Therefore, it has been difficult for the surface of the charging member to hold a sufficient amount of powder on the surface to suppress changes in the surface state even when exposed to discharge or discharge products.

また、粗し粒子によって表層に凸部を形成した帯電部材も知られているが、このような凸部では微粉を大量に保持することは不可能なばかりか、凸の先端も導電性の表層の一部となっており、初期の放電面として働く。ゆえに例え微粉を保持させたとしても、長期間使用されていると、放電ポイントとなっている凸の先端に放電生成物が付着し、帯電特性が変ってしまう場合がある。   There are also known charging members in which convex portions are formed on the surface layer by roughening particles, but it is not possible to hold a large amount of fine powder with such convex portions, and the convex tip is also a conductive surface layer. It acts as an initial discharge surface. Therefore, even if fine powder is held, if it has been used for a long period of time, the discharge product may adhere to the convex tip that is the discharge point, and the charging characteristics may change.

従来の技術では、帯電部材表面にしっかりと固定された突起の隙間に微粉を充分に保持して安定な耐久を目指す構成は知られていなかった。
本発明は、長期間の使用によっても帯電部材の表面状態の変化が生じにくく、安定した帯電性能が維持される帯電部材およびその製造方法の提供を目的とする。
In the prior art, there has not been known a configuration aiming at stable durability by sufficiently holding fine powder in a gap between protrusions firmly fixed on the surface of the charging member.
An object of the present invention is to provide a charging member that hardly changes the surface state of the charging member even after long-term use and maintains stable charging performance, and a method for manufacturing the charging member.

本発明によれば、導電性支持体と、該導電性支持体の外周部に設けられた導電性基層とを有し、該導電性基層は、その表面に、粒子に由来する絶縁性の突起を有している帯電部材であって、該絶縁性の突起と前記導電性基層の表面との段差部分に、非粘着性の微粉が保持されてなり、該微粉は、その個数平均粒径が、該粒子の個数平均粒径よりも小さい帯電部材が提供される。
また、本発明によれば、硬化性の液体に粒子を分散して塗工液を形成する工程と、
該塗工液を導電性基層へ塗工する工程と、
塗工された該塗工液を前記導電性基層へ含浸させる工程と、
含浸した硬化性の液体を硬化させて粒子を導電性基層へ固着させて突起を作る工程と、
該突起と前記導電性基層の表面との段差部分に、個数平均粒径が前記粒子の個数平均粒径よりも小さい非粘着性微粉を保持させる工程と、を有する帯電部材の製造方法が提供される。
According to the present invention, it has a conductive support and a conductive base layer provided on the outer periphery of the conductive support, and the conductive base layer has insulating protrusions derived from particles on its surface. A non-adhesive fine powder is held at a step portion between the insulating protrusion and the surface of the conductive base layer, and the fine powder has a number average particle size. A charging member smaller than the number average particle diameter of the particles is provided.
According to the present invention, the step of dispersing the particles in a curable liquid to form a coating liquid;
Applying the coating solution to the conductive base layer;
Impregnating the conductive base layer with the applied coating liquid;
Curing the impregnated curable liquid to fix the particles to the conductive base layer to create protrusions;
There is provided a method for producing a charging member, comprising a step of holding non-adhesive fine powder having a number average particle size smaller than the number average particle size of the particles at a step portion between the protrusion and the surface of the conductive base layer. The

本発明によれば、長期に亘る使用によっても表面状態が変化しにくく、安定した帯電性能が維持される帯電部材を得ることができる。   According to the present invention, it is possible to obtain a charging member in which the surface state hardly changes even after long-term use, and stable charging performance is maintained.

本発明の帯電部材の一つの実施の形態の断面を表す概略図を示す。(a)は帯電部材の横断面を、(b)は帯電部材の縦断面を示す。The schematic showing the cross section of one Embodiment of the charging member of this invention is shown. (A) shows a transverse section of the charging member, and (b) shows a longitudinal section of the charging member. 本発明に係る画像形成装置の概略図を示す。1 is a schematic view of an image forming apparatus according to the present invention. 本発明に係るカラー画像形成装置の概略図を示す。1 is a schematic view of a color image forming apparatus according to the present invention. 本発明に係る帯電部材電気抵抗の測定方法の概略説明図を示す。The schematic explanatory drawing of the measuring method of charging member electric resistance concerning the present invention is shown. 本発明に係る帯電部材表面の概略説明図を示す。The schematic explanatory drawing of the charging member surface which concerns on this invention is shown. 本発明に係る帯電部材に突起の形成に使用する塗工装置の概略図を示す。The schematic diagram of the coating apparatus used for formation of protrusion on the charging member according to the present invention is shown. 本発明に係る帯電部材の塗工工程における塗工装置の動作の概略説明図を示す。The schematic explanatory drawing of operation | movement of the coating apparatus in the coating process of the charging member which concerns on this invention is shown. 本発明に係る帯電部材塗工装置の軸受け部の概略説明図を示す。The schematic explanatory drawing of the bearing part of the charging member coating apparatus which concerns on this invention is shown. 本発明に係る塗工された塗膜を含む帯電部材の概略説明断面図を示す。1 is a schematic cross-sectional view of a charging member including a coated coating film according to the present invention. 本発明に係る帯電部材に微粉を保持させる前の基層表面の概略図を示す。The schematic of the base layer surface before making the charging member which concerns on this invention hold | maintain a fine powder is shown.

<帯電部材>
以下に、本発明の実施の形態を詳細に説明する。
図1に本発明の帯電部材の概略図を示す。図1(a)は本発明の帯電部材の横断面の概略図を示し、図1(b)は本発明の帯電部材の縦断面の概略図を示す。本発明の帯電部材は、導電性支持体1の外周部に導電性基層2を有し、導電性基層2の表面に粒子に由来する絶縁性の突起3を有している。さらに突起3と導電性基層2の表面との段差部分に、個数平均粒径が前記粒子の個数平均粒径よりも小さい非粘着性微粉4が保持されている
<Charging member>
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 shows a schematic view of the charging member of the present invention. FIG. 1A shows a schematic cross-sectional view of the charging member of the present invention, and FIG. 1B shows a schematic cross-sectional view of the charging member of the present invention. The charging member of the present invention has a conductive base layer 2 on the outer periphery of a conductive support 1, and has insulating protrusions 3 derived from particles on the surface of the conductive base layer 2. Further, non-adhesive fine powder 4 having a number average particle size smaller than the number average particle size of the particles is held at the step portion between the protrusion 3 and the surface of the conductive base layer 2.

図5に本発明の帯電部材の表面付近の拡大図を示す。図5(a)は本発明の帯電部材の表面近傍を垂直方向から見た概略の拡大図を表し、図5(b)は本発明の帯電部材の表面近傍の横断面を表す概略の拡大図である。
導電性基層2の表面に突起3がランダムに固定され、その突起3と導電性基層2の作る隙間に微粉4が保持されている。電子写真感光体に対しては、導電性基層2の表面から放電が発生し、微粉4の隙間を電荷が感光体へと移動し、感光体を帯電する。
FIG. 5 shows an enlarged view of the vicinity of the surface of the charging member of the present invention. 5A is a schematic enlarged view of the vicinity of the surface of the charging member of the present invention as viewed from the vertical direction, and FIG. 5B is a schematic enlarged view of a cross section of the vicinity of the surface of the charging member of the present invention. It is.
Protrusions 3 are randomly fixed on the surface of the conductive base layer 2, and fine powder 4 is held in a gap formed by the protrusions 3 and the conductive base layer 2. With respect to the electrophotographic photosensitive member, a discharge is generated from the surface of the conductive base layer 2, and the charge moves through the gaps in the fine powder 4 to the photosensitive member to charge the photosensitive member.

本発明の帯電部材は、導電性支持体と、導電性支持体の外周部に設けられた導電性基層と、導電性基層の表面に固定された突起と、突起と導電性基層の表面との段差部分に保持された微粉とからなる。
以下、突起を固定する前の導電性支持体と導電性基層からなる部材を「導電性基層部材」と呼称する。さらに導電性基層部材に突起を固定し、微粉を保持させていない状態の部材を単に「基層」と呼称する。
The charging member of the present invention includes a conductive support, a conductive base layer provided on the outer periphery of the conductive support, a protrusion fixed on the surface of the conductive base layer, and a protrusion and the surface of the conductive base layer. It consists of fine powder held at the step.
Hereinafter, a member formed of a conductive support and a conductive base layer before fixing the protrusions is referred to as a “conductive base layer member”. Further, a member in which the protrusion is fixed to the conductive base layer member and fine powder is not held is simply referred to as “base layer”.

<突起>
突起は感光体と導電性基層表面との間を一定の距離に保つ様に、導電性基層の表面に所定の密度で存在する。
突起の形状は球形であることがより好ましい。球形であると、感光体と接触したときに、被帯電面である感光体表面と、放電面である導電性基層表面の両方の面積を広く取ることが可能で、より広い範囲を帯電することが可能となる。すなわち同じ大きさの円柱や直方体の突起に比較して感光体への接触面積や導電性基層への固定された面積が小さいので、帯電されない面積が小さくなるので好ましい。また球形の突起は、突起を製造する面でも簡単な製造方法で形成可能であるので好ましい。すなわち、球形の粒子を用いて突起を製造すれば、球形の粒子径と突起の高さ、突起の幅、感光体と導電性基層表面との距離を一致させて制御し易い。
<Protrusions>
The protrusions are present at a predetermined density on the surface of the conductive base layer so as to keep a constant distance between the photoreceptor and the surface of the conductive base layer.
The shape of the protrusion is more preferably spherical. When it is spherical, it is possible to increase the area of both the surface of the photoconductor, which is the surface to be charged, and the surface of the conductive base layer, which is the discharge surface, when contacting the photoconductor. Is possible. That is, since the contact area to the photoconductor and the fixed area to the conductive base layer are small compared to the same size cylinder or cuboid protrusion, the area not charged is preferable. The spherical protrusion is preferable because it can be formed by a simple manufacturing method even on the surface on which the protrusion is manufactured. That is, if the protrusions are manufactured using spherical particles, the spherical particle diameter, the height of the protrusions, the width of the protrusions, and the distance between the photoreceptor and the surface of the conductive base layer can be easily controlled.

感光体と導電性基層表面との距離としては、好ましくは2μm以上100μm以下、より好ましくは3μm以上から30μm以下である。ゆえに突起の平均の高さも、2μm以上100μm以下、特には、3μm以上から30μm以下が好ましい。図10の(b)に示す突起の高さ3aが2μm以上100μm以下であると、感光体と導電性基層表面との距離が放電に対して安定した領域となり、良好な放電による均一な帯電状態が得られるので好ましい。また、高さが2μm以上100μm以下であると非粘着性微粉を保持しやすくなるので、微粉の逸散を防ぐ効果がある。突起の高さの平均が2μm以上の場合、微粉の保持力が低下せず、継続的な使用によって微粉が逸散してしまうこともない。突起の高さが100μm以下の場合、帯電に必要な放電開始電圧が大きくならず、帯電が困難になることもない。   The distance between the photoreceptor and the surface of the conductive base layer is preferably 2 μm or more and 100 μm or less, more preferably 3 μm or more and 30 μm or less. Therefore, the average height of the protrusions is also preferably 2 μm or more and 100 μm or less, and particularly preferably 3 μm or more and 30 μm or less. When the height 3a of the protrusion shown in FIG. 10B is 2 μm or more and 100 μm or less, the distance between the photoreceptor and the surface of the conductive base layer becomes a stable region against discharge, and a uniform charged state by good discharge Is preferable. Moreover, since it becomes easy to hold | maintain non-adhesive fine powder as height is 2 micrometers or more and 100 micrometers or less, there exists an effect which prevents dissipation of fine powder. When the average height of the protrusions is 2 μm or more, the holding power of the fine powder is not lowered, and the fine powder is not scattered by continuous use. When the height of the protrusion is 100 μm or less, the discharge start voltage required for charging does not increase, and charging does not become difficult.

突起の幅3bも、突起の高さと同じ2μm以上100μm以下であることが好ましい。突起の幅3bが突起の高さ3aと同じ2μm以上100μm以下であれば、放電を邪魔してムラとなること無く、帯電部材と感光体との当接圧力を充分に支えて破損すること無く非粘着性微粉を保持するので好ましい。突起の幅が100μm以下の場合は、突起の部分が帯電せず、画像上に帯電ムラとして現れてしまうことはない。一方、突起の幅が2μm以上の場合は、突起が鋭利になり過ぎ、感光体を傷つけて削ってしまう恐れや、突起自体の強度が小さくなりすぎて突起が破損して取れてしまう恐れもない。   The width 3b of the protrusion is also preferably 2 μm or more and 100 μm or less which is the same as the height of the protrusion. If the width 3b of the protrusion is 2 μm or more and 100 μm or less which is the same as the height 3a of the protrusion, the discharge will not be disturbed to cause unevenness, and the contact pressure between the charging member and the photosensitive member will be sufficiently supported and not damaged. This is preferable because non-adhesive fine powder is retained. When the width of the protrusion is 100 μm or less, the protrusion portion is not charged and does not appear as uneven charging on the image. On the other hand, when the width of the protrusion is 2 μm or more, the protrusion becomes too sharp and there is no fear that the photoconductor will be damaged and scraped, or that the strength of the protrusion itself becomes too small and the protrusion may be damaged and removed. .

基層の表面積に対する突起の覆っている面積の比率(以下「突起密度」とも言う。)として、0.03倍以上0.9倍以下、特には、0.06倍以上0.6倍以下が好ましい。突起密度がこの範囲であれば、安定な放電を行いつつ微粉の保持を長期間行うことが可能となる。突起密度が0.03倍以上の場合は、微粉の保持力が低下して、継続的な使用によって微粉が逸散してしまうことはない。突起密度が0.9倍以下の場合は、放電可能な表面の面積が減って、帯電能力が低下することもない。突起密度(面積比)は、図10の(a)に示すように基層の表面に対して垂直方向から観察した画像における基層の全面積に対する突起3の占める面積を示す。   The ratio of the area covered by the protrusions to the surface area of the base layer (hereinafter also referred to as “protrusion density”) is preferably 0.03 times or more and 0.9 times or less, and particularly preferably 0.06 times or more and 0.6 times or less. . If the projection density is within this range, fine powder can be held for a long time while performing stable discharge. When the protrusion density is 0.03 times or more, the holding power of the fine powder is lowered, and the fine powder is not scattered by continuous use. When the protrusion density is 0.9 times or less, the surface area that can be discharged is reduced, and the charging ability is not lowered. The protrusion density (area ratio) indicates the area occupied by the protrusions 3 with respect to the total area of the base layer in the image observed from the direction perpendicular to the surface of the base layer as shown in FIG.

突起の配置は、導電性基層表面上の位置関係的に規則的でも不規則でもよいが、好ましくは局所的な突起の不在が無い程度に不規則であることが好ましい。すなわち、突起と突起との間隔が自然な分布になる様な分布が好ましい。突起の配列が規則的であると、感光体の帯電に突起に起因するパターンが残ってしまう恐れがあるので好ましくない。突起の形成方法は、突起が導電性基層表面に不規則に分布する様な分布になる方法であれば特に問題は無い。好ましくは、球形の突起材料用の粒子を導電性基層表面に固定する方法が好ましい。その際、粒子が重なって、粒子の直径の2倍の突起が発生しないような形成方法が好ましい。   The arrangement of the protrusions may be regular or irregular in positional relation on the surface of the conductive base layer, but is preferably irregular to the extent that there is no local protrusion. That is, a distribution in which the distance between the protrusions is a natural distribution is preferable. If the arrangement of the protrusions is regular, there is a possibility that a pattern resulting from the protrusions may remain in the charging of the photosensitive member, which is not preferable. The method for forming the protrusions is not particularly problematic as long as the protrusions are distributed irregularly on the surface of the conductive base layer. Preferably, a method of fixing particles for a spherical projection material on the surface of the conductive base layer is preferable. At that time, a formation method is preferred in which the particles are overlapped so as not to generate protrusions twice the diameter of the particles.

この様な突起の形成方法としては、接着剤を塗った導電性基層に球形の粒子を付着させて、その後付着した粒子を固定する方法が挙げられる。またさらに好ましくは、硬化性の液体に粒子を分散した塗工液を導電性基層に塗工し、次に硬化性の液体が導電性基層に充分に含浸された後、該硬化性の液体を硬化させて粒子を導電性基層に固定する方法である。本方法を用いることにより、突起が2段に重なって周囲よりも高さの大きい突起を作るという恐れが無く、簡単な方法でランダムな配置の突起を均一に作成することができる。   As a method for forming such protrusions, there is a method in which spherical particles are attached to a conductive base layer coated with an adhesive, and then the attached particles are fixed. More preferably, the conductive base layer is coated with a coating liquid in which particles are dispersed in a curable liquid, and then the curable liquid is sufficiently impregnated in the conductive base layer. In this method, the particles are fixed to the conductive base layer by curing. By using this method, there is no fear that the protrusions overlap each other in two steps to make a protrusion having a height higher than the surroundings, and the protrusions of random arrangement can be uniformly formed by a simple method.

突起の大きさ(高さ、幅)の測定方法
1) 帯電部材表面をエアブローし、微粉を取り除く。
2) 日立製作所FE−SEM(S−4800)で突起の画像を撮影する。突起は、帯電部材表面を、導電性基層表面に垂直な方向と、表面から50〜70°のチルト角度で撮影する。
3) それぞれの写真に関して、無作為に選んだ突起10個について、画像上の最大径と最小径とを測定して、その平均値を直径とする。
( 画像を画像処理装置(例えば、ニレコ社製の画像解析装置「LuzexIII」)に導入し、解析する)。
4) 10個の直径を平均して、突起の粒径とする。
垂直な方向で撮影した画像から得られた突起の粒径と、チルト角をつけて撮影した画像から得られた突起の粒径が同じで無い場合には突起は球形では無いと判断し、垂直方向撮影の値を突起の幅とし、チルト方向撮影の値を突起の高さとする。垂直な方向で撮影した画像から得られた突起の粒径と、チルト角をつけて撮影した画像から得られた突起の粒径が同じである場合には突起の高さと幅も同じ値になる。
5) SEMの撮影倍率は、対象の突起の平均粒径がSEM画像の最大幅に対して2〜10%の範囲に入る倍率とする。
Measuring method of protrusion size (height, width)
1) Air blow the surface of the charging member to remove fine powder.
2) Take an image of the protrusion with Hitachi FE-SEM (S-4800). The protrusions image the surface of the charging member in a direction perpendicular to the surface of the conductive base layer and a tilt angle of 50 to 70 ° from the surface.
3) For each photograph, for the 10 randomly selected protrusions, the maximum and minimum diameters on the image are measured, and the average value is taken as the diameter.
(The image is introduced into an image processing apparatus (for example, an image analysis apparatus “Luzex III” manufactured by Nireco) and analyzed).
4) Average the diameter of 10 pieces to obtain the particle size of the protrusion.
If the particle size of the protrusion obtained from the image photographed in the vertical direction and the particle diameter of the protrusion obtained from the image photographed with a tilt angle are not the same, it is determined that the protrusion is not spherical, and the vertical The direction shooting value is the protrusion width, and the tilt shooting value is the protrusion height. When the particle size of the protrusion obtained from the image photographed in the vertical direction is the same as the particle diameter of the protrusion obtained from the image photographed with the tilt angle, the height and width of the protrusion are the same value. .
5) The SEM photographing magnification is a magnification in which the average particle diameter of the target protrusion falls within the range of 2 to 10% with respect to the maximum width of the SEM image.

<突起形成用粒子>
本発明に使用する粒子の平均粒径は好ましくは2μm以上100μm以下、より好ましくは3μm以上30μm以下である。平均粒径が2μm以上100μm以下であると、図10の(b)に示す突起の高さ3aが2μm以上100μm以下になり、感光体と導電性基層表面との距離が放電に対して安定した領域となり、良好な放電による均一な帯電状態が得られるので好ましい。また平均粒径が2μm以上100μm以下であると、突起の幅3bも2μm以上100μm以下となり、放電を邪魔してムラとなること無く、帯電部材と感光体との当接圧力を充分に支えて破損すること無く非粘着性微粉を保持するので好ましい。また、粒子の平均粒径が2μm以上100μm以下であると非粘着性微粉を保持しやすくなるので、微粉の逸散を防ぐ効果がある。粒子の平均粒径が2μm以上あると、突起の高さが小さくなりすぎて、微粉の保持力が低下し、継続的な使用によって微粉が逸散してしまうことがない。また平均粒径が2μm以上あると突起が鋭利になり過ぎて、感光体を傷つけて削ってしまう恐れもなく、また突起自体の強度が小さくなりすぎて突起が破損して取れてしまう恐れもない。平均粒径が100μm以下であると、突起の高さが大きくなり過ぎて、帯電に必要な放電開始電圧が大きくなり、帯電が困難になることもない。
<Protrusion-forming particles>
The average particle size of the particles used in the present invention is preferably 2 μm or more and 100 μm or less, more preferably 3 μm or more and 30 μm or less. When the average particle size is 2 μm or more and 100 μm or less, the height 3a of the protrusion shown in FIG. 10B is 2 μm or more and 100 μm or less, and the distance between the photoreceptor and the surface of the conductive base layer is stable against discharge. This is preferable because a uniform charge state by good discharge can be obtained. If the average particle diameter is 2 μm or more and 100 μm or less, the width 3b of the protrusion is also 2 μm or more and 100 μm or less, and the contact pressure between the charging member and the photosensitive member is sufficiently supported without obstructing discharge and causing unevenness. This is preferable because the non-adhesive fine powder is retained without being damaged. Moreover, since it becomes easy to hold | maintain non-adhesive fine powder as the average particle diameter of particle | grains is 2 micrometers or more and 100 micrometers or less, there exists an effect which prevents dissipation of fine powder. When the average particle diameter of the particles is 2 μm or more, the height of the protrusion becomes too small, the holding power of the fine powder is lowered, and the fine powder is not scattered by continuous use. Further, if the average particle size is 2 μm or more, the projections are too sharp and there is no risk of scratching and scratching the photoreceptor, and there is no risk that the projections will be too weak and damaged. . When the average particle size is 100 μm or less, the height of the protrusion becomes too large, the discharge start voltage necessary for charging becomes large, and charging does not become difficult.

また平均粒径が100μm以下であると、突起の部分が帯電せずに、画像上に帯電ムラとして現れてしまうこともない。
また粒子の粒度分布は小さい方が好ましい。粒度分布が小さいと形成された突起の高さが均一となり、放電距離を均一に保ち、帯電状態が均一になるので好ましい。
粒子の平均粒径は、例えば、ベックマン・コールター株式会社製のコールターマルチサイザーを使用して細孔電気抵抗法により求めることができる。
Further, when the average particle size is 100 μm or less, the protruding portion is not charged and does not appear as uneven charging on the image.
The particle size distribution of the particles is preferably small. A small particle size distribution is preferable because the height of the formed protrusions becomes uniform, the discharge distance is kept uniform, and the charged state becomes uniform.
The average particle diameter of the particles can be determined by a pore electrical resistance method using, for example, a Coulter Multisizer manufactured by Beckman Coulter, Inc.

以下に、本発明における粒子の粒径測定の具体例を示す。
電解質溶液100〜150mlに界面活性剤(アルキルベンゼンスルホン酸塩)を0.1〜5ml添加し、これに測定する粒子を2〜20mg添加する。粒子を懸濁した電解液を超音波分散器で2分間分散処理して、コールターカウンターマルチサイザーにより17μm又は100μm等の適宜樹脂微粒子サイズに合わせたアパチャーを用いて体積を基準として0.3〜64μmの粒度分布等を測定する。この条件で測定したデータのコンピュータ処理により、個数平均粒径を求める。
Below, the specific example of the particle size measurement of the particle | grains in this invention is shown.
0.1 to 5 ml of a surfactant (alkylbenzene sulfonate) is added to 100 to 150 ml of the electrolyte solution, and 2 to 20 mg of particles to be measured are added thereto. The electrolytic solution in which the particles are suspended is dispersed for 2 minutes with an ultrasonic disperser, and 0.3 to 64 μm on the basis of volume using an aperture that is appropriately matched to the resin fine particle size such as 17 μm or 100 μm by a Coulter counter multisizer. Measure the particle size distribution, etc. The number average particle diameter is obtained by computer processing of data measured under these conditions.

本発明で使用される突起の形成に用いる粒子は、形状がより真球形状に近いことがより好ましい。具体的には、平均円形度が0.95以上で、その円形度標準偏差が0.040未満である様な粒子を使用することにより、突起の大きさが均一になり、より均一な帯電特性を得ることができる。本発明における円形度は、例えばシスメックス(株)製フロー式粒子像分析装置FPIA−2000を用いて粒子形状の測定を行い求めることができる。すなわち、測定された全粒子の円形度の総和を全粒子数で除した値を平均円形度と定義する。   It is more preferable that the particles used for forming the protrusions used in the present invention have a more nearly spherical shape. Specifically, by using particles whose average circularity is 0.95 or more and whose circularity standard deviation is less than 0.040, the size of the protrusions becomes uniform, and more uniform charging characteristics. Can be obtained. The circularity in the present invention can be determined by measuring the particle shape using, for example, a flow type particle image analyzer FPIA-2000 manufactured by Sysmex Corporation. That is, a value obtained by dividing the total circularity of all the measured particles by the total number of particles is defined as the average circularity.

個々の粒子の円形度は、次の様に求める。まず粒子を撮影し、得られた画像を二値画像化して投影像を求める。そこからその粒子の投影像の周囲長と投影面積を求める。次に前期投影面積と同じ面積を有する円を仮定し、その円の周長を求める。最後に前記投影像の周囲長に対する円の周長の比を求め、これを円形度とする。
ここで、「粒子投影面積」とは二値化された粒子像の面積であり、「粒子投影像の周囲長」とは該粒子像のエッジ点を結んで得られる輪郭線の長さと定義する。
The circularity of each particle is obtained as follows. First, particles are photographed, and the obtained image is converted into a binary image to obtain a projection image. From there, the perimeter of the projected image of the particle and the projected area are obtained. Next, assuming a circle having the same area as the projected area, the circumference of the circle is obtained. Finally, the ratio of the circumference of the circle to the circumference of the projection image is obtained, and this is used as the circularity.
Here, “particle projection area” is the area of the binarized particle image, and “perimeter of the particle projection image” is defined as the length of the contour line obtained by connecting the edge points of the particle image. .

なお、本発明で用いている測定装置である「FPIA−2000」は、各粒子の円形度を算出後、平均円形度及び円形度標準偏差の算出に当たって、以下のような算出法を用いる。その算出法とは、粒子を得られた円形度によって、円形度0.400〜1.000を0.010間隔で、61分割した分割範囲に分け、分割点の中心値と頻度を用いて平均円形度の算出を行う。「円形度0.400〜1.000を0.010間隔で、61分割した分割範囲に分け」とは、0.400以上0.410未満、0.410以上0.420未満…0.990以上1.000未満及び1.000の如くに分けることを意味する。   In addition, "FPIA-2000" which is a measuring apparatus used in the present invention uses the following calculation method in calculating the average circularity and the circularity standard deviation after calculating the circularity of each particle. The calculation method is based on the circularity obtained from the particles, and the circularity of 0.400 to 1.000 is divided into 61 divided ranges at intervals of 0.010, and the average is calculated using the center value and frequency of the dividing points. Calculate the circularity. “Dividing a circularity of 0.400 to 1.000 into 61 divided ranges at 0.010 intervals” means 0.400 or more and less than 0.410, 0.410 or more and less than 0.420 ... 0.990 or more It means dividing into less than 1.000 and 1.000.

この算出法で算出される平均円形度の値と、上述した各粒子の円形度を直接用いる算出式によって算出される平均円形度の値との誤差は、非常に少なく、実質的には無視できる程度である。このため、本発明においては、算出時間の短絡化や算出演算式の簡略化の如きデータの取扱上の理由で、上述した各粒子の円形度を直接用いる算出式の概念を利用し、一部変更したこの様な算出法を用いている。   There is very little error between the average circularity value calculated by this calculation method and the average circularity value calculated by the above-described calculation formula that directly uses the circularity of each particle, and can be substantially ignored. Degree. For this reason, in the present invention, for the reason of handling data such as short-circuiting of the calculation time and simplification of the calculation formula, the concept of the calculation formula that directly uses the circularity of each particle described above is used. This modified calculation method is used.

本発明における円形度は、粒子の凹凸の度合いを示す指標であり、粒子が完全な球形の場合に1.000を示し、表面形状が複雑になる程、円形度は小さな値となる。
具体的な測定方法としては、容器中に予め不純固形物などを除去したイオン交換水10mlを用意し、その中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を加えた後、更に測定試料を0.02gを加え、均一に分散させる。分散させる手段としては、超音波分散機「UH−50型」(エスエムテー社製)に振動子として5φのチタン合金チップを装着したものを用い、5分間分散処理を用い、測定用の分散液とする。その際、該分散液の温度が40℃以上とならない様に適宜冷却する。得られた粒子の分散液をFPIA−2000に入れ、粒子の個数1000個以上を計測し、平均の円形度を求める。
The circularity in the present invention is an index indicating the degree of unevenness of particles, and is 1.000 when the particles are completely spherical, and the circularity becomes smaller as the surface shape becomes more complicated.
As a specific measuring method, 10 ml of ion-exchanged water from which impure solids have been removed in advance is prepared in a container, and a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant therein, followed by further measurement. Add 0.02 g of sample and disperse uniformly. As a means for dispersion, an ultrasonic disperser “UH-50 type” (manufactured by SMT Co., Ltd.) equipped with a 5φ titanium alloy chip as a vibrator is used, and a dispersion for measurement is performed using a dispersion treatment for 5 minutes. To do. In that case, it cools suitably so that the temperature of this dispersion may not be 40 degreeC or more. The obtained dispersion of particles is put into FPIA-2000, and the number of particles of 1000 or more is measured, and the average circularity is obtained.

突起を生じさせるための粒子としては、絶縁性の粒子を用いる。絶縁性の粒子を用いることで、当該粒子に由来する突起を絶縁性とする。突起を絶縁性とすることで、突起と感光体との接触部分での電流のリークの発生を抑えつつ、帯電部材と感光体とのニップにおける、帯電部材の導電性基層表面と感光体表面との距離を、放電に適した距離に安定的に保つことができる。
かかる粒子としては、各種の無機粉体、有機物の粉体、高分子粉体が挙げられる。材質的には帯電部材と感光体との接触や回転、摩擦によって変形や崩壊しない程度の強度があることが必要である。具体的には、例えば、架橋アクリル樹脂粒子、架橋スチレン樹脂粒子、ゼオライト等が挙げられる。
As particles for generating protrusions, insulating particles are used. By using insulating particles, the protrusions derived from the particles are made insulating. By making the protrusions insulative, the conductive base layer surface of the charging member and the surface of the photosensitive member at the nip between the charging member and the photosensitive member are suppressed while preventing current leakage at the contact portion between the protrusion and the photosensitive member. Can be stably maintained at a distance suitable for discharge.
Examples of such particles include various inorganic powders, organic powders, and polymer powders. In terms of material, it is necessary that the charging member and the photosensitive member have such strength that they are not deformed or collapsed by contact, rotation, or friction. Specific examples include cross-linked acrylic resin particles, cross-linked styrene resin particles, and zeolite.

<導電性支持体>
導電性支持体1は、炭素鋼合金表面に5μmの厚さのニッケルメッキを施した円柱である。導電性支持体を構成する材料としては、剛直で導電性を示す公知の材料を使用することもできる。
<導電性基層>
本発明では突起の下に導電性基層を有している。まず導電性支持体1の外周に導電性基層2を成形する。導電性基層2は導電性弾性体からなっている。導電性弾性体は、導電剤と高分子弾性体とを混合して成形される。
<Conductive support>
The conductive support 1 is a cylinder having a surface of carbon steel alloy plated with nickel having a thickness of 5 μm. As a material constituting the conductive support, a known material that is rigid and exhibits conductivity can be used.
<Conductive base layer>
In the present invention, a conductive base layer is provided under the protrusion. First, the conductive base layer 2 is formed on the outer periphery of the conductive support 1. The conductive base layer 2 is made of a conductive elastic body. The conductive elastic body is formed by mixing a conductive agent and a polymer elastic body.

<高分子弾性体>
高分子弾性体の具体例は以下のものを含む。エピクロルヒドリンゴム;EPM(エチレン・プロピレンゴム);EPDM(エチレン・プロピレン・ジエンゴム);ノルボーネンゴム;NBR(ニトリルゴム);クロロプレンゴム;天然ゴム;イソプレンゴム;ブタジエンゴム;スチレン−ブタジエンゴム;クロロスルフォン化ポリエチレン;ウレタンゴム;スチレン系ブロックコポリマー(SBS(スチレン・ブタジエン・スチレン−ブロックコポリマー)、SEBS(スチレン・エチレンブチレン・スチレン−ブロックコポリマー)等);シリコーンゴム。
<Polymer elastic body>
Specific examples of the polymer elastic body include the following. Epichlorohydrin rubber; EPM (ethylene propylene rubber); EPDM (ethylene propylene diene rubber); norbornene rubber; NBR (nitrile rubber); chloroprene rubber; natural rubber; isoprene rubber; butadiene rubber; styrene-butadiene rubber; Polyethylene; Urethane rubber; Styrenic block copolymer (SBS (styrene-butadiene-styrene-block copolymer), SEBS (styrene-ethylenebutylene-styrene-block copolymer), etc.); Silicone rubber.

<導電剤>
導電剤としては、イオン導電剤や電子導電性の導電剤が挙げられる。いくつかの種類のイオン導電剤と、いくつかの種類の電子導電性の導電剤とを組み合わせて用いることもできる。
(1)イオン導電剤
イオン導電剤としては、例えば、LiClOやNaClO等の過塩素酸塩、4級アンモニウム塩等が挙げられる。これらを単独又は2種類以上組み合わせて用いることができる。
(2)電子導電剤
電子導電性の導電材の具体例は下記(ア)〜(ク)を含む。
(ア)アルミニウム、パラジウム、鉄、銅、銀等の金属系の粉体や繊維。
(イ)カーボンブラック、黒鉛等の炭素粉末。
(ウ)金属粉。
(エ)酸化チタン、酸化錫、酸化亜鉛等の金属酸化物。
(オ)硫化銅、硫化亜鉛等の金属化合物粉。
(カ)適当な粒子の表面を酸化スズ、酸化インジウム、酸化モリブデン、亜鉛、アルミニウム、金、銀、銅、クロム、コバルト、鉄、白金、ロジウムを電解処理、スプレー塗工、混合振とうにより付着させた粉体。
(キ)アセチレンブラック、ケッチェンブラック、PAN(ポリアクリロニトリル)系カーボン、ピッチ系カーボン等のカーボン粉。
(ク)上記(ア)乃至(キ)の群から選択される2種以上の組み合わせ。
<Conductive agent>
Examples of the conductive agent include an ionic conductive agent and an electronic conductive conductive agent. A combination of several types of ionic conductive agents and several types of electronic conductive agents may be used.
(1) Ionic conductive agent Examples of the ionic conductive agent include perchlorates such as LiClO 4 and NaClO 4 and quaternary ammonium salts. These can be used alone or in combination of two or more.
(2) Electronic conductive agent Specific examples of the electronic conductive material include the following (A) to (K).
(A) Metallic powders and fibers such as aluminum, palladium, iron, copper, and silver.
(A) Carbon powder such as carbon black and graphite.
(C) Metal powder.
(D) Metal oxides such as titanium oxide, tin oxide, and zinc oxide.
(E) Metal compound powders such as copper sulfide and zinc sulfide.
(F) Adhering the surface of suitable particles to tin oxide, indium oxide, molybdenum oxide, zinc, aluminum, gold, silver, copper, chromium, cobalt, iron, platinum, rhodium by electrolytic treatment, spray coating, and mixed shaking Powder.
(G) Carbon powders such as acetylene black, ketjen black, PAN (polyacrylonitrile) -based carbon, and pitch-based carbon.
(H) A combination of two or more selected from the groups (a) to (ki) above.

<導電剤の量>
導電剤の配合量は導電性弾性体の体積抵抗率が、次の3つの各環境中で中抵抗領域(体積抵抗率が1×10〜1×10Ω・cm)になるような量が好ましい。
・低温低湿(L/L)環境(温度15℃、相対湿度10%)。
・常温常湿(N/N)環境(温度23℃、相対湿度55%)。
・高温高湿(H/H)環境(温度30℃、相対湿度80%)。
<Amount of conductive agent>
The amount of the conductive agent is such that the volume resistivity of the conductive elastic body is in the middle resistance region (volume resistivity is 1 × 10 2 to 1 × 10 7 Ω · cm) in each of the following three environments. Is preferred.
Low temperature and low humidity (L / L) environment (temperature 15 ° C., relative humidity 10%).
Normal temperature and humidity (N / N) environment (temperature 23 ° C., relative humidity 55%).
-High temperature and high humidity (H / H) environment (temperature 30 ° C, relative humidity 80%).

<導電性基層の体積抵抗率の測定方法>
導電性弾性体の体積抵抗率は、以下の方法により求める。
厚さ1mmのシートに成型した後、両面に白金を蒸着して電極とガード電極とを作製する。そして、微小電流計(ADVANTEST R8340A ULTRA HIGH RESISTANCE METER (株)アドバンテスト社製)を用いて両電極間に200Vの電圧を印加して30秒後の電流を測定する。この測定値と、膜厚と電極面積とから体積抵抗率を算出する。
<Method for measuring volume resistivity of conductive base layer>
The volume resistivity of the conductive elastic body is determined by the following method.
After forming into a sheet with a thickness of 1 mm, platinum is vapor-deposited on both sides to produce an electrode and a guard electrode. And the voltage of 200V is applied between both electrodes using the microammeter (ADVANTEST R8340A ULTRA HIGH RESISTANCE METER Co., Ltd. product), and the electric current 30 seconds after is measured. The volume resistivity is calculated from the measured value, the film thickness, and the electrode area.

導電性弾性体の体積抵抗率を上記の数値範囲内とすることにより、帯電部材として使用された場合、像担持体である感光体にピンホールがあった場合にも大電流がピンホールに一気に集中し、穴をより大きくしてしまう現象が避けられる。また穴以外の場所に電流が流れなくなって高精細なハーフトーン画像上に黒い帯となって帯電電位が不足した部分が目視で認識可能となる現象も有効に抑えることができる。更に、導電性基層中で印加電圧が降下し、必要な放電電流が得られずに感光体を所望する電位に均一に帯電させることができなくなる現象を避けることができる。   By setting the volume resistivity of the conductive elastic body within the above numerical range, when it is used as a charging member, even if there is a pinhole in the photoconductor that is an image carrier, a large current flows into the pinhole at once. The phenomenon of concentrating and making the hole larger is avoided. In addition, it is possible to effectively suppress a phenomenon in which a current does not flow in a place other than a hole and a black band is formed on a high-definition halftone image and a portion where a charged potential is insufficient can be visually recognized. Furthermore, it is possible to avoid a phenomenon in which the applied voltage drops in the conductive base layer, and the required discharge current cannot be obtained and the photosensitive member cannot be uniformly charged to a desired potential.

<他の添加剤>
この他にも導電性弾性体には必要に応じて、可塑剤、充填剤、加硫剤、加硫促進剤、老化防止剤、スコーチ防止剤、分散剤及び離型剤等の配合剤を加えることも好ましい。
<Other additives>
Other additives such as plasticizers, fillers, vulcanizing agents, vulcanization accelerators, anti-aging agents, scorch preventing agents, dispersants and mold release agents are added to the conductive elastic body as necessary. It is also preferable.

<導電性基層の成形方法>
導電性基層の成形方法としては、上記の導電性弾性体の原料を混合して、例えば、押し出し成形や射出成形、圧縮成形等の公知の方法が挙げられる。また、導電性基層は、導電性支持体の上に直接導電性弾性体を成形して作製してもよいし、チューブ形状に成形した導電性弾性体を導電性支持体に被覆させてもよい。なお、導電性基層の作製後に表面を研磨して形状を整えてもよい。
<Method for forming conductive base layer>
Examples of the method for forming the conductive base layer include known methods such as extrusion molding, injection molding, and compression molding by mixing the raw materials for the conductive elastic body. The conductive base layer may be produced by directly forming a conductive elastic body on the conductive support, or the conductive elastic body formed into a tube shape may be coated on the conductive support. . Note that the surface may be polished and the shape may be adjusted after the production of the conductive base layer.

導電性基層の形状は、出来上がった帯電部材と感光体との当接ニップ幅が帯電部材の長手方向の分布でできるだけ均一になるよう、導電性基層部材の感光体側中央部の形状が端部よりも感光体側へ凸となっていることが好ましい。帯電部材の形状がローラ形状の場合には、ローラ中央部の直径が端部の直径よりも大きいクラウン形状となっていることが好ましい。また、出来上がった帯電部材の当接ニップ幅が均一となるために、導電性基層部材の振れが小さい方が好ましい。   The shape of the conductive base layer is so that the contact nip width between the finished charging member and the photosensitive member is as uniform as possible in the longitudinal distribution of the charging member, so that the shape of the central portion of the conductive base member on the photosensitive member side is from the end. Is also preferably convex toward the photoreceptor. When the charging member has a roller shape, the charging member preferably has a crown shape in which the diameter of the central portion of the roller is larger than the diameter of the end portion. Further, since the contact nip width of the completed charging member is uniform, it is preferable that the conductive base layer member has a small deflection.

<導電性基層部材のアスカーC硬度>
導電性基層部材のアスカーC硬度は、85°以下が好ましい。帯電部材と感光体との間のニップを確保できるため帯電が安定する。なお、アスカーC硬度とは、日本ゴム協会標準規格SRIS0101に準拠したアスカーC型スプリング式ゴム硬度計(高分子計器株式会社製)を用いて測定される硬度である。本発明に係る値は、N/N環境中に12時間以上放置した導電性基層部材の導電性基層部分表面に対して垂直に該硬度計を10Nの力で当接させてから30秒後に測定した値とする。
<Asker C hardness of conductive base layer member>
The Asker C hardness of the conductive base layer member is preferably 85 ° or less. Since a nip between the charging member and the photosensitive member can be secured, charging is stabilized. The Asker C hardness is a hardness measured using an Asker C spring rubber hardness tester (manufactured by Kobunshi Keiki Co., Ltd.) in accordance with the Japan Rubber Association standard SRIS0101. The value according to the present invention is measured 30 seconds after the hardness meter is brought into contact with the surface of the conductive base layer portion of the conductive base layer member left in an N / N environment for 12 hours or more with a force of 10 N. Value.

アスカーC硬度を調整するため、導電性弾性体に可塑剤を配合してもよい。配合量は、好ましくは1質量部以上、より好ましくは3質量部以上である。可塑剤としては、例えばセバシン酸とプロピレングリコールの共重合体のような、エステル系の高分子可塑剤を用いることができる。導電性基層は、必要に応じて導電性支持体と接着剤を介して接着される。この場合、接着剤は導電性であることが好ましい。導電性とするため、接着剤には前記した導電剤を有することができる。接着剤のバインダーとしては、熱硬化性樹脂、熱可塑性樹脂等の樹脂が挙げられ、ウレタン系、アクリル系、ポリエステル系、ポリエーテル系、エポキシ系、等の公知の接着剤を用いることができる。   In order to adjust Asker C hardness, a plasticizer may be added to the conductive elastic body. The amount is preferably 1 part by mass or more, more preferably 3 parts by mass or more. As the plasticizer, for example, an ester-based polymer plasticizer such as a copolymer of sebacic acid and propylene glycol can be used. The conductive base layer is bonded to the conductive support through an adhesive as necessary. In this case, the adhesive is preferably conductive. In order to make it conductive, the adhesive may have the above-described conductive agent. Examples of the binder of the adhesive include resins such as a thermosetting resin and a thermoplastic resin, and known adhesives such as urethane, acrylic, polyester, polyether, and epoxy can be used.

<導電性基層部材の電気抵抗>
導電性基層部材の電気抵抗はH/H環境中では1×10Ω以上、L/L環境中では1×10Ω以下であることが好ましい。またN/N環境中では2×10Ω以上6×10Ω以下であることが好ましい。L/L環境中の電気抵抗を上記した値以下とすることによって、部材抵抗の位置バラつきによる帯電電位ムラが発生しにくくなるので好ましい。また、高温高湿環境中の抵抗が上記範囲より大きいと、感光体にピンホールがあったとしても印加電流がリークせず、ハーフトーン画像上に帯電の濃度ムラが現れることがないので好ましい。
導電性基層がローラ形状で無い場合には、1cmあたりの抵抗で表す。
<Electric resistance of conductive base layer member>
The electric resistance of the conductive base layer member is preferably 1 × 10 4 Ω or more in the H / H environment and 1 × 10 8 Ω or less in the L / L environment. In an N / N environment, it is preferably 2 × 10 4 Ω or more and 6 × 10 7 Ω or less. It is preferable to set the electric resistance in the L / L environment to be equal to or less than the above value because charging potential unevenness due to variation in the position of the member resistance is less likely to occur. Further, it is preferable that the resistance in a high-temperature and high-humidity environment is larger than the above range because even if there is a pinhole in the photoconductor, the applied current does not leak and the uneven density of charging does not appear on the halftone image.
When the conductive base layer is not in a roller shape, it is represented by a resistance per 1 cm 2 .

導電性基層部材の電気抵抗は以下のように測定した。
即ち、図4の様に、画像形成装置に用いた場合の使用状態と同様の応力で、感光体と同じ曲率の円柱形金属32に当接させて通電したときの抵抗を測定する。図4(a)において33aと33bは重りに固定された軸受けであり、導電性基層部材40の導電性支持体1の両端に鉛直下方向に押す応力を印加する。導電性基層部材40の鉛直下方向には、導電性基層部材40と平行に円柱形金属32が位置している。そして、図示しない駆動装置により円柱形金属32を回転させながら、図4(b)の様に導電性基層部材40を円柱形金属32へ押し当てる。使用状態の感光体ドラムと同様の回転速度で円柱形金属32を回転させ、導電性基層部材40を従動回転させながら電源34から直流電圧−200Vを印加し、円柱形金属32から流れ出てくる電流を電流計Aで測定する。このときの印加電圧と測定された電流とから計算して導電性基層部材40の電気抵抗を算出する。以下の実施例においては、軸の両端にそれぞれ5Nの力を加えて、直径30mmの金属円柱に当接させ、該金属円柱を周速150mm/sで回転させた。
The electrical resistance of the conductive base layer member was measured as follows.
That is, as shown in FIG. 4, the resistance is measured when energized while contacting a cylindrical metal 32 having the same curvature as that of the photosensitive member under the same stress as that in the usage state when used in an image forming apparatus. In FIG. 4A, 33 a and 33 b are bearings fixed to weights, and apply stress that pushes the conductive base layer member 40 to both ends of the conductive support 1 vertically downward. A columnar metal 32 is located in a vertically downward direction of the conductive base layer member 40 in parallel with the conductive base layer member 40. Then, the conductive base layer member 40 is pressed against the columnar metal 32 as shown in FIG. 4B while rotating the columnar metal 32 by a driving device (not shown). The cylindrical metal 32 is rotated at the same rotational speed as the photosensitive drum in use, and the DC voltage −200 V is applied from the power source 34 while the conductive base layer member 40 is driven to rotate, and the current flowing out from the cylindrical metal 32 Is measured with an ammeter A. The electrical resistance of the conductive base layer member 40 is calculated from the applied voltage and the measured current at this time. In the following examples, a force of 5 N was applied to both ends of the shaft to contact a metal cylinder having a diameter of 30 mm, and the metal cylinder was rotated at a peripheral speed of 150 mm / s.

<導電性基層の表面粗さ>
導電性基層の表面粗さは小さい方が好ましい。基層の表面粗さはRz(十点平均粗さ)は、7μm以下、特には、5μm以下、更には、4μm以下が好ましい。表面粗度が小さければ、突起と導電性基層の表面との段差が確保され、また、微粉を保持する能力も維持される。
表面粗度の測定装置としては、小坂研究所製サーフコーダーSE3400を使用し先端半径2μmのダイヤモンド製接触針を用いた。測定条件は、JIS B0601:1982に基づき、測定スピードは0.5mm/s、カットオフ周波数λcは0.8mm、基準長さは0.8mm、評価長さは8.0mmとした。
<Surface roughness of conductive base layer>
The surface roughness of the conductive base layer is preferably small. As for the surface roughness of the base layer, Rz (10-point average roughness) is preferably 7 μm or less, particularly 5 μm or less, and more preferably 4 μm or less. If the surface roughness is small, a step between the protrusion and the surface of the conductive base layer is secured, and the ability to hold fine powder is also maintained.
As a surface roughness measuring apparatus, a surf coder SE3400 manufactured by Kosaka Laboratory was used, and a diamond contact needle having a tip radius of 2 μm was used. The measurement conditions were based on JIS B0601: 1982, the measurement speed was 0.5 mm / s, the cut-off frequency λc was 0.8 mm, the reference length was 0.8 mm, and the evaluation length was 8.0 mm.

<突起の製造方法>
本発明の弾性ローラ製造方法に使用する塗工装置の概略を図6(a)に示す。塗工される導電性基層部材40は上下の棒状軸受け35、36によって塗工装置に固定される。軸受け35、36は塗工装置のアクチュエータ13と平行に位置しており、支柱37に対して土台38と上板39とを介して保持されている。軸受けは導電性基層部材40とほぼ同じ太さの円柱形状である。アクチュエータ13には塗工リング14が固定されており、導電性基層部材40の軸と平行に移動可能となっている。
<Method for producing protrusion>
The outline of the coating apparatus used for the elastic roller manufacturing method of this invention is shown to Fig.6 (a). The conductive base layer member 40 to be coated is fixed to the coating apparatus by upper and lower bar bearings 35 and 36. The bearings 35 and 36 are positioned in parallel with the actuator 13 of the coating apparatus, and are held with respect to the support column 37 via a base 38 and an upper plate 39. The bearing has a cylindrical shape with substantially the same thickness as that of the conductive base layer member 40. A coating ring 14 is fixed to the actuator 13 and can move in parallel with the axis of the conductive base layer member 40.

塗工リング14には塗工液供給コントローラ15のピストンにより塗工液タンク16から吸い上げられた塗工液17がフレキシブルチューブ19を通って供給される。
アクチュエータ13と塗工液供給コントローラ15は、コンピュータ21によって制御され、それぞれの動作タイミングを調整して作動される。
The coating liquid 17 sucked up from the coating liquid tank 16 by the piston of the coating liquid supply controller 15 is supplied to the coating ring 14 through the flexible tube 19.
The actuator 13 and the coating liquid supply controller 15 are controlled by the computer 21 and are operated by adjusting the respective operation timings.

図6(b)は、塗工リング付近を拡大した概略断面図である。塗工液17はフレキシブルチューブ19を通って塗工リング14に供給され、リング内部で同心円状に配置されたスリットを通過しながら回転対称な流れとなり、リングノズル23から吐出され、導電性基層部材40の導電性基層2の表面へ塗工される。塗工リング14の材質はSUS304であり、表面はRa(算術平均粗さ)=0.1μm以下の滑らかさに仕上げられている。導電性基層部材40はその芯金(導電性支持体)1の上下を軸受け35と36とにより保持されている。   FIG. 6B is an enlarged schematic cross-sectional view of the vicinity of the coating ring. The coating liquid 17 is supplied to the coating ring 14 through the flexible tube 19, becomes a rotationally symmetric flow while passing through the slits arranged concentrically inside the ring, and is discharged from the ring nozzle 23, and is a conductive base layer member. It is applied to the surface of 40 conductive base layers 2. The material of the coating ring 14 is SUS304, and the surface is finished with a smoothness of Ra (arithmetic mean roughness) = 0.1 μm or less. The conductive base layer member 40 is held by bearings 35 and 36 above and below the core metal (conductive support) 1.

図7を用いて塗工工程における塗工装置の動作を説明する。図7においては、フレキシブルチューブ等は省略している。まず重り24が固定された上軸受け35を引き上げて、導電性基層部材40を下軸受け36にセットし(a)、続いて、上軸受け35を下ろして導電性基層部材40を塗工装置に固定する(b)。次に(c)に示す様に、塗工リング14が固定されたアクチュエータのヘッドを上に移動させ、塗工リングのリングノズルが導電性基層部材40と上軸受けの間の位置に来る様にアクチュエータのヘッドを移動させる。以下、塗工リングとアクチュエータのヘッドが相互に固定されて一体的に稼動する部分全体を塗工ヘッド25と記述する。
そして塗液を制御して吐出しつつ塗工ヘッド25を(d)から(e)に示す様に、制御した速度で下降させ、塗工する。塗工が終了したら、(f)に示す様に、上軸受けを上げて塗膜が形成された導電性基層部材を取り出す。
The operation of the coating apparatus in the coating process will be described with reference to FIG. In FIG. 7, a flexible tube or the like is omitted. First, the upper bearing 35 to which the weight 24 is fixed is pulled up, the conductive base layer member 40 is set on the lower bearing 36 (a), and then the upper bearing 35 is lowered to fix the conductive base layer member 40 to the coating apparatus. (B). Next, as shown in (c), the head of the actuator to which the coating ring 14 is fixed is moved upward so that the ring nozzle of the coating ring comes to a position between the conductive base layer member 40 and the upper bearing. Move the actuator head. Hereinafter, the entire portion in which the coating ring and the head of the actuator are fixed to each other and operate integrally is referred to as a coating head 25.
Then, while controlling and discharging the coating liquid, the coating head 25 is lowered at a controlled speed as shown in FIGS. When the coating is completed, as shown in (f), the upper bearing is raised and the conductive base layer member on which the coating film is formed is taken out.

図9(a)は図7で塗工された塗膜を含む帯電部材の断面の概略図を示す。図9(a)に示す様に、突起となる樹脂粒子は、塗工直後は硬化性液体に分散された状態で存在するが、徐々に硬化性液体が導電性基層に吸収されるにつれて突起の頭を出現させ始める(b)。また硬化性液体が導電性基層へ吸収される過程で突起となる樹脂粒子は相互に微妙に移動し、重なり合わない様に均一にランダムかつ分散する。そして硬化性液体が導電性基層に完全に吸収された(c)の段階になると、突起となる樹脂粒子が導電性基層の表面にランダムかつ均一に分散して付着した状態となる。この段階で樹脂粒子にも硬化性液体が若干染み込んでおり、後の硬化時には、導電性基層に染み込んだ硬化性液体と樹脂粒子に染み込んだ硬化性液体とが硬化によって結合することにより、突起が導電性基層に対して強固に結合する。本方法による突起の形成では、このように突起と導電性基層とがインターポリマーネットワークによって強固に結合して丈夫な突起を形成することができるという利点がある。   FIG. 9A shows a schematic view of a cross section of the charging member including the coating film applied in FIG. As shown in FIG. 9 (a), the resin particles that become the protrusions are present in a state of being dispersed in the curable liquid immediately after coating, but as the curable liquid is gradually absorbed by the conductive base layer, The head begins to appear (b). In addition, the resin particles that form protrusions in the process of absorbing the curable liquid into the conductive base layer move slightly with respect to each other, and are uniformly and randomly dispersed so as not to overlap. When the curable liquid is completely absorbed by the conductive base layer (c), the resin particles that form the protrusions are randomly and uniformly dispersed and attached to the surface of the conductive base layer. At this stage, the resin particles are also slightly impregnated with the curable liquid, and at the time of subsequent curing, the curable liquid soaked into the conductive base layer and the curable liquid soaked into the resin particles are bonded by curing, so that the protrusions are formed. Bonds strongly to the conductive base layer. In the formation of the protrusion by this method, there is an advantage that the protrusion and the conductive base layer can be firmly bonded by the interpolymer network to form a strong protrusion.

塗工開始前に、上下の軸受けを回しつつ塗工ノズルから少量の塗液を吐出し、塗工ノズルの液面を均一に馴らしても良い。上下の軸受けは、図8(a)に示す様に、ローラと接する部分Eがエッジになっていることが好ましい。エッジにすることで、導電性基層部材端部と軸受けの密着がより高まり、塗工液が軸受けと導電性基層部材との隙間に浸透することを防止できる。上下の軸受け表面は撥水撥油加工が施されて、塗料が付着し難い表面となっていることが好ましい。撥水撥油加工の方法としては、各種のフッ素含有化合物によるコートや、シリコーン系化合物によるコートなどが挙げられる。また、図8(b)に示す様に、導電性基層部材と上軸受けの境界Bよりも上から塗工を開始して、塗工開始時の塗膜の不均一性を導電性基層表面に残さない様にすることも可能である。この場合、図8(c)、図8(d)、図8(e)、図8(f)に示す様に、軸受けのローラ側先端を取り替え可能なキャップとすることも可能である。キャップを使用して塗工する場合、キャップは塗工液と親和性が大きい(接触角が小さい)方が塗膜の均一性が向上するので好ましい。キャップの形状としては、26や27の如き円筒状のキャップや、28や29の如きコップ状のキャップが挙げられる。   Prior to the start of coating, a small amount of coating liquid may be discharged from the coating nozzle while rotating the upper and lower bearings, so that the liquid level of the coating nozzle is evenly conditioned. As shown in FIG. 8A, the upper and lower bearings preferably have an edge at the portion E that contacts the roller. By using the edge, adhesion between the end portion of the conductive base layer member and the bearing is further increased, and the coating liquid can be prevented from penetrating into the gap between the bearing and the conductive base layer member. It is preferable that the upper and lower bearing surfaces are subjected to water / oil repellent treatment so that the coating is difficult to adhere to. Examples of the water / oil repellent finishing method include coating with various fluorine-containing compounds and coating with a silicone compound. Also, as shown in FIG. 8 (b), the coating is started from above the boundary B between the conductive base layer member and the upper bearing, and the non-uniformity of the coating film at the start of coating is applied to the surface of the conductive base layer. It is also possible not to leave it. In this case, as shown in FIG. 8C, FIG. 8D, FIG. 8E, and FIG. 8F, it is possible to use a cap that can replace the tip of the bearing on the roller side. When coating is performed using a cap, it is preferable that the cap has a greater affinity with the coating solution (a smaller contact angle) because the uniformity of the coating film is improved. Examples of the shape of the cap include a cylindrical cap such as 26 and 27, and a cup-shaped cap such as 28 and 29.

導電性基層部材に塗工される塗膜の膜厚は1mm以下、より好ましくは200μm以下、さらに好ましくは、60μm以下である。あまり厚すぎると紫外線硬化樹脂の深部まで紫外線が到達しないので、硬化不良を起こしてしまい、紫外線硬化樹脂で層を形成することが不可能となる。膜厚は紫外線硬化塗料の粘度と吐出速度、塗工ヘッドの移動速度を制御して調整する。膜厚を大きくしたい場合には、粘度は大きくすることが好ましく、吐出速度も大きいほうが好ましく、塗工ヘッドの移動速度は小さいほうが好ましい。逆に膜厚を小さくしたい場合には、粘度は小さくすることが好ましく、吐出速度は小さいほうが好ましく、塗工ヘッドの移動速度は大きいほうが好ましい。   The film thickness of the coating film applied to the conductive base layer member is 1 mm or less, more preferably 200 μm or less, and still more preferably 60 μm or less. If it is too thick, the ultraviolet rays do not reach the deep part of the ultraviolet curable resin, so that curing failure occurs, and it becomes impossible to form a layer with the ultraviolet curable resin. The film thickness is adjusted by controlling the viscosity and discharge speed of the UV curable paint and the moving speed of the coating head. When it is desired to increase the film thickness, it is preferable to increase the viscosity, to increase the discharge speed, and to decrease the moving speed of the coating head. Conversely, when it is desired to reduce the film thickness, it is preferable to reduce the viscosity, the discharge speed is preferably low, and the movement speed of the coating head is preferably high.

粒子を導電性基層に固定して突起を形成する材料は硬化性の液体である。該液体は熱、紫外線、可視光線、電子線、その他放射線等により架橋して高分子化する液状の分子である。
硬化性の液体としては、例えば、イソシアネート化合物やビニル系の重合性モノマーが挙げられる。突起を固定する強度の面で、特にアクリル系の紫外線重合性モノマーが好ましい。また、アクリル系の紫外線重合性モノマーは低粘度化が可能であり、突起となる樹脂粒子の分散性や塗膜の厚み制御に優れるので好ましい。
The material that fixes the particles to the conductive base layer to form the protrusions is a curable liquid. The liquid is a liquid molecule that is polymerized by crosslinking with heat, ultraviolet light, visible light, electron beam, or other radiation.
Examples of the curable liquid include isocyanate compounds and vinyl polymerizable monomers. In view of the strength of fixing the protrusion, an acrylic ultraviolet polymerizable monomer is particularly preferable. An acrylic UV-polymerizable monomer is preferable because it can reduce the viscosity and is excellent in the dispersibility of the resin particles serving as protrusions and in controlling the thickness of the coating film.

イソシアネート化合物としては、ヘキサメチレンジイソシアネート系イソシアネート化合物、ジフェニルメタンジイソシアネート系イソシアネート化合物、トルエンジイソシアネート系イソシアネート化合物、イソホロンジイソシアネート系イソシアネート化合物、等が挙げられる。イソシアネート化合物は、好ましくは2官能以上、より好ましくは3官能以上の官能基を有することが好ましい。さらにイソシアネート基はブロック剤でブロックされていることが好ましい。ブロック剤でブロックされていると水の影響で塗料の特性が変化することを抑制できるので好ましい。さらにイソシアネート化合物は水溶性もしくは水分散性であることも好ましい。水分散性であると、塗料とした場合に表面の電位が安定して、長期間放置しても塗料の特性変化が小さいので好ましい。   Examples of the isocyanate compounds include hexamethylene diisocyanate isocyanate compounds, diphenylmethane diisocyanate isocyanate compounds, toluene diisocyanate isocyanate compounds, and isophorone diisocyanate isocyanate compounds. The isocyanate compound preferably has a functional group of 2 or more functional groups, more preferably 3 or more functional groups. Furthermore, the isocyanate group is preferably blocked with a blocking agent. Blocking with a blocking agent is preferable because it can suppress changes in the properties of the paint due to the influence of water. Furthermore, the isocyanate compound is preferably water-soluble or water-dispersible. The water dispersibility is preferable because the surface potential is stable when the paint is used, and the change in the properties of the paint is small even when left for a long period of time.

具体的な(メタ)アクリル系紫外線硬化性モノマーとしては、以下の化合物が挙げられる。単官能メタクリレートとして、メトキシジエチレングリコールメタクリレート、β−メタクリロイルオキシエチルハイドロジェンフタレート、β−メタクリロイルオキシエチルハイドロジェンサクシネート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ステアリルメタクリレート、イソボロニルメタクリレート、イソステアリルメタクリレート、メトキシポリエチレングリコールメタクリレート。単官能アクリレートとして、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、β−アクリロイルオキシエチルハイドロジェンサクシネート、イソボロニルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、イソステアリルアクリレート、フェノキシポリエチレングリコールアクリレート。2官能メタクリレートとして、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、1、3−ブチレングリコールジメタクリレート、1、6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、2−ヒドロキシ1、3−ジメタクリロキシプロパン、2、2−ビス〔4−(メタクリロキシエトキシ)フェニルプロパン〕、2、2−ビス〔4−(メタクリロキシ・ジエトキシ)フェニルプロパン〕、エトキシ化シクロヘキサンジメタノールジメタクリレート、エトキシ化ビスフェノールAアクリレート、トリシクロデカンジメタノールジメタクリレート、1、9−ノナンジオールジメタクリレート、1、10−デカンジオールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート。2官能アクリレートとして、1、6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、2、2−ビス〔4−(アクリロキシ・ジエトキシ)フェニル〕プロパン、2−ヒドロキシ、1−アクリロキシ、3−メタクリロキシプロパン、エトキシ化シクロヘキサンジメタノールジアクリレート、エトキシ化ビスフェノールAジアクリレート、ジオキサングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、1、9−ノナンジオールジアクリレート、1、10−デカンジオールジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート。3官能メタクリレートとして、トリメトリロールプロパントリメタクリレート。3官能アクリレートとして、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化グリセリントリアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε−カプロラクトン変性トリス−(−アクリロキシエチル)イソシアヌレート。4官能アクリレートとして、テトラメチロールメタンテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート。
その他にも、各種変性モノマーやオリゴマ−を使用することが可能である。変性基としては、ウレタン基、エポキシ基、エーテル基、エステル基、カーボネート基、ジメチルシリコーン基、フェニルシリコーン基、等が挙げられる。
Specific examples of the (meth) acrylic ultraviolet curable monomer include the following compounds. As monofunctional methacrylate, methoxydiethylene glycol methacrylate, β-methacryloyloxyethyl hydrogen phthalate, β-methacryloyloxyethyl hydrogen succinate, 3-chloro-2-hydroxypropyl methacrylate, stearyl methacrylate, isobornyl methacrylate, isostearyl methacrylate, Methoxypolyethylene glycol methacrylate. As monofunctional acrylates, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, β-acryloyloxyethyl hydrogen succinate, isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, phenoxy polyethylene glycol acrylate. As bifunctional methacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, 2-hydroxy 1,3 -Dimethacryloxypropane, 2,2-bis [4- (methacryloxyethoxy) phenylpropane], 2,2-bis [4- (methacryloxydiethoxy) phenylpropane], ethoxylated cyclohexanedimethanol dimethacrylate, ethoxylated Bisphenol A acrylate, tricyclodecane dimethanol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate , Polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate. As bifunctional acrylates, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, 2,2-bis [4- (acryloxy-diethoxy) phenyl] propane, 2-hydroxy, 1-acryloxy 3-methacryloxypropane, ethoxylated cyclohexanedimethanol diacrylate, ethoxylated bisphenol A diacrylate, dioxane glycol diacrylate, tricyclodecane dimethanol diacrylate, 1,9-nonanediol diacrylate, 1,10-decanediol Diacrylate, propoxylated ethoxylated bisphenol A diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate. Trimethylolpropane trimethacrylate as a trifunctional methacrylate. As trifunctional acrylates, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, ethoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated glycerin triacrylate, ethoxylated isocyanuric acid triacrylate, ε-caprolactone modified tris- ( -Acryloxyethyl) isocyanurate. As tetrafunctional acrylate, tetramethylol methane tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate.
In addition, various modified monomers and oligomers can be used. Examples of the modifying group include a urethane group, an epoxy group, an ether group, an ester group, a carbonate group, a dimethyl silicone group, and a phenyl silicone group.

紫外線硬化性塗料には、光重合開始剤を添加する。光重合開始剤としては、従来公知のものを使用することができる。更に、塗料中に各種の導電剤やレべリング剤を混合してもよい。レべリング剤としては例えばシリコーンオイルが挙げられる。   A photopolymerization initiator is added to the ultraviolet curable coating. A conventionally well-known thing can be used as a photoinitiator. Furthermore, various conductive agents and leveling agents may be mixed in the paint. Examples of the leveling agent include silicone oil.

<紫外線硬化性塗工液>
紫外線硬化性塗工液を調製するには、紫外線硬化性モノマと光重合開始剤、それに突起形成用の粒子を混合し、公知の方法により分散させて突起形成用の塗料を調製する。公知の分散方法の例としては下記(ア)〜(ウ)を挙げることができる。
(ア)モータで回転させる回転羽や、ホモジナイザーのごとき攪拌分散装置。(イ)加速した塗料を衝突させて顔料を分散する微細オリフィス分散装置。(ウ)サンドミル、ペイントシェーカ、ダイノミル及びパールミル等のビーズを利用した従来公知の分散装置等。
<Ultraviolet curable coating solution>
In order to prepare an ultraviolet curable coating solution, an ultraviolet curable monomer, a photopolymerization initiator, and particles for forming protrusions are mixed and dispersed by a known method to prepare a coating for forming protrusions. Examples of known dispersion methods include the following (a) to (c).
(A) Agitating and dispersing device such as a rotating blade rotated by a motor or a homogenizer. (A) A fine orifice dispersing device that disperses pigment by colliding with accelerated paint. (C) A conventionally known dispersing device using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill.

突起を上記の様に紫外線硬化樹脂で硬化させた後、さらに別の硬化手段を加えても良い。すなわち、上記紫外線照射手段で紫外線を浴びての硬化は突起と導電性基層との位置関係を保持する為の仮の硬化にとどめ、最後の硬化を後工程で行うことも好ましい。最後の硬化手段としては、不活性雰囲気中での熱硬化や電子線硬化が挙げられる。   After the protrusions are cured with the ultraviolet curable resin as described above, another curing means may be added. That is, it is preferable that the curing by exposure to ultraviolet rays by the ultraviolet irradiation means is only temporary curing for maintaining the positional relationship between the protrusions and the conductive base layer, and the final curing is performed in a subsequent step. Examples of the final curing means include thermal curing and electron beam curing in an inert atmosphere.

<非粘着性微粉>
非粘着性微粉は突起と導電性基層表面によって作られる隙間に保持されて存在し、導電性基層表面の放電面を放電によるダメージから保護する役割を担う。非粘着性とは、微粉が固体表面に接触した場合の付着し難さを意味する。非粘着性が小さい(粘着性が大きい)と、微粉が基層の導電性基層表面に隙間無く付着してしまい、帯電部材の放電面を覆って放電し難くなってしまうので好ましくない。
<Non-sticky fine powder>
The non-adhesive fine powder exists while being held in a gap formed by the protrusion and the surface of the conductive base layer, and plays a role of protecting the discharge surface of the surface of the conductive base layer from damage due to discharge. Non-adhesive means the difficulty of adhering when the fine powder contacts the solid surface. When the non-adhesiveness is small (high adhesiveness), the fine powder adheres to the surface of the conductive base layer of the base layer without any gap, and it is not preferable because it covers the discharge surface of the charging member and is difficult to discharge.

微粉の一次粒径は突起形成用粒子粒径より小さいことが好ましい。微粉が大きすぎると突起の間に保持することが難しくなるので好ましくない。微粉の表面積は大きい方が好ましい。微粉の単位質量あたりの表面積が小さいと、導電性基層表面の代わりに微粉が放電生成物に晒されて導電性基層が暴露されて劣化することを防止する効果が小さくなるので好ましくない。   The primary particle diameter of the fine powder is preferably smaller than the particle diameter for forming the protrusions. If the fine powder is too large, it is difficult to hold it between the protrusions, which is not preferable. The surface area of the fine powder is preferably large. When the surface area per unit mass of the fine powder is small, the effect of preventing the fine powder from being exposed to the discharge product instead of the surface of the conductive base layer and exposing the conductive base layer to deteriorate is less preferable.

微粉一次粒径測定方法
1) 帯電部材表面をエアブローし、微粉を導電性カーボンシートへ移す。
2) 日立製作所FE−SEM(S−4800)で画像を撮影。 導電性カーボンシートに垂直な方向で撮影。
3) 無作為に選んだ微粉10個について、画像上の最大径と最小径とを測定して、その平均値を直径とする。
( 画像を画像処理装置(例えばニレコ社製画像解析装置LuzexIII)に導入し、解析する )
4) 10個の直径を平均して、微粉の個数平均粒径を算出し、微粉の一次粒径とする。
5) SEMの撮影倍率は、対象の微粉の平均粒径がSEM画像の最大幅に対して2〜10%の範囲に入る倍率とする。
Measuring method of primary particle size of fine powder
1) Air blow the surface of the charging member and transfer the fine powder to the conductive carbon sheet.
2) Take an image with Hitachi FE-SEM (S-4800). Taken in a direction perpendicular to the conductive carbon sheet.
3) For 10 randomly selected fine powders, the maximum and minimum diameters on the image are measured, and the average value is taken as the diameter.
(The image is introduced into an image processing apparatus (for example, image analysis apparatus Luzex III manufactured by Nireco) and analyzed)
4) The number average particle diameter of 10 fine particles is averaged to calculate the number average particle diameter of the fine powder, which is the primary particle diameter of the fine powder.
5) The SEM photographing magnification is a magnification in which the average particle diameter of the target fine powder falls within the range of 2 to 10% with respect to the maximum width of the SEM image.

表面積はBET法により測定できる。
BET比表面積の測定は、脱ガス装置バキュプレップ061(マイクロメソティック社製)、BET測定装置ジェミニ2375(マイクロメソティック社製)等公知の装置を用いて行う。本発明におけるBET比表面積は、一点法BET比表面積の値である。具体的には、以下のような手順で行う。
The surface area can be measured by the BET method.
The measurement of the BET specific surface area is performed using a known apparatus such as a degassing apparatus Bacuprep 061 (manufactured by Micromesotech) or a BET measuring apparatus Gemini 2375 (manufactured by Micromesotech). The BET specific surface area in the present invention is a value of a one-point method BET specific surface area. Specifically, the procedure is as follows.

空のサンプルセルの重量を測定した後、測定試料を0.01〜0.002gの間に入るように充填する。さらに、脱ガス装置に、試料が充填されたサンプルセルをセットし、室温で3時間脱ガスを行う。脱ガス終了後、サンプルセル全体の質量を測定し、空サンプルセルとの差から試料の正確な質量を算出する。次に、BET測定装置のバランスポートおよび分析ポートに空のサンプルセルをセットする。所定の位置に液体窒素の入ったデュワー瓶をセットし、飽和蒸気圧(P0)測定コマンドにより、P0を測定する。P0測定終了後、分析ポートに脱ガス調製されたサンプルセルをセットし、サンプル質量およびP0を入力後、BET測定コマンドにより測定を開始する。後は自動でBET比表面積が算出される。   After measuring the weight of the empty sample cell, the sample to be measured is filled so as to fall between 0.01 and 0.002 g. Further, the sample cell filled with the sample is set in the degassing apparatus, and degassing is performed at room temperature for 3 hours. After completion of degassing, the mass of the entire sample cell is measured, and the accurate mass of the sample is calculated from the difference from the empty sample cell. Next, empty sample cells are set in the balance port and analysis port of the BET measuring apparatus. A dewar bottle containing liquid nitrogen is set at a predetermined position, and P0 is measured by a saturated vapor pressure (P0) measurement command. After the P0 measurement is completed, the sample cell prepared for degassing is set in the analysis port, and after inputting the sample mass and P0, the measurement is started by the BET measurement command. After that, the BET specific surface area is automatically calculated.

微粉の材質としては、具体には下記(ア)〜(ク)を含む。
(ア)アルミニウム、パラジウム、鉄、銅、銀等の金属系の粉体。(イ)カーボンブラック、黒鉛等の炭素粉末。(ウ)シリカ、アルミナ、酸化チタン、酸化錫、酸化亜鉛等の金属酸化物。(エ)硫化銅、硫化亜鉛、炭酸カルシウム、硫酸バリウム、窒素化チタン、硫化銅、等の金属化合物粉。(オ)適当な粒子の表面を酸化スズ、酸化インジウム、酸化モリブデン、亜鉛、アルミニウム、金、銀、銅、クロム、コバルト、鉄、鉛、白金、ロジウム、カーボンを電解処理、スプレー塗工、混合振とうにより付着させた粉体。(カ)アセチレンブラック、ケッチェンブラック、PAN(ポリアクリロニトリル)系カーボン、ピッチ系カーボン等のカーボン粉。(キ)メラミン、アクリル、ウレタン、スチレン、PTFE(ポリテトラフルオロエチレン)等の高分子の粒子。(ク)雲母、ハイドロタルサイト、ゼオライト、スメクタイト等の複酸化物。
Specifically, the fine powder material includes the following (a) to (ku).
(A) Metallic powders such as aluminum, palladium, iron, copper and silver. (A) Carbon powder such as carbon black and graphite. (C) Metal oxides such as silica, alumina, titanium oxide, tin oxide and zinc oxide. (D) Metal compound powders such as copper sulfide, zinc sulfide, calcium carbonate, barium sulfate, titanium nitride, copper sulfide and the like. (E) Appropriate treatment of tin oxide, indium oxide, molybdenum oxide, zinc, aluminum, gold, silver, copper, chromium, cobalt, iron, lead, platinum, rhodium, carbon on the surface of suitable particles, spray coating, mixing Powder attached by shaking. (F) Carbon powders such as acetylene black, ketjen black, PAN (polyacrylonitrile) -based carbon, and pitch-based carbon. (G) Polymer particles such as melamine, acrylic, urethane, styrene, PTFE (polytetrafluoroethylene). (H) Double oxides such as mica, hydrotalcite, zeolite and smectite.

特には、シリカや酸化錫等の酸化物が好ましく、酸化物が導電性を有していてもよい。酸化物は既に酸素によって酸化されているので、酸化物でない材料よりも放電によるオゾン等による酸化に強い。よって非粘着性微粉が酸化物の場合、放電に曝されても微粉の性質が変化し難いので、帯電部材の良好な性能が長期間維持される。
微粉の一次粒子径としては、好ましくは5nmから300nm、より好ましくは7nm〜200nm、さらに好ましくは10nm〜100nmである。
In particular, an oxide such as silica or tin oxide is preferable, and the oxide may have conductivity. Since the oxide is already oxidized by oxygen, it is more resistant to oxidation by ozone or the like due to discharge than a non-oxide material. Therefore, when the non-adhesive fine powder is an oxide, the properties of the fine powder hardly change even when exposed to electric discharge, so that the good performance of the charging member is maintained for a long time.
The primary particle diameter of the fine powder is preferably 5 nm to 300 nm, more preferably 7 nm to 200 nm, and still more preferably 10 nm to 100 nm.

微粉の表面積としては、好ましくは5m/gから1500m/g、より好ましくは10m/gから1000m/g、さらに好ましくは15m/gから800m/gである。
微粉は適度の流動性を有して突起と導電性基層との隙間に保持される。微粉は、基層表面の導電性基層と突起とが作る隙間に保持された場合に、微粉が互いに或いは導電性基層や突起と付着しあって流動性を失わないことが好ましい。流動性としてはCarrの流動性指数が40以上98以下であることが好ましい。流動性が小さいと、微粉を帯電部材に保持させるときに突起と導電性基層との隙間に微粉が密に詰まって固まってしまい、放電する隙間がつぶれてしまい、帯電不能となってしまうので好ましくない。逆に流動性が高すぎると粉を保持することが出来ず、帯電部材の使用後すぐに微粉が逸散してしまうので好ましくない。
The surface area of the fine powder is preferably 5 m 2 / g to 1500 m 2 / g, more preferably 10 m 2 / g to 1000 m 2 / g, and still more preferably 15 m 2 / g to 800 m 2 / g.
The fine powder has an appropriate fluidity and is held in the gap between the protrusion and the conductive base layer. When the fine powder is held in a gap formed by the conductive base layer and the protrusion on the surface of the base layer, it is preferable that the fine powder adheres to each other or the conductive base layer and the protrusion and does not lose fluidity. As for the fluidity, the Carr's fluidity index is preferably 40 or more and 98 or less. When the fluidity is small, it is preferable that when the fine powder is held on the charging member, the fine powder is tightly packed and solidified in the gap between the protrusion and the conductive base layer, and the discharge gap is crushed and becomes unchargeable. Absent. On the other hand, if the fluidity is too high, the powder cannot be retained, and the fine powder will dissipate immediately after the charging member is used, which is not preferable.

Carrの流動性指数の測定については、特公昭51−14278号公報に詳しく記載されており、特に限定されないが、本発明では以下の方法で測定する。
すなわちパウダテスターP−100(ホソカワミクロン社製)を使用し、安息角、圧縮度、凝集度、スパチュラ角、の各パラメーターを測定する。それぞれについて求められた値をCarrの流動性指数表(ChemicalEngineering.Jan.18.1965)に当てはめ、各25以下のそれぞれの指数に換算し、各パラメーターから求められた指数の合計を流動性指数として算出する。
The measurement of Carr's fluidity index is described in detail in Japanese Patent Publication No. 51-14278, and is not particularly limited, but in the present invention, it is measured by the following method.
That is, using a powder tester P-100 (manufactured by Hosokawa Micron Corporation), parameters of repose angle, degree of compression, degree of aggregation, and spatula angle are measured. The values obtained for each were applied to Carr's liquidity index table (Chemical Engineering. Jan. 18.1965), converted into each index of 25 or less, and the sum of the indices determined from each parameter was used as the liquidity index. calculate.

以下に各パラメーターの測定方法の一例を示す。
(1)安息角
微粉150gを目開き710μmのメッシュに通し、直径8cmの円形テーブルの上に微粉を堆積させる。このとき、テーブルの端部から微粉があふれる程度に堆積させる。このときのテーブル上に堆積した微粉の稜線と円形テーブル面との間に形成された角度をレーザー光で測定する。これを安息角とする。
An example of a method for measuring each parameter is shown below.
(1) Angle of repose 150 g of fine powder is passed through a mesh having an opening of 710 μm, and the fine powder is deposited on a circular table having a diameter of 8 cm. At this time, it is deposited to such an extent that fine powder overflows from the end of the table. The angle formed between the ridgeline of the fine powder deposited on the table at this time and the circular table surface is measured with a laser beam. This is the angle of repose.

(2)圧縮度
疎充填かさ密度(緩み見かけ比重、「A」とする)と、タッピングかさ密度(固め見かけ比重、「P」とする)から下記式により圧縮度を求めることができる。
圧縮度(%)=100(P−A)/P
緩み見かけ比重は、例えば直径5cm、高さ5.2cm、容量100mlのカップに微粉150gを静かに流し込む。そして、測定用カップに微粉が山盛りに充填されたところで、微粉表面をすりきり、カップに充填されている微粉の量とカップの容量からカップに充填されている微粉の比重を算出することによって求められる。
固め見かけ比重は、例えば緩み見かけ比重で使用した測定用カップに、付属のキャップを継ぎ足し、微粉をカップに充填し、カップを180回タップさせ、タッピングが終了した時点でキャップを外し、カップに山盛りになっている余分な微粉をすりきる。そして、カップに充填されている微粉の量とカップの容量からカップに充填されている微粉の比重を算出することによって求められる。両見かけ比重値を上記式に挿入し、圧縮度を求める。
(2) Compressibility From the loosely packed bulk density (relaxed apparent specific gravity, “A”) and the tapping bulk density (hardened apparent specific gravity, “P”), the compressibility can be obtained by the following equation.
Compressibility (%) = 100 (PA) / P
As for the apparent specific gravity, for example, 150 g of fine powder is gently poured into a cup having a diameter of 5 cm, a height of 5.2 cm, and a capacity of 100 ml. Then, when the measurement cup is filled with fine powder, the surface of the fine powder is ground, and the specific gravity of the fine powder filled in the cup is calculated from the amount of fine powder filled in the cup and the capacity of the cup. .
For the apparent apparent specific gravity, for example, add the attached cap to the measuring cup used at the loose apparent specific gravity, fill the cup with fine powder, tap the cup 180 times, remove the cap when tapping is completed, and pile up the cup. Grind any excess fine powder that has become. And it calculates | requires by calculating the specific gravity of the fine powder with which the cup is filled from the quantity of the fine powder with which the cup is filled, and the capacity | capacitance of a cup. Both apparent specific gravity values are inserted into the above formula to determine the degree of compression.

(3)スパチュラ角
10cm×15cmのバットの底に3cm×8cmのスパチュラが接するように置き、スパチュラの上に微粉を堆積させる。このとき、微粉がスパチュラの上に盛り上がるように堆積させる。その後、バットだけを静かに下ろし、スパチュラ上に残った微粉側面の傾斜角をレーザー光により測定する。その後、スパチュラに取り付けたショッカーで一回衝撃を加えた後、再度スパチュラ角を測定する。この測定値と衝撃を与える前の測定値との平均をスパチュラ角とする。
(3) Spatula angle Place a 3 cm x 8 cm spatula in contact with the bottom of a 10 cm x 15 cm bat, and deposit fine powder on the spatula. At this time, the fine powder is deposited so as to rise on the spatula. Thereafter, the bat alone is gently lowered, and the inclination angle of the fine powder side surface remaining on the spatula is measured with a laser beam. Then, after applying an impact once with a shocker attached to the spatula, the spatula angle is measured again. The average of this measured value and the measured value before giving an impact is defined as a spatula angle.

(4)凝集度
振動台の上に、上から目開き250μm、150μm、75μmの順でふるいをセットする。振動振り幅を1mm、振動時間を20秒とし、微粉5gを静かにのせて振動させる。振動停止後、それぞれのふるいに残った重量を測定する。それぞれのふるいに残った微粉の重量を下記式に当てはめ、各式よりa、b、及びcの各値を求める。a、b、及びcの総和を凝集度(%)とする。
a=(上段のふるいに残ったトナー量)÷5(g)×100
b=(中段のふるいに残ったトナー量)÷5(g)×100×0.6
c=(下段のふるいに残ったトナー量)÷5(g)×100×0.2
上記(1)、(2)、(3)、及び(4)の各パラメーターにおける指数の総和((1)+(2)+(3)+(4))がCarrの流動性指数となる
(4) Aggregation degree A sieve is set on the vibration table in the order of openings of 250 μm, 150 μm, and 75 μm from the top. The vibration amplitude is set to 1 mm, the vibration time is set to 20 seconds, and 5 g of fine powder is gently put on and vibrated. After the vibration stops, measure the weight remaining on each sieve. The weight of the fine powder remaining on each sieve is applied to the following formula, and each value of a, b, and c is obtained from each formula. The sum of a, b, and c is defined as the degree of aggregation (%).
a = (amount of toner remaining on upper screen) ÷ 5 (g) × 100
b = (amount of toner remaining on the middle screen) ÷ 5 (g) × 100 × 0.6
c = (amount of toner remaining on the lower screen) ÷ 5 (g) × 100 × 0.2
The sum of the indices ((1) + (2) + (3) + (4)) in the parameters (1), (2), (3), and (4) above is the Carr's liquidity index.

表面処理剤としては、カップリング剤(珪素、チタン、アルミニウム及びジルコニウム等の中心元素は特に選ばない)としては、特に、アルコキシシランカップリング剤及びフルオロアルキルアルコキシシランカップリング剤が好ましい。
カップリング剤の例は、シランカップリング剤及びチタネートカップリング剤を含む。
シランカップリング剤としては、例えば、イソブチルシラン、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、β−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラメン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサン、及び1分子当たり2〜12個のシロキサン単位を有し、末端に位置する単位に夫々1個あたりのケイ素原子に結合した水酸基を含有したジメチルポリシロキサンが挙げられる。
As the surface treatment agent, an alkoxysilane coupling agent and a fluoroalkylalkoxysilane coupling agent are particularly preferable as a coupling agent (a central element such as silicon, titanium, aluminum and zirconium is not particularly selected).
Examples of coupling agents include silane coupling agents and titanate coupling agents.
Examples of the silane coupling agent include isobutylsilane, hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, and benzyldimethyl. Chlorosilane, bromomethyldimethylchlorosilane, α-chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilyl mercaptan, trimethylsilyl mercaptan, triorganosilyl acrylate, vinyldimethylacetoxysilamen, dimethyldi Ethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, hexamethyldisiloxane, 1,3-divinyl Rutetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, and 2-12 siloxane units per molecule, each containing a hydroxyl group bonded to each silicon atom in the terminal unit Dimethylpolysiloxane.

表面処理の程度により、Carrの流動性指数を制御する。
微粉の保持量が小さいと、導電性基層の代わりに微粉が放電生成物に晒されて導電性基層が暴露されて劣化することを防止する効果が小さくなるので好ましくない。また保持量が多すぎると、放電する隙間がつぶれてしまい、帯電不能となってしまうので好ましくない。
微粉の保持量は、導電性基層部材の表面積(ローラ形状であれば直径×円周率×ゴム面の長さ)に対する、保持させた微粉の表面積の比で表した場合、4以上4000以下が好ましく、10以上3000以下がより好ましく、100以上800以下がさらに好ましい。
Carr's fluidity index is controlled by the degree of surface treatment.
If the amount of fine powder retained is small, the effect of preventing the fine powder from being exposed to the discharge product instead of the conductive base layer and the conductive base layer from being exposed and deteriorated is not preferable. On the other hand, if the holding amount is too large, the discharge gap is crushed and charging becomes impossible.
The amount of fine powder retained is 4 or more and 4000 or less when expressed by the ratio of the surface area of the fine powder held to the surface area of the conductive base layer member (in the case of a roller, diameter × circumference × rubber surface length). Preferably, it is 10 or more and 3000 or less, more preferably 100 or more and 800 or less.

微粉を保持させる方法は、微粉が帯電部材表面に均一に保持される方法であれば良い。
本発明においては、まず基層を周速度200mm/sで回転させながら、5mmの厚さに重ねた再生セルロースの布に微粉をまぶし、これを基層に押し当てることにより微粉を導電性基層に保持させる。
その他にも、微粉と気体を混合して基層に吹き付けて保持させる方法、液体に微粉を分散したスラリーを基層に塗工して、その後乾燥させて液体を取り除いて保持させる方法等が挙げられる。
The method for holding the fine powder may be any method as long as the fine powder is uniformly held on the surface of the charging member.
In the present invention, while the base layer is first rotated at a peripheral speed of 200 mm / s, fine powder is applied to a regenerated cellulose cloth having a thickness of 5 mm and pressed against the base layer to hold the fine powder on the conductive base layer. .
In addition, there are a method in which fine powder and gas are mixed and sprayed onto the base layer, and a slurry in which fine powder is dispersed in a liquid is applied to the base layer, followed by drying to remove the liquid and hold it.

保持させる前後の帯電部材の質量を測定し、保持後の質量から保持前の質量を引くことにより保持量を求める。
保持量を求める別の方法としては、フィルターを取り付けた掃除機を使用して帯電部材表面の微粉を吸い取る方法がある。掃除機に吸われてフィルターに捕捉された微粉の質量と、吸い取られて微粉が存在しなくなった基層の質量との差を計算して保持量を求める。
本発明によれば、突起の間隙に微粉を保持させることで微粉を圧縮すること無く多量に塗布することが可能となる。
本件の構成では、放電する導電性基層表面が常に感光体と離れた位置にあり、微粉に保護されているので、放電生成物などの攻撃に曝されにくく、繰り返し使用しても帯電が安定しているという効果がある。さらに、微粉が圧縮されること無く保持されており、微粉の保持されている部分に隙間があるので、基層表面からの放電を阻害しない効果もある。
The mass of the charging member before and after holding is measured, and the holding amount is obtained by subtracting the mass before holding from the mass after holding.
As another method of obtaining the holding amount, there is a method of sucking out fine powder on the surface of the charging member using a vacuum cleaner equipped with a filter. The retention amount is obtained by calculating the difference between the mass of the fine powder sucked by the vacuum cleaner and trapped by the filter and the mass of the base layer sucked and no longer containing fine powder.
According to the present invention, it is possible to apply a large amount without compressing the fine powder by holding the fine powder in the gap between the protrusions.
In this configuration, the surface of the conductive base layer to be discharged is always at a position away from the photoconductor, and is protected by fine powder, so that it is difficult to be exposed to attacks from discharge products and the like, and charging is stable even after repeated use. There is an effect that. Furthermore, since the fine powder is held without being compressed and there is a gap in the portion where the fine powder is held, there is also an effect of not inhibiting the discharge from the surface of the base layer.

また、突起が微粉を取り囲んでおり、微粉の逸散を防止することができるので、長期間使用しても微紛層越しの帯電特性が変化しにくく、安定した帯電を行うことが可能である。
また、本発明の帯電部材の製造方法によれば、導電性基層の表面に強固に結合した粒子に起因した突起を簡便に形成することが可能であり、微粉を保持させることにより、安定した帯電を行える帯電部材を容易に作成することが可能となる。
さらに、帯電部材を再生する際に、微粉を取り除いて新しい微粉と置き換えるだけの操作によって帯電部材を簡単に再生することが可能であるという効果もある。
In addition, since the projection surrounds the fine powder and can prevent the fine powder from diffusing, the charging characteristics through the fine powder layer hardly change even when used for a long time, and stable charging can be performed. .
Further, according to the method for producing a charging member of the present invention, it is possible to easily form protrusions caused by particles firmly bonded to the surface of the conductive base layer, and stable charging can be achieved by holding fine powder. It is possible to easily create a charging member capable of performing the above.
Furthermore, when the charging member is regenerated, there is an effect that the charging member can be easily regenerated by simply removing the fine powder and replacing it with a new fine powder.

<導電性基層部材の製造>
以下の各材料を混合し、オープンロールで20分間混練した。
<Manufacture of conductive base layer member>
The following materials were mixed and kneaded with an open roll for 20 minutes.

Figure 2013120361
Figure 2013120361

Figure 2013120361
Figure 2013120361

次いで、下記の各材料を更に加え、15分間オープンロールで混練した。   Next, the following materials were further added and kneaded with an open roll for 15 minutes.

Figure 2013120361
出来上がった未加硫ゴム組成物を、実施例1の導電性基層用未加硫ゴム組成物とした。
Figure 2013120361
The finished unvulcanized rubber composition was used as the unvulcanized rubber composition for the conductive base layer of Example 1.

得られた導電性基層用未加硫ゴム組成物を、クロスヘッドを用いた押出成形によって、ポリエステル系接着剤を約10μm厚で塗布した芯金(直径6mm、長さ252mm)の外周に、同軸状に直径10mmの円柱形に同時に押出した。
熱風炉で160℃、40分の加硫を行った後、ゴム部両端を切断し、導電性基層部分の軸方向幅を228mmとした。その後、導電性基層部分の表面を回転砥石で研磨することによって、端部直径8.4mm、中央部直径8.6mmのクラウン形状の導電性基層部材を得た。
The obtained unvulcanized rubber composition for the conductive base layer was coaxially formed on the outer periphery of a cored bar (diameter 6 mm, length 252 mm) coated with a polyester adhesive at a thickness of about 10 μm by extrusion molding using a crosshead. Were simultaneously extruded into a cylindrical shape having a diameter of 10 mm.
After vulcanization at 160 ° C. for 40 minutes in a hot air furnace, both ends of the rubber part were cut to make the axial width of the conductive base layer part 228 mm. Thereafter, the surface of the conductive base layer portion was polished with a rotating grindstone to obtain a crown-shaped conductive base layer member having an end diameter of 8.4 mm and a central diameter of 8.6 mm.

<基層(突起を固定した状態)の製造>
下記の材料を遮光ビンに入れてペイントシェーカで30分間攪拌して、紫外線硬化性塗工液を得た。
<Manufacture of base layer (state with protrusions fixed)>
The following materials were put in a light shielding bottle and stirred for 30 minutes with a paint shaker to obtain an ultraviolet curable coating solution.

Figure 2013120361
Figure 2013120361

得られた導電性基層部材を、常温常湿(N/N)環境(温度23℃、相対湿度55%)の大気環境中に放置した図6に記載の装置にセットした。さらに前記装置の塗工液タンク18に前記紫外線硬化性塗工液を入れた。次に<突起の製造方法>で説明した手順にのっとり、導電性基層部材に紫外線硬化性塗工液を塗工した。塗工後、N/N環境に10分間放置し、紫外線硬化性塗工液の中の液体成分のみを導電性基層に染み込ませた。   The obtained conductive base layer member was set in the apparatus shown in FIG. 6 which was left in an air environment of normal temperature and normal humidity (N / N) environment (temperature 23 ° C., relative humidity 55%). Further, the ultraviolet curable coating liquid was put into the coating liquid tank 18 of the apparatus. Next, in accordance with the procedure described in <Method for producing protrusions>, an ultraviolet curable coating solution was applied to the conductive base layer member. After coating, it was left in an N / N environment for 10 minutes, and only the liquid component in the ultraviolet curable coating solution was soaked into the conductive base layer.

塗工済み導電性基層部材を図示しない紫外線後照射装置にセットして、ローラを回転させながら1000mW/cmの照度で中心波長254nmの低圧水銀ランプを2分間均一に照射した。こうして実施例1の基層1を得た。製造条件は以下の通り。
塗工速度(塗工ヘッドの下降速度) : 100mm/s
塗工液の供給速度 : 45μl/s
得られた基層の突起の大きさ(高さ、幅)、存在密度を前述の方法にて測定した。結果を表1に示す
The coated conductive base layer member was set in an ultraviolet post-irradiation device (not shown), and a low-pressure mercury lamp having a central wavelength of 254 nm was uniformly irradiated for 2 minutes at an illuminance of 1000 mW / cm 2 while rotating the roller. Thus, the base layer 1 of Example 1 was obtained. The manufacturing conditions are as follows.
Coating speed (coating head descending speed): 100 mm / s
Coating liquid supply rate: 45 μl / s
The size (height, width) and density of the protrusions of the obtained base layer were measured by the methods described above. The results are shown in Table 1.

<基層2>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を7質量部に変更した以外は基層1と同様の製造条件により、基層2を得た。
<基層3>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を2質量部に変更した以外は基層1と同様の製造条件により、基層3を得た。
<Base layer 2>
A base layer 2 was obtained under the same production conditions as those of the base layer 1 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 7 parts by mass.
<Base layer 3>
A base layer 3 was obtained under the same production conditions as those of the base layer 1 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion-forming particles was changed to 2 parts by mass.

<基層4>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を1質量部に変更した以外は基層1と同様の製造条件により、基層4を得た。
<基層5>
突起用形成用粒子としての球形架橋アクリル樹脂玉の直径を2μmに変更し、かつ突起密度が実施例1と同じになるように調整するために塗工液の供給速度を10μl/sへと変更した以外は基層1と同様の製造条件により、基層5を得た。
<Base layer 4>
A base layer 4 was obtained under the same production conditions as those of the base layer 1 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 1 part by mass.
<Base layer 5>
The diameter of the spherical cross-linked acrylic resin balls as the forming particles for protrusions was changed to 2 μm, and the supply rate of the coating liquid was changed to 10 μl / s in order to adjust the protrusion density to be the same as in Example 1. A base layer 5 was obtained under the same production conditions as in the base layer 1 except that.

<基層6>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を2質量部に変更した以外は基層5と同様の製造条件により、基層6を得た。
<基層7>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を1質量部に変更した以外は基層5と同様の製造条件により、基層7を得た。
<Base layer 6>
A base layer 6 was obtained under the same production conditions as those for the base layer 5 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion-forming particles was changed to 2 parts by mass.
<Base layer 7>
A base layer 7 was obtained under the same production conditions as those for the base layer 5 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion-forming particles was changed to 1 part by mass.

<基層8>
突起形成用粒子としての球形架橋アクリル樹脂玉の直径を3μmに変更し、かつ突起密度が実施例1と同じになるように調整するために塗工液の供給速度を15μl/sへと変更した以外は基層1と同様の製造条件により、基層8を得た。
<基層9>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を2質量部に変更した以外は基層8と同様の製造条件により、基層9を得た。
<Base layer 8>
The diameter of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 3 μm, and the supply rate of the coating liquid was changed to 15 μl / s in order to adjust the protrusion density to be the same as in Example 1. Except for the above, base layer 8 was obtained under the same production conditions as base layer 1.
<Base layer 9>
A base layer 9 was obtained under the same production conditions as those of the base layer 8 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 2 parts by mass.

<基層10>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を1質量部に変更した以外は基層8と同様の製造条件により、基層10を得た。
<基層11>
突起形成用粒子としての球形架橋アクリル樹脂玉の直径を20μmに変更し、配合量を2質量部へと変更した。さらに突起密度が実施例1と同じになるように調整するために塗工液の供給速度を90μl/sへと変更した以外は基層1と同様の製造条件により、基層11を得た。
<Base layer 10>
A base layer 10 was obtained under the same production conditions as those of the base layer 8 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 1 part by mass.
<Base layer 11>
The diameter of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 20 μm, and the blending amount was changed to 2 parts by mass. Further, a base layer 11 was obtained under the same production conditions as those of the base layer 1 except that the supply rate of the coating solution was changed to 90 μl / s in order to adjust the protrusion density to be the same as in Example 1.

<基層12>
突起形成用粒子としての球形架橋アクリル樹脂玉の直径を30μmに変更し、かつ突起密度が実施例1と同じになるように調整するために塗工液の供給速度を145μl/sへと変更した以外は基層1と同様の製造条件により、基層12を得た。
<基層13>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を2質量部に変更した以外は基層12と同様の製造条件により、基層13を得た。
<Base layer 12>
The diameter of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 30 μm, and the supply speed of the coating liquid was changed to 145 μl / s in order to adjust the protrusion density to be the same as in Example 1. A base layer 12 was obtained under the same production conditions as in the base layer 1 except for the above.
<Base layer 13>
A base layer 13 was obtained under the same production conditions as those for the base layer 12 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion-forming particles was changed to 2 parts by mass.

<基層14>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を1質量部に変更した以外は基層12と同様の製造条件により、基層14を得た。
<基層15>
突起形成用粒子としての球形架橋アクリル樹脂玉の直径を35μmに変更し、かつ突起密度が実施例1と同じになるように調整するために塗工液の供給速度を180μl/sへと変更した以外は基層1と同様の製造条件により、基層15を得た。
<Base layer 14>
A base layer 14 was obtained under the same production conditions as those of the base layer 12 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 1 part by mass.
<Base layer 15>
The diameter of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 35 μm, and the supply speed of the coating liquid was changed to 180 μl / s in order to adjust the protrusion density to be the same as in Example 1. A base layer 15 was obtained under the same production conditions as in the base layer 1 except for the above.

<基層16>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を2質量部に変更した以外は基層15と同様の製造条件により、基層16を得た。
<基層17>
突起形成用粒子としての球形架橋アクリル樹脂玉の配合量を1質量部に変更した以外は基層15と同様の製造条件により、基層17を得た。
<Base layer 16>
A base layer 16 was obtained under the same production conditions as those of the base layer 15 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 2 parts by mass.
<Base layer 17>
A base layer 17 was obtained under the same production conditions as those for the base layer 15 except that the blending amount of the spherical crosslinked acrylic resin balls as the protrusion forming particles was changed to 1 part by mass.

<基層18>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形架橋スチレン樹脂玉(商品名:SBX-3SS、積水化成品工業株式会社製)へと変更した以外は基層8と同様の製造条件により、基層18を得た。
<基層19>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形架橋スチレン樹脂玉(商品名:SBX-3SS、積水化成品工業株式会社製)へと変更した以外は基層9と同様の製造条件により、基層19を得た。
<Base layer 18>
The material of the protrusion forming particles was changed. A base layer 18 was obtained under the same production conditions as those for the base layer 8 except that the spherical cross-linked acrylic resin balls were changed to spherical cross-linked styrene resin balls (trade name: SBX-3SS, manufactured by Sekisui Plastics Co., Ltd.).
<Base layer 19>
The material of the protrusion forming particles was changed. A base layer 19 was obtained under the same production conditions as those for the base layer 9 except that the spherical cross-linked acrylic resin balls were changed to spherical cross-linked styrene resin balls (trade name: SBX-3SS, manufactured by Sekisui Plastics Co., Ltd.).

<基層20>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形架橋スチレン樹脂玉(商品名:SBX-30SS、積水化成品工業株式会社製)へと変更した以外は基層12と同様の製造条件により、基層20を得た。
<基層21>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形架橋スチレン樹脂玉(商品名:SBX-30SS、積水化成品工業株式会社製)へと変更した以外は基層13と同様の製造条件により、基層21を得た。
<Base layer 20>
The material of the protrusion forming particles was changed. A base layer 20 was obtained under the same production conditions as those of the base layer 12 except that the spherical cross-linked acrylic resin balls were changed to spherical cross-linked styrene resin balls (trade name: SBX-30SS, manufactured by Sekisui Plastics Co., Ltd.).
<Base layer 21>
The material of the protrusion forming particles was changed. A base layer 21 was obtained under the same production conditions as the base layer 13 except that the spherical cross-linked acrylic resin ball was changed to a spherical cross-linked styrene resin ball (trade name: SBX-30SS, manufactured by Sekisui Plastics Co., Ltd.).

<基層22>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形の多孔質ゼオライト粒子(商品名:琉球ライト、株式会社エコウエル製)を分級して平均粒径3μmへ調整したものへと変更した以外は基層8と同様の製造条件により、基層22を得た。
<基層23>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形の多孔質ゼオライト粒子(商品名:琉球ライト、株式会社エコウエル製)を分級して平均粒径3μmへ調整したものへと変更した以外は基層9と同様の製造条件により、基層23を得た。
<Base layer 22>
The material of the protrusion forming particles was changed. Manufacturing conditions similar to those of the base layer 8 except that the spherical crosslinked acrylic resin balls were changed to spherical porous zeolite particles (trade name: Ryukyu Light, manufactured by Ecowell Co., Ltd.) and adjusted to an average particle size of 3 μm. Thus, the base layer 22 was obtained.
<Base layer 23>
The material of the protrusion forming particles was changed. Manufacturing conditions similar to those of the base layer 9 except that the spherical crosslinked acrylic resin balls were changed to spherical porous zeolite particles (trade name: Ryukyu Light, manufactured by Ecowell Co., Ltd.) and adjusted to an average particle size of 3 μm. Thus, the base layer 23 was obtained.

<基層24>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形の多孔質ゼオライト粒子(商品名:琉球ライト、株式会社エコウエル製)を分級して平均粒径30μmへ調整したものへと変更した以外は基層12と同様の製造条件により、基層24を得た。
<基層25>
突起形成用粒子の材質を変更した。球形架橋アクリル樹脂玉を、球形の多孔質ゼオライト粒子(商品名:琉球ライト、株式会社エコウエル製)を分級して平均粒径30μmへ調整したものへと変更した以外は基層13と同様の製造条件により、基層25を得た。
<Base layer 24>
The material of the protrusion forming particles was changed. Production conditions similar to those of the base layer 12 except that the spherical crosslinked acrylic resin balls were changed to spherical porous zeolite particles (trade name: Ryukyu Light, manufactured by Ecowell Co., Ltd.) and adjusted to an average particle size of 30 μm. Thus, the base layer 24 was obtained.
<Base layer 25>
The material of the protrusion forming particles was changed. Manufacturing conditions similar to those of the base layer 13 except that the spherical crosslinked acrylic resin balls were changed to spherical porous zeolite particles (trade name: Ryukyu Light, manufactured by Ecowell Co., Ltd.) and adjusted to an average particle size of 30 μm. Thus, the base layer 25 was obtained.

<基層26>
最表面層塗工液の調製
シリカ粉末(レオシールQS−10 株式会社トクヤマ製)100質量部に対して、ジメチルジメトキシシラン1質量部を配合した。これをメカノマイクロス(株式会社奈良製作所製)をベッセル回転速度200回転/分(以下:rpm)、ロータ回転速度2000rpmで稼動させながら投入し70℃を保ちながら15分間混練りした。次いで導電材としてカーボンブラック(商品名:MA100、三菱化学株式会社製、揮発分1.5%)をシリカ粉末に対して100質量部投入し、70℃を保ちながら100分間混練りした。得られた導電性複合粒子1は比表面積が140m2/g、DBP吸油量が90cm3/100gであった。
<Base layer 26>
Preparation of outermost surface layer coating liquid 1 part by mass of dimethyldimethoxysilane was blended with 100 parts by mass of silica powder (Reosil QS-10, manufactured by Tokuyama Corporation). The mechanomicros (manufactured by Nara Seisakusho Co., Ltd.) was charged while operating at a vessel rotational speed of 200 rpm / minute (hereinafter: rpm) and a rotor rotational speed of 2000 rpm, and kneaded for 15 minutes while maintaining 70 ° C. Next, 100 parts by mass of carbon black (trade name: MA100, manufactured by Mitsubishi Chemical Corporation, 1.5% volatile content) as a conductive material was added to the silica powder, and kneaded for 100 minutes while maintaining 70 ° C. The obtained conductive composite particles 1 had a specific surface area of 140 m 2 / g and a DBP oil absorption of 90 cm 3/100 g.

ラクトン変性アクリルポリオール(商品名:プラクセルDC2016、ダイセル化学工業(株)製)1056質量部を、2304質量部のメチルイソブチルケトン(MIBK)に溶解し、固形分22質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、下記の表に示す割合で混合し、配合液を得た。   1056 parts by mass of lactone-modified acrylic polyol (trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 2304 parts by mass of methyl isobutyl ketone (MIBK) to obtain a solution having a solid content of 22% by mass. It mixed with the ratio shown in the following table | surface with respect to 200 mass parts of this acrylic polyol solution, and the compounding liquid was obtained.

Figure 2013120361
Figure 2013120361

上記配合液30リットルを、直径30cmのステンレス円筒容器に入れ、攪拌羽を300rpmで回して30分間攪拌した。この分散液30リットルを、直径0.8mmのガラスビーズを80%充填した内容量2リットルの横型ビーズミルに循環させて分散した。8mm/sの周速度、2リットル/分の循環量、ミルの外壁の温度22℃で回転させながら、8時間分散した。その後、循環しているビーズミルのタンクに平均粒径10μmの球形架橋アクリル樹脂玉(商品名:MBX-10SS、積水化成品工業株式会社製)を、前記アクリルポリオール溶液200質量部に対して10.5質量部となるように配合した。更に3mm/sの周速度、2リットル/分の循環量、ミルの外壁の温度22℃で回転させながら、4時間分散した。分散後、液を取り出し、粘度を測定した。塗料の粘度は23℃の環境下で12.0mPa・sであった。   30 liters of the above blended solution was put into a stainless steel cylindrical container having a diameter of 30 cm, and the stirring blade was rotated at 300 rpm and stirred for 30 minutes. 30 liters of this dispersion was circulated and dispersed in a 2 liter horizontal bead mill filled with 80% glass beads with a diameter of 0.8 mm. It was dispersed for 8 hours while rotating at a peripheral speed of 8 mm / s, a circulation rate of 2 liters / minute, and a temperature of the outer wall of the mill of 22 ° C. Thereafter, spherical crosslinked acrylic resin balls (trade name: MBX-10SS, manufactured by Sekisui Plastics Co., Ltd.) having an average particle diameter of 10 μm are placed in a circulating bead mill tank at 10.10 parts by mass with respect to 200 parts by mass of the acrylic polyol solution. It mix | blended so that it might become 5 mass parts. Furthermore, it was dispersed for 4 hours while rotating at a peripheral speed of 3 mm / s, a circulation rate of 2 liters / minute, and a temperature of the outer wall of the mill of 22 ° C. After dispersion, the liquid was taken out and the viscosity was measured. The viscosity of the paint was 12.0 mPa · s under an environment of 23 ° C.

この塗液を浸漬塗工用の塗工槽に入れ、12時間ゆっくり循環して液が安定したところで引き続き循環とオーバーフローを継続させながら実施例1で使用した導電性基層部材に塗工した。その際、下降速度は30mm/s、最下点で4秒間停止した後、初速25mm/s、最終速度(下端部が塗工される速度)2mm/sの条件になるように帯電部材の位置に対して一次関数となる速度勾配をつけて被塗工物の昇降を行った。これにより、最表面層の膜厚が帯電部材の塗工状態における上下でほぼ均一になるように塗工を行った。
その後、30分間23℃にて風乾し、80℃のクリーンオーブンで30分間乾燥し、次に160℃のオーブンで60分間乾燥した。
こうして基層26を得た。
This coating liquid was put into a coating tank for dip coating, and was slowly circulated for 12 hours. When the liquid was stabilized, coating was continued on the conductive base layer member used in Example 1 while continuing circulation and overflow. At that time, the lowering speed is 30 mm / s, and after stopping for 4 seconds at the lowest point, the position of the charging member is set so that the initial speed is 25 mm / s and the final speed (speed at which the lower end is applied) is 2 mm / s. The workpiece was moved up and down with a linear velocity gradient. Thus, the coating was performed so that the film thickness of the outermost surface layer was substantially uniform in the upper and lower portions in the coating state of the charging member.
Thereafter, it was air-dried at 23 ° C. for 30 minutes, dried in a clean oven at 80 ° C. for 30 minutes, and then dried in an oven at 160 ° C. for 60 minutes.
In this way, the base layer 26 was obtained.

<基層27>
基層26の製造工程において、球形架橋アクリル樹脂玉(商品名:MBX-10SS、積水化成品工業株式会社製)を配合しなかった以外は基層26と同様にして、基層27を得た。
<基層28>
実施例1で使用した導電性基層部材そのものを基層28とした。
表5に基層の一覧を示す。
<Base layer 27>
In the production process of the base layer 26, a base layer 27 was obtained in the same manner as the base layer 26, except that a spherical crosslinked acrylic resin ball (trade name: MBX-10SS, manufactured by Sekisui Chemical Co., Ltd.) was not blended.
<Base layer 28>
The conductive base layer member itself used in Example 1 was used as the base layer 28.
Table 5 shows a list of base layers.

Figure 2013120361
Figure 2013120361

<微粉>
一次粒径20nmのヒュームドシリカ(商品名:アエロジル90、日本アエロジル社製)100gをシランカップリング剤としてのイソブチルトリメトキシシラン(商品名:AY43−048、東レ・ダウコーニングシリコーン社製)10gで表面処理し、一次粒径20nm、Carrの流動性90である微粉1を得た。
<Fine powder>
100 g of fumed silica having a primary particle size of 20 nm (trade name: Aerosil 90, manufactured by Nippon Aerosil Co., Ltd.) and 10 g of isobutyltrimethoxysilane (trade name: AY43-048, manufactured by Toray Dow Corning Silicone) as a silane coupling agent Surface treatment was performed to obtain fine powder 1 having a primary particle size of 20 nm and a Carr fluidity of 90.

さらに、シランカップリング剤の処理量と原料シリカの一次粒子径を適時調整することにより、微粉2から18を得た。シランカップリング剤の処理量を増やすとCarrの流動性指数も増大し、シランカップリング剤の処理量を減らすとCarrの流動性指数も減少する。   Furthermore, fine powders 2 to 18 were obtained by adjusting the treatment amount of the silane coupling agent and the primary particle diameter of the raw material silica in a timely manner. Increasing the throughput of the silane coupling agent also increases the Carr's fluidity index, and decreasing the throughput of the silane coupling agent decreases the Carr's fluidity index.

また、一次粒径20nmの導電性酸化スズ粉体を微粉19、一次粒径50nmの導電性酸化亜鉛粉体を微粉20とした。さらに、一次粒径20nmの絶縁性酸化チタン粉体を微粉21、一次粒径100nmの絶縁性アルミナ粉体を微粉22、一次粒径0.2μmの架橋メラミン樹脂粉体を微粉23とした。また、一次粒径0.5μmのハイドロタルサイト粉体を微粉24、一次粒径20nmのPTFE粉体を微粉25、一次粒径0.5μmのロジン粉体を微粉26とした。   Further, conductive tin oxide powder having a primary particle size of 20 nm was designated as fine powder 19, and conductive zinc oxide powder having a primary particle size of 50 nm was designated as fine powder 20. Further, the insulating titanium oxide powder having a primary particle diameter of 20 nm was used as fine powder 21, the insulating alumina powder having a primary particle diameter of 100 nm was used as fine powder 22, and the crosslinked melamine resin powder having a primary particle diameter of 0.2 μm was used as fine powder 23. In addition, hydrotalcite powder having a primary particle size of 0.5 μm was fine powder 24, PTFE powder having a primary particle size of 20 nm was fine powder 25, and rosin powder having a primary particle size of 0.5 μm was fine powder 26.

各微粉の非粘着性を調べた。非粘着性の評価は、各微粉をアクリル板に100g/cm2の圧力で1分間押し付けた後に20m/sの空気を吹き付けた時に残存するか否かで判断した。即ち、エアブローして微粉の塊が無くなった物を○(非粘着性)、塊が残存した微粉を×(粘着性)とした。
表6に微粉の一覧を示す。
The non-stickiness of each fine powder was examined. Non-adhesive evaluation was judged by whether each fine powder was pressed against an acrylic plate at a pressure of 100 g / cm 2 for 1 minute and then remained when 20 m / s of air was sprayed. That is, a product in which the lump of fine powder disappeared by air blowing was designated as “O” (non-adhesive), and a fine powder in which the lump remained was designated as “X” (adhesive).
Table 6 shows a list of fine powders.

Figure 2013120361
Figure 2013120361

<実施例1>
基層1に微粉1を保持させて、実施例1の帯電部材を得た。
本発明においては、まず基層を周速度200mm/sで回転させながら、5mmの厚さに重ねた再生セルロースの布に微粉をまぶし、これを基層に押し当てることにより微粉を導電性基層に保持させた。押し当てる応力は0.5N/cm、押し当てる時間は20秒間とした。再生セルロースの布にまぶす微粉の量を調整することにより、微粉の保持量を調整した。
<Example 1>
Fine powder 1 was held on the base layer 1 to obtain a charging member of Example 1.
In the present invention, while the base layer is rotated at a peripheral speed of 200 mm / s, the fine cellulose powder is applied to the regenerated cellulose cloth piled up to a thickness of 5 mm and pressed against the base layer to hold the fine powder on the conductive base layer. It was. The pressing stress was 0.5 N / cm 2 and the pressing time was 20 seconds. The amount of fine powder retained was adjusted by adjusting the amount of fine powder applied to the regenerated cellulose cloth.

<帯電部材の評価>
<画像形成装置>
図2に本発明に係る帯電部材の一つの実施の形態である帯電部材6を帯電ローラとして用いた電子写真画像形成装置を示す。像担持体である感光体ドラム5は矢印の方向に回転しながら、帯電ローラ6によって一次帯電され、次に不図示の露光手段からの露光光11により静電潜像が形成される。現像剤容器31内の現像剤は、現像ローラ12と現像ブレード30との間で摩擦されて帯電されつつ、現像ローラ12の表面に担持されて、感光体ドラム5の表面に搬送される。その結果、静電潜像は現像され、トナー像が形成される。
<Evaluation of charging member>
<Image forming apparatus>
FIG. 2 shows an electrophotographic image forming apparatus using a charging member 6 as an embodiment of a charging member according to the present invention as a charging roller. The photosensitive drum 5 as an image carrier is primarily charged by the charging roller 6 while rotating in the direction of the arrow, and then an electrostatic latent image is formed by the exposure light 11 from an exposure unit (not shown). The developer in the developer container 31 is carried on the surface of the developing roller 12 while being rubbed and charged between the developing roller 12 and the developing blade 30 and conveyed to the surface of the photosensitive drum 5. As a result, the electrostatic latent image is developed and a toner image is formed.

トナー像は、転写ローラ8と感光体ドラム5の間において記録メディア7に転写され、その後定着部9において定着される。転写されずに感光体5の表面に残留したトナーは、クリーニングブレード10により回収される。
現像ローラ12、帯電ローラ6、転写ローラ8等には画像形成装置の電源18、20、22から、それぞれ電圧が印加されている。
The toner image is transferred to the recording medium 7 between the transfer roller 8 and the photosensitive drum 5, and then fixed by the fixing unit 9. The toner remaining on the surface of the photoreceptor 5 without being transferred is collected by the cleaning blade 10.
Voltages are applied to the developing roller 12, the charging roller 6, the transfer roller 8, and the like from power sources 18, 20, and 22, respectively, of the image forming apparatus.

ここで、帯電ローラ6には、電源20から直流電圧が印加される。印加電圧に直流電圧を用いることで、電源のコストを低く抑えることができるという利点がある。また帯電音が発生しないという利点がある。
印加する直流電圧の絶対値は、空気の放電開始電圧と被帯電体表面(感光体表面)の一次帯電電位との和とすることが好ましい。通常空気の放電開始電圧は600〜700V程度、感光体表面の一次帯電電位は300〜800V程度なので、具体的な一次帯電電圧としては900〜1500Vとすることが好ましい。
Here, a DC voltage is applied to the charging roller 6 from the power supply 20. By using a DC voltage as the applied voltage, there is an advantage that the cost of the power supply can be kept low. There is also an advantage that no charging noise is generated.
The absolute value of the DC voltage to be applied is preferably the sum of the discharge start voltage of air and the primary charging potential of the surface of the member to be charged (photosensitive member surface). Usually, the discharge start voltage of air is about 600 to 700 V, and the primary charging potential of the photoreceptor surface is about 300 to 800 V. Therefore, the specific primary charging voltage is preferably 900 to 1500 V.

また、本発明に係る電子写真画像形成装置は、図3に示したように画像形成に必要な部材を4色分備えたカラー電子写真画像形成装置としてもよい。記録メディア7が矢印の方向へ移動する間に、トナー像が感光体ドラム5dと転写ローラ8dの間、感光体ドラム5cと転写ローラ8cの間、感光体ドラム5bと転写ローラ8bの間、感光体ドラム5aと転写ローラ8aの間で順番に転写される。記録メディア7に転写されたトナー像は定着部9において定着される。帯電ローラ6a、6b、6c、6dは、それぞれ感光体ドラム5a、5b、5c、5dを帯電する。カラー電子写真画像を形成するためには通常シアン、イエロー、マゼンダ、ブラック、の4色のトナーを使用する。4色のトナーは記録メディア7に対して任意の順番で転写して良い。   Further, the electrophotographic image forming apparatus according to the present invention may be a color electrophotographic image forming apparatus provided with four members for image formation as shown in FIG. While the recording medium 7 moves in the direction of the arrow, the toner image is exposed between the photosensitive drum 5d and the transfer roller 8d, between the photosensitive drum 5c and the transfer roller 8c, between the photosensitive drum 5b and the transfer roller 8b, and between the photosensitive drum 5b and the transfer roller 8b. Transfer is performed sequentially between the body drum 5a and the transfer roller 8a. The toner image transferred to the recording medium 7 is fixed in the fixing unit 9. The charging rollers 6a, 6b, 6c, and 6d charge the photosensitive drums 5a, 5b, 5c, and 5d, respectively. In order to form a color electrophotographic image, toners of four colors of cyan, yellow, magenta and black are usually used. The four color toners may be transferred to the recording medium 7 in any order.

<画像評価>
電子写真式レーザプリンタはA4縦出力用であり、記録メディアの出力スピードが、160mm/s、画像の解像度が600dpiである電子写真式レーザプリンタを用意した。
感光体はアルミニウムシリンダーに膜厚22μmのOPC層をコートした反転現像方式の感光ドラムであり、最外層は変性ポリアリレート樹脂をバインダー樹脂とする電荷輸送層である。
<Image evaluation>
The electrophotographic laser printer is for A4 portrait output, and an electrophotographic laser printer with a recording medium output speed of 160 mm / s and an image resolution of 600 dpi was prepared.
The photoreceptor is a reversal development type photosensitive drum in which an aluminum cylinder is coated with an OPC layer having a thickness of 22 μm, and the outermost layer is a charge transport layer using a modified polyarylate resin as a binder resin.

トナーは、ワックスを中心に荷電制御剤と色素等を含むスチレンとブチルアクリレートのランダムコポリマーを重合させ、更に表面にポリエステル薄層を重合させシリカ微粒子等を外添した、ガラス転移温度63℃、質量平均粒径6.5μmの重合トナーである。   The toner is made by polymerizing a random copolymer of styrene and butyl acrylate containing a charge control agent and a pigment mainly with wax, further polymerizing a thin polyester layer on the surface, and externally adding silica fine particles, etc., glass transition temperature 63 ° C., mass This is a polymerized toner having an average particle size of 6.5 μm.

<初期画像評価>
前記電子写真式レーザプリンタに本実施例に係る帯電部材を装着した。そしてこの電子写真式レーザプリンタをN/N環境に12時間置いた後、N/N環境中で画像出力した。一次帯電電圧として−1150Vを該帯電ローラに印加した。画像パターンとしては、ハーフトーン(感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描くような画像)パターンを用いた。
<Initial image evaluation>
The charging member according to this example was mounted on the electrophotographic laser printer. The electrophotographic laser printer was placed in an N / N environment for 12 hours, and then an image was output in the N / N environment. A primary charging voltage of −1150 V was applied to the charging roller. As an image pattern, a halftone pattern (an image in which a horizontal line having a width of 1 dot and an interval of 2 dots is drawn in the direction perpendicular to the rotation direction of the photosensitive member) is used.

<初期黒ポチ・ランク>
突起がレーザー光線を遮ることに起因する黒ポチが画像上にどの様に現れるかで、初期黒ポチランクを評価した。黒ポチが見え難い程画像としては良好であり、ランクの数値が大きい。
<Initial black potty rank>
The initial black spot rank was evaluated based on how the black spots caused by the protrusions blocking the laser beam appeared on the image. The more difficult the black spots are seen, the better the image and the higher the numerical value of the rank.

Figure 2013120361
Figure 2013120361

<表面電位・ランク>
次に、上記電子写真式レーザプリンタの感光体の帯電後表面電位を測定し、表面電位ランクを評価した。感光体表面電位は、帯電電圧の絶対値から空気中の放電開始電圧を差し引いた値程度になる。感光体の表面電位が大きい程帯電部材の帯電能力が大きく、ランクの数値が大きい。
<Surface potential / rank>
Next, the surface potential after charging of the photoreceptor of the electrophotographic laser printer was measured, and the surface potential rank was evaluated. The photoreceptor surface potential is about the value obtained by subtracting the discharge start voltage in the air from the absolute value of the charging voltage. The charging capability of the charging member increases as the surface potential of the photoreceptor increases, and the rank value increases.

Figure 2013120361
Figure 2013120361

<初期リーク・ランク>
さらに、小さい穴を空けてピンホールリークさせる為のピンホール空き感光体を作成し、このピンホール空き感光体を用いて各帯電部材の初期リークランクを評価した。
ピンホール空き感光体は、精密ドリルを用いて感光体のOPC層に垂直な穴を空けて作成した。穴はOPC層を突き抜けて下地のアルミニウムシリンダーまで達した。穴の大きさは、直径0.5mmと0.3mmの2種類とした。それぞれの大きさの穴はOPCの表面にランダムに配置して、直径0.5mmが5個、直径0.3mmが5個の、合計10個空けた。
<Initial leak rank>
Further, a pinhole empty photoconductor for making a pinhole leak by making a small hole was prepared, and the initial leak crank of each charging member was evaluated using the pinhole empty photoconductor.
The pinhole empty photoconductor was prepared by making a hole perpendicular to the OPC layer of the photoconductor using a precision drill. The hole penetrated the OPC layer and reached the underlying aluminum cylinder. There were two types of holes with diameters of 0.5 mm and 0.3 mm. The holes of each size were randomly arranged on the surface of the OPC, and a total of 10 holes were formed with 5 pieces having a diameter of 0.5 mm and 5 pieces having a diameter of 0.3 mm.

このピンホール空き感光体を上記電子写真式レーザプリンタに組み込んで、ハーフトーン画像を出力し、各実施例の帯電部材を評価した。感光体にピンホールが存在すると、該ピンホールを通じて帯電部材からアルミニウムシリンダーへと電荷が流れやすくなり、ピンホールが無い部分の電荷の供給が不足し、ハーフトーン画像上に黒い帯が発生しやすくなる。ピンホールの大きさが大きい程、電荷が流れ込みやすく、黒帯びが発生しやすい。帯電部材としては、たとえピンホールが存在していてもハーフトーン画像上に黒帯が発生し難い方が優れている。   This pinhole empty photoconductor was incorporated into the electrophotographic laser printer, a halftone image was output, and the charging member of each example was evaluated. If there is a pinhole in the photoconductor, the electric charge easily flows from the charging member to the aluminum cylinder through the pinhole, the supply of the electric charge in the portion without the pinhole is insufficient, and a black band is easily generated on the halftone image. Become. The larger the pinhole size, the easier it is for the charge to flow in and black spots are more likely to occur. As the charging member, it is better that a black belt is hardly generated on the halftone image even if a pinhole is present.

Figure 2013120361
Figure 2013120361

<初期の微粉保持量評価 最大保持量ランク>
帯電部材に微粉を最大限保持させた時の保持量を測定し、最大保持量ランクを評価した。
本発明の帯電部材においては、微粉を多く保持した方が耐久による帯電部材の放電面の保護が図られる。保持量が多い程、最大保持量ランクも良好である。
<Early fine powder retention amount evaluation Maximum retention amount rank>
The retention amount when the charging member held the fine powder to the maximum was measured, and the maximum retention amount rank was evaluated.
In the charging member of the present invention, it is possible to protect the discharge surface of the charging member due to durability when a larger amount of fine powder is retained. The larger the holding amount, the better the maximum holding amount rank.

Figure 2013120361
Figure 2013120361

<耐久画像評価 耐久ランク>
次に、帯電部材を繰り返し使用した場合の帯電横スジの発生状態を調査し、帯電部材の耐久ランクを評価した。
前記電子写真式レーザプリンタを用いてN/N環境下にて、幅2ドット、間隔98ドットの横線を繰り返し描画するパターンを連続して3000枚出力した後、同環境下で前記ハーフトーンの画像パターンを出力した。その後、ローラを取り出して高圧水洗浄機で高圧のイオン交換水を噴射してローラを洗浄し、高圧乾燥空気を吹き付けて水切りした。洗浄後のローラをN/N環境に12時間放置し、その後、初期に保持させた微粉を初期と同量保持させた。微粉を保持させたローラを再びN/N環境に12時間放置し、その後再び初期画像出力と3000枚の耐久出力と最後のハーフトーン画像出力を行った。本実施例の評価基準としては、上記耐久を何回行って最後の画出しを行った時にハーフトーン画像上に横スジ状の画像ムラが認められるかを観察した。
<Durable image evaluation durability rank>
Next, the state of occurrence of charging horizontal streaks when the charging member was repeatedly used was investigated, and the durability rank of the charging member was evaluated.
Using the electrophotographic laser printer, after continuously outputting 3000 patterns in which a horizontal line having a width of 2 dots and an interval of 98 dots is drawn in an N / N environment, the halftone image is output in the same environment. A pattern was output. Then, the roller was taken out, high pressure ion exchange water was sprayed with a high pressure water washer to wash the roller, and high pressure dry air was blown to drain the water. The cleaned roller was left in an N / N environment for 12 hours, and then the initial amount of fine powder held was maintained at the same amount as the initial value. The roller holding the fine powder was again left in the N / N environment for 12 hours, and then the initial image output, the 3000 sheet durable output, and the final halftone image output were performed again. As an evaluation standard of this example, it was observed how many times the above-mentioned durability was performed and when the last image was printed, horizontal streak-like image unevenness was observed on the halftone image.

Figure 2013120361
実施例1の帯電部材は4回の耐久と再生を繰り返しても横スジ状の画像ムラの発生は無かった。横スジ状の画像ムラ評価ランクは5であった。
Figure 2013120361
The charging member of Example 1 did not cause horizontal streak-like image unevenness even after repeated durability and reproduction four times. The horizontal streak-like image unevenness evaluation rank was 5.

<耐久微粉保持量変化率の評価 微粉保持量変化率ランク>
前記耐久試験において、1回目の耐久試験前後の微粉保持量変化率を測定した。耐久試験を行っても微粉の保持量が変化し難い帯電部材の方が帯電性を維持しやすく、より良好な帯電部材である。耐久前の微粉保持量に対する耐久後の微粉保持量の倍率により微粉保持量変化率ランクを設定した。耐久後の微粉保持量の測定は初期の微粉保持量評価に準じた。
<Evaluation of durable fine powder retention rate change rate Fine powder retention rate change rate rank>
In the durability test, the rate of change in fine powder retention before and after the first durability test was measured. A charging member that does not easily change the amount of fine powder retained even after performing an endurance test is easier to maintain chargeability and is a better charging member. The fine powder retention rate change rate rank was set according to the ratio of the fine powder retention amount after durability to the fine powder retention amount before durability. The measurement of the amount of fine powder retained after durability was in accordance with the initial evaluation of the amount of fine powder retained.

Figure 2013120361
Figure 2013120361

〔実施例2から実施例12〕
導電性基層の突起密度と、保持させる微粉の保持量とを変化させて試験を行った。いずれも再生可能な帯電部材であった。下記表13に導電性基層と微粉の組み合わせを記載する。
[Example 2 to Example 12]
The test was performed by changing the protrusion density of the conductive base layer and the amount of fine powder retained. All were rechargeable charging members. Table 13 below shows combinations of conductive base layer and fine powder.

Figure 2013120361
表13に記載の実施例の評価結果を表14に示す。
Figure 2013120361
Table 14 shows the evaluation results of the examples described in Table 13.

Figure 2013120361
Figure 2013120361

〔実施例13から実施例25〕
導電性基層の突起の大きさと、突起の密度、保持させる微粉の保持量とを変化させて試験を行った。突起の大きさが3μm未満もしくは30μmよりも大きいと再生後に若干横スジ状の画像ムラが現れた。その他の帯電部材は再生して繰り返し使用可能であった。下記表15に導電性基層と微粉の組み合わせを記載する。
[Example 13 to Example 25]
The test was conducted by changing the size of the protrusions of the conductive base layer, the density of the protrusions, and the amount of fine powder retained. When the size of the protrusion was less than 3 μm or larger than 30 μm, a slight horizontal stripe-like image unevenness appeared after reproduction. Other charging members could be recycled and used repeatedly. Table 15 below shows combinations of conductive base layer and fine powder.

Figure 2013120361
表15に記載の実施例の評価結果を表16に示す。
Figure 2013120361
The evaluation results of the examples described in Table 15 are shown in Table 16.

Figure 2013120361
Figure 2013120361

〔実施例26から実施例67〕
保持させる微粉の材質を導電性の酸化スズへ変えて試験を行った。突起の大きさが3μm未満もしくは30μmよりも大きいと再生後に若干横スジ状の画像ムラが現れた。その他の帯電部材も、微粉がシリカの時と同様の傾向であり、再生して繰り返し使用可能であった。下記表17に導電性基層と微粉の組み合わせを記載する。
[Example 26 to Example 67]
The test was performed by changing the material of the fine powder to be held to conductive tin oxide. When the size of the protrusion was less than 3 μm or larger than 30 μm, a slight horizontal stripe-like image unevenness appeared after reproduction. Other charging members also had the same tendency as when the fine powder was silica, and could be regenerated and used repeatedly. Table 17 below shows combinations of conductive base layer and fine powder.

Figure 2013120361
表17に記載の実施例の評価結果を表18に示す。
Figure 2013120361
The evaluation results of the examples described in Table 17 are shown in Table 18.

Figure 2013120361
Figure 2013120361

〔実施例68から実施例80〕
保持させる微粉の流動性をカップリング剤処理で変えて試験を行った。実施例1で添加したカップリング剤の添加量を増加させると流動性が向上し、減量すると流動性が低下した。突起の大きさが3μm未満もしくは30μmよりも大きいと再生後に若干横スジ状の画像ムラが現れた。またCarrの流動性指数が40未満であると再生後に若干横スジ状の画像ムラが現れた。その他の帯電部材も、再生して繰り返し使用可能であった。下記表19に導電性基層と微粉の組み合わせを記載する。
[Example 68 to Example 80]
The test was performed by changing the fluidity of the fine powder to be retained by the coupling agent treatment. When the amount of the coupling agent added in Example 1 was increased, the fluidity was improved, and when the amount was decreased, the fluidity was lowered. When the size of the protrusion was less than 3 μm or larger than 30 μm, a slight horizontal stripe-like image unevenness appeared after reproduction. Further, when the Carr's fluidity index is less than 40, a slight horizontal stripe-like image unevenness appears after reproduction. Other charging members could also be recycled and used repeatedly. Table 19 below shows combinations of conductive base layer and fine powder.

Figure 2013120361
表19に記載の実施例の評価結果を表20に記載する。
Figure 2013120361
The evaluation results of the examples described in Table 19 are shown in Table 20.

Figure 2013120361
Figure 2013120361

〔実施例81から実施例102〕
保持させる微粉の流動性と微粉径を様々に変えて試験を行った。突起の大きさが3μm未満もしくは30μmよりも大きいと再生後に若干横スジ状の画像ムラが現れた。またCarrの流動性指数が40未満であると再生後に若干横スジ状の画像ムラが現れた。さらに微粉径が突起の0.5倍よりも大きいと再生後に若干横スジ状の画像ムラが現れた。その他の帯電部材も、再生して繰り返し使用可能であった。下記表21に導電性基層と微粉の組み合わせを記載する。
[Example 81 to Example 102]
The test was conducted by changing the flowability and the fine powder diameter of the fine powder to be held. When the size of the protrusion was less than 3 μm or larger than 30 μm, a slight horizontal stripe-like image unevenness appeared after reproduction. Further, when the Carr's fluidity index is less than 40, a slight horizontal stripe-like image unevenness appears after reproduction. Further, when the fine powder diameter was larger than 0.5 times the protrusion, a slight horizontal stripe-like image unevenness appeared after reproduction. Other charging members could also be recycled and used repeatedly. Table 21 below shows combinations of conductive base layer and fine powder.

Figure 2013120361
表21に記載の実施例の評価結果を表22に示す。
Figure 2013120361
Table 22 shows the evaluation results of the examples described in Table 21.

Figure 2013120361
Figure 2013120361

〔実施例103から実施例113〕
保持させる微粉の流動性と材質を様々に変えて試験を行った。また、突起の材質を変えて評価を行った。
Carrの流動性指数が10であるPTFE(ポリテトラフルオロエチレン)粒子を使用すると再生後に若干横スジ状の画像ムラが現れた。その他の帯電部材も、再生して繰り返し使用可能であった。下記表23に導電性基層と微粉の組み合わせを記載する。
[Example 103 to Example 113]
The test was conducted by changing the fluidity and material of the fine powder to be retained. Further, the evaluation was performed by changing the material of the protrusion.
When PTFE (polytetrafluoroethylene) particles having a Carr's fluidity index of 10 were used, horizontal streak-like image unevenness appeared after reproduction. Other charging members could also be recycled and used repeatedly. Table 23 below shows combinations of conductive base layer and fine powder.

PTFEは非粘着性ではあるものの、凝集しやすく流動性が若干劣り、Carrの流動性指数が小さい。よって帯電部材表面の放電面に凝集塊が付着しやすく、再生後の横スジ発生の原因になったと考えられる。
またメラミン樹脂の非粘着性微粉も耐久後の再生によって横スジが発生した。同程度の微粉保持量のシリカや導電性酸化スズ、導電性酸化亜鉛、絶縁性酸化チタンと比較して繰り返し使用可能回数が小さい。これは、メラミン樹脂が酸化物では無く、耐久中の放電による酸化によって微粉が劣化し、帯電部材表面に固着して帯電部材の放電能力が低下したためであると考えられる。
Although PTFE is non-tacky, it tends to agglomerate and is slightly inferior in fluidity, and Carr's fluidity index is small. Therefore, it is considered that aggregates are likely to adhere to the discharge surface of the charging member surface, causing horizontal streaks after regeneration.
Also, non-adhesive fine powder of melamine resin generated horizontal streaks due to regeneration after endurance. Compared with silica, conductive tin oxide, conductive zinc oxide, and insulating titanium oxide having the same amount of fine powder retention, the number of times of repeated use is small. This is presumably because the melamine resin is not an oxide, and fine powder deteriorates due to oxidation by the discharge during durability, and is fixed to the surface of the charging member, thereby reducing the discharging ability of the charging member.

Figure 2013120361
表23に記載の実施例の評価結果を表24に示す。
Figure 2013120361
Table 24 shows the evaluation results of the examples described in Table 23.

Figure 2013120361
Figure 2013120361

〔比較例1〕
基層26をそのまま比較例1の帯電部材として使用した。これを実施例1と同様に評価した。
〔比較例2〕
基層26に対して、微粉保持量の面積比2となる様に微粉1を保持させた。こうして比較例2の帯電部材を得た。これを実施例1と同様に評価した。
〔比較例3から6〕
基層26に対して、比較例2の帯電部材とは微粉材質と微粉径、微粉保持量を変化させて微粉を保持させ、比較例か3から比較例6の帯電部材を得た。変化させた微粉材質と微粉径、微粉保持量は表25に示す。これらの帯電部材を実施例1と同様に評価した。
[Comparative Example 1]
The base layer 26 was used as the charging member of Comparative Example 1 as it was. This was evaluated in the same manner as in Example 1.
[Comparative Example 2]
The fine powder 1 was held with respect to the base layer 26 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 2 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Examples 3 to 6]
With respect to the base layer 26, the charging member of Comparative Example 2 was changed to a fine powder material, a fine powder diameter, and a fine powder holding amount to hold the fine powder, and the charging member of Comparative Example 3 to Comparative Example 6 was obtained. Table 25 shows the changed fine powder material, fine powder diameter, and fine powder retention. These charging members were evaluated in the same manner as in Example 1.

〔比較例7〕
基層1をそのまま帯電部材として用いた。これを比較例7の帯電部材とした。これを実施例1と同様に評価した。
〔比較例8〕
基層11をそのまま帯電部材として用いた。これを比較例8の帯電部材とした。これを実施例1と同様に評価した。
〔比較例9〕
基層27をそのまま帯電部材として用いた。これを比較例9の帯電部材とした。これを実施例1と同様に評価した。
[Comparative Example 7]
The base layer 1 was used as a charging member as it was. This was used as the charging member of Comparative Example 7. This was evaluated in the same manner as in Example 1.
[Comparative Example 8]
The base layer 11 was used as a charging member as it was. This was used as the charging member of Comparative Example 8. This was evaluated in the same manner as in Example 1.
[Comparative Example 9]
The base layer 27 was used as a charging member as it was. This was used as the charging member of Comparative Example 9. This was evaluated in the same manner as in Example 1.

〔比較例10〕
基層27に対して、微粉保持量の面積比2となる様に微粉1を保持させた。こうして比較例10の帯電部材を得た。これを実施例1と同様に評価した。
[比較例11]
基層27に対して、微粉保持量の面積比2となる様に微粉24を保持させた。こうして比較例11の帯電部材を得た。これを実施例1と同様に評価した。
[比較例12]
基層1に対して、微粉保持量の面積比30となる様に微粉31を保持させた。こうして比較例12の帯電部材を得た。これを実施例1と同様に評価した。
[比較例13]
基層11に対して、微粉保持量の面積比30となる様に微粉31を保持させた。こうして比較例13の帯電部材を得た。これを実施例1と同様に評価した。
[比較例14]
基層26に対して、微粉保持量の面積比2となる様に微粉31を保持させた。こうして比較例14の帯電部材を得た。これを実施例1と同様に評価した。
[比較例15]
基層27に対して、微粉保持量の面積比2となる様に微粉31を保持させた。こうして比較例15の帯電部材を得た。これを実施例1と同様に評価した。
[Comparative Example 10]
The fine powder 1 was held with respect to the base layer 27 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 10 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 11]
The fine powder 24 was held with respect to the base layer 27 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 11 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 12]
The fine powder 31 was held with respect to the base layer 1 so that the area ratio of the fine powder holding amount was 30. Thus, a charging member of Comparative Example 12 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 13]
The fine powder 31 was held with respect to the base layer 11 so that the area ratio of the fine powder holding amount was 30. Thus, a charging member of Comparative Example 13 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 14]
The fine powder 31 was held with respect to the base layer 26 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 14 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 15]
The fine powder 31 was held with respect to the base layer 27 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 15 was obtained. This was evaluated in the same manner as in Example 1.

[比較例16]
基層28をそのまま帯電部材として用いた。これを比較例16の帯電部材とした。これを実施例1と同様に評価した。
[比較例17]
基層28に対して、微粉保持量の面積比2となる様に微粉1を保持させた。こうして比較例17の帯電部材を得た。これを実施例1と同様に評価した。
[比較例18]
基層28に対して、微粉保持量の面積比2となる様に微粉31を保持させた。こうして比較例8の帯電部材を得た。これを実施例1と同様に評価した。
[Comparative Example 16]
The base layer 28 was used as a charging member as it was. This was used as the charging member of Comparative Example 16. This was evaluated in the same manner as in Example 1.
[Comparative Example 17]
The fine powder 1 was held with respect to the base layer 28 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 17 was obtained. This was evaluated in the same manner as in Example 1.
[Comparative Example 18]
The fine powder 31 was held with respect to the base layer 28 so that the area ratio of the fine powder holding amount was 2. Thus, a charging member of Comparative Example 8 was obtained. This was evaluated in the same manner as in Example 1.

比較例の構成を一覧表にして下記表25に示す。
また、比較例の評価結果を一覧表にして表26に示す。
微粉を使用しないといずれも耐久後に、画像に明瞭な横スジが発生し、評価ランクは1であった。また突起を有さない帯電部材を使用した場合も耐久後に酷い横スジ状の画像不良が発生した。
The configuration of the comparative example is listed in Table 25 below.
Table 26 shows the evaluation results of the comparative examples as a list.
When no fine powder was used, clear horizontal streaks were generated in the image after durability, and the evaluation rank was 1. In addition, when a charging member having no protrusion was used, a severe horizontal streak-like image defect occurred after durability.

Figure 2013120361
Figure 2013120361

Figure 2013120361
Figure 2013120361

1 ・・・・・・・・・・導電性支持体
2 ・・・・・・・・・・導電性基層
3 ・・・・・・・・・・突起
4 ・・・・・・・・・・微粉
DESCRIPTION OF SYMBOLS 1 ............ Electroconductive support body 2 ............ Conductive base layer 3 ............ Projection 4 ............ ..Fine powder

Claims (4)

導電性支持体と、該導電性支持体の外周部に設けられた導電性基層とを有し、
該導電性基層は、その表面に、粒子に由来する絶縁性の突起を有している帯電部材であって、
該絶縁性の突起と前記導電性基層の表面との段差部分に、非粘着性の微粉が保持されてなり、該微粉は、その個数平均粒径が、該粒子の個数平均粒径よりも小さいことを特徴とする帯電部材。
Having a conductive support and a conductive base layer provided on the outer periphery of the conductive support;
The conductive base layer is a charging member having insulating projections derived from particles on its surface,
Non-adhesive fine powder is held at the step portion between the insulating protrusion and the surface of the conductive base layer, and the fine powder has a number average particle size smaller than the number average particle size of the particles. A charging member.
前記粒子の個数平均粒径が3μm以上30μm以下である請求項1に記載の帯電部材。   The charging member according to claim 1, wherein the number average particle diameter of the particles is 3 μm or more and 30 μm or less. 前記微粉の、Carrの流動性指数が40以上98以下である請求項1又は2に記載の帯電部材。   The charging member according to claim 1, wherein the fine powder has a Carr's fluidity index of 40 or more and 98 or less. 硬化性の液体に粒子を分散して塗工液を形成する工程と、
該塗工液を導電性基層へ塗工する工程と、
塗工された該塗工液を前記導電性基層へ含浸させる工程と、
含浸した硬化性の液体を硬化させて粒子を導電性基層へ固着させて突起を作る工程と、
該突起と前記導電性基層との段差部分に、個数平均粒径が前記粒子の個数平均粒径よりも小さい非粘着性微粉を保持させる工程と、を有することを特徴とする帯電部材の製造方法。
A step of dispersing particles in a curable liquid to form a coating liquid;
Applying the coating solution to the conductive base layer;
Impregnating the conductive base layer with the applied coating liquid;
Curing the impregnated curable liquid to fix the particles to the conductive base layer to create protrusions;
And a step of holding non-adhesive fine powder having a number average particle size smaller than the number average particle size of the particles at a step portion between the protrusion and the conductive base layer. .
JP2011269478A 2011-12-08 2011-12-08 Charging member and method of manufacturing charging member Expired - Fee Related JP5828752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269478A JP5828752B2 (en) 2011-12-08 2011-12-08 Charging member and method of manufacturing charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269478A JP5828752B2 (en) 2011-12-08 2011-12-08 Charging member and method of manufacturing charging member

Publications (2)

Publication Number Publication Date
JP2013120361A true JP2013120361A (en) 2013-06-17
JP5828752B2 JP5828752B2 (en) 2015-12-09

Family

ID=48773008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269478A Expired - Fee Related JP5828752B2 (en) 2011-12-08 2011-12-08 Charging member and method of manufacturing charging member

Country Status (1)

Country Link
JP (1) JP5828752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255449A1 (en) * 2019-06-17 2020-12-24

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281813A (en) * 1996-04-10 1997-10-31 Hitachi Ltd Image forming device
JP2000356888A (en) * 1999-06-15 2000-12-26 Ricoh Co Ltd Electrifying device
JP2004157182A (en) * 2002-11-01 2004-06-03 Ricoh Co Ltd Electrifying member, electrifying device using the same, and image forming apparatus
JP2005140975A (en) * 2003-11-06 2005-06-02 Canon Inc Developer carrier and development apparatus using the same
JP2005281585A (en) * 2004-03-30 2005-10-13 Toda Kogyo Corp Charging control material, and charging control paint using the same
JP2006215387A (en) * 2005-02-04 2006-08-17 Canon Chemicals Inc Method for applying particulate
JP2006301344A (en) * 2005-04-21 2006-11-02 Bridgestone Corp Conductive roller and image forming apparatus equipped therewith
JP2008276020A (en) * 2007-05-01 2008-11-13 Canon Inc Electrifying member, process cartridge and electrophotographic device
JP2009028657A (en) * 2007-07-27 2009-02-12 Canon Chemicals Inc Method of circulating coating liquid for forming surface layer of conductive rubber roller for electrophotography
JP2010107796A (en) * 2008-10-31 2010-05-13 Canon Inc Charging roller, process cartridge, and electrophotographic device
JP2011164399A (en) * 2010-02-10 2011-08-25 Fuji Xerox Co Ltd Charging member, charging device, image forming apparatus and process cartridge

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281813A (en) * 1996-04-10 1997-10-31 Hitachi Ltd Image forming device
JP2000356888A (en) * 1999-06-15 2000-12-26 Ricoh Co Ltd Electrifying device
JP2004157182A (en) * 2002-11-01 2004-06-03 Ricoh Co Ltd Electrifying member, electrifying device using the same, and image forming apparatus
JP2005140975A (en) * 2003-11-06 2005-06-02 Canon Inc Developer carrier and development apparatus using the same
JP2005281585A (en) * 2004-03-30 2005-10-13 Toda Kogyo Corp Charging control material, and charging control paint using the same
JP2006215387A (en) * 2005-02-04 2006-08-17 Canon Chemicals Inc Method for applying particulate
JP2006301344A (en) * 2005-04-21 2006-11-02 Bridgestone Corp Conductive roller and image forming apparatus equipped therewith
JP2008276020A (en) * 2007-05-01 2008-11-13 Canon Inc Electrifying member, process cartridge and electrophotographic device
JP2009028657A (en) * 2007-07-27 2009-02-12 Canon Chemicals Inc Method of circulating coating liquid for forming surface layer of conductive rubber roller for electrophotography
JP2010107796A (en) * 2008-10-31 2010-05-13 Canon Inc Charging roller, process cartridge, and electrophotographic device
JP2011164399A (en) * 2010-02-10 2011-08-25 Fuji Xerox Co Ltd Charging member, charging device, image forming apparatus and process cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255449A1 (en) * 2019-06-17 2020-12-24
WO2020255449A1 (en) * 2019-06-17 2020-12-24 株式会社ブリヂストン Charging roller and image forming apparatus
JP7425059B2 (en) 2019-06-17 2024-01-30 株式会社アーケム Charging roller and image forming device

Also Published As

Publication number Publication date
JP5828752B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP7046571B2 (en) Process cartridges and electrophotographic equipment
JP5063663B2 (en) Charging roller, process cartridge, and electrophotographic apparatus
JP4799706B1 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5504713B2 (en) Conductive roll, charging device, process cartridge, and image forming apparatus
JP5451514B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP6120698B2 (en) Process cartridge
JP2010134451A (en) Charging member, process cartridge, and electrophotographic apparatus
US9304429B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JPWO2014207876A1 (en) Image forming apparatus and process cartridge
JP2003316112A (en) Electrostatic charging member, image forming device, and process cartridge
JP2017161824A (en) Process cartridge
JP5471085B2 (en) Charging member, charging device, process cartridge, and image forming apparatus
JP5828752B2 (en) Charging member and method of manufacturing charging member
JP5173247B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP2004061640A (en) Conductive member for electrophotography and device using the same
JP2007065320A (en) Charging member, process cartridge, and electrophotographic device
JP2005315979A (en) Conductive member, process cartridge, and image forming apparatus
JP2005345801A (en) Conductive member, image forming apparatus and process cartridge
JP5178073B2 (en) Charging member and charging device
JP2006163147A (en) Electrifying roller, electrifying method, process cartridge and electrophotographic device
JP2014092590A (en) Charging member, process cartridge, and electrophotographic device
JP6335744B2 (en) Developing device, process cartridge, and image forming apparatus
JP7222677B2 (en) Charging member, process cartridge and electrophotographic image forming apparatus
JP2005165213A (en) Charging member, image forming apparatus, charging method and process cartridge
JP2011107635A (en) Coating composition for charging roller, charging roller, and method of manufacturing the charging roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R151 Written notification of patent or utility model registration

Ref document number: 5828752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees