JP2013118750A - Axial gap type rotary electric machine and manufacturing method thereof - Google Patents

Axial gap type rotary electric machine and manufacturing method thereof Download PDF

Info

Publication number
JP2013118750A
JP2013118750A JP2011264377A JP2011264377A JP2013118750A JP 2013118750 A JP2013118750 A JP 2013118750A JP 2011264377 A JP2011264377 A JP 2011264377A JP 2011264377 A JP2011264377 A JP 2011264377A JP 2013118750 A JP2013118750 A JP 2013118750A
Authority
JP
Japan
Prior art keywords
winding
coil
phase
electrical machine
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011264377A
Other languages
Japanese (ja)
Inventor
Yuichiro Tanaka
雄一郎 田中
Takashi Ishigami
孝 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011264377A priority Critical patent/JP2013118750A/en
Priority to PCT/JP2012/077700 priority patent/WO2013080720A1/en
Publication of JP2013118750A publication Critical patent/JP2013118750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations

Abstract

PROBLEM TO BE SOLVED: To provide an axial gap type rotary electric machine and a manufacturing method thereof in which a continuous winding coil around which a cable is wound with a high density can be assembled easily in an axial direction, the rotary electric machine can be low-priced, its cooling performance is improved and inter-phase insulation is ensured.SOLUTION: For a continuous winding coil, a centralized winding coil around which a cable is wound with a high density is wound continuously via a crossover track and such continuous winding coils are prepared for three phases. The crossover tracks of the continuous winding coils for two phases are tilted at different angles in the axial direction beforehand and the continuous winding coils for three phases are combined in the axial direction and annularly formed. In another embodiment, the crossover tracks of the continuous winding coils for three phases are molded beforehand into detoured shapes, respectively, in the radial direction in the bottoms, centers and tops of the coils, and the continuous winding coils for three phases are combined in the axial direction and annularly assembled. Furthermore, in another embodiment, wiring blocks for position fixture are inserted into the crossover tracks for three phases.

Description

本発明は、モータや発電機などのアキシャルギャップ型の回転電機及びその製造方法に関するものである。   The present invention relates to an axial gap type rotating electrical machine such as a motor or a generator and a method for manufacturing the same.

近年、地球温暖化が深刻化する中で、電気機器に対する省エネルギー化の要求が高まっている。現在、国内の年間消費電力量の約55%がモータによって消費されているため、モータの高効率化に対する注目は高い。これまでモータの高効率化には、高いエネルギー積を有する希土類磁石を用いた設計が採用されている。しかし、希土類磁石の原料であるNd(ネオジウム)やDy(ディスプロシウム)は、最大産出国である中国の輸出枠規制により、近年価格が高騰している。中国の輸出枠規制の方針は、NdやDyの採掘による環境破壊を防止するためのものであり、今後も希土類の価格高騰や供給難が続く可能性が高い。このため、希土類磁石を使わず、フェライト磁石のみでモータの高校率化を実現できる手段の一つとして、アキシャルギャップ型モータが注目されている。アキシャルギャップ型モータは従来のラジアルギャップ型よりも磁石面積を広くとることができるため、フェライト磁石に替えた場合の保持力の低下を補うことができ、効率も従来と同等以上にすることも可能である。アキシャルギャップ型モータの構成としては、1ロータ−2ステータ型、2ロータ−1ステータ型、1ロータ−1ステータ型などの組み合わせがある。   In recent years, with global warming becoming more serious, there is an increasing demand for energy saving in electrical equipment. At present, about 55% of the annual power consumption in Japan is consumed by the motor, so attention is paid to the high efficiency of the motor. Conventionally, a design using a rare earth magnet having a high energy product has been adopted to increase the efficiency of the motor. However, the prices of Nd (neodymium) and Dy (dysprosium), which are raw materials for rare earth magnets, have soared in recent years due to restrictions on export quotas in China, the largest producer. China's export quota regulation policy is to prevent environmental destruction caused by the mining of Nd and Dy, and it is highly likely that the price of rare earths will continue to rise and supply will be difficult. For this reason, an axial gap type motor is attracting attention as one of means for realizing a high school rate of a motor using only a ferrite magnet without using a rare earth magnet. Axial gap motors have a larger magnet area than conventional radial gap motors, so they can compensate for the decrease in holding power when switching to ferrite magnets, and the efficiency can be equal to or higher than the conventional ones. It is. As the configuration of the axial gap type motor, there are combinations of a 1 rotor-2 stator type, a 2 rotor-1 stator type, a 1 rotor-1 stator type, and the like.

本技術分野の背景技術として、特開2008−172859号公報(特許文献1)がある。特許文献1は同相コイルを4連続巻線し、y結線でアキシャルギャップ型モータ(1ロータ−1ステータ型)を構成する。特許文献1は、連続巻線で接続点数を減らすことによるモータの低価格化と、コイル間をつなぐ渡り線をコイルの内径側に集めることでコイル外径側をフリースペースとし、一例としてコイル外径側とモータケースとを接触させることでモータの冷却性能向上を図る狙いがあるものと推察する。   As a background art in this technical field, there is JP 2008-172859 A (Patent Document 1). In Patent Document 1, four in-phase coils are wound continuously, and an y-connection is used to constitute an axial gap type motor (1 rotor-1 stator type). Patent Document 1 describes a reduction in the price of a motor by reducing the number of connection points with continuous windings, and collecting the connecting wires connecting the coils on the inner diameter side of the coil to make the coil outer diameter side free space. It is assumed that there is an aim of improving the cooling performance of the motor by bringing the diameter side and the motor case into contact.

特開2008−172859号公報JP 2008-172859 A

しかしながら、特許文献1の構成で電線を高密度に巻いて占積率を高めた連続巻コイルを3相分作成し、それ等を回転電機の軸方向に組み立てると、各相間の渡り線が干渉して絶縁空間距離が保てない問題が発生した。そこで本発明は、電線を高密度に巻いた連続巻コイルを回転電機の軸方向に容易に組み立てることができ、かつ回転電機の低価格化(接続点数少)及び冷却性能向上(渡り線をコイル内径側に集約)、相間絶縁確保(渡り線の位置を規制)を実現したアキシャルギャップ型回転電機及びその製造方法を提供するものである。   However, when three-phase continuous winding coils with a high space factor are created by winding the wires with high density in the configuration of Patent Document 1 and they are assembled in the axial direction of the rotating electrical machine, the connecting wires between the phases interfere with each other. As a result, a problem that the insulation space distance cannot be maintained occurred. Therefore, the present invention makes it possible to easily assemble a continuous winding coil in which electric wires are wound at high density in the axial direction of the rotating electrical machine, and to reduce the cost of the rotating electrical machine (the number of connection points) and to improve the cooling performance (coil the connecting wire to the coil). The present invention provides an axial gap type rotating electrical machine that achieves interphase insulation (regulates the position of the crossover wire) and a manufacturing method thereof.

本発明のアキシャルギャップ型回転電機は、電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に構成したU,V,Wの3相分の連続巻線ユニットを備え、各U,V,W相の前記連続巻線ユニットの一つのコイルと隣接するコイルの間における各相の前記渡り線の渡り部分での空間距離を回転電機の径方向及び軸方向に予め定められた絶縁空間距離を保つように配置したことを特徴とする。   The axial gap type rotating electric machine according to the present invention extends a winding end line of a coil formed by winding an electric wire to form a winding start line of an adjacent coil as a jumper, and continuously winds a plurality of winding coils. The three-phase continuous winding unit of U, V, and W is configured, and the transition of each phase between one coil of the continuous winding unit of each U, V, and W phase and an adjacent coil. It is characterized in that the space distance at the crossing portion of the wires is arranged so as to maintain a predetermined insulating space distance in the radial direction and the axial direction of the rotating electrical machine.

本発明のアキシャルギャップ型回転電機は、コイルの巻き終わり線をコイルの頂部若しくは底部から回転電機の径方向に延出させると共に、連続巻きした次のコイルの巻き始め線を前記巻き終わり線とは逆の底部若しくは頂部から軸方向に導入させ、前記渡り線の渡り部分は回転電機の径方向に対して傾斜させるよう構成したことを特徴とする。   The axial gap type rotating electrical machine of the present invention extends the winding end line of the coil from the top or bottom of the coil in the radial direction of the rotating electrical machine, and the winding start line of the next coil that is continuously wound is the winding end line. The crossing portion of the crossover wire is introduced in the axial direction from the opposite bottom or top, and the crossover portion of the crossover wire is inclined with respect to the radial direction of the rotating electrical machine.

本発明のアキシャルギャップ型回転電機は、前記U相連続巻線ユニットの渡り線と、前記V相連続巻線ユニットの渡り線と、前記W相連続巻線ユニットの渡り線とにおいて、各相の前記渡り線の渡り部分における回転電機の軸方向の高さが異なるよう、各相の前記渡り部分からコイルへ導入される巻き始め線の導入角度及びコイルから前記渡り部分へ延出する巻き終わり線の延出角度を、各相の連続巻線毎に異なる角度にして回転電機の軸方向に傾斜させることを特徴とする。   The axial gap type rotating electrical machine according to the present invention includes a connecting wire of the U-phase continuous winding unit, a connecting wire of the V-phase continuous winding unit, and a connecting wire of the W-phase continuous winding unit. The introduction angle of the winding start line introduced into the coil from the transition part of each phase and the winding end line extending from the coil to the transition part so that the height in the axial direction of the rotating electrical machine at the transition part of the transition line is different. The extending angle is made to be different for each continuous winding of each phase and is inclined in the axial direction of the rotating electrical machine.

本発明のアキシャルギャップ型回転電機は、前記U相連続巻線ユニットの渡り線と、前記V相連続巻線ユニットの渡り線と、前記W相連続巻線ユニットの渡り線とにおいて、各相の渡り線は回転電機の径方向に伸びる延出部及び導入部と、回転電機の軸方向に伸びる垂直部と、一つのコイルから隣のコイルへ渡る渡り部分とから構成されており、前記渡り部分の回転電機の軸方向での高さを異なる高さに配置したことを特徴とする。   The axial gap type rotating electrical machine according to the present invention includes a connecting wire of the U-phase continuous winding unit, a connecting wire of the V-phase continuous winding unit, and a connecting wire of the W-phase continuous winding unit. The connecting wire is composed of an extending part and an introducing part extending in the radial direction of the rotating electrical machine, a vertical part extending in the axial direction of the rotating electrical machine, and a connecting part extending from one coil to the adjacent coil, the connecting part The rotary electric machine in the axial direction is arranged at different heights.

本発明のアキシャルギャップ型回転電機は、前記U相連続巻線ユニットの渡り線の渡り部分と、前記V相連続巻線ユニットの渡り線の渡り部分と、前記W相連続巻線ユニットの渡り線の渡り部分を、それぞれ保持するスペーサブロックを備えることを特徴とする。   The axial gap type rotating electrical machine according to the present invention includes a crossover portion of the U-phase continuous winding unit, a crossover portion of the V-phase continuous winding unit, and a crossover portion of the W-phase continuous winding unit. It is characterized by comprising a spacer block for holding each of the crossover portions.

本発明のアキシャルギャップ型回転電機の製造方法は、電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成し、
各相の連続巻線ユニットの一つのコイルと隣接するコイルの間における各相の前記渡り線渡り部分での空間距離を、回転電機の径方向及び軸方向において予め定められた相間絶縁距離を保つように配置して組み立てることを特徴とする。
The manufacturing method of the axial gap type rotating electrical machine of the present invention extends a winding end line of a coil formed by winding an electric wire to form a winding start line of an adjacent coil as a jumper, and continuously winds a plurality of windings. A coil is continuously formed, and a continuous winding unit for U, V, and W 3 phases having the same configuration is formed in advance.
The spatial distance in the crossover part of each phase between one coil and the adjacent coil of each phase continuous winding unit is maintained at a predetermined interphase insulation distance in the radial and axial directions of the rotating electrical machine. It is characterized by arranging and assembling.

本発明のアキシャルギャップ型回転電機の製造方法は、電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成した後に、
前記渡り線とコイルの間の巻き終わり線及び巻き始め線を、前記U,V,Wの各相において異なる角度にて傾斜させるように成形することで、各相の渡り線の間の相間絶縁距離を保つことを特徴とする。
The manufacturing method of the axial gap type rotating electrical machine of the present invention extends a winding end line of a coil formed by winding an electric wire to form a winding start line of an adjacent coil as a jumper, and continuously winds a plurality of windings. After continuously forming the coil and forming in advance a continuous winding unit for U, V, W 3 phases of the same configuration,
By forming the winding end line and winding start line between the connecting wire and the coil so as to be inclined at different angles in each of the U, V, and W phases, interphase insulation between the connecting wires of each phase It is characterized by keeping a distance.

本発明のアキシャルギャップ型回転電機の製造方法は、電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成した後に、
前記巻き終わり線及び巻き始め線を、各相ごとに、コイルの下底部、中央部、上底部から延出するように成形ことで、各相の渡り線の間の相間絶縁距離を保つことを特徴とする。
The manufacturing method of the axial gap type rotating electrical machine of the present invention extends a winding end line of a coil formed by winding an electric wire to form a winding start line of an adjacent coil as a jumper, and continuously winds a plurality of windings. After continuously forming the coil and forming in advance a continuous winding unit for U, V, W 3 phases of the same configuration,
By forming the winding end wire and the winding start wire so as to extend from the lower bottom portion, the center portion, and the upper bottom portion of the coil for each phase, the interphase insulation distance between the connecting wires of each phase is maintained. Features.

本発明によれば、電線を高密度に巻いた連続巻コイルの渡り線を各相間で干渉させることなく組み合わせて環状に成形することができ、かつ低価格化(接続点数少)及び冷却性能向上(渡り線を内径側に集約)、相間絶縁距離の確保(渡り線の位置を規制)を実現したアキシャルギャップ型回転電機を提供することができる。   According to the present invention, crossover wires of a continuous winding coil in which electric wires are wound at high density can be combined and formed into an annular shape without interfering with each other, and the cost is reduced (the number of connection points is small) and the cooling performance is improved. It is possible to provide an axial gap type rotating electrical machine that realizes the securing of the inter-phase insulation distance (regulating the position of the connecting wire) (collecting the connecting wires on the inner diameter side).

図1は、本発明の一実施形態である12スロットのモータの各相コイルの渡り線の配置を示す模式図。FIG. 1 is a schematic diagram showing the arrangement of connecting wires of respective phase coils of a 12-slot motor according to an embodiment of the present invention. 図2は、本発明の一実施形態である12スロットのモータの各相コイルの結線図。FIG. 2 is a connection diagram of each phase coil of a 12-slot motor according to an embodiment of the present invention. 図3は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態を示す斜視図。FIG. 3 is a perspective view showing a state in which four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is wound in two stages) are assembled in the axial direction. 図4は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を組み立てた状態を示す斜視図。FIG. 4 is a perspective view showing a state where four continuous winding coils for three phases according to an embodiment of the present invention are assembled (a single coil is three-stage winding). 図5は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は2段巻き)の構造を示す斜視図。FIG. 5 is a perspective view showing the structure of a four-phase wound coil (one coil is a two-stage winding) for one phase (U phase) according to an embodiment of the present invention. 図6は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 6 is a cross-sectional view of the first coil starting winding of a four-phase winding coil (one coil is a two-stage winding) for one phase (U phase) according to an embodiment of the present invention. 図7は、本発明の一実施形態である1相分(V相)の4連続巻コイル(コイル単体は2段巻き)の構造を示す斜視図。FIG. 7 is a perspective view showing the structure of one continuous phase (V phase) four-continuous winding coil (a single coil is a two-stage winding) according to an embodiment of the present invention. 図8は、本発明の一実施形態である1相分(V相)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 8 is a cross-sectional view of a first coil starting winding of a four-phase wound coil (a single coil is a two-stage winding) for one phase (V phase) according to an embodiment of the present invention. 図9は、本発明の一実施形態である1相分(W相)の4連続巻コイル(コイル単体は2段巻き)の構造を示す斜視図。FIG. 9 is a perspective view showing a structure of a four-phase wound coil (one coil is a two-stage winding) for one phase (W phase) according to an embodiment of the present invention. 図10は、本発明の一実施形態である1相分(W相)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 10 is a cross-sectional view of a first coil starting winding of a single-phase (W-phase) four-continuous winding coil (a single coil is two-stage winding) according to an embodiment of the present invention. 図11は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態を示す斜視図。FIG. 11 is a perspective view showing a state in which four-phase continuous coils for three phases according to an embodiment of the present invention (a single coil is a two-stage coil) is assembled in the axial direction. 図12は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は2段巻き)の構造を示す斜視図。FIG. 12 is a perspective view showing the structure of one phase (U phase) of four continuous winding coils (a single coil is two-stage winding) according to an embodiment of the present invention. 図13は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は3段巻き)の構造を示す斜視図。FIG. 13 is a perspective view showing the structure of one phase (U phase) of four continuous winding coils (one coil is three-stage winding) according to an embodiment of the present invention. 図14は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は3段巻き)の構造を示す斜視図。FIG. 14 is a perspective view showing the structure of one phase (U phase) of four continuous winding coils (a single coil is three-stage winding) according to an embodiment of the present invention. 図15は、本発明の一実施形態である1相分(U相)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 15 is a cross-sectional view of a first coil at the start of winding of a four-phase wound coil of one phase (U phase) according to an embodiment of the present invention (a single coil is a three-stage winding). 図16は、本発明の一実施形態である1相分(V相)の4連続巻コイル(コイル単体は3段巻き)の構造を示す斜視図。FIG. 16 is a perspective view showing a structure of a four-phase wound coil for one phase (V phase) according to an embodiment of the present invention (a single coil is wound in three stages). 図17は、本発明の一実施形態である1相分(V相)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 17 is a cross-sectional view of a first coil starting winding of a four-phase wound coil for one phase (V phase) according to an embodiment of the present invention (a single coil is a three-stage winding). 図18は、本発明の一実施形態である1相分(W相)の4連続巻コイル(コイル単体は3段巻き)の構造を示す斜視図。FIG. 18 is a perspective view showing the structure of one phase (W phase) of four continuous winding coils (a single coil is three-stage winding) according to an embodiment of the present invention. 図19は、本発明の一実施形態である1相分(W相)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイルの一断面図。FIG. 19 is a cross-sectional view of a first coil starting winding of a single-phase (W-phase) four-continuous winding coil (a single coil is three-stage winding) according to an embodiment of the present invention. 図20は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み立てた状態を示す斜視図。FIG. 20 is a perspective view showing a state in which four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a three-stage winding) are assembled in the axial direction. 図21は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロックを挿入した状態を示す斜視図。FIG. 21 is a perspective view showing a state in which a position-fixing wiring block is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a two-stage winding) are assembled in the axial direction. . 図22は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロックを挿入した状態を示す断面図。FIG. 22 is a cross-sectional view showing a state in which a position fixing wiring block is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a two-stage winding) are assembled in the axial direction. . 図23は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロックを挿入した状態を示す斜視図。FIG. 23 is a perspective view showing a state in which a position fixing wiring block is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a three-stage winding) are assembled in the axial direction. . 図24は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロックを挿入した状態を示す断面図。FIG. 24 is a cross-sectional view showing a state in which a position fixing wiring block is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a three-stage winding) are assembled in the axial direction. .

本発明の一実施例のアキシャルギャップ型回転電機は、コイルが偶数段巻きで巻回方向も同じ集中巻コイルを渡り線を介して連続巻した連続巻コイルを3組形成し、前記3組の連続巻コイルのうち2組の連続巻コイルの渡り線を軸方向にそれぞれ異なる角度で傾け、3組の前記連続巻コイルを組み合わせて環状に成形したことを特徴とする。   An axial gap type rotating electrical machine according to an embodiment of the present invention includes three sets of continuous winding coils in which concentrated winding coils having an even number of stages and the same winding direction are wound through a jumper. The connecting wires of two sets of continuous winding coils among the continuous winding coils are tilted at different angles in the axial direction, and three sets of the continuous winding coils are combined and formed into an annular shape.

また、本発明の別実施例のアキシャルギャップ型回転電機は、コイルが奇数段巻きで巻回方向も同じ集中巻コイルを渡り線を介して連続巻した連続巻コイルを3組形成し、前記3組の連続巻コイルのうち1組の連続巻コイルの渡り線はコイル底部で径方向に迂回させ、もう1組の連続巻コイルの渡り線はコイル中心で径方向に迂回させ、最後の1組の渡り線はコイル頂部で径方向に迂回させ、3組の前記連続巻コイルを組み合わせて環状に成形したことを特徴とする。   Further, an axial gap type rotating electrical machine according to another embodiment of the present invention comprises three sets of continuous winding coils in which the coils are odd-numbered and the winding direction is the same, and the winding is continuously wound via a crossover wire. The connecting wire of one set of continuous winding coils is diverted in the radial direction at the bottom of the coil, and the connecting wire of another set of continuous winding coils is diverted in the radial direction at the coil center. The crossover wire is detoured in the radial direction at the top of the coil, and is formed into an annular shape by combining the three sets of continuous winding coils.

更に、本発明の別実施例のアキシャルギャップ型回転電機は、3組の前記連続巻コイルの渡り線に対し、径方向から固定用の配線ブロックを複数個所挿入して、その位置を固定したことを特徴とする。   Further, in the axial gap type rotating electrical machine of another embodiment of the present invention, a plurality of fixing wiring blocks are inserted from the radial direction to the connecting wires of the three sets of the continuous winding coils, and the positions thereof are fixed. It is characterized by.

本発明の実施例のアキシャルギャップ型回転電機を製造する際には、電線を高密度に巻いた集中巻コイルを、渡り線を介して連続して巻線した連続巻コイルを3相分(U相,V相,W相)準備する。   When manufacturing the axial gap type rotating electrical machine according to the embodiment of the present invention, a concentrated winding coil in which electric wires are wound at high density, and a continuous winding coil that is continuously wound through a jumper wire, is divided into three phases (U Phase, V phase, W phase).

その後、本発明の実施例の第一の態様のアキシャルギャップ型回転電機を製造する際には、そのうち2相分の連続巻コイルの渡り線を事前に軸方向に異なる角度で傾け、3相分の連続巻コイルを回転電機の軸方向に組み合わせて環状に成形して製造する。
また、本発明の実施例の第二の態様によるアキシャルギャップ型回転電機を製造する際には、3相分の連続巻コイルの渡り線をコイル底部、中心、頂部においてそれぞれ径方向に迂回させた形状に事前に成形し、3相分の連続巻コイルを軸方向に組み合わせて環状に成形して製造する。
さらに、本発明の実施例の第三の態様によるアキシャルギャップ型回転電機を製造する際には、第一、第二の態様によるアキシャルギャップ型回転電機の製造において、3相分の渡り線に位置固定用の配線ブロックを挿入して製造する。
Thereafter, when the axial gap type rotating electrical machine according to the first aspect of the embodiment of the present invention is manufactured, the connecting wires of the continuous winding coils for two phases are tilted at different angles in the axial direction in advance and three phases The continuous winding coils are combined in the axial direction of the rotating electrical machine and formed into an annular shape.
In addition, when manufacturing the axial gap type rotating electrical machine according to the second aspect of the embodiment of the present invention, the connecting wires of the continuous winding coils for three phases are respectively detoured in the radial direction at the coil bottom, center, and top. It is formed into a shape in advance, and three-phase continuous winding coils are combined in the axial direction and formed into an annular shape.
Furthermore, when manufacturing the axial gap type rotating electrical machine according to the third aspect of the embodiment of the present invention, in the manufacture of the axial gap type rotating electrical machine according to the first and second aspects, it is located on the crossover for three phases. Manufacture by inserting a wiring block for fixing.

以下、本発明の実施例をさらに詳細に図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

図1に本発明の一実施形態である12スロットのアキシャルギャップ型モータのUVW各相コイルの渡り線の配置を模式的に表したものを示す。アキシャルギャップ型モータ100は、鉄心3の周りに電線を集中巻で巻いたコイルを環状に配置してステータ1を構成し、このステータ1の上下もしくは一方にロータ2を配置する。ロータ2は中心に配置された回転シャフト(図示せず)と連結されており、ステータ1とは一定のギャップを設けて配置されている。また、ロータ2のステータ側には、図示していないが、マグネットが周方向にN極とS極を交互に配置している。なお、以下で説明するアキシャルギャップ型モータ100は一例であって、本発明の内容を変更しない範疇でスロット数(コイルの連続巻数)を適宜変更できることはもちろんである。   FIG. 1 schematically shows the arrangement of connecting wires of each phase coil of a UVW of a 12-slot axial gap motor according to an embodiment of the present invention. In the axial gap type motor 100, a stator 1 is configured by annularly arranging a coil in which an electric wire is wound around an iron core 3 in a concentrated manner, and a rotor 2 is disposed above and / or below the stator 1. The rotor 2 is connected to a rotating shaft (not shown) arranged at the center, and is arranged with a certain gap from the stator 1. Further, although not shown in the drawing, a magnet alternately arranges N and S poles in the circumferential direction on the stator side of the rotor 2. Note that the axial gap type motor 100 described below is an example, and it goes without saying that the number of slots (the number of continuous turns of the coil) can be changed as appropriate without departing from the scope of the present invention.

図1において、U相の4個のコイル10a、10d、10g、10jは、夫々渡り線を介して連続巻線とされ、コイルの巻回方向はすべて同一方向であり、渡り線はすべてコイルの内径側に集約されている。V相の4個のコイル10b、10e、10h、10kと、W相の4個のコイル10c、10f、10i、10lも連続巻線の巻回方向と渡り線の配置は上記U相のコイルと同じ構成である。従って、上記のようにアキシャルギャップ型モータ100を構成すれば、U相の4連続巻コイル、V相の4連続巻コイル、W相の4連続巻コイルの中性点5は、3相の端末線を隣り合う位置に配置することができる。これら3相の端末線を接続端子もしくは溶接で接続することにより、中性点5として機能する。この結果、接続点数が1箇所と少ないため、モータの低価格化を実現できる。また、渡り線をすべてコイル内径側に集約したため、コイル外径側はフリースペースとなり、一例としてコイル外径側とモータケースとを接触させることでモータの冷却性能向上を図ることが可能となる。また、U相の4連続巻コイル、V相の4連続巻コイル、W相の4連続巻コイルの入力線4は、3相の入力線を隣り合う位置に配置することができるため、これらをロータ2に接触させないように這い回し、モータケースより引き出すことで、ステータ1として機能する。   In FIG. 1, four U-phase coils 10a, 10d, 10g, and 10j are continuous windings through the connecting wires, and the winding directions of the coils are all the same, and all the connecting wires are coiled. It is concentrated on the inner diameter side. The four V-phase coils 10b, 10e, 10h, and 10k, and the four W-phase coils 10c, 10f, 10i, and 10l are arranged in the winding direction of the continuous winding and the arrangement of the jumper wires as described above for the U-phase coil. It is the same configuration. Therefore, if the axial gap type motor 100 is configured as described above, the neutral point 5 of the U-phase four-continuous winding coil, the V-phase four-continuous winding coil, and the W-phase four-continuous winding coil is a three-phase terminal. Lines can be placed next to each other. By connecting these three-phase terminal wires by connection terminals or welding, they function as a neutral point 5. As a result, since the number of connection points is as small as one, it is possible to reduce the price of the motor. In addition, since all the connecting wires are concentrated on the inner diameter side of the coil, the outer diameter side of the coil becomes free space. As an example, the cooling performance of the motor can be improved by contacting the outer diameter side of the coil and the motor case. Moreover, since the input line 4 of the U-phase 4-continuous winding coil, the V-phase 4-continuous winding coil, and the W-phase 4-continuous winding coil can be arranged at positions adjacent to each other, It functions as the stator 1 by rolling it so as not to contact the rotor 2 and pulling it out from the motor case.

図2は、本発明のアキシャルギャップ型モータ100のステータ1の結線図を示している。
U相のコイル10Uは、入力線15U1、コイル10a、渡り線15U2、コイル10d、渡り線15U3、コイル10g、渡り線15U4、コイル10j、端末線15U5を連結して構成する。コイルの巻回方向はすべて同一方向である。V相のコイル10V、W相のコイル10Wの構成もコイルの巻回方向を含め、上記U相コイル10Uと同一の構成である。つまり本発明のアキシャルギャップ型モータ100は、4連続巻コイルを3組使用した4直列のY結線で構成されている。ここでU相のコイル10U、V相のコイル10V、W相のコイル10Wの中心部(N)を中性点接続することにより、ステータ1として機能する。
FIG. 2 shows a connection diagram of the stator 1 of the axial gap type motor 100 of the present invention.
The U-phase coil 10U is configured by connecting an input wire 15U1, a coil 10a, a jumper wire 15U2, a coil 10d, a jumper wire 15U3, a coil 10g, a jumper wire 15U4, a coil 10j, and a terminal wire 15U5. The winding directions of the coils are all the same direction. The configurations of the V-phase coil 10V and the W-phase coil 10W are the same as those of the U-phase coil 10U, including the coil winding direction. That is, the axial gap type motor 100 of the present invention is configured by four series Y-connections using three sets of four continuous winding coils. Here, the center portion (N) of the U-phase coil 10U, the V-phase coil 10V, and the W-phase coil 10W functions as the stator 1 by connecting the neutral points.

図3は、3相分の4連続巻コイルを回転電器の軸方向に単純に組み立てた状態を示している。図3に示す例では、コイル単体は2段巻きされている。この例において、U相のコイル10U、V相のコイル10V、W相のコイル10Wはそれぞれ渡り線を介して直線状に4連続巻線したものであり、組立の一例として、図3のように直線状態で組み立てた後に環状に成形することで、図1のアキシャルギャップ型モータ100のステータ1として構成することは可能であるようにも見える。しかし、ここではその問題点について説明する。図3に示すように、3相分の4連続巻コイルを単純に回転電器の軸方向に組み合わせただけでは、3相分の渡り線が相互に干渉するため、相互の干渉を避けるためには点線で示すように段違いにコイルを配置する必要があるため、このままでは組み立てが困難である。それに対して、図5以降において、本発明であるこの解決法について説明する。ここでは一例として2段巻きとして説明しているが、偶数巻き(2段巻き、4段巻き、6段巻き・・・・・)の場合、入力線、渡り線、端末線がすべてコイル底部に集中するため、同様の問題が発生する。   FIG. 3 shows a state where four continuous winding coils for three phases are simply assembled in the axial direction of the rotary electric machine. In the example shown in FIG. 3, the single coil is wound in two stages. In this example, the U-phase coil 10U, the V-phase coil 10V, and the W-phase coil 10W are each formed by four continuous windings in a straight line via a jumper, and as an example of assembly, as shown in FIG. It seems that it can be configured as the stator 1 of the axial gap type motor 100 of FIG. 1 by forming it in an annular shape after assembling in a linear state. However, this problem will be described here. As shown in FIG. 3, if the four-phase winding coils for three phases are simply combined in the axial direction of the rotary electric machine, the crossover lines for the three phases interfere with each other. As shown by the dotted lines, it is necessary to dispose the coils in different steps, so that assembling is difficult as it is. On the other hand, this solution which is the present invention will be described in FIG. In this example, two-stage winding is described as an example. However, in the case of even-numbered winding (two-stage winding, four-stage winding, six-stage winding, etc.), the input line, the jumper line, and the terminal line are all on the bottom of the coil. Similar problems occur because of concentration.

図4は、本発明の一実施形態である3相分の4連続巻コイルを組み立てた状態を示している。コイル単体は3段巻きされている。従って、図3の偶数巻きと異なり、コイルの巻き終わり線はコイル頂部に位置し、次のコイルの巻き始め線は底部に位置するため、渡り線はすべて傾斜して配置さることができれば問題は解消される。しかしこの場合、この形状の4連続コイルを単体で3組作製して、それらを回転電器の軸方向に組み立てることは3相の渡り線同志が干渉するために組み立てができない。そのために実現できる方法としては、ノズルの回転軌道を確保できるのでノズル式巻線機で3相同時に連続巻線すれば、図4の4連続巻コイルを作製することは可能である。これは、コイルの占積率が小さい場合のみ、コア同士の隙間が十分あるために可能である。しかし、本発明のようにコイルの占積率が高い場合は、ノズルと隣り合うコイルが干渉するため、ノズル巻線は適用できない。従って、この問題も解消する手法については、図13以降でこの解決法について説明する。ここでは一例として3段巻きとしているが、奇数巻き(1段巻き、3段巻き、5段巻き・・・・・)の場合、渡り線がすべて傾斜して配置されるため、同様の問題が発生する。   FIG. 4 shows a state in which four continuous winding coils for three phases according to an embodiment of the present invention are assembled. A single coil is wound in three stages. Therefore, unlike the even number winding of FIG. 3, the coil winding end line is located at the top of the coil and the next coil winding start line is located at the bottom. It will be resolved. However, in this case, it is impossible to fabricate three sets of four continuous coils of this shape alone and assemble them in the axial direction of the rotary electric machine because the three-phase crossover wires interfere with each other. As a method that can be realized for this purpose, since the rotation trajectory of the nozzle can be secured, it is possible to produce the 4-continuous winding coil of FIG. This is possible only when the space factor of the coil is small because there is a sufficient gap between the cores. However, when the coil space factor is high as in the present invention, the coil adjacent to the nozzle interferes, so that the nozzle winding cannot be applied. Therefore, a method for solving this problem will be described with reference to FIG. Here, as an example, three-stage winding is used, but in the case of odd-numbered winding (one-stage winding, three-stage winding, five-stage winding,...), All the connecting wires are inclined and the same problem occurs. Occur.

上述の問題を解決することが可能な構成について、図5乃至図12に基づいて説明する。尚、U相、V相、W相の各々の4連続巻コイルは、巻き終わり線及び巻き始め線の導入・延出の角度が異なるのみであり、コイル間の渡り線の長さを含み電線の長さやその他の寸法・構成に相違はない。
図5は、本発明の一実施形態である1相分(U相のコイル10U)の4連続巻コイル(コイル単体は2段巻き)の構造を示している。図5以降を用いて、コイルが偶数巻きの場合の組立に関する前記問題を解決するコイル構造について説明する。図5に示すようにU相のコイル10Uは、4個のコイル10a、10d、10g、10jを横に並べて配置し、各コイルは渡り線15U2、15U3、15U4をコイル底部にコの字状に配置して連続巻線されている。ここで15U5が端末線、15U1が入力線となる。
A configuration capable of solving the above-described problem will be described with reference to FIGS. In addition, each of the four continuous winding coils of U phase, V phase, and W phase differs only in the angle of introduction and extension of the winding end wire and the winding start wire, and includes the length of the connecting wire between the coils. There is no difference in the length and other dimensions and configurations.
FIG. 5 shows a structure of four continuous winding coils (one coil is a two-stage winding) for one phase (a U-phase coil 10U) according to an embodiment of the present invention. A coil structure that solves the above-described problem relating to assembly when the coil has an even number of turns will be described with reference to FIG. As shown in FIG. 5, the U-phase coil 10U has four coils 10a, 10d, 10g, and 10j arranged side by side, and each coil has a crossover wire 15U2, 15U3, 15U4 in a U shape at the bottom of the coil. Arranged and continuously wound. Here, 15U5 is a terminal line, and 15U1 is an input line.

図6は、本発明の一実施形態である1相分(U相のコイル10U)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイル(10a)の一断面図を示している。渡り線15U2は前述の通り、コイル底部に配置されている。本コイル(U相のコイル10U)を基準のコイルとする。   FIG. 6 is a cross-sectional view of the first coil (10a) at the start of winding of four continuous winding coils (a single coil is a two-stage winding) for one phase (a U-phase coil 10U) according to an embodiment of the present invention. Is shown. As described above, the crossover wire 15U2 is arranged at the bottom of the coil. This coil (U-phase coil 10U) is used as a reference coil.

図7は、本発明の一実施形態である1相分(V相のコイル10V’)の4連続巻コイル(コイル単体は2段巻き)の構造を示している。U相の基準コイル10Uとの違いは各コイルの渡り線15V2、15V3、15V4が回転電器の軸方向に角度φ1で傾斜していることである。   FIG. 7 shows the structure of a four-phase winding coil (a single coil is two-stage winding) for one phase (V-phase coil 10V ′) according to an embodiment of the present invention. The difference from the U-phase reference coil 10U is that the connecting wires 15V2, 15V3, 15V4 of each coil are inclined at an angle φ1 in the axial direction of the rotary electric machine.

図8は、本発明の一実施形態である1相分(V相のコイル10V’)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイル(10b)の一断面図を示している。渡り線15V2は、前述の通り、軸方向に角度φ1で傾斜している。   FIG. 8 is a cross-sectional view of the first coil (10b) at the start of winding of four continuous winding coils (a single coil is two-stage winding) for one phase (V-phase coil 10V ′) according to an embodiment of the present invention. The figure is shown. As described above, the crossover line 15V2 is inclined at an angle φ1 in the axial direction.

図9は、本発明の一実施形態である1相分(W相のコイル10W’)の4連続巻コイル(コイル単体は2段巻き)の構造を示している。U相の基準コイル10Uとの違いは各コイルの渡り線15W2、15W3、15W4が回転電器の軸方向に角度φ2(φ2>φ1)で傾斜していることである。   FIG. 9 shows a structure of four continuous winding coils (one coil is two-stage winding) for one phase (W-phase coil 10W ′) according to an embodiment of the present invention. The difference from the U-phase reference coil 10U is that the connecting wires 15W2, 15W3, 15W4 of each coil are inclined at an angle φ2 (φ2> φ1) in the axial direction of the rotary electric machine.

図10は、本発明の一実施形態である1相分(W相のコイル10W’)の4連続巻コイル(コイル単体は2段巻き)の巻き始め第一番目のコイル(10c)の一断面図を示している。渡り線15W2は、前述の通り、回転電器の軸方向に角度φ2で傾斜している。   FIG. 10 is a cross-sectional view of the first coil (10c) at the start of winding of four continuous winding coils (a single coil is two-stage winding) for one phase (W-phase coil 10W ′) according to an embodiment of the present invention. The figure is shown. As described above, the crossover wire 15W2 is inclined at an angle φ2 in the axial direction of the rotary electric machine.

図11は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を回転電器の軸方向に組み合わせた状態を示している。U相のコイル10U、V相のコイル10V’、 W相のコイル10W’の順に、コイルを横に並べた状態で組み合わせる。V相のコイル10V’とW相のコイル10W’の渡り線をそれぞれ角度φ1とφ2に傾斜させたことで、各渡り線同士は相間絶縁を保つことができ、渡り線の相互の干渉が無くなり、コアは一直線状に並ぶことができ、軸方向の組立が容易となる。さらにこの横に展開されたコイルを環状に成形することにより、ステータ1を形成することができる。   FIG. 11 shows a state in which three-phase four-continuous winding coils (one coil is two-stage winding) according to an embodiment of the present invention are combined in the axial direction of the rotary electric machine. The U-phase coil 10U, the V-phase coil 10V ', and the W-phase coil 10W' are combined in the state of being arranged horizontally. By connecting the connecting wires of the V-phase coil 10V ′ and the W-phase coil 10W ′ to the angles φ1 and φ2, respectively, the connecting wires can maintain the inter-phase insulation, and there is no mutual interference between the connecting wires. The cores can be aligned in a straight line, facilitating axial assembly. Furthermore, the stator 1 can be formed by forming the coil developed laterally in an annular shape.

図12は、本発明の一実施形態である1相分(U相のコイル10U)の4連続巻コイル(コイル単体は2段巻き)の構造を示している。図5との違いは、U相のコイル10Uが最初から環状に連続巻線されている点である。本形状のように巻線工程で形状を作りこむことで、前述の環状成形工程を省略できる。なお、本形状においてもV相のコイル10V’、W相のコイル10W’の渡り線をそれぞれ角度φ1とφ2に傾斜させることはもちろん必要である。   FIG. 12 shows a structure of four continuous winding coils (one coil is a two-stage winding) for one phase (a U-phase coil 10U) according to an embodiment of the present invention. The difference from FIG. 5 is that the U-phase coil 10U is continuously wound in an annular shape from the beginning. By creating a shape in the winding process as in this shape, the above-described annular molding process can be omitted. In this configuration, it is of course necessary to incline the connecting wires of the V-phase coil 10V 'and the W-phase coil 10W' to angles φ1 and φ2, respectively.

図13は、本発明の一実施形態である1相分(U相のコイル10U)の4連続巻コイル(コイル単体は3段巻き)の構造を示している。図13以降を用いて、コイルが奇数巻きの場合の組立に関する前記問題を解決するコイル構造について説明する。図13に示すようにU相のコイル10Uは、4個のコイル10a、10d、10g、10jを横に並べて配置し、各コイルは渡り線15U2、15U3、15U4を並行に傾斜させて連続巻線されている。ここで15U5が端末線、15U1が入力線となる。前述した通り、この形状の4連続コイルを単体で3組作製して、軸方向に単純に組み合わせるだけでは渡り線が干渉するため組立できない。以下、その解決方法について説明する。   FIG. 13 shows a structure of four continuous winding coils (one coil is a three-stage winding) for one phase (a U-phase coil 10U) according to an embodiment of the present invention. A coil structure that solves the above-described problem relating to assembly when the coil has an odd number of turns will be described with reference to FIG. As shown in FIG. 13, the U-phase coil 10U has four coils 10a, 10d, 10g, and 10j arranged side by side, and each coil is a continuous winding with the connecting wires 15U2, 15U3, and 15U4 inclined in parallel. Has been. Here, 15U5 is a terminal line, and 15U1 is an input line. As described above, it is not possible to assemble three sets of four continuous coils of this shape alone and simply combine them in the axial direction because the crossover wires interfere with each other. Hereinafter, the solution will be described.

上述の問題を解決することが可能な構成について、図14乃至図20に基づいて説明する。尚、実施例1と同様に、U相、V相、W相の各々の4連続巻コイルは、巻き終わり線・巻き始め線及び渡り線の曲げ方が異なるのみであり、コイル間の電線の長さやその他の寸法・構成に相違はない。   A configuration capable of solving the above-described problem will be described with reference to FIGS. As in Example 1, the four continuous winding coils of the U phase, V phase, and W phase differ only in the bending method of the winding end wire / winding starting wire and the jumper wire, There is no difference in length and other dimensions and configurations.

図14は、本発明の一実施形態である1相分(U相のコイル10U’’)の4連続巻コイル(コイル単体は3段巻き)の構造を示している。図13との違いは渡り線15U2、15U3、15U4がコイル底部で回転電器の径方向に迂回していることである。なお、この渡り線形状は図13のコイルの渡り線15U2、15U3、15U4を治具など成形しても良いし、最初から巻線工程で作りこむことも可能である。   FIG. 14 shows a structure of four continuous winding coils (a single coil is three-stage winding) for one phase (a U-phase coil 10U ″) according to an embodiment of the present invention. The difference from FIG. 13 is that the crossover wires 15U2, 15U3, 15U4 are detoured in the radial direction of the rotating electrical machine at the bottom of the coil. The connecting wire shape of the coil shown in FIG. 13 may be formed by forming the connecting wires 15U2, 15U3, and 15U4 of the coil in FIG. 13 through a winding process from the beginning.

図14に示す渡り線15U2を、図15に基づいて詳述する。図15は、1相分(U相のコイル10U’’)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイル(10a)の一断面図を示している。渡り線15U2は、コイルの巻き終わり線をコイル上底の内周側から長さh1分だけ回転電器の径方向に延出してから下方に向けて垂直に屈曲し、コイル下底面を延長させた面と略同一面にて、次のコイルの側へ屈曲して所定の長さ分径方向に迂回するよう渡り線15U2を形成し、更に屈曲させて次のコイルの巻き始め線としている。   The crossover 15U2 shown in FIG. 14 will be described in detail based on FIG. FIG. 15 shows a cross-sectional view of the first coil (10a) at the start of winding of four continuous winding coils (a single coil is three-stage winding) of one phase (U-phase coil 10U ″). The connecting wire 15U2 extends the lower end bottom of the coil by extending the coil winding end line from the inner peripheral side of the coil upper base by a length h1 in the radial direction of the rotating electric machine and then bending vertically downward. A crossover wire 15U2 is formed so as to be bent to the next coil side by a predetermined length on the substantially same surface as the surface, and further bent to be a winding start wire of the next coil.

図16は、本発明の一実施形態である1相分(V相のコイル10V’’)の4連続巻コイル(コイル単体は3段巻き)の構造を示している。U相のコイル10U’’との違いは各コイルの渡り線15V2、15V3、15V4がコイル中心で回転電器の径方向に迂回していることである。   FIG. 16 shows the structure of a four-phase winding coil (a single coil is a three-stage winding) for one phase (V-phase coil 10V ″) according to an embodiment of the present invention. The difference from the U-phase coil 10U ″ is that the connecting wires 15V2, 15V3, and 15V4 of each coil are detoured in the radial direction of the rotating electric machine at the center of the coil.

図16に示す渡り線15V2を、図17に基づいて詳述する。図17は、1相分(V相のコイル10V’’)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイル(10b)の一断面図を示している。渡り線15V2は、コイルの巻き終わり線を、コイル上底の内周側から長さh2分だけ回転電器の径方向に延出してから下方に向けて垂直に屈曲し、コイルの図における縦方向(回転電器の軸方向)の寸法の中心にて屈曲してコイル内周から更に距離h2’となる位置まで延出させ、当該位置から電線を所定の長さにて回転電器の径方向に迂回して各コイルの渡り線15V2を形成し、巻き終わり線と同寸の位置にて電線を下方に屈曲させ、コイル下底面を延長させた面と略同一面にて次のコイル側へ更に屈曲させて次のコイルの巻き始め線としている。   The crossover 15V2 shown in FIG. 16 will be described in detail with reference to FIG. FIG. 17 shows a cross-sectional view of the first coil (10b) at the start of winding of four continuous winding coils (a single coil is three-stage winding) for one phase (V-phase coil 10V ″). The connecting wire 15V2 extends the coil winding end line from the inner peripheral side of the coil upper base by a length h2 in the radial direction of the rotating electric machine, and then bends vertically downward, in the longitudinal direction in the coil diagram. Bend at the center of the dimension (rotary electric machine axial direction) and extend from the inner circumference of the coil to a position where the distance is h2 ', and the electric wire is detoured from the position to the radial direction of the rotary electric machine by a predetermined length. Then, the connecting wire 15V2 of each coil is formed, the electric wire is bent downward at the same size as the winding end line, and further bent to the next coil side on the substantially same surface as the extended bottom surface of the coil. Let it be the winding start line of the next coil.

図18は、本発明の一実施形態である1相分(W相のコイル10W’’)の4連続巻コイル(コイル単体は3段巻き)の構造を示している。U相のコイル10U’’との違いは各コイルの渡り線15W2、15W3、15W4がコイル頂部で回転電器の径方向に迂回していることである。   FIG. 18 shows a structure of four continuous winding coils (a single coil is three-stage winding) of one phase (W-phase coil 10W ″) according to an embodiment of the present invention. The difference from the U-phase coil 10U ″ is that the connecting wires 15W2, 15W3, and 15W4 of each coil are detoured in the radial direction of the rotary electric machine at the top of the coil.

図18に示す渡り線15W2を図19に基づいて詳述する。図19は1相分(W相のコイル10W’’)の4連続巻コイル(コイル単体は3段巻き)の巻き始め第一番目のコイル(10c)の一断面図を示している。渡り線15W2は、コイルの巻き終わり線を、コイル上底の内周側から長さh3’分だけ回転電器の径方向に延出し、当該位置から電線を所定の長さにて回転電器の径方向に迂回して各コイルの渡り線15W2を形成し、そこからコイル上底面を延長させた面と略同一面にて、次のコイル側へ屈曲させ、コイル内周から距離h3の位置にて下方に向けて垂直に屈曲させ、コイル下底面を延長させた面と略同一面にて更に屈曲させて次のコイルの巻き始め線としている。   The crossover 15W2 shown in FIG. 18 will be described in detail based on FIG. FIG. 19 shows a cross-sectional view of the first coil (10c) at the start of winding of four continuous winding coils (a single coil is a three-stage winding) for one phase (W-phase coil 10W ″). The connecting wire 15W2 extends the winding end line of the coil from the inner peripheral side of the coil upper base by the length h3 ′ in the radial direction of the rotating electrical machine, and from the position, the electric wire has a predetermined length to the diameter of the rotating electrical machine. The connecting wire 15W2 of each coil is formed by detouring in the direction, bent on the next coil side in a plane substantially the same as the extension of the upper bottom surface of the coil, and at a distance h3 from the inner circumference of the coil. It is bent vertically downward, and further bent on substantially the same plane as the extended bottom surface of the coil, thereby forming the winding start line of the next coil.

図20は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み合わせた状態を示している。U相のコイル10U’’、V相のコイル10V’’、 W相のコイル10W’’の順に、コイルを横に並べた状態で組み合わせる。このとき、相間絶縁距離をdとして、次の条件を全て満たすような寸法とすることで3相の渡り線の全てにおいて、相間絶縁を保つことができる。
h1−h2≧d
h2’―h1≧d
h2’>h1>h2
h1−h3≧d
h3’―h1≧d
h3’>h1>h3
FIG. 20 shows a state in which four continuous winding coils for three phases (a single coil is three-stage winding) according to an embodiment of the present invention are combined in the axial direction. The U-phase coil 10U ″, the V-phase coil 10V ″, and the W-phase coil 10W ″ are combined in the order of being arranged horizontally. At this time, when the interphase insulation distance is d and the dimensions satisfy all of the following conditions, the interphase insulation can be maintained in all of the three-phase connecting wires.
h1-h2 ≧ d
h2′−h1 ≧ d
h2 '>h1> h2
h1-h3 ≧ d
h3′−h1 ≧ d
h3 '>h1> h3

このようにして、U相のコイル10U’’、V相のコイル10V’’、W相のコイル10W’’の渡り線をコイルの頂部、中心、底部でそれぞれ回転電器の径方向に迂回させることで、渡り線の相互の干渉が無くなり、コアは一直線状に並ぶことができ、軸方向の組立が容易となる。さらにこの横に展開されたコイルを環状に組み立てることにより、ステータ1を形成することができる。なお、本形状においても図12のように最初から環状にコイルを連続巻線することができることはもちろんである。   In this way, the connecting wires of the U-phase coil 10U ″, the V-phase coil 10V ″, and the W-phase coil 10W ″ are detoured in the radial direction of the rotating electric machine at the top, center, and bottom of the coil, respectively. Thus, there is no mutual interference of the crossover wires, and the cores can be aligned in a straight line, facilitating assembly in the axial direction. Further, the stator 1 can be formed by assembling the laterally expanded coils into an annular shape. Of course, in this shape as well, the coil can be continuously wound in an annular shape from the beginning as shown in FIG.

図21は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロックを挿入した状態を示している。最後に残った課題として、ステータ1を機能させるために渡り線の相間絶縁を確保(渡り線の位置を規制し、一定空間距離を確保)する必要がある。一般的なラジアルギャップ型モータでは、樹脂製の配線板もしくは結線板を設置するなど部品費として高額になることが多い。モータの低価格化を実現するためには、この部分も安くしたい。このため、図21に示すように3相の渡り線の位置を固定する樹脂製の配線ブロック20を数箇所に挿入する。これにより、従来は一体物であった配線板を細かく分割して小さくしたことで、材料費を低減できる。配線ブロック20の固定方法については、接着材、モールドなどが考えられる。   FIG. 21 shows a state in which a position-fixing wiring block is inserted in a state in which four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a two-stage winding) are assembled in the axial direction. . As the last remaining problem, it is necessary to ensure insulation between the crossovers of the crossover wires (to restrict the position of the crossover wires and to ensure a certain spatial distance) in order to make the stator 1 function. In general radial gap type motors, the cost of parts is often high, such as the installation of resin wiring boards or connection boards. In order to reduce the price of the motor, I would like to make this part cheaper. Therefore, as shown in FIG. 21, resin wiring blocks 20 that fix the positions of the three-phase crossover wires are inserted into several places. Thereby, the material cost can be reduced by finely dividing the wiring board, which has been conventionally an integral product, into smaller pieces. As a method for fixing the wiring block 20, an adhesive, a mold, or the like can be considered.

図22は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は2段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロック20を挿入した状態を断面で示している。3相の渡り線は図22のように配置されており、これを確実に位置決めするためには、3つの溝を有した略逆E字状の配線ブロック20が適している。この形状であれば一方向からの挿入が可能である。   FIG. 22 is a cross-sectional view showing a state in which a position fixing wiring block 20 is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a two-stage winding) are assembled in the axial direction. Show. The three-phase crossover wires are arranged as shown in FIG. 22, and a substantially inverted E-shaped wiring block 20 having three grooves is suitable for positioning the three-phase connecting wires with certainty. With this shape, insertion from one direction is possible.

図23は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロック25を挿入した状態を示している。   FIG. 23 shows a state in which a position fixing wiring block 25 is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a three-stage winding) are assembled in the axial direction. Yes.

図24は、本発明の一実施形態である3相分の4連続巻コイル(コイル単体は3段巻き)を軸方向に組み立てた状態に位置固定用の配線ブロック25を挿入した状態を断面で示している。3相の渡り線は図24のように配置されており、これを確実に位置決めするためには、図23と同様に3つの溝を有した略逆E字状の配線ブロック25が適している。これも同様に、この形状であれば一方向からの挿入が可能である。   FIG. 24 is a cross-sectional view of a state in which a position fixing wiring block 25 is inserted in a state where four continuous winding coils for three phases according to an embodiment of the present invention (a single coil is a three-stage winding) are assembled in the axial direction. Show. The three-phase crossover wires are arranged as shown in FIG. 24, and a substantially inverted E-shaped wiring block 25 having three grooves is suitable as in FIG. . Similarly, if it is this shape, insertion from one direction is possible.

1 ステータ
2 ロータ
3 鉄心
4 入力線
5 中性点
10a〜10l コイル
10U,10U’’ U相のコイル
10V,10V’,10V’’ V相のコイル
10W,10W’,10W’’ W相のコイル
15U1 入力線
15U2,15U3,15U4 渡り線
15U5 端末線
15V1 入力線
15V2,15V3,15V4 渡り線
15V5 端末線
15W1 入力線
15W2,15W3,15W4 渡り線
15W5 端末線
20,25 配線ブロック
100 アキシャルギャップ型モータ
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Iron core 4 Input wire 5 Neutral point 10a-10l Coil 10U, 10U '' U phase coil 10V, 10V ', 10V''V phase coil 10W, 10W', 10W '' W phase coil 15U1 Input line 15U2, 15U3, 15U4 Crossover line 15U5 Terminal line 15V1 Input line 15V2, 15V3, 15V4 Crossover line 15V5 Terminal line 15W1 Input line 15W2, 15W3, 15W4 Crossover line 15W5 Terminal line 20, 25 Wiring block 100 Axial gap type motor

Claims (8)

電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に構成したU,V,Wの3相分の連続巻線ユニットを備え、
各U,V,W相の前記連続巻線ユニットの一つのコイルと隣接するコイルの間における各相の前記渡り線の渡り部分での空間距離を回転電機の径方向及び軸方向に予め定められた相間絶縁距離を保つように配置したことを特徴とするアキシャルギャップ型回転電機。
A winding end line of a coil formed by winding an electric wire is extended to form a winding start line of an adjacent coil as a connecting wire, and a plurality of winding coils are continuously formed by continuously winding U, V, and W Equipped with a continuous winding unit for three phases,
Spatial distances at the crossing portions of the crossover wires of each phase between one coil of the continuous winding unit of each U, V, and W phase and adjacent coils are predetermined in the radial direction and the axial direction of the rotating electrical machine. An axial gap type rotating electrical machine, which is arranged so as to maintain an insulation distance between phases.
コイルの巻き終わり線をコイルの頂部若しくは底部から回転電機の径方向に延出させると共に、連続巻きした次のコイルの巻き始め線を前記巻き終わり線とは逆の底部若しくは頂部から軸方向に導入させ、前記渡り線の渡り部分は回転電機の径方向に対して傾斜させるよう構成したことを特徴とする請求項1記載のアキシャルギャップ型回転電機。   The coil winding end line extends from the top or bottom of the coil in the radial direction of the rotating electric machine, and the winding start line of the next continuous coil is introduced in the axial direction from the bottom or top opposite to the winding end line. The axial gap type rotating electrical machine according to claim 1, wherein the crossover portion of the connecting wire is inclined with respect to the radial direction of the rotating electrical machine. 前記U相連続巻線ユニットの渡り線と、前記V相連続巻線ユニットの渡り線と、前記W相連続巻線ユニットの渡り線とにおいて、各相の前記渡り線の渡り部分における回転電機の軸方向の高さが異なるよう、各相の前記渡り部分からコイルへ導入される巻き始め線の導入角度及びコイルから前記渡り部分へ延出する巻き終わり線の延出角度を、各相の連続巻線毎に異なる角度にして回転電機の軸方向に傾斜させることを特徴とする請求項1記載のアキシャルギャップ型回転電機。   In the connecting wire of the U-phase continuous winding unit, the connecting wire of the V-phase continuous winding unit, and the connecting wire of the W-phase continuous winding unit, the rotating electric machine in the connecting portion of the connecting wire of each phase The introduction angle of the winding start line introduced from the transition part of each phase to the coil and the extension angle of the winding end line extending from the coil to the transition part are set so that the height in the axial direction is different. 2. The axial gap type rotating electric machine according to claim 1, wherein the winding is inclined in the axial direction of the rotating electric machine at a different angle. 前記U相連続巻線ユニットの渡り線と、前記V相連続巻線ユニットの渡り線と、前記W相連続巻線ユニットの渡り線とにおいて、各相の渡り線は回転電機の径方向に伸びる延出部及び導入部と、回転電機の軸方向に伸びる垂直部と、一つのコイルから隣のコイルへ渡る渡り部分とから構成されており、前記渡り部分の回転電機の軸方向での高さを異なる高さに配置したことを特徴とする請求項1記載のアキシャルギャップ型回転電機。   In the connecting wire of the U-phase continuous winding unit, the connecting wire of the V-phase continuous winding unit, and the connecting wire of the W-phase continuous winding unit, the connecting wire of each phase extends in the radial direction of the rotating electrical machine. It is composed of an extension part and an introduction part, a vertical part extending in the axial direction of the rotating electrical machine, and a transition part extending from one coil to the next coil. The height of the transition part in the axial direction of the rotating electrical machine 2. The axial gap type rotating electrical machine according to claim 1, wherein the shafts are arranged at different heights. 前記U相連続巻線ユニットの渡り線の渡り部分と、前記V相連続巻線ユニットの渡り線の渡り部分と、前記W相連続巻線ユニットの渡り線の渡り部分を、それぞれ保持するスペーサブロックを備えることを特徴とする請求項1記載のアキシャルギャップ型回転電機。   A spacer block for holding a crossover portion of the U-phase continuous winding unit, a crossover portion of the V-phase continuous winding unit, and a crossover portion of the W-phase continuous winding unit. The axial gap type rotating electrical machine according to claim 1, further comprising: 電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成し、
各相の連続巻線ユニットの一つのコイルと隣接するコイルの間における各相の前記渡り線渡り部分での空間距離を、回転電機の径方向及び軸方向において予め定められた相間絶縁距離を保つように配置して組み立てることを特徴とするアキシャルギャップ型回転電機の製造方法。
A winding end line of a coil formed by winding an electric wire is extended to form a winding start line of an adjacent coil as a connecting wire, and a plurality of winding coils are continuously formed by continuously winding the U winding of the same configuration , V, W 3 phase continuous winding unit is formed in advance,
The spatial distance in the crossover part of each phase between one coil and the adjacent coil of each phase continuous winding unit is maintained at a predetermined interphase insulation distance in the radial and axial directions of the rotating electrical machine. A method of manufacturing an axial gap type rotating electrical machine, characterized by being arranged and assembled as described above.
電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成した後に、
前記渡り線とコイルの間の巻き終わり線及び巻き始め線を、前記U,V,Wの各相において異なる角度にて傾斜させるように成形することで、各相の渡り線の間の相間絶縁距離を保つことを特徴とする請求項6記載のアキシャルギャップ型回転電機の製造方法。
A winding end line of a coil formed by winding an electric wire is extended to form a winding start line of an adjacent coil as a connecting wire, and a plurality of winding coils are continuously formed by continuously winding the U winding of the same configuration After forming continuous winding units for V, W, and W3 phases in advance,
By forming the winding end line and winding start line between the connecting wire and the coil so as to be inclined at different angles in each of the U, V, and W phases, interphase insulation between the connecting wires of each phase The method of manufacturing an axial gap type rotating electrical machine according to claim 6, wherein the distance is maintained.
電線を巻き回して形成するコイルの巻き終わり線を延ばして渡り線として隣接するコイルの巻き始め線とし、連続して巻き回すことで複数の巻きコイルを連続的に形成して、同一構成のU,V,W3相分の連続巻線ユニットを予め形成した後に、
前記巻き終わり線及び巻き始め線を、各相ごとに、コイルの下底部、中央部、上底部から延出するように成形することで、各相の渡り線の間の相間絶縁距離を保つことを特徴とする請求項6記載のアキシャルギャップ型回転電機の製造方法。
A winding end line of a coil formed by winding an electric wire is extended to form a winding start line of an adjacent coil as a connecting wire, and a plurality of winding coils are continuously formed by continuously winding the U winding of the same configuration After forming continuous winding units for V, W, and W3 phases in advance,
The winding end line and the winding start line are formed so as to extend from the lower bottom portion, the center portion, and the upper bottom portion of the coil for each phase, thereby maintaining the interphase insulation distance between the connecting wires of each phase. The method of manufacturing an axial gap type rotating electrical machine according to claim 6.
JP2011264377A 2011-12-02 2011-12-02 Axial gap type rotary electric machine and manufacturing method thereof Pending JP2013118750A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011264377A JP2013118750A (en) 2011-12-02 2011-12-02 Axial gap type rotary electric machine and manufacturing method thereof
PCT/JP2012/077700 WO2013080720A1 (en) 2011-12-02 2012-10-26 Axial-gap dynamoelectric machine and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264377A JP2013118750A (en) 2011-12-02 2011-12-02 Axial gap type rotary electric machine and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013118750A true JP2013118750A (en) 2013-06-13

Family

ID=48535191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264377A Pending JP2013118750A (en) 2011-12-02 2011-12-02 Axial gap type rotary electric machine and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2013118750A (en)
WO (1) WO2013080720A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226195A (en) * 2015-06-01 2016-12-28 マツダ株式会社 Stator structure for axial gap type rotary electric machine, and manufacturing method thereof
EP3133722A4 (en) * 2014-04-14 2017-11-22 Hitachi Industrial Equipment Systems Co., Ltd. Axial-air-gap dynamo-electric machine
CN108604845A (en) * 2016-05-18 2018-09-28 株式会社日立产机系统 Axial-gap rotary electric machine
WO2018180721A1 (en) * 2017-03-28 2018-10-04 Ntn株式会社 Electric motor
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
EP3920380A4 (en) * 2019-02-01 2022-10-19 Magelec Propulsion Ltd. Stator winding, stator and motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052351B1 (en) * 2015-07-13 2016-12-27 ダイキン工業株式会社 Armature, rotating electric machine, cross flow fan
JP6650336B2 (en) * 2016-04-28 2020-02-19 日立オートモティブシステムズエンジニアリング株式会社 Rotating electric machine
EP3614533A1 (en) * 2018-08-21 2020-02-26 Siemens Gamesa Renewable Energy A/S Concentrated winding layout for a stator of an electrical ac machine
DE102021108953B3 (en) 2021-04-10 2022-10-06 Schaeffler Technologies AG & Co. KG Stator of an axial flux electric machine and axial flux machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180618A (en) * 2004-12-22 2006-07-06 Fujitsu General Ltd Axial gap type motor
JP2008125278A (en) * 2006-11-14 2008-05-29 Fujitsu General Ltd Axial air gap type motor
JP2008172859A (en) * 2007-01-09 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2009240118A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Stator, motor, and compressor
JP2011188587A (en) * 2010-03-05 2011-09-22 Daihatsu Motor Co Ltd Stator
JP2011217478A (en) * 2010-03-31 2011-10-27 Kokusan Denki Co Ltd Rotating electric machine, and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722712B2 (en) * 2001-03-22 2005-11-30 山洋電気株式会社 Stator for rotating electrical machine
JP4305649B2 (en) * 2003-02-26 2009-07-29 株式会社富士通ゼネラル Axial gap type electric motor
JP4857615B2 (en) * 2005-06-09 2012-01-18 日産自動車株式会社 Coil connection structure of rotating electrical machine
JP5509607B2 (en) * 2009-02-05 2014-06-04 株式会社富士通ゼネラル Axial air gap type electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180618A (en) * 2004-12-22 2006-07-06 Fujitsu General Ltd Axial gap type motor
JP2008125278A (en) * 2006-11-14 2008-05-29 Fujitsu General Ltd Axial air gap type motor
JP2008172859A (en) * 2007-01-09 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2009240118A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Stator, motor, and compressor
JP2011188587A (en) * 2010-03-05 2011-09-22 Daihatsu Motor Co Ltd Stator
JP2011217478A (en) * 2010-03-31 2011-10-27 Kokusan Denki Co Ltd Rotating electric machine, and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133722A4 (en) * 2014-04-14 2017-11-22 Hitachi Industrial Equipment Systems Co., Ltd. Axial-air-gap dynamo-electric machine
US10763716B2 (en) 2014-04-14 2020-09-01 Hitachi Industrial Equipment Systems Co., Ltd. Axial-air-gap dynamo-electric machine with a tubular-shaped stator bobbin
JP2016226195A (en) * 2015-06-01 2016-12-28 マツダ株式会社 Stator structure for axial gap type rotary electric machine, and manufacturing method thereof
CN108604845A (en) * 2016-05-18 2018-09-28 株式会社日立产机系统 Axial-gap rotary electric machine
CN108604845B (en) * 2016-05-18 2020-06-16 株式会社日立产机系统 Axial gap type rotating electric machine
US10992203B2 (en) 2016-05-18 2021-04-27 Hitachi Industrial Equipment Systems Co., Ltd. Axial gap type rotary electric machine
WO2018180721A1 (en) * 2017-03-28 2018-10-04 Ntn株式会社 Electric motor
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
EP3920380A4 (en) * 2019-02-01 2022-10-19 Magelec Propulsion Ltd. Stator winding, stator and motor

Also Published As

Publication number Publication date
WO2013080720A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2013080720A1 (en) Axial-gap dynamoelectric machine and method of manufacturing thereof
JP5840295B2 (en) Rotating electric machine
JP6223835B2 (en) Axial gap type motor
CN102725946B (en) Inverter body-type drive module and method for manufacturing the same
JP5070248B2 (en) Rotating electric machine and manufacturing method thereof
JP6094149B2 (en) Wave winding of three-phase rotating electric machine
US9601957B2 (en) Compact multiphase wave winding of a high specific torque electric machine
JP6707860B2 (en) Rotary electric machine and method of manufacturing the same
US20140021815A1 (en) Electricity collection and distribution ring and electric motor
JP2014007829A (en) Stator and manufacturing method therefor
JPWO2015079732A1 (en) Armature of electric machine
CN104247223A (en) Stator winding for electrical rotating machine
TW201541810A (en) Stator of a rotary electric machine
JPWO2014034712A1 (en) Rotating electric machine
JP5889765B2 (en) Manufacturing method of axial gap type rotating electrical machine
CN114552811A (en) Motor stator and motor using same
CN202260733U (en) Double-layer fractional slot permanent magnet synchronous motor winding structure
JP2014090614A (en) Wave winding for three-phase rotary electric machine
CN215956131U (en) Flat wire motor stator and motor
CN114552812A (en) Motor stator and motor using same
CN102308457B (en) DC motor
TWI548180B (en) Variable frequency motor device
CN111478485A (en) Motor stator and motor
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
CN212033857U (en) Motor stator and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224