JP2013113432A - Continuously variable transmission mechanism - Google Patents

Continuously variable transmission mechanism Download PDF

Info

Publication number
JP2013113432A
JP2013113432A JP2011263350A JP2011263350A JP2013113432A JP 2013113432 A JP2013113432 A JP 2013113432A JP 2011263350 A JP2011263350 A JP 2011263350A JP 2011263350 A JP2011263350 A JP 2011263350A JP 2013113432 A JP2013113432 A JP 2013113432A
Authority
JP
Japan
Prior art keywords
pulley
spring means
movable tooth
movable
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011263350A
Other languages
Japanese (ja)
Inventor
Masashi Yoshino
將志 吉野
Yoshitaka Miura
吉孝 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011263350A priority Critical patent/JP2013113432A/en
Publication of JP2013113432A publication Critical patent/JP2013113432A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a spring means from wearing and breaking due to displacement in a pulley axial direction and interference with a pulley center boss part, the spring means which biases a movable tooth with which a chain is meshed outward radially.SOLUTION: A movable tooth 17 in a pulley diameter direction is elastically supported in a radial limit position of (a) by a spring means 19 on an outer circumference of a pulley center boss part 16 between a fixed sheave 12_1 and a movable sheave 12a_2 to prevent slippage by engaging a chain 13 with the movable tooth 17. In a ratcheting state from a start of the engagement until an end of the engagement, and from complete engagement until release of the engagement, the spring means 19 displaces to the movable sheave 12a_2, and may wear and break by the interference with the pulley center boss part 16. In order to restrict axial displacement of the spring means 19, a stopper 17c is stood on a backside 17a of the movable tooth to prevent the spring means 19 from interfering with the pulley center boss part 16, and thereby the wear and breakage of the spring means 19 can be prevented.

Description

本発明は、無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、該プーリの中心ボス部外周にバネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯と、無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にした無段変速伝動機構に関するものである。   The present invention comprises an endless chain link and a pulley around which the endless chain link is wound so as to be continuously variable, and is urged radially outward by a spring means around the outer periphery of the central boss of the pulley. The present invention relates to a continuously variable transmission mechanism capable of preventing slipping at a transmission ratio capable of meshing by meshing between a movable tooth provided so as to be able to advance and retract and a movable tooth meshing groove provided on an endless chain link. .

この種の無段変速伝動機構としてはVベルト式無段変速機が良く知られており、無終端チェーンリンクをプーリのV溝に掛け渡して動力伝達可能となす一方、
この動力伝達中にプーリV溝の溝幅を変更することでプーリに対する無終端チェーンリンクの巻き掛け径を連続的に変化させることにより、無段変速が可能となるよう構成する。
As this type of continuously variable transmission mechanism, a V-belt type continuously variable transmission is well known, and the endless chain link is stretched over the V groove of the pulley to enable power transmission,
By continuously changing the winding diameter of the endless chain link with respect to the pulley by changing the groove width of the pulley V groove during the power transmission, the continuously variable transmission can be performed.

他方、無段変速伝動機構のスリップを抑制して伝動効率を高める技術として従来、例えば特許文献1に記載のごとく、プーリV溝の底面を画成するプーリの中心ボス部外周面に歯を突設し、
無終端チェーンリンクの内周に形成した歯溝がプーリ中心ボス部外周面の歯と噛み合う伝動比である間、プーリおよび無終端チェーンリンク間のスリップを防止して無段変速伝動機構の伝動効率を高める技術が提案されている。
On the other hand, as a technique for increasing the transmission efficiency by suppressing the slip of the continuously variable transmission mechanism, conventionally, as described in Patent Document 1, for example, teeth are projected on the outer peripheral surface of the central boss portion of the pulley that defines the bottom surface of the pulley V groove. Set up
While the tooth groove formed on the inner periphery of the endless chain link is in the transmission ratio that meshes with the teeth on the outer peripheral surface of the pulley center boss, the transmission efficiency of the continuously variable transmission mechanism is prevented by preventing slippage between the pulley and the endless chain link. A technique for improving the above has been proposed.

他方で特許文献1には、プーリ中心ボス部の外周面に設ける歯をバネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯となし、この可動歯が、無終端チェーンリンクに設けた可動歯噛合溝と噛み合った伝動比でのスリップ防止を実現可能にした技術も提案されている。   On the other hand, in Patent Document 1, the teeth provided on the outer peripheral surface of the pulley central boss portion are configured as movable teeth that are urged radially outward by a spring means so as to be able to advance and retract in the radial direction. There has also been proposed a technique capable of preventing slippage at a transmission ratio meshed with a movable tooth meshing groove provided in a chain link.

この提案技術によれば、上記の可動歯が無終端チェーンリンクの内周歯溝と噛み合い損なった場合、無終端チェーンリンクの内周により径方向内方へ後退され得ることから、
プーリ中心ボス部外周の歯が無終端チェーンリンクとの干渉により、この無終端チェーンリンクを損傷させるようなことがなくて、耐久性の点で有利である。
According to this proposed technique, when the above-mentioned movable tooth fails to mesh with the inner peripheral tooth groove of the endless chain link, it can be retracted radially inward by the inner periphery of the endless chain link.
Since the teeth on the outer periphery of the pulley central boss part do not damage the endless chain link due to interference with the endless chain link, this is advantageous in terms of durability.

特開2010−014269号公報JP 2010-014269 A

しかし上記した先の提案技術にあっては、プーリ中心ボス部の外周面に設ける可動歯を径方向外方へ附勢するバネ手段として、コイルスプリングや環状スプリングを用いるため、以下のような問題を生ずる。   However, in the above-mentioned proposed technique, since the coil spring or the annular spring is used as the spring means for urging the movable tooth provided on the outer peripheral surface of the pulley center boss portion in the radial direction, the following problems are caused. Is produced.

バネ手段としてコイルスプリングを用いる場合、可動歯が要求する径方向外方附勢力を発生させるのに必要なコイルスプリングのストロークが大きく、プーリ中心ボス部の外周面と可動歯との間にコイルスプリングを収納するのが困難である。
かといって、プーリ中心ボス部の外周面と可動歯との間に確保可能なスペース内に収まるようなコイルスプリングを用いる場合、要求されるバネ力を発生させることが困難で、可動歯を要求される力で径方向外方へ附勢することができない。
When a coil spring is used as the spring means, the stroke of the coil spring required to generate the radially outward biasing force required by the movable tooth is large, and the coil spring is between the outer peripheral surface of the pulley center boss and the movable tooth. Is difficult to store.
However, when using a coil spring that fits in a space that can be secured between the outer peripheral surface of the pulley center boss and the movable tooth, it is difficult to generate the required spring force, and the movable tooth is required. Cannot be urged outward in the radial direction by the applied force.

なおコイルスプリングのストロークを稼ぐには、プーリ中心ボス部の軸径を細くする手法があるが、この手法だと、プーリ中心ボス部の軸強度が不足して、耐久性の点で問題がある。   In order to earn a coil spring stroke, there is a method of reducing the shaft diameter of the pulley center boss, but this method has a problem in terms of durability due to insufficient shaft strength of the pulley center boss. .

他方、バネ手段として環状スプリングを用いる場合、環状スプリングを逃がすための溝が可動歯に不可欠で、可動歯の構造が複雑になってコスト高になるほかに、
可動歯を先に組み込んだ後に、環状スプリングを可動歯に押し付けつつ組み付けて、可動歯に弾性力を付与する手順となり、環状スプリングの組み付け作業性が悪いという問題も生ずる。
On the other hand, when an annular spring is used as the spring means, a groove for escaping the annular spring is indispensable for the movable tooth, and the structure of the movable tooth becomes complicated and the cost increases.
After assembling the movable teeth first, the annular spring is assembled while being pressed against the movable teeth, and an elastic force is applied to the movable teeth, resulting in a problem that the workability of assembling the annular spring is poor.

本発明は、プーリ中心ボス部外周の可動歯を径方向外方へ附勢するバネ手段として、従来のようなコイルスプリングや環状スプリングと異なり、上記のような問題を生ずることのない特異なバネ手段を用いて上記問題解決を実現し、併せてこの特異なバネ手段が、可動歯のプーリ径方向内方への後退時にプーリ軸線方向へ変位して、プーリ中心ボス部との干渉により摩耗したり、折損することのないようにした無段変速伝動機構を提供することを目的とする。   The present invention is a unique spring that does not cause the above-mentioned problem as a spring means for urging the movable teeth on the outer periphery of the pulley central boss portion radially outward, unlike a conventional coil spring or annular spring. The unique spring means is displaced in the pulley axis direction when the movable teeth are retracted inward in the pulley radial direction, and wears due to interference with the pulley central boss. It is an object of the present invention to provide a continuously variable transmission mechanism that does not break or break.

この目的のため、本発明による無段変速伝動機構は、以下のごとくにこれを構成する。
先ず、本発明の要旨構成の基礎前提となる無段変速伝動機構を説明するに、これは、
無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、
該プーリの中心ボス部外周にバネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯と、上記無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にしたものである。
For this purpose, the continuously variable transmission mechanism according to the present invention is constituted as follows.
First, in order to explain the continuously variable transmission mechanism that is the basic premise of the gist configuration of the present invention,
It consists of an endless chain link and a pulley wrapped around this endless chain link so that it can be continuously variable,
Engagement of the movable teeth provided on the outer periphery of the central boss of the pulley by a spring means so as to be able to advance and retract in the radial direction and the movable teeth meshing groove provided in the endless chain link It is possible to prevent slip at a transmission ratio that can be

本発明は、かかる無段変速伝動機構における上記のバネ手段、およびこれが着座する可動歯の裏面をそれぞれ、特に以下のごときものとした点に特徴づけられる。   The present invention is characterized in that the above-described spring means in the continuously variable transmission mechanism and the back surface of the movable tooth on which it is seated are particularly as follows.

先ずバネ手段は、上記中心ボス部外周の母線方向へ延在しつつ該中心ボス部外周と可動歯との間に介在させたU字状エレメントを具え、
これらU字状エレメントを、該U字状エレメントの対向脚部が相互非結合端において上記中心ボス部外周に着座し、また該対向脚部が相互結合端において前記可動歯に着座するよう指向させ、
隣り合う上記U字状エレメントの隣接脚部同士を、一対の隣接脚部同士以外、上記相互非結合端において連結エレメントで相互に結合することにより上記U字状エレメントを相互に一体化して、上記U字状エレメントの対向脚部が上記相互結合端で上記可動歯に上記径方向外方への附勢力を付与するよう構成する。
First, the spring means comprises a U-shaped element interposed between the outer periphery of the central boss portion and the movable teeth while extending in the generatrix direction of the outer periphery of the central boss portion,
These U-shaped elements are oriented so that the opposing leg portions of the U-shaped element are seated on the outer periphery of the central boss portion at the mutual non-bonding ends, and the opposing leg portions are seated on the movable teeth at the mutual coupling ends. ,
The U-shaped elements are integrated with each other by connecting the adjacent leg portions of the adjacent U-shaped elements to each other with a connecting element other than a pair of adjacent leg portions at the non-bonding ends. The opposing leg portion of the U-shaped element is configured to apply the radially outward biasing force to the movable tooth at the mutual coupling end.

また上記可動歯は、上記U字状エレメントの相互結合端が着座する裏面に、当該可動歯のプーリ径方向内方への後退時における上記U字状エレメントの相互結合端の変位を制限するストッパを立設した構造となす。   The movable tooth has a stopper for limiting the displacement of the mutual coupling end of the U-shaped element when the movable tooth is retracted inward in the radial direction of the pulley on the back surface where the mutual coupling end of the U-shaped element is seated. The structure is standing up.

このような本発明の無段変速伝動機構にあっては、可動歯ごとにその裏面に相互結合端を着座させたU字状エレメントのうち、隣り合うU字状エレメントの隣接脚部同士を、一対の隣接脚部同士以外、相互非結合端において連結エレメントで相互に結合することによりU字状エレメントを相互に一体化して得られるU字状エレメントの一体化ユニットを可動歯のバネ手段として用い、U字状エレメントの対向脚部が相互結合端で可動歯に径方向外方への附勢力を付与するよう構成したため、
このバネ手段が、U字状エレメントおよび連結エレメントの連続体であって捩りバネ型式のバネ手段となり、比較的小さなバネストロークで大きなバネ力を発生させることができる。
In such a continuously variable transmission mechanism of the present invention, among the U-shaped elements in which the mutual coupling ends are seated on the back surface of each movable tooth, adjacent leg portions of adjacent U-shaped elements, A unit of U-shaped elements obtained by integrating U-shaped elements with each other by connecting elements at non-bonding ends other than a pair of adjacent legs is used as a spring means for movable teeth. Because the opposing leg of the U-shaped element is configured to apply a radially outward urging force to the movable tooth at the mutual coupling end,
This spring means is a continuous body of a U-shaped element and a connecting element and becomes a torsion spring type spring means, and a large spring force can be generated with a relatively small spring stroke.

従って本発明によれば、小さなバネストロークで、可動歯が要求する径方向外方附勢力を発生させることができ、プーリ中心ボス部外周と可動歯との間における制限されたスペースでも、ここに上記のバネ手段を容易に収納することができると共に、可動歯を要求通りの力で径方向外方へ附勢することができる。   Therefore, according to the present invention, it is possible to generate the radially outward biasing force required by the movable tooth with a small spring stroke, and even in a limited space between the pulley center boss outer periphery and the movable tooth, The spring means can be easily accommodated, and the movable teeth can be urged radially outward with a required force.

また本発明によれば、上記の通り小さなバネストロークで要求するバネ力を発生させ得ることから、バネストロークを稼ぐ必要がなくて、バネストロークのためにプーリ中心ボス部の軸径を細くする必要もなく、プーリ中心ボス部の軸強度不足に伴う耐久性の問題も生ずることがない。   Further, according to the present invention, since the required spring force can be generated with a small spring stroke as described above, it is not necessary to earn the spring stroke, and the shaft diameter of the pulley central boss portion needs to be reduced for the spring stroke. In addition, there is no problem of durability due to insufficient axial strength of the pulley center boss.

本発明によれば更に、バネ手段がU字状エレメントおよび連結エレメントの連続体であることから、これらエレメントを逃がすための溝を可動歯に設ける必要がなく、可動歯の構造が複雑になってコスト高になるという問題を生ずることもない。
また同様な理由から、つまりバネ手段がU字状エレメントおよび連結エレメントの連続体であることから、このバネ手段は、可動歯をプーリ中心ボス部の外周に組み付ける前に組み付けておくことができ、組み付け作業性の点でも大いに有利である。
Further, according to the present invention, since the spring means is a continuous body of the U-shaped element and the connecting element, it is not necessary to provide the movable tooth with a groove for escaping these elements, and the structure of the movable tooth becomes complicated. There is no problem of high costs.
For the same reason, that is, since the spring means is a continuous body of the U-shaped element and the connecting element, this spring means can be assembled before the movable teeth are assembled to the outer periphery of the pulley center boss part, This is also very advantageous in terms of assembly workability.

加えて本発明では、U字状エレメントの相互結合端が着座する可動歯の裏面に、当該可動歯のプーリ径方向内方への後退時におけるU字状エレメントの相互結合端の変位を制限するストッパを立設したため、
上記の特異なバネ手段を用いるといえども、この特異なバネ手段が、可動歯のプーリ径方向内方への後退時にプーリ軸線方向へ変位する量を制限することができ、バネ手段がプーリ中心ボス部との干渉により摩耗したり、折損するのを防止して、耐久性を向上させることができる。
In addition, according to the present invention, the displacement of the mutual coupling end of the U-shaped element is limited on the back surface of the movable tooth on which the mutual coupling end of the U-shaped element is seated when the movable tooth is retracted inward in the pulley radial direction. Because the stopper was erected,
Even if the above unique spring means is used, this unique spring means can limit the amount of displacement in the pulley axial direction when the movable teeth are retracted inwardly in the pulley radial direction. Durability can be improved by preventing wear or breakage due to interference with the boss portion.

本発明の一実施例になる無段変速伝動機構の概略側面図である。1 is a schematic side view of a continuously variable transmission mechanism according to an embodiment of the present invention. 図1に示した無段変速伝動機構のセカンダリプーリ側における巻き掛け伝動部のスリップ防止機構を示す詳細図である。FIG. 2 is a detailed view showing a slip prevention mechanism of a winding transmission portion on the secondary pulley side of the continuously variable transmission mechanism shown in FIG. 図1,2に示した無段変速伝動機構の無終端チェーンリンクおよびセカンダリプーリ間におけるスリップ防止機構を示す要部拡大縦断側面図で、 (a)は、可動歯がプーリ径方向内方へ押し込まれていない状態の要部拡大縦断側面図、 (b)は、可動歯がプーリ径方向内方へ押し込まれた状態の要部拡大縦断側面図、 (c)は、可動歯附勢用バネ手段が可動歯の対向側壁に乗り上げた状態の要部拡大縦断側面図ある。Fig. 1 is an enlarged vertical side view of the main part showing the anti-slip mechanism between the endless chain link and the secondary pulley of the continuously variable transmission mechanism shown in Figs. 1 and 2, (a) is the movable teeth pushed inward in the pulley radial direction (B) is an enlarged vertical side view of the main part when the movable tooth is pushed inward in the radial direction of the pulley, (c) is a spring means for biasing the movable tooth. It is a principal part expansion vertical side view of the state in which ran on the opposing side wall of a movable tooth. 図1〜3に示した無段変速伝動機構のセカンダリプーリ中心ボス部を、可動歯附勢用バネ手段が取り付けられた状態で、しかし可動歯取り付け前の状態で示す斜視図である。FIG. 4 is a perspective view showing a secondary pulley center boss portion of the continuously variable transmission mechanism shown in FIGS. 1 to 3 in a state where a movable tooth biasing spring means is attached, but before the movable teeth are attached. 図1〜4の無段変速伝動機構に用いる可動歯附勢用バネ手段を示し、 (a)は、同バネ手段の全体斜視図、 (b)は、(a)のVIII部分に係わる同バネ手段の一部拡大詳細斜視図である。4 shows a movable tooth biasing spring means used in the continuously variable transmission mechanism of FIGS. 1 to 4, wherein (a) is an overall perspective view of the spring means, and (b) is the same spring relating to the VIII portion of (a). It is a partially enlarged detail perspective view of the means. 図5に示した可動歯附勢用バネ手段の全体側面図である。FIG. 6 is an overall side view of the movable tooth biasing spring means shown in FIG. セカンダリプーリ中心ボス部への可動歯取り付け状態を示し、 (a)は、図3(a)の矢X方向に見た斜視図、 (b)は、図3(a)の矢Y方向に見た斜視図である。Fig. 3 shows a state where the movable pulley is attached to the center boss of the secondary pulley, (a) is a perspective view seen in the direction of arrow X in Fig. 3 (a), and (b) is seen in the direction of arrow Y in Fig. 3 (a). FIG. バネ手段の相互連結端が着座する可動歯の裏面を示す拡大詳細斜視図である。It is an expansion detailed perspective view which shows the back surface of the movable tooth on which the interconnection end of a spring means sits. バネ手段と可動歯裏面との接触部において、バネ手段をプーリ軸線方向へ変位させる力を説明するためのベクトル図である。It is a vector diagram for demonstrating the force which displaces a spring means to a pulley axial direction in the contact part of a spring means and a movable tooth back surface. 無終端チェーンリンクと可動歯との相関関係を模式的に示すイメージ図で、 (a)は、未だ可動歯に無終端チェーンリンクが接触せず、可動歯がバネ手段によりセカンダリプーリ中心ボス部に対し径方向突出限界位置にされているセット状態を示すイメージ図、 (b)は、可動歯に無終端チェーンリンクが完全に噛み合っているロックアップ状態を示すイメージ図、 (c)は、セット状態とロックアップ状態との間における過渡期のラチェッティング状態を示すイメージ図である。(A) is an image diagram schematically showing the correlation between the endless chain link and the movable teeth, where (a) shows that the endless chain link is not yet in contact with the movable teeth, and the movable teeth are moved against the secondary pulley center boss by spring means. (B) is an image showing the lock-up state where the endless chain link is fully engaged with the movable tooth, and (c) is the set state and lock-up. It is an image figure which shows the ratcheting state of the transition period between states. 図10(a),(b),(c)に示した状態間での変化をプーリ伝動比の時系列変化との関連において示した説明図である。FIG. 11 is an explanatory diagram showing changes between the states shown in FIGS. 10 (a), (b), and (c) in relation to a time-series change in pulley transmission ratio. 図1〜3に示した無段変速伝動機構の高周波ラチェッティグ時におけるセカンダリプーリ中心ボス部への可動歯取り付け状態を示し、 (a)は、或る角度をもって図3(a)の矢X方向に見た斜視図、 (b)は、別の角度から図3(a)の矢X方向に見た斜視図である。1 to 3 show the state of movable teeth attached to the secondary pulley center boss during high-frequency ratcheting of the continuously variable transmission mechanism shown in FIGS. 1 to 3, and (a) shows a certain angle in the direction of the arrow X in FIG. FIG. 3 (b) is a perspective view seen from another angle in the direction of arrow X in FIG. 3 (a).

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<実施例の構成>
図1〜6は、本発明の一実施例になる無段変速伝動機構を示し、図1は、無段変速伝動機構10の全体を示す概略側面図、図2は、そのセカンダリプーリ側における巻き掛け伝動部の詳細図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Configuration of Example>
1 to 6 show a continuously variable transmission mechanism according to an embodiment of the present invention, FIG. 1 is a schematic side view showing the entire continuously variable transmission mechanism 10, and FIG. 2 shows a winding on the secondary pulley side. It is detail drawing of a hanging transmission part.

図1において、11は、無段変速伝動機構10の駆動側プーリであるプライマリプーリ、12は、従動側プーリであるセカンダリプーリを示す。
これらプライマリプーリ11およびセカンダリプーリ12間に無終端チェーンリンク13を掛け渡して設け、
無段変速伝動機構10は、この無終端チェーンリンク13を介しプライマリプーリ11およびセカンダリプーリ12間で動力伝達を行い得るものとする。
In FIG. 1, 11 is a primary pulley that is a driving pulley of the continuously variable transmission mechanism 10, and 12 is a secondary pulley that is a driven pulley.
An endless chain link 13 is provided between the primary pulley 11 and the secondary pulley 12, and
The continuously variable transmission mechanism 10 can transmit power between the primary pulley 11 and the secondary pulley 12 via the endless chain link 13.

プライマリプーリ11およびセカンダリプーリ12はそれぞれ、回転軸線方向に正対する対向シーブ11a,12a(図1では手前側のシーブを除去して、向こう側のシーブのみを示す)を具え、これら対向シーブ11a,11a間および対向シーブ12a,12a間にプーリV溝を画成したV溝プーリとする。   Each of the primary pulley 11 and the secondary pulley 12 includes opposing sheaves 11a and 12a that face each other in the rotation axis direction (in FIG. 1, the sheave on the near side is removed and only the sheave on the other side is shown). A V-groove pulley having a pulley V-groove defined between 11a and opposed sheaves 12a, 12a.

無終端チェーンリンク13は、図2に明示するごとく、多数のリンク板14を順次、その両端におけるリンクピン挿通孔14a内のリンクピン15で数珠繋ぎに連結して連続円環状に構成する。
そして各リンクピン15の両端面は、プライマリプーリ11およびセカンダリプーリ12のプーリV溝側壁を提供する対向シーブ11aの内側面および対向シーブ12aの内側面と面接触するよう傾斜させる。
As clearly shown in FIG. 2, the endless chain link 13 is formed in a continuous annular shape by connecting a large number of link plates 14 in a chain shape with link pins 15 in link pin insertion holes 14a at both ends.
Both end surfaces of each link pin 15 are inclined so as to come into surface contact with the inner side surface of the opposed sheave 11a and the inner side surface of the opposed sheave 12a that provide the pulley V groove side walls of the primary pulley 11 and the secondary pulley 12.

かくて無終端チェーンリンク13は、プーリ巻き付き領域においてリンクピン15を、プライマリプーリ11の対向シーブ11a,11a間およびセカンダリプーリ12の対向シーブ12a,12a間に挟圧され、プライマリプーリ11およびセカンダリプーリ12間での動力伝達を行うことができる。   Thus, the endless chain link 13 is clamped between the opposed sheaves 11a and 11a of the primary pulley 11 and the opposed sheaves 12a and 12a of the secondary pulley 12 in the pulley winding region, so that the primary pulley 11 and the secondary pulley Power transmission between 12 can be performed.

プライマリプーリ11の対向シーブ11aは、その一方を固定シーブとし、他方を軸線方向にストローク制御可能な可動シーブとする。
セカンダリプーリ12の対向シーブ12aは図3(a),(b)に示すように、プライマリプーリ11の可動シーブと同じ側におけるシーブ12a_1をプーリ中心ボス部16に固着した固定シーブとし、プライマリプーリ11の固定シーブと同じ側におけるシーブ12a_2をプーリ中心ボス部16にスプライン嵌合させて軸線方向にストローク制御可能な可動シーブとする。
One of the opposed sheaves 11a of the primary pulley 11 is a fixed sheave, and the other is a movable sheave capable of stroke control in the axial direction.
As shown in FIGS. 3 (a) and 3 (b), the opposed sheave 12a of the secondary pulley 12 is a fixed sheave in which the sheave 12a_1 on the same side as the movable sheave of the primary pulley 11 is fixed to the pulley center boss portion 16, and the primary pulley 11 The sheave 12a_2 on the same side as the fixed sheave is spline-fitted to the pulley center boss portion 16 to form a movable sheave capable of stroke control in the axial direction.

プライマリプーリ11の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くすると同時に、セカンダリプーリ12の可動シーブ12a_2を固定シーブ12a_1から遠ざけてプーリV溝幅を広くするにつれ、
無終端チェーンリンク13は、プライマリプーリ11に対する巻き掛け径を増大されると共に、セカンダリプーリ12に対する巻き掛け径を小さくされ、無段変速伝動機構10は図1,2に示す最ハイ変速比選択状態に向け無段変速下にアップシフト可能である。
As the movable sheave of the primary pulley 11 approaches the fixed sheave to narrow the pulley V groove width, the movable sheave 12a_2 of the secondary pulley 12 is moved away from the fixed sheave 12a_1 to widen the pulley V groove width.
The endless chain link 13 has an increased winding diameter with respect to the primary pulley 11 and a reduced winding diameter with respect to the secondary pulley 12, and the continuously variable transmission mechanism 10 is in the highest gear ratio selection state shown in FIGS. It is possible to upshift under a continuously variable transmission.

逆に、プライマリプーリ11の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くすると同時に、セカンダリプーリ12の可動シーブ12a_2を固定シーブ12a_1に対し接近させてプーリV溝幅を狭くするにつれ、
無終端チェーンリンク13は、プライマリプーリ11に対する巻き掛け径を小さくされると共に、セカンダリプーリ12に対する巻き掛け径を増大され、無段変速伝動機構10は図1に示す最ハイ変速比選択状態から図示せざる最ロー変速比選択状態に向け無段変速下にダウンシフト可能である。
Conversely, as the movable sheave of the primary pulley 11 is moved away from the fixed sheave to increase the pulley V groove width, the movable sheave 12a_2 of the secondary pulley 12 is brought closer to the fixed sheave 12a_1 to narrow the pulley V groove width.
The endless chain link 13 has a reduced winding diameter with respect to the primary pulley 11 and an increased winding diameter with respect to the secondary pulley 12, and the continuously variable transmission mechanism 10 is shown in the state from the highest gear ratio selection state shown in FIG. It is possible to downshift under a continuously variable transmission toward a lowest gear ratio selection state not shown.

上記した図1の最ハイ変速比選択状態でセカンダリプーリ12に対する無終端チェーンリンク13のスリップを抑制して無段変速伝動機構10の伝動効率を向上させるため、図1,2では、セカンダリプーリ12の中心ボス部16に、その外周面から突出するよう複数個の可動歯17を円周方向等間隔に配して設ける。
これら可動歯17は、セカンダリプーリ中心ボス部16の外周面に設けた円筒状の可動歯ガイド18によりプーリ径方向へ案内すると共に、図3(a)に示すごとくセカンダリプーリ12の固定シーブ12a_1および可動シーブ12a_2の内周面12bによりプーリ径方向外方への変位を制限する。
In order to improve the transmission efficiency of the continuously variable transmission mechanism 10 by suppressing the slip of the endless chain link 13 with respect to the secondary pulley 12 in the above-described highest gear ratio selection state of FIG. A plurality of movable teeth 17 are provided on the central boss portion 16 at regular intervals in the circumferential direction so as to protrude from the outer peripheral surface thereof.
These movable teeth 17 are guided in the pulley radial direction by a cylindrical movable tooth guide 18 provided on the outer peripheral surface of the secondary pulley central boss portion 16, and as shown in FIG. 3 (a), the fixed sheave 12a_1 of the secondary pulley 12 and The outward displacement in the pulley radial direction is limited by the inner peripheral surface 12b of the movable sheave 12a_2.

かくして可動歯17は、セカンダリプーリ中心ボス部16の外周面に対し制限範囲内で径方向へ進退可能であるが、後で詳述するようなバネ手段19により、図1,2および図3(a)に示すごとく可動歯ガイド18から径方向外方へ突出した進出限界位置に弾支する。   Thus, the movable tooth 17 can advance and retreat in the radial direction within a limited range with respect to the outer peripheral surface of the secondary pulley central boss portion 16, but by the spring means 19 described in detail later, FIGS. As shown in a), it elastically supports the advance limit position protruding radially outward from the movable tooth guide 18.

無終端チェーンリンク13の内周縁を画成する各リンク板14の内側縁には、セカンダリプーリ12に対する巻き掛け領域において、可動歯17の突出先端が図2および図3(a)のごとくに噛み合うための可動歯噛合溝14bを設け、
可動歯17と可動歯噛合溝14bとの噛み合いにより、最ハイ変速比選択状態でセカンダリプーリ12に対する無終端チェーンリンク13のスリップを抑制し、無段変速伝動機構10の伝動効率を向上させることができる。
The projecting tip of the movable tooth 17 meshes with the inner edge of each link plate 14 that defines the inner peripheral edge of the endless chain link 13 in the winding region of the secondary pulley 12 as shown in FIGS. A movable tooth meshing groove 14b for
By engaging the movable tooth 17 and the movable tooth meshing groove 14b, it is possible to suppress the slip of the endless chain link 13 with respect to the secondary pulley 12 in the highest gear ratio selection state, and to improve the transmission efficiency of the continuously variable transmission mechanism 10. it can.

しかして可動歯17は、可動歯噛合溝14bと整列せずこれとの噛み合いが不能である場合、図3(b)に示すごとくバネ手段19に抗してリンク板14の内側縁により可動歯ガイド18内に押し込まれた後退位置となり得て、可動歯17が無終端チェーンリンク13との干渉によりこれを損傷させるようなことがない。   Therefore, when the movable tooth 17 is not aligned with the movable tooth meshing groove 14b and cannot be meshed with the movable tooth meshing groove 14b, the movable tooth 17 is resisted by the inner edge of the link plate 14 against the spring means 19 as shown in FIG. The retracted position can be pushed into the guide 18 so that the movable tooth 17 is not damaged by interference with the endless chain link 13.

<バネ手段の詳細>
可動歯ガイド18内の可動歯17を、セカンダリプーリ中心ボス部16の外周でその径方向外方へ附勢するバネ手段19を、本実施例においては図3,4に示すごとく2個一組とし、これらバネ手段19を可動歯17の長手方向、つまりセカンダリプーリ中心ボス部16の軸線方向へ分散配置する。
この分散配置に当たり、好ましくはバネ手段19が可動歯17の長手方向に等分にバネ力を付与するよう分散させるのが良い。
<Details of spring means>
As shown in FIGS. 3 and 4, in this embodiment, a set of two spring means 19 for urging the movable teeth 17 in the movable tooth guide 18 radially outward on the outer periphery of the secondary pulley central boss portion 16 is provided. These spring means 19 are distributed in the longitudinal direction of the movable teeth 17, that is, in the axial direction of the secondary pulley central boss portion 16.
In this distributed arrangement, the spring means 19 is preferably distributed so as to equally apply a spring force in the longitudinal direction of the movable teeth 17.

各バネ手段19は全てを同様なものとし、図4〜6につき説明する以下のごとき構成とする。
本実施例におけるバネ手段19は、その全体を図5(a)および図6に示すように、線状体のU字状エレメント21と、同じく線状体の連結エレメント22とを交互に同一円周上に配置して一体ユニットとなす。
All of the spring means 19 are the same, and have the following configuration described with reference to FIGS.
As shown in FIGS. 5 (a) and 6 as a whole, the spring means 19 in this embodiment has a linear U-shaped element 21 and a linear linear connecting element 22 alternately in the same circle. Arrange on the circumference to make an integrated unit.

U字状エレメント21は、セカンダリプーリ中心ボス部16の外周と各可動歯17との間において、つまり可動歯ガイド18の対応する可動歯収容溝18a内において、該中心ボス部外周の母線方向へ延在するよう介在させる。
従ってU字状エレメント21は可動歯17と同数だけ存在し、これらU字状エレメント21は、その対向脚部21aが相互非結合端においてセカンダリプーリ中心ボス部16の外周に着座し、これら対向脚部21aが相互結合端において可動歯17に着座するよう指向させ、当該U字状エレメント21の指向方向を2個のバネ手段19で同じとする。
The U-shaped element 21 is arranged between the outer periphery of the secondary pulley central boss part 16 and each movable tooth 17, that is, in the corresponding movable tooth receiving groove 18a of the movable tooth guide 18, toward the generatrix of the outer periphery of the central boss part. Intervene to extend.
Therefore, there are as many U-shaped elements 21 as movable teeth 17, and these U-shaped elements 21 have their opposing leg portions 21a seated on the outer periphery of the secondary pulley central boss portion 16 at the mutual non-bonding ends. The portion 21a is oriented so as to be seated on the movable tooth 17 at the mutual coupling end, and the orientation direction of the U-shaped element 21 is made the same by the two spring means 19.

隣り合うU字状エレメント21の隣接脚部21a同士を、両者の相互非結合端において連結エレメント22により結合し合うことにより、全てのU字状エレメント21を相互に一体化する。
これらU字状エレメント21の一体化に際しては、U字状エレメント21を、対向脚部21aの相互結合端が相互非結合端よりも可動歯17に近づくよう、図6にθで示す角度だけ傾斜させて、U字状エレメント21が全周に亘って皿バネ形状に存在するようなものとする。
かくてバネ手段19は、線状エレメント21,22の交互組み合わせに成るの連続線状体となり、捩りバネ型式の構造を持つこととなる。
All the U-shaped elements 21 are integrated with each other by connecting the adjacent leg portions 21a of the adjacent U-shaped elements 21 to each other by the connecting elements 22 at their non-bonding ends.
When integrating these U-shaped elements 21, the U-shaped elements 21 are inclined by an angle indicated by θ in FIG. 6 so that the mutual coupling ends of the opposed leg portions 21a are closer to the movable teeth 17 than the mutual non-coupling ends. Thus, it is assumed that the U-shaped element 21 exists in the shape of a Belleville spring over the entire circumference.
Thus, the spring means 19 becomes a continuous linear body composed of an alternating combination of the linear elements 21 and 22, and has a torsion spring type structure.

ところでバネ手段19は、図5(a)のVIII部において隣り合うU字状エレメント21の隣接脚部21a同士を連結せず、U字状エレメント21の一体化ユニットであるバネ手段19を、1箇所23が切り欠かれたC字状に構成する。   By the way, the spring means 19 does not connect the adjacent leg portions 21a of the adjacent U-shaped elements 21 in the VIII portion of FIG. The portion 23 is formed in a C shape with a notch.

上記のような図5,6に示すC字状のバネ手段19は、後述する組み付けを可能にするため、図5(a),(b)の切り欠き箇所23を設定するのに加えて、当該組み付けを容易にするため、自由状態での内径をセカンダリプーリ中心ボス部16の外径よりも若干大きくする。
かかるC字状のバネ手段19は2個一組とし、それぞれを図5(a),(b)の切り欠き箇所23において円周方向に拡開させ、この拡開状態でバネ手段19の連結エレメント22を図4および図7(a),(b)に示すごとく可動歯ガイド18上の対応する円周溝18bに嵌合する。
このとき2個のC字状バネ手段19は、U字状エレメント21が可動歯収容溝18aと整列するような円周方向位置となす。
The C-shaped spring means 19 shown in FIGS. 5 and 6 as described above, in addition to setting the notch portion 23 in FIGS. In order to facilitate the assembly, the inner diameter in the free state is slightly larger than the outer diameter of the secondary pulley central boss portion 16.
Such C-shaped spring means 19 are made into a set of two, and each of them is expanded in the circumferential direction at the notch portion 23 in FIGS. 5 (a) and 5 (b), and the spring means 19 is connected in this expanded state. The element 22 is fitted into the corresponding circumferential groove 18b on the movable tooth guide 18 as shown in FIGS. 4 and 7 (a), 7 (b).
At this time, the two C-shaped spring means 19 are positioned in the circumferential direction such that the U-shaped element 21 is aligned with the movable tooth receiving groove 18a.

かようにC字状バネ手段19をセカンダリプーリ中心ボス部16の外周面(可動歯ガイド18上の対応する円周溝)に嵌合した後、可動歯ガイド18上の可動歯収容溝18a内に可動歯17を差し込んで、可動歯ガイド18に対するバネ手段19および可動歯17の組付けを完了する。   After fitting the C-shaped spring means 19 to the outer peripheral surface (corresponding circumferential groove on the movable tooth guide 18) of the secondary pulley central boss portion 16, the inside of the movable tooth receiving groove 18a on the movable tooth guide 18 is obtained. The movable teeth 17 are inserted into the movable tooth guide 18 to complete the assembly of the spring means 19 and the movable teeth 17 to the movable tooth guide 18.

本実施例においては更に図3(a),(b)、図7(a),(b)および図8に示すごとく、U字状エレメント21の相互結合端が着座する可動歯17の裏面17aに、当該U字状エレメント21の相互結合端を挟んでプーリ円周方向両側よりプーリ径方向内方へ立ち上がる対向側壁17bを設ける。
これら対向側壁17bはそれぞれ、これら対向側壁17b間の間隔がプーリ径方向内方へ向かうにつれて大きくなるよう傾斜させ、これにより、U字状エレメント21の相互結合端が可動歯17の裏面17aから離れて対向側壁17bに接するとき、この対向側壁17bがU字状エレメント21の相互結合端を対向側壁17b間の中央位置に案内し得るようになす。
In this embodiment, as shown in FIGS. 3 (a), 3 (b), 7 (a), 7 (b) and FIG. 8, the back surface 17a of the movable tooth 17 on which the mutual coupling end of the U-shaped element 21 is seated. In addition, opposed side walls 17b are provided to rise inward in the radial direction of the pulley from both sides in the circumferential direction of the pulley with the mutual coupling end of the U-shaped element 21 interposed therebetween.
Each of these opposing side walls 17b is inclined so that the interval between these opposing side walls 17b increases toward the inside in the pulley radial direction, whereby the mutual coupling end of the U-shaped element 21 is separated from the back surface 17a of the movable tooth 17. When contacting the opposing side wall 17b, the opposing side wall 17b can guide the mutual coupling end of the U-shaped element 21 to a central position between the opposing side walls 17b.

可動歯裏面17aには更に図3(a),(b)、図7(b)および図8に示すごとく、可動歯17のプーリ径方向内方への後退時におけるU字状エレメント21の相互結合端のプーリ軸線方向変位(バネ手段19の同方向変位)を制限するストッパ17cを立設し、これらストッパ17cは可動歯裏面17aからの高さを、ストッパ17cが傾斜対向側壁17bからプーリ径方向内方へ張り出すような高さとする。   As shown in FIGS. 3 (a), (b), FIG. 7 (b), and FIG. 8, the movable tooth back surface 17a further includes the U-shaped elements 21 that are mutually retracted when the movable teeth 17 are moved backward in the pulley radial direction. Stoppers 17c are arranged to limit the displacement of the coupling end in the axial direction of the pulley (the same displacement of the spring means 19). These stoppers 17c have a height from the movable tooth back surface 17a. The height should be such that it protrudes inward.

ここで、可動歯17のプーリ径方向内方への後退時におけるU字状エレメント21の相互結合端のプーリ軸線方向変位(バネ手段19の同方向変位)を、図9の模式的詳細拡大図に基づき以下に説明する。   Here, the displacement in the pulley axial direction (displacement in the same direction of the spring means 19) of the mutual coupling end of the U-shaped element 21 when the movable tooth 17 is retracted inwardly in the radial direction of the pulley is schematically enlarged in detail in FIG. This will be described below.

可動歯17がプーリ径方向内方へ後退する時にバネ手段19がU字状エレメント21の相互結合端から可動歯裏面17aに及ぼすバネ荷重(P)の反力(−P)と、バネ手段19(U字状エレメント21)の傾き角α(図6の自由状態でのθが変化したもの)とで決まる、U字状エレメント21の相互結合端を通り、U字状エレメント21に直角な方向へ作用する力(―W)は、
―W=(−P)/cosα
で表される。
The reaction force (-P) of the spring load (P) exerted on the movable tooth back surface 17a from the mutual coupling end of the U-shaped element 21 by the spring means 19 when the movable tooth 17 moves backward in the pulley radial direction, and the spring means 19 A direction perpendicular to the U-shaped element 21 that passes through the mutual coupling end of the U-shaped element 21 and is determined by the inclination angle α of the (U-shaped element 21) (the θ in the free state in FIG. 6 is changed) The force (-W) acting on
-W = (-P) / cosα
It is represented by

そして、この力(―W)により、可動歯裏面17aに沿う方向へ発生する分力Fは、
F=(―W)×sinα
であり、
可動歯17のプーリ径方向内方への後退時にU字状エレメント21の相互結合端(バネ手段19)はこの分力Fによってプーリ軸線方向へ変位されようとする。
And by this force (-W), the component force F generated in the direction along the movable tooth back surface 17a is
F = (-W) x sin α
And
When the movable tooth 17 is retracted inward in the pulley radial direction, the mutual coupling end (spring means 19) of the U-shaped element 21 tends to be displaced in the pulley axial direction by this component force F.

ところでU字状エレメント21の相互結合端と可動歯裏面17aとの間には、バネ荷重(P)による摩擦抵抗μFが存在するため、可動歯17のプーリ径方向内方への後退時にU字状エレメント21の相互結合端(バネ手段19)は(F−μF)の力によって可動シーブ12a_2(図3参照)に向かう方向へ変位される。   By the way, since there is a frictional resistance μF due to the spring load (P) between the mutual coupling end of the U-shaped element 21 and the movable tooth back surface 17a, the U-shape is retracted inward in the pulley radial direction. The mutual coupling end (spring means 19) of the element 21 is displaced in the direction toward the movable sheave 12a_2 (see FIG. 3) by the force of (F−μF).

ちなみに可動歯17は、セカンダリプーリ中心ボス部16と可動シーブ12a_2とでプーリ軸線方向に拘束されており、同方向へ移動不能であり、また、可動歯17のプーリ径方向内方への後退時は隣り合うU字状エレメント21間の連結エレメント22がその嵌合溝18b浮き気味になって、これとの間に摩擦抵抗を発生しない。
このため、可動歯17のプーリ径方向内方への後退時にU字状エレメント21の相互結合端(バネ手段19)は(F−μF)の力によって可動シーブ12a_2(図3参照)に向かうプーリ軸線方向へ変位されることとなる。
Incidentally, the movable tooth 17 is restrained in the pulley axial direction by the secondary pulley central boss part 16 and the movable sheave 12a_2, and cannot move in the same direction, and when the movable tooth 17 is retracted inward in the pulley radial direction. In the case, the connecting element 22 between the adjacent U-shaped elements 21 appears to float in the fitting groove 18b, and no frictional resistance is generated between them.
Therefore, when the movable teeth 17 are retracted inwardly in the radial direction of the pulley, the mutual coupling ends (spring means 19) of the U-shaped element 21 are directed toward the movable sheave 12a_2 (see FIG. 3) by the force of (F−μF). It will be displaced in the axial direction.

かかるU字状エレメント21の相互結合端(バネ手段19)のプーリ軸線方向変位は、バネ手段19(連結エレメント22)をして、その嵌合溝18b内におけるエッジ部18cに衝突させ、この干渉によりバネ手段19(連結エレメント22)が摩耗したり、傷つきにより折損するという問題を生じ、何れにしても耐久性の低下を避けられない。   The displacement in the pulley axial direction of the mutual coupling end (spring means 19) of the U-shaped element 21 causes the spring means 19 (connection element 22) to collide with the edge portion 18c in the fitting groove 18b, and this interference. As a result, there arises a problem that the spring means 19 (the connecting element 22) is worn or broken due to damage, and in any case, a decrease in durability cannot be avoided.

前記したごとく可動歯裏面17aに立設したストッパ17cは、この問題を解決するため、可動歯17のプーリ径方向内方への後退に伴うU字状エレメント21の相互結合端(バネ手段19)のプーリ軸線方向変位を制限するためのもので、
可動歯裏面17aに対するストッパ17cの立設位置は、無段変速伝動機構の作用を妨げないようにしつつ、上記の要求を満足させ得る位置に決定するのは言うまでもない。
In order to solve this problem, the stopper 17c erected on the movable tooth back surface 17a as described above has a mutual coupling end (spring means 19) of the U-shaped element 21 as the movable tooth 17 moves backward in the pulley radial direction. To limit the displacement of the pulley in the axial direction,
It goes without saying that the standing position of the stopper 17c with respect to the movable tooth back surface 17a is determined to be a position that can satisfy the above-mentioned requirements while preventing the operation of the continuously variable transmission mechanism.

<実施例の作用効果>
上記したようなバネ手段19は、図6に示すU字状エレメント21の傾斜角θを適切に設定することにより、可動歯ガイド18上の可動歯収容溝18a内に可動歯17を差し込んで組み付けるとき、U字状エレメント21の対向脚部21aが相互結合端において可動歯17により径方向内方へ押し込まれ、連結エレメント22を捩り変形させる。
よって可動歯17の組み付け時に、連結エレメント22の捩り変形反力が可動歯17を可動歯ガイド18の可動歯収容溝18a内で径方向外方へ附勢し、可動歯17を通常は可動歯ガイド18の可動歯収容溝18aから径方向外方へ突出した図3(a)および図7(a),(b)の進出限界位置に弾支することができ、前記したスリップ防止を実現し得る。
<Effects of Example>
The spring means 19 as described above is assembled by inserting the movable tooth 17 into the movable tooth receiving groove 18a on the movable tooth guide 18 by appropriately setting the inclination angle θ of the U-shaped element 21 shown in FIG. At this time, the opposing leg 21a of the U-shaped element 21 is pushed inward in the radial direction by the movable teeth 17 at the mutual coupling ends, and the connecting element 22 is twisted and deformed.
Therefore, when the movable tooth 17 is assembled, the torsional reaction force of the connecting element 22 urges the movable tooth 17 radially outwardly within the movable tooth receiving groove 18a of the movable tooth guide 18, and the movable tooth 17 is normally movable. 3 (a) and 7 (a), (b) projecting radially outward from the movable tooth receiving groove 18a of the guide 18 can be elastically supported to realize the above-described slip prevention. obtain.

ところで本実施例においては、可動歯17をこの位置に弾支するバネ手段19を特に、可動歯17ごとのU字状エレメント21と、隣り合うU字状エレメント21の隣接脚部21a間を相互に結合する連結エレメント22との交互連続体により構成したため、
バネ手段19が捩りバネ型式のものとなり、従来のようにコイルバネなどを用いた場合よりも、小さなバネストロークで大きな荷重(バネ力)を発生させることができる。
By the way, in the present embodiment, the spring means 19 for elastically supporting the movable tooth 17 at this position is provided with the U-shaped element 21 for each movable tooth 17 and the adjacent leg portions 21a of the adjacent U-shaped elements 21 mutually. Because it is composed of an alternating continuous body with connecting elements 22 that are connected to
The spring means 19 is of a torsion spring type, and a larger load (spring force) can be generated with a smaller spring stroke than when a coil spring or the like is used as in the prior art.

従って、小さなバネストロークで、可動歯17が要求する径方向外方附勢力を発生させることができ、プーリ中心ボス部16の外周と可動歯17との間における制限されたスペースでも、ここに上記のバネ手段19を容易に収納することができると共に、可動歯17を所定の力で径方向外方へ附勢することができる。   Therefore, the radial outward urging force required by the movable tooth 17 can be generated with a small spring stroke, and even in the limited space between the outer periphery of the pulley center boss part 16 and the movable tooth 17, The spring means 19 can be easily accommodated, and the movable tooth 17 can be urged radially outward with a predetermined force.

また本実施例のバネ手段19によれば、上記の通り小さなバネストロークで要求するバネ力を発生させ得ることから、バネストロークを稼ぐ必要がなくて、バネストロークのためにプーリ中心ボス部16の軸径を細くする必要もなく、プーリ中心ボス部16の軸強度不足に伴う耐久性の問題も生ずることがない。   Further, according to the spring means 19 of the present embodiment, since the required spring force can be generated with a small spring stroke as described above, there is no need to earn a spring stroke, and the pulley central boss portion 16 of the pulley center boss portion 16 is used for the spring stroke. There is no need to reduce the shaft diameter, and there is no problem of durability due to insufficient shaft strength of the pulley center boss portion 16.

本実施例によれば更に、バネ手段19がU字状エレメント21および連結エレメント22の連続体であることから、これらエレメント21,22を逃がすための溝を可動歯17に設ける必要がなく、可動歯17の構造が複雑になってコスト高になるという問題を生ずることもない。
また同様な理由から、つまりバネ手段19がU字状エレメント21および連結エレメント22の連続体であることから、このバネ手段19は前記した通り、可動歯17をプーリ中心ボス部16の外周に組み付ける前に組み付けておくことができ、組み付け作業性の点でも大いに有利である。
Further, according to this embodiment, since the spring means 19 is a continuous body of the U-shaped element 21 and the connecting element 22, it is not necessary to provide a groove for escaping these elements 21 and 22 in the movable tooth 17, and the movable means 17 is movable. There is no problem that the structure of the tooth 17 is complicated and the cost is increased.
For the same reason, that is, since the spring means 19 is a continuous body of the U-shaped element 21 and the connecting element 22, the spring means 19 assembles the movable teeth 17 on the outer periphery of the pulley center boss portion 16 as described above. It can be assembled in advance, which is very advantageous in terms of assembly workability.

更に、上記のようなバネ手段19を複数個(2個)一組とし、これらバネ手段19を中心ボス部16の軸線方向へ分散配置して、複数個(2個)のバネ手段19がU字状エレメント21を介し可動歯17をその長手方向等分箇所において径方向外方へ附勢するようにしたため、
可動歯17が長尺物である場合においても、これをその長手方向において均等にバランス良く径方向外方へ附勢することができ、可動歯17の片当たりを防止することができる。
Further, a plurality of (two) spring means 19 as described above are made into a set, and these spring means 19 are dispersedly arranged in the axial direction of the central boss portion 16 so that the plurality (two) of spring means 19 are U Because the movable tooth 17 is urged radially outward at the longitudinally equalized portion via the character element 21,
Even when the movable tooth 17 is a long object, the movable tooth 17 can be urged radially outwardly with a good balance in the longitudinal direction, and the movable tooth 17 can be prevented from coming into contact with each other.

また、隣り合うU字状エレメント21のうち、一対の隣り合うU字状エレメントは、隣接脚部21a同士の連結エレメント22による結合を行わずに、バネ手段19を切り欠き部23付きのC字状に構成したため、
バネ手段19をC字状の切り欠き箇所23において円周方向に拡開させ、この状態で図3(a),(b)、図4、図7(a),(b)に示すごとく、可動歯ガイド18上の対応する円周溝に嵌合し得ることとなり、バネ手段19の組み付け作業が容易である。
Further, among the adjacent U-shaped elements 21, the pair of adjacent U-shaped elements is not formed by coupling the adjacent leg portions 21a with the connecting element 22, and the spring means 19 is formed into a C-shape with a notch 23. Because it was configured to
The spring means 19 is expanded in the circumferential direction at the C-shaped cutout 23, and in this state as shown in FIGS. 3 (a), (b), FIG. 4, FIG. 7 (a), (b), Since it can be fitted into the corresponding circumferential groove on the movable tooth guide 18, the assembly work of the spring means 19 is easy.

ここで、無終端チェーンリンク13を成すリンク板14の可動歯噛合溝14bが、最ハイ(OD)プーリ伝動比へ向けてのアップシフト中、可動歯17に完全噛合するまでの過程と、逆に最ハイ(OD)プーリ伝動比からのダウンシフト中、可動歯17から完全に外脱するまでの過程とについて以下に説明する。   Here, the process until the movable tooth meshing groove 14b of the link plate 14 forming the endless chain link 13 fully meshes with the movable tooth 17 during the upshift toward the highest (OD) pulley transmission ratio is reversed. In the following, the process until the movable tooth 17 is completely removed during the downshift from the highest (OD) pulley transmission ratio will be described.

図10は、リンク板14と可動歯17との相関関係を示すイメージ図で、同図(a)は最ハイ(OD)プーリ伝動比へのアップシフト前のため、未だ可動歯17にリンク板14が接触せず、リンク板14が図に現れていないない状態、つまり可動歯17がバネ手段19によりセカンダリプーリ中心ボス部16に対し径方向突出限界位置にされているセット状態を示す。
なお図3(a)および図7(a),(b)は、図10(a)と同じく可動歯17が当該セット状態である場合を示す。
FIG. 10 is an image diagram showing the correlation between the link plate 14 and the movable tooth 17. FIG. 10A shows the state before the upshift to the highest (OD) pulley transmission ratio. Is a state in which the link plate 14 is not shown in the drawing, that is, the movable tooth 17 is set to the radial protrusion limit position with respect to the secondary pulley center boss portion 16 by the spring means 19.
3 (a) and FIGS. 7 (a) and 7 (b) show a case where the movable tooth 17 is in the set state as in FIG. 10 (a).

最ハイ(OD)プーリ伝動比へのアップシフトが行われると、図10(b)に示すようにリンク板14の可動歯噛合溝14bが可動歯17に完全に係合した完全噛み合い状態(ロックアップ状態)EODとなり、最ハイ(OD)プーリ伝動比で無終端チェーンリンク13(リンク板14)とセカンダリプーリ12(中心ビス部16)との間におけるスリップを防止可能である。   When an upshift to the highest (OD) pulley transmission ratio is performed, the fully engaged state (locked) in which the movable tooth engagement groove 14b of the link plate 14 is completely engaged with the movable tooth 17 as shown in FIG. 10 (b). Up state) EOD, and it is possible to prevent slip between the endless chain link 13 (link plate 14) and the secondary pulley 12 (center screw portion 16) at the highest (OD) pulley transmission ratio.

図10(b)のロックアップ状態EODになる直前のプーリ離間伝動比領域では、リンク板14が可動歯17に接触し始めてから、図10(b)のロックアップ状態になるまでの間、図10(c)に示すようにリンク板14は、可動歯17をバネ手段19のバネ力に抗してプーリ径方向内方へ押し込みながら、しかし可動歯17がリンク板14の可動歯噛合溝14bに整列する時この可動歯噛合溝14bに可動歯17が陥入するのを(プーリ径方向外方への可動歯17の戻り変位)を許容するサイクルを繰り返す、所謂ラチェッティング状態(チェーンピッチ乗り越え状態)EOD INとなる。   In the pulley separation transmission ratio region immediately before the lock-up state EOD in FIG. 10 (b), the period from when the link plate 14 starts to contact the movable tooth 17 until the lock-up state in FIG. 10 (b) is reached. As shown in FIG. 10 (c), the link plate 14 pushes the movable teeth 17 inwardly in the pulley radial direction against the spring force of the spring means 19, but the movable teeth 17 move to the movable tooth meshing grooves 14b of the link plate 14. The so-called ratcheting state (chain pitch) in which a cycle allowing the movable teeth 17 to intrude into the movable teeth meshing groove 14b (return displacement of the movable teeth 17 outward in the pulley radial direction) is repeated. Override state) EOD IN.

なお図10(c)に示すラチェッティング状態は、最ハイ(OD)プーリ伝動比からのダウンシフト中、図10(b)のロックアップ状態から図10(a)のセット状態に切り替わる過程においても同様に生じ、この場合のラチェッティング状態に対し以下ではEOD OUTの符号を付する。   Note that the ratcheting state shown in FIG. 10 (c) is the process of switching from the lock-up state of FIG. 10 (b) to the set state of FIG. 10 (a) during the downshift from the highest (OD) pulley transmission ratio. In the same manner, the ratcheting state in this case is denoted by EOD OUT.

上記の状態変化をプーリ伝動比の時系列変化との関連において図示すると図11に示すごとくにより、実線が図10(a)のセット状態とプーリ伝動比との関連を示し、破線が図10(c)のラチェッティング状態EOD INまたはEOD OUTとプーリ伝動比との関連を示し、一点鎖線が図10(b)のロックアップ状態とプーリ伝動比との関連を示す。   When the above state change is illustrated in relation to the time series change of the pulley transmission ratio, as shown in FIG. 11, the solid line indicates the relationship between the set state of FIG. 10 (a) and the pulley transmission ratio, and the broken line indicates FIG. The relationship between the ratcheting state EOD IN or EOD OUT in c) and the pulley transmission ratio is shown, and the alternate long and short dash line shows the relationship between the lock-up state in FIG. 10 (b) and the pulley transmission ratio.

図3(a)および図7(a),(b)のセット状態においては、可動歯17がリンク板14によりバネ手段19に抗してプーリ径方向内方へ押し込められていないため、バネ手段19は組み立て当初の初期位置にある。
従ってU字状エレメント21は、可動歯17の裏面17aに対し対向側壁17b間の中央位置で接触している。
In the set state of FIGS. 3 (a) and 7 (a), (b), the movable teeth 17 are not pushed inwardly in the pulley radial direction against the spring means 19 by the link plate 14, so the spring means 19 is in the initial position at the beginning of assembly.
Therefore, the U-shaped element 21 is in contact with the back surface 17a of the movable tooth 17 at the center position between the opposing side walls 17b.

図3(b)および図12(a),(b)はラチェッティング状態を示し、この場合、可動歯17がリンク板14によりバネ手段19に抗して繰り返しプーリ径方向内方へ押し込められる。
このためバネ手段19は、相互結合端のプーリ径方向内方への繰り返し変位により縮径されつつ捩り弾性変形され、この縮径により図12(a),(b)に示すごとくバネ手段19の切り欠き部23が相互に重なり合う。
3 (b) and FIGS. 12 (a) and 12 (b) show the ratcheting state. In this case, the movable tooth 17 is repeatedly pushed inward in the pulley radial direction against the spring means 19 by the link plate 14. .
For this reason, the spring means 19 is torsionally elastically deformed while being reduced in diameter by repeated displacement of the mutual coupling ends inward in the radial direction of the pulley, and as shown in FIGS. 12 (a) and 12 (b), the spring means 19 The cutouts 23 overlap each other.

ところで、高速回転伝動のため可動歯17が高頻度にプーリ径方向へ往復ストロークされ、バネ手段19を高周波で繰り返し縮径させる高周波ラチェッティング状態では、バネ手段19の捩り弾性変形が可動歯17の高頻度往復ストロークに追従し得ず、可動歯17の裏面17aに着座していたバネ手段19の相互連結端がこの可動歯裏面17aから離れる。
この場合、バネ手段19が円周方向の拘束力を弱められて円周方向へ位置ずれし易くなり、特に切り欠き部23の近くにあるバネ手段19の相互連結端が可動歯裏面17aの対向側壁17b間に画成された溝から外れようとする。
By the way, in the high frequency ratcheting state in which the movable teeth 17 are reciprocated and stroked frequently in the pulley radial direction due to high-speed rotation transmission, and the spring means 19 is repeatedly reduced in diameter at high frequency, the torsional elastic deformation of the spring means 19 is caused by the movable teeth 17 Thus, the interconnecting end of the spring means 19 that has been seated on the back surface 17a of the movable tooth 17 moves away from the movable tooth back surface 17a.
In this case, the spring means 19 is weakened in the circumferential restraining force and is easily displaced in the circumferential direction, and in particular, the interconnection end of the spring means 19 near the notch 23 is opposed to the movable tooth back surface 17a. It tries to come out of the groove defined between the side walls 17b.

しかしこのとき本実施例では、可動歯裏面17aの対向側壁17bが前記の傾斜角を持った傾斜面であるため、バネ手段19の相互連結端に可動歯裏面対向側壁17b間の溝内へ戻す方向の分力を付与し、バネ手段19の相互連結端を可動歯裏面対向側壁17b間の溝内に止め置くよう作用する。
このためバネ手段19の相互連結端が、図3(c)に示すごとく可動歯裏面対向側壁17b間の溝から外れてこの対向側壁17bに乗るような事態を生ずることがなく、バネ手段19による可動歯17の附勢力が過大になって耐久性が低下したり、バネ手段19自身のヘタリにより予定通りのスリップ防止作用が得られなくなる弊害を回避することができる。
However, at this time, in this embodiment, since the opposing side wall 17b of the movable tooth back surface 17a is an inclined surface having the above-described inclination angle, the spring means 19 is returned to the interconnection end of the spring means 19 into the groove between the movable tooth back surface opposing side wall 17b. Directional component force is applied, and the interconnecting ends of the spring means 19 act so as to be stopped in the groove between the movable tooth back surface opposite side walls 17b.
For this reason, the interconnecting end of the spring means 19 does not get out of the groove between the movable tooth back side opposing side walls 17b and gets on the opposing side walls 17b as shown in FIG. It is possible to avoid the adverse effect that the urging force of the movable tooth 17 becomes excessive and the durability is lowered, or the anti-slip action as planned cannot be obtained due to the spring means 19 itself.

上記したラチェッティング状態において、高周波ラチェッティング状態であるか、低周波ラチェッティング状態であるかを問わず、可動歯17のプーリ径方向内方への後退時にU字状エレメント21の相互結合端(バネ手段19)が図9に付き前記した通り(F−μF)の力で可動シーブ12a_2(図3参照)に向かうプーリ軸線方向へ変位される。   In the above-described ratcheting state, the U-shaped elements 21 are mutually connected when the movable teeth 17 are retracted inwardly in the pulley radial direction regardless of whether they are in a high-frequency ratcheting state or a low-frequency ratcheting state. The coupling end (spring means 19) is displaced in the pulley axial direction toward the movable sheave 12a_2 (see FIG. 3) by the force (F−μF) as described above with reference to FIG.

しかし本実施例では、U字状エレメント21の相互結合端(バネ手段19)の当該変位を図3(b)に示すごとくストッパ17cで制限するため、
バネ手段19(連結エレメント22)が、その嵌合溝18b内におけるエッジ部18cに衝突するのを回避することができ、この干渉によりバネ手段19(連結エレメント22)が摩耗したり、傷つきにより折損するという、耐久性の低下に関する問題の発生を防止することができる。
However, in this embodiment, the displacement of the mutual coupling end (spring means 19) of the U-shaped element 21 is limited by the stopper 17c as shown in FIG.
The spring means 19 (the connecting element 22) can be prevented from colliding with the edge portion 18c in the fitting groove 18b, and this interference causes the spring means 19 (the connecting element 22) to wear or break due to damage. It is possible to prevent the occurrence of a problem related to a decrease in durability.

なお上記した通り可動歯裏面17aの傾斜対向側壁17bにより、バネ手段19の相互連結端が、図3(c)に示すごとく可動歯裏面対向側壁17b間の溝から外れてこの対向側壁17bに乗るような事態になるのを防止し得るが、何らかの理由でかかる図3(c)の事態が発生したとしても、
本実施例ではストッパ17cを傾斜対向側壁17bからプーリ径方向内方へ張り出すような高さとしたため、バネ手段19(連結エレメント22)の摩耗や折損に関する上記問題の解決を実現可能である。
As described above, the inclined opposing side wall 17b of the movable tooth back surface 17a causes the interconnecting end of the spring means 19 to disengage from the groove between the movable tooth back surface opposing side walls 17b and ride on this opposing side wall 17b as shown in FIG. However, even if the situation shown in Figure 3 (c) occurs for some reason,
In the present embodiment, since the stopper 17c has such a height that it protrudes inward in the pulley radial direction from the inclined opposed side wall 17b, it is possible to realize the solution of the above-described problems relating to wear and breakage of the spring means 19 (the connecting element 22).

つまり図3(c)の状況下でも、引き続き同図に示すごとくU字状エレメント21の相互結合端(バネ手段19)のプーリ軸線方向変位を上記高さのストッパ17cにより制限することができ、
バネ手段19(連結エレメント22)が、その嵌合溝18b内におけるエッジ部18cに衝突するのを回避し得て、この干渉によりバネ手段19(連結エレメント22)が摩耗したり、傷つきにより折損するという、耐久性の低下に関する問題の発生を防止することができる。
That is, even in the situation of FIG. 3 (c), the displacement in the pulley axial direction of the mutual coupling end (spring means 19) of the U-shaped element 21 can be limited by the stopper 17c having the above-mentioned height as shown in FIG.
The spring means 19 (the connecting element 22) can be prevented from colliding with the edge portion 18c in the fitting groove 18b, and the spring means 19 (the connecting element 22) is worn or broken due to damage due to this interference. That is, it is possible to prevent the occurrence of the problem related to the decrease in durability.

<その他の実施例>
なお上記した図示の実施例では、最ハイ(OD)プーリ伝動比で無終端チェーンリンク13とセカンダリプーリ12との間のスリップを防止するよう、セカンダリプーリ12の中心ボス部16に可動歯17を設置する場合につき本発明の着想を適用したが、
本発明の着想は、最ロープーリ伝動比で無終端チェーンリンク13とプライマリプーリ11との間のスリップを防止するよう、プライマリプーリの中心ボス部に可動歯を設置する場合も同様にして適用可能であり、この場合も前記した作用効果を奏し得ることは言うまでもない。
<Other examples>
In the illustrated embodiment described above, the movable teeth 17 are provided on the central boss portion 16 of the secondary pulley 12 so as to prevent the slip between the endless chain link 13 and the secondary pulley 12 at the highest (OD) pulley transmission ratio. Although the idea of the present invention was applied for each installation,
The idea of the present invention can be similarly applied to the case where movable teeth are installed on the central boss portion of the primary pulley so as to prevent slippage between the endless chain link 13 and the primary pulley 11 at the lowest pulley transmission ratio. Of course, in this case as well, the above-described effects can be obtained.

10 無段変速伝動機構
11 プライマリプーリ
12 セカンダリプーリ
13 無終端チェーンリンク
14 リンク板
14a リンクピン挿通孔
14b 可動歯噛合溝
15 リンクピン
16 プーリ中心ボス部
17 可動歯
17a 可動歯裏面
17b 対向傾斜側壁
17c ストッパ
18 可動歯ガイド
18a 可動歯収容溝
18b バネ手段嵌合溝
18c バネ手段嵌合溝エッジ部
19 バネ手段
21 U字状エレメント
21a 対向脚部
22 連結エレメント
23 切り欠き部
10 Continuously variable transmission mechanism
11 Primary pulley
12 Secondary pulley
13 Endless chain link
14 Link plate
14a Link pin insertion hole
14b Movable tooth engagement groove
15 Link pin
16 Pulley center boss
17 movable teeth
17a Movable tooth back
17b Opposite inclined side wall
17c stopper
18 Movable tooth guide
18a Movable tooth receiving groove
18b Spring means fitting groove
18c Spring means fitting groove edge
19 Spring means
21 U-shaped element
21a Opposing legs
22 Connecting elements
23 Notch

Claims (2)

無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、
該プーリの中心ボス部外周にバネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯と、前記無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にした無段変速伝動機構において、
前記バネ手段は、前記中心ボス部外周の母線方向へ延在しつつ該中心ボス部外周と可動歯との間に介在させたU字状エレメントを具え、
これらU字状エレメントを、該U字状エレメントの対向脚部が相互非結合端において前記中心ボス部外周に着座し、また該対向脚部が相互結合端において前記可動歯に着座するよう指向させ、
隣り合う前記U字状エレメントの隣接脚部同士を、一対の隣接脚部同士以外、前記相互非結合端において連結エレメントで相互に結合することにより前記U字状エレメントを相互に一体化して、前記U字状エレメントの対向脚部が前記相互結合端で前記可動歯に前記径方向外方への附勢力を付与するよう構成し、
前記U字状エレメントの相互結合端が着座する前記可動歯の裏面に、前記可動歯のプーリ径方向内方への後退時における前記U字状エレメントの相互結合端の変位を制限するストッパを立設したことを特徴とする無段変速伝動機構。
It consists of an endless chain link and a pulley wrapped around this endless chain link so that it can be continuously variable,
Engagement is achieved by meshing a movable tooth provided on the outer periphery of the central boss of the pulley so as to be able to advance and retreat in the radial direction by a spring means and a movable tooth meshing groove provided on the endless chain link. In a continuously variable transmission mechanism that enables slip prevention at a transmission ratio capable of
The spring means comprises a U-shaped element interposed between the outer periphery of the central boss portion and the movable tooth while extending in the generatrix direction of the outer periphery of the central boss portion,
These U-shaped elements are oriented so that the opposing leg portions of the U-shaped element are seated on the outer periphery of the central boss portion at the mutual non-bonding ends, and the opposing leg portions are seated on the movable teeth at the mutual coupling ends. ,
The U-shaped elements are integrated with each other by connecting the adjacent leg portions of the adjacent U-shaped elements to each other with a connecting element other than a pair of adjacent leg portions at the non-bonding ends. The opposing leg portion of the U-shaped element is configured to apply the radially outward biasing force to the movable tooth at the mutual coupling end,
On the back surface of the movable teeth on which the mutual coupling ends of the U-shaped elements are seated, a stopper is provided for limiting the displacement of the mutual coupling ends of the U-shaped elements when the movable teeth are retracted inwardly in the pulley radial direction. A continuously variable transmission mechanism characterized by being provided.
前記可動歯裏面に、前記U字状エレメントの相互結合端を挟んでプーリ円周方向両側よりプーリ径方向内方へ立ち上がる対向側壁を設けた、請求項1に記載の無段変速伝動機構において、
前記ストッパは、前記対向側壁からプーリ径方向内方へ張り出すような、前記可動歯裏面からの高さであることを特徴とする無段変速伝動機構。
The continuously variable transmission mechanism according to claim 1, wherein the movable tooth back surface is provided with opposing side walls that rise inward in the pulley radial direction from both sides of the pulley circumferential direction across the mutual coupling end of the U-shaped element.
The continuously variable transmission mechanism according to claim 1, wherein the stopper has a height from the back surface of the movable tooth so as to project inward in the pulley radial direction from the opposing side wall.
JP2011263350A 2011-12-01 2011-12-01 Continuously variable transmission mechanism Withdrawn JP2013113432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263350A JP2013113432A (en) 2011-12-01 2011-12-01 Continuously variable transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263350A JP2013113432A (en) 2011-12-01 2011-12-01 Continuously variable transmission mechanism

Publications (1)

Publication Number Publication Date
JP2013113432A true JP2013113432A (en) 2013-06-10

Family

ID=48709145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263350A Withdrawn JP2013113432A (en) 2011-12-01 2011-12-01 Continuously variable transmission mechanism

Country Status (1)

Country Link
JP (1) JP2013113432A (en)

Similar Documents

Publication Publication Date Title
EP2256370B1 (en) Continuously variable transmission
CN103827546A (en) Endless power transmission belt-type continuously variable transmission
US20190101185A1 (en) Driving belt
US9353830B2 (en) Link-plate chain for continuously variable transmission
JP6212810B2 (en) Chain type continuously variable transmission
JP2013113432A (en) Continuously variable transmission mechanism
JP5614223B2 (en) Continuously variable transmission mechanism
JP5430532B2 (en) Continuously variable transmission mechanism
JP2014016008A (en) Continuously variable transmission mechanism
KR101775616B1 (en) chain-belt type Continuously Variable Transmission of power transmitting apparatus
JP5515818B2 (en) Continuously variable transmission mechanism
JP2013113433A (en) Continuously variable transmission mechanism
JP5554670B2 (en) Continuously variable transmission mechanism
JP2013241996A (en) Chain link clamping force control device for continuously-variable transmission mechanism
JP5228790B2 (en) Chain belt and belt type continuously variable transmission
JP2005054940A (en) Power transmitting chain and power transmission using it
JP6595364B2 (en) Continuously variable transmission
KR102666636B1 (en) Chain drive mechanism
JP2019120364A (en) Chain belt type continuous variable transmission
JP6595363B2 (en) Continuously variable transmission
JP4893562B2 (en) Power transmission chain and power transmission device
US20230112146A1 (en) Rocker pin for a rocker pin pair of a plate link chain
JP5125648B2 (en) Power transmission chain and power transmission device
JP2017180784A (en) Transmission belt
JP6228016B2 (en) Chain type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150603