JP2013111634A - Method of brazing aluminum material - Google Patents

Method of brazing aluminum material Download PDF

Info

Publication number
JP2013111634A
JP2013111634A JP2011261747A JP2011261747A JP2013111634A JP 2013111634 A JP2013111634 A JP 2013111634A JP 2011261747 A JP2011261747 A JP 2011261747A JP 2011261747 A JP2011261747 A JP 2011261747A JP 2013111634 A JP2013111634 A JP 2013111634A
Authority
JP
Japan
Prior art keywords
brazing
aluminum material
aluminum
silicon compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011261747A
Other languages
Japanese (ja)
Other versions
JP5904772B2 (en
Inventor
Hideyuki Miyake
秀幸 三宅
Masakazu Edo
正和 江戸
Susumu Miyama
晋 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011261747A priority Critical patent/JP5904772B2/en
Publication of JP2013111634A publication Critical patent/JP2013111634A/en
Application granted granted Critical
Publication of JP5904772B2 publication Critical patent/JP5904772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of brazing aluminum material having excellent fillet forming ability equal to or higher than a conventional brazing method using a fluoride flux and capable of using a bonded member consisting of an Mg added aluminum alloy effective for thinning and strength enhancement.SOLUTION: In the method of brazing aluminum material of bonding a brazed member 4 consisting of the aluminum material by brazing it with an Al-Mg-Si based brazing filler metal 3 containing Mg of 0.2-5.0% and Si of 3-13% in mass%, the excellent fillet forming ability is obtained by performing brazing with the Al-Mg-Si based brazing filler metal 3 by arranging a composition 5 containing a silicon compound which is liquefied at normal temperature at least on a bonded part surface 4a of the brazed member 4, and use of the bonded member consisting of an Mg added aluminum alloy effective for thinning and strength enhancement is allowed by not using the fluoride flux.

Description

本発明は、Al−Mg−Si系ろう材を用いたアルミニウム材のろう付方法に関するものである。   The present invention relates to a method for brazing an aluminum material using an Al—Mg—Si brazing material.

自動車用熱交換器をはじめとしたろう付分野においては、現在、窒素ガスなどの不活性ガス雰囲気下でノコロック(登録商標)フラックスなどの非腐食性のフッ化物系フラックスを用いてろう付されるか、ろう材に0.5〜1.5質量%程度のMgを添加して真空雰囲気下でろう付される工法が主流となっている。   In brazing fields such as automotive heat exchangers, brazing is currently performed using a non-corrosive fluoride-based flux such as Nocolok (registered trademark) flux in an inert gas atmosphere such as nitrogen gas. Or, a method of adding 0.5 to 1.5% by mass of Mg to the brazing material and brazing in a vacuum atmosphere has become the mainstream.

しかしながら、上記フッ化物系フラックスを用いた工法においては、薄肉高強度化に有効なMg添加アルミニウム合金を被接合部材に使用した場合、フッ化物系フラックスと合金中のMgとの反応によりMgFが形成されてフラックスが不活性化され、この結果、ろう付性が著しく低下するという問題がある。 However, in the construction method using the above-described fluoride-based flux, when an Mg-added aluminum alloy effective for increasing the strength of the thin wall is used for a member to be joined, MgF 2 is caused by the reaction between the fluoride-based flux and Mg in the alloy. As a result, the flux is inactivated, and as a result, there is a problem that the brazing property is remarkably lowered.

これに対し、量産性にも配慮した、大気圧下で行うフラックスレスろう付方法も開発が進められている。しかし、これらのフラックスレスろう付方法では、表面処理、材料仕様、ろう付の工法などに特殊なものが採用されており、コスト、品質安定性に問題があるものが多い。このため、大気圧下で行うフラックスレスろう付方法は、本格的に実用化されるには至っていない。
上記フラックスレスろう付方法の問題を解消するため、特許文献1には、ろう材に添加するMg量を適正な範囲に収めることにより、設備の導入コストや工程コストを発生させず、減圧を伴わない雰囲気下でフラックスを使用せずにろう付を可能にする方法が提案されている。
On the other hand, a fluxless brazing method that is performed under atmospheric pressure in consideration of mass productivity is also being developed. However, these fluxless brazing methods employ special methods such as surface treatment, material specifications, and brazing method, and many have problems in cost and quality stability. For this reason, the fluxless brazing method performed under atmospheric pressure has not yet been put into practical use.
In order to solve the problem of the above fluxless brazing method, Patent Document 1 includes decompression without generating equipment introduction costs and process costs by keeping the amount of Mg added to the brazing material within an appropriate range. Methods have been proposed that allow brazing without the use of flux under no atmosphere.

特許第4547032号公報Japanese Patent No. 4547032

しかし、上記特許文献1に記載されたろう付方法では、ろう付接合部におけるフィレット形成能が、従来のフッ化物系フラックスを用いたろう付方法によるものには及ばない。このため、安定した量産品質を得るためには、接合部形状を限定する必要があるという問題がある。   However, in the brazing method described in Patent Document 1, the fillet forming ability at the brazed joint is not as high as that obtained by the conventional brazing method using a fluoride-based flux. For this reason, in order to obtain the stable mass-production quality, there exists a problem that it is necessary to limit a junction part shape.

本発明は、上記事情を背景としてなされたものであり、従来のフッ化物系フラックスを用いたろう付方法と同等以上の優れたフィレット形成能を有するとともに、薄肉高強度化に有効なMg添加アルミニウム合金からなる被接合部材を使用することができるアルミニウム材のろう付方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and has an excellent fillet forming ability equivalent to or better than a brazing method using a conventional fluoride flux, and is effective in increasing the thickness and strength of an aluminum-added aluminum alloy It aims at providing the brazing method of the aluminum material which can use the to-be-joined member which consists of.

すなわち、本発明のアルミニウム材のろう付方法のうち、第1の本発明は、質量%でMgを0.2〜5.0%、Siを3〜13%含有するAl−Mg−Si系ろう材によりアルミニウム材からなる被接合部材をろう付して接合するアルミニウム材のろう付方法であって、少なくとも前記被接合部材の接合部表面に、常温時液体のケイ素化合物を含む組成物を配して前記Al−Mg−Si系ろう材によるろう付を行うことを特徴とする。   That is, among the brazing methods of the aluminum material of the present invention, the first present invention is an Al—Mg—Si based brazing containing 0.2 to 5.0% Mg and 3 to 13% Si by mass%. An aluminum material brazing method for brazing and joining a member to be joined made of an aluminum material with a material, wherein a composition containing a silicon compound that is liquid at normal temperature is disposed at least on the surface of the joined portion of the member to be joined. And brazing with the Al—Mg—Si brazing material.

第1の本発明によれば、常温時液体のケイ素化合物を含む組成物をろう付前に、少なくとも被接合部材の接合部表面に配しておくことにより、ろう付熱処理過程で、ケイ素化合物は熱分解を生じながらも部材表面を覆う膜となり、ろう付阻害要素である部材表面の酸化を抑制する酸化防止膜として機能する。一方、ろう材にMgを添加することにより、Mgによる部材表面酸化皮膜の分解作用が得られる。
ここで、ろう材にMgが添加されていない場合のろう付昇温過程では、常温時液体のケイ素化合物による部材酸化抑制効果と、昇温過程で素材と酸化皮膜の熱膨張差等による部材表面酸化皮膜の亀裂が生じ、亀裂部に生じた部材新生面がろう濡れ性を発揮してろう付が得られるが、本作用のみでは接合部位の酸化皮膜分解状態が十分とは言えず、適用する接合部形状によってはろう濡れ性が不十分となり良好な接合が得られない。しかし、ろう材にMgを添加すると、ここにMgによる部材表面酸化皮膜の分解作用が加わり、部材表面のろう濡れ性が向上し、適用接合部形状によらず良好な接合状態が得られるようになる。
さらに、前記ケイ素化合物は常温時液体であるため工程管理が容易であり、また、ろう付け後にフッ化物系残渣とならないため均一な表面処理性が得られ、フラックス除去工程も不要となる。なお、前記組成物には常温時液体のケイ素化合物のほかに、塗装性改善のために有機系樹脂バインダ(例えば、アクリル樹脂系やウレタン系のバインダ)や界面活性剤などを含んでもよい。また、塗料化する際の溶媒としては、用いる常温時液体ケイ素化合物との相溶性が得られれば良く、例えば、エタノール、メタノール等の有機溶剤や、水等であっても良い。また、塗装工程は部材表面に塗膜を固定させる為の乾燥工程を用いるものであっても良い。乾燥条件は特に限定されるものではないが、使用するケイ素化合物等によって適当な乾燥条件を用いればよい。例えば、雰囲気200℃程度の乾燥炉に3分間保持するような条件があげられる。
なお、本発明で用いるMg添加Al−Si系ろう材においては、Mgが添加されていればよく、他の一般的不純物元素濃度を特に限定するものではない。また、Al−Mg−Si系ろう材には、その他に質量%でZnを0.1〜5.0%含有するものであってもよい。
According to the first aspect of the present invention, the composition containing the silicon compound that is liquid at room temperature is disposed on at least the surface of the joint portion of the member to be joined before brazing. It becomes a film that covers the surface of the member while causing thermal decomposition, and functions as an antioxidant film that suppresses oxidation of the surface of the member, which is a brazing inhibiting element. On the other hand, by adding Mg to the brazing material, the decomposition action of the member surface oxide film by Mg can be obtained.
Here, in the brazing temperature rising process when Mg is not added to the brazing material, the member oxidation suppression effect by the silicon compound at room temperature and the member surface due to the difference in thermal expansion between the material and the oxide film in the temperature rising process Cracking of the oxide film occurs, and the new surface of the member generated in the cracked part exhibits brazing wettability, resulting in brazing. Depending on the shape of the part, the wettability is insufficient and good bonding cannot be obtained. However, when Mg is added to the brazing material, the decomposition action of the member surface oxide film by Mg is added here, so that the brazing wettability of the member surface is improved and a good joining state can be obtained regardless of the shape of the applied joint portion. Become.
Furthermore, since the silicon compound is a liquid at room temperature, process management is easy, and since it does not become a fluoride-based residue after brazing, uniform surface treatment can be obtained, and a flux removal process is not required. In addition to the silicon compound that is liquid at room temperature, the composition may contain an organic resin binder (for example, an acrylic resin-based or urethane-based binder), a surfactant, and the like in order to improve paintability. Moreover, as a solvent at the time of coating, it is sufficient if compatibility with the liquid silicon compound used at normal temperature is obtained. For example, an organic solvent such as ethanol or methanol, water, or the like may be used. Moreover, the coating process may use a drying process for fixing the coating film on the surface of the member. The drying conditions are not particularly limited, but appropriate drying conditions may be used depending on the silicon compound used. For example, the conditions are such that the atmosphere is maintained in a drying furnace at about 200 ° C. for 3 minutes.
In the Mg-added Al—Si brazing material used in the present invention, it is sufficient that Mg is added, and other general impurity element concentrations are not particularly limited. In addition, the Al—Mg—Si brazing material may contain Zn in an amount of 0.1 to 5.0% by mass.

さらに、第1の本発明のろう付方法は、フッ化物系フラックスを使用せずにフラックスレスで行うものである。
第1の本発明によれば、フッ化物系フラックスを使用しないことにより、フッ化物系フラックスとアルミニウム合金中のMgとの反応によるフラックスの不活性化が問題となることはない。したがって、被接合部材として、薄肉高強度化に有効なMg添加アルミニウム合金からなるものを使用することができ、市場における今後の薄肉高強度化の要求に応えることができる。
なお、被接合部材としては、上記Mg添加アルミニウム合金からなるものに限定されるものではなく、種々のアルミニウム材を使用することができる。
Furthermore, the brazing method of the first aspect of the present invention is performed without using a fluoride-based flux without using a flux.
According to the first aspect of the present invention, by not using the fluoride flux, the flux inactivation due to the reaction between the fluoride flux and Mg in the aluminum alloy does not become a problem. Therefore, it is possible to use a member made of an Mg-added aluminum alloy that is effective for increasing the thickness and strength of the member to be joined, and meet the demand for future strength enhancement in the market.
In addition, as a to-be-joined member, it is not limited to what consists of said Mg addition aluminum alloy, A various aluminum material can be used.

第2の本発明のアルミニウム材のろう付方法は、前記第1の本発明において、前記ケイ素化合物が、無機または有機化合物から選ばれる1つの化合物または2つ以上の混合物からなることを特徴とする。   The method for brazing an aluminum material according to a second aspect of the present invention is characterized in that, in the first aspect of the present invention, the silicon compound is composed of one compound or a mixture of two or more selected from inorganic or organic compounds. .

第3の本発明のアルミニウム材のろう付方法は、前記第1または第2の本発明において、前記ケイ素化合物が、有機シラン化合物であることを特徴とする。   A brazing method for an aluminum material according to a third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the silicon compound is an organosilane compound.

第4の本発明のアルミニウム材のろう付方法は、前記第3の本発明において、前記有機シラン化合物が、シランカップリング剤であることを特徴とする。   The brazing method for an aluminum material according to a fourth aspect of the present invention is characterized in that, in the third aspect of the present invention, the organosilane compound is a silane coupling agent.

第5の本発明のアルミニウム材のろう付方法は、前記第1〜第4の本発明のいずれかにおいて、前記ケイ素化合物を含む組成物が硫黄を含むことを特徴とする。   The aluminum material brazing method of the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects of the present invention, the composition containing the silicon compound contains sulfur.

第6の本発明のアルミニウム材のろう付方法は、前記第5の本発明において、前記硫黄が、硫黄含有シランカップリング剤によって供給されるものであることを特徴とする。   A brazing method for an aluminum material according to a sixth aspect of the present invention is characterized in that, in the fifth aspect of the present invention, the sulfur is supplied by a sulfur-containing silane coupling agent.

第7の本発明のアルミニウム材のろう付方法は、前記第1〜第6の本発明のいずれかにおいて、前記接合部材が、Mg添加アルミニウム合金からなることを特徴とする。   The aluminum material brazing method according to a seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects of the present invention, the joining member is made of an Mg-added aluminum alloy.

以下に、本発明における規定の限定理由について説明する。なお、各成分量はいずれも質量%で示される。   Hereinafter, the reasons for limitation in the present invention will be described. In addition, each component amount is shown by mass%.

1.Al−Mg−Si系ろう材
本発明では、ろう材として、質量%でMgを0.2〜5.0%、Siを3〜13%含有するAl−Mg−Si系ろう材を用いる。なお、Al−Mg−Si系ろう材の残部は、Alと不可避不純物からなるものとすることができる。Al−Mg−Si系ろう材における各元素の作用および限定理由は以下のとおりである。
1. Al—Mg—Si brazing material In the present invention, an Al—Mg—Si brazing material containing 0.2 to 5.0% Mg and 3 to 13% Si by mass is used as the brazing material. Note that the balance of the Al—Mg—Si brazing material can be made of Al and inevitable impurities. The action of each element in the Al—Mg—Si brazing filler metal and the reasons for limitation are as follows.

Mg:0.2〜5.0%
Mg含有量が0.2%未満では、ろう付接合面の酸化膜破壊効果が十分に得られず、5.0%を越えると効果が飽和し、かつ、アルミニウム材料の加工性に難を生じる。このため、Mg含有量は上記範囲とする。
なお、常温時液体のケイ素化合物を含む組成物を用いる本技術はMgを含まないAl−Si系ろう材を用いた場合にもフィレット形成能をもつろう付が可能であるが、本発明のようにMgを添加したろう材を用いることで、Mgによるアルミニウム表面酸化膜破壊作用が補助作用となり、より良好なフィレット形成能をもつろう付状態が得られる。
Mg: 0.2-5.0%
If the Mg content is less than 0.2%, the oxide film destruction effect on the brazed joint surface cannot be sufficiently obtained, and if it exceeds 5.0%, the effect is saturated and the workability of the aluminum material is difficult. . For this reason, Mg content shall be the said range.
The present technology using a composition containing a liquid silicon compound at room temperature can be brazed with fillet forming ability even when an Al—Si brazing material not containing Mg is used, but as in the present invention. By using a brazing material to which Mg is added, the aluminum surface oxide film destruction action by Mg becomes an auxiliary action, and a brazing state having better fillet forming ability is obtained.

Si:3〜13%
Siの含有量は、ろうとして機能する適正な含有量の範囲として、3〜13%とする。3%未満では生成する液相量が不足するため十分な流動性が得られず、13%を超えると初晶Siが急激に増加して加工性が悪化するとともに、ろう付時に接合部のろう侵食が著しく促進されるためである。
Si: 3 to 13%
The content of Si is set to 3 to 13% as a proper content range that functions as a wax. If it is less than 3%, sufficient fluidity cannot be obtained because the amount of liquid phase produced is insufficient, and if it exceeds 13%, the primary crystal Si rapidly increases and the workability deteriorates and the brazing of the joint during brazing This is because erosion is remarkably accelerated.

2.常温時液体のケイ素化合物を含む組成物
ケイ素化合物をろう付前に被ろう付対象物に配することで、ろう付熱処理過程で熱分解を生じつつも、アルミニウム材表面を覆う酸化防止膜として機能する。これにより、ろう付昇温過程でアルミニウム材表面の酸化皮膜が分解分断されやすくなることでろう濡れ性が確保される。
また、常温時液体の組成物を用いることで、常温時粉体のフラックス粉の使用で生じていた作業環境中への粉体飛散や、粉体の粒度ばらつきや凝集を要因とする不均一な塗布状態などの問題も生じない。
なお、ケイ素化合物の中では有機シラン化合物が望ましく、有機シラン化合物の中でもシランカップリング剤がさらに望ましい。
また、有機シラン化合物は、ろう付け後にフッ化物系残渣とならないため、均一な表面処理性が得られ、フラックス除去工程も不要となる。なお、前記組成物には常温時液体のケイ素化合物のほかに、塗装性改善のために有機系樹脂バインダ(例えば、アクリル樹脂系やウレタン系のバインダ)や界面活性剤などを含んでもよい。また、塗料化する際の溶媒としては、用いる常温時液体ケイ素化合物との相溶性が得られれば良く、例えば、エタノール、メタノール等の有機溶剤や、水等であっても良い。また、塗装工程は部材表面に塗膜を固定させる為の乾燥工程を用いるものであっても良い。乾燥条件は特に限定されるものではないが、使用するケイ素化合物等によって適当な乾燥条件を用いればよい。例えば、雰囲気200℃程度の乾燥炉に3分間保持するような条件があげられる。
2. Composition containing a silicon compound that is liquid at normal temperature By disposing a silicon compound on the object to be brazed before brazing, it functions as an antioxidant film that covers the surface of the aluminum material while causing thermal decomposition during the brazing heat treatment process. To do. Thereby, the brazing wettability is ensured because the oxide film on the surface of the aluminum material is easily decomposed and divided in the process of raising the temperature of brazing.
In addition, by using a liquid composition at room temperature, non-uniformity due to powder scattering into the work environment, powder particle size variation and aggregation caused by the use of powder powder at room temperature There is no problem with the application state.
Among silicon compounds, organosilane compounds are desirable, and among organosilane compounds, a silane coupling agent is more desirable.
In addition, since the organosilane compound does not become a fluoride-based residue after brazing, uniform surface treatment is obtained, and a flux removal step is not required. In addition to the silicon compound that is liquid at room temperature, the composition may contain an organic resin binder (for example, an acrylic resin-based or urethane-based binder), a surfactant, and the like in order to improve paintability. Moreover, as a solvent at the time of coating, it is sufficient if compatibility with the liquid silicon compound used at normal temperature is obtained. For example, an organic solvent such as ethanol or methanol, water, or the like may be used. Moreover, the coating process may use a drying process for fixing the coating film on the surface of the member. The drying conditions are not particularly limited, but appropriate drying conditions may be used depending on the silicon compound used. For example, the conditions are such that the atmosphere is maintained in a drying furnace at about 200 ° C. for 3 minutes.

3.シランカップリング剤
シランカップリング剤の末端基で脱水縮合反応を起こすアルコキシ基は、無機物(アルミニウム基材)と結合する一方で、末端基である有機官能基は有機物(アクリル樹脂系バインダ等)と結合する。そのため、有機バインダを含む塗料組成物を用いる場合は、有機バインダの塗布均一性によってケイ素化合物も部材表面に均一に分布し、更に、ハンドリング性に優れた密着性に富む塗膜が得られる。また、この分布均一性よって、ろう付ではより安定した接合が可能となる。シランカップリング剤としては、例えば、ジメチルジメトキシシラン、ビニルトリエトキシシラン、3−アミノプロピルトリエトキシシラン等が挙げられる。
3. Silane coupling agent The alkoxy group that causes a dehydration condensation reaction at the terminal group of the silane coupling agent is bonded to the inorganic substance (aluminum substrate), while the organic functional group that is the terminal group is an organic substance (such as an acrylic resin binder). Join. Therefore, when using a coating composition containing an organic binder, a silicon compound is evenly distributed on the surface of the member due to the coating uniformity of the organic binder, and a coating film having excellent handling properties and excellent adhesion can be obtained. Further, this distribution uniformity enables more stable joining by brazing. Examples of the silane coupling agent include dimethyldimethoxysilane, vinyltriethoxysilane, and 3-aminopropyltriethoxysilane.

4.硫黄
本発明では、ケイ素化合物を含む組成物の硫黄の含有は必須ではないが、該組成物に硫黄を添加すると、該組成物の熱分解性が向上し、外観上の問題となるようなろう付後残渣の低減が可能となる。
また、硫黄は、あらゆる態様で組成物に添加することができるが、例えば、硫黄含有シランカップリング剤によって供給されるものとすることができる。硫黄含有シランカップリング剤としては、例えば、ビス(トリエトキシシリルプロピル)テトラスルフィドなどが挙げられる。
4). Sulfur In the present invention, it is not essential to contain sulfur in a composition containing a silicon compound. However, when sulfur is added to the composition, the thermal decomposability of the composition is improved, which may cause a problem in appearance. It is possible to reduce the residue after attaching.
Also, sulfur can be added to the composition in any manner, but can be supplied by, for example, a sulfur-containing silane coupling agent. Examples of the sulfur-containing silane coupling agent include bis (triethoxysilylpropyl) tetrasulfide.

本発明のアルミニウム材のろう付方法によれば、常温時液体のケイ素化合物を含む組成物をろう付前に、少なくとも被接合部材の接合部表面に配しておくことにより、ろう付熱処理過程で前記接合部表面の酸化皮膜成長が抑制され、さらに、ろう材に添加されたMgによる酸化皮膜分解作用が加わることで、材料表面に新生面が出現して、従来のフッ化物系フラックスを用いたろう付方法と同等以上の接合状態を得ることが可能となる。
また、本発明のアルミニウム材のろう付方法によれば、フッ化物系フラックスを使用しないことにより、フッ化物系フラックスとアルミニウム合金中のMgとの反応によるフラックスの不活性化が問題となることはなく、したがって、被接合部材として、薄肉高強度化に有効なMg添加アルミニウム合金からなるものを使用することができ、市場における今後の薄肉高強度化の要求に応えることができる。
According to the method for brazing an aluminum material of the present invention, a composition containing a silicon compound that is liquid at room temperature is disposed on at least the surface of the bonded portion of the member to be bonded before brazing. Oxide film growth on the surface of the joint is suppressed, and further, an oxide film decomposition action by Mg added to the brazing material is added, so that a new surface appears on the material surface, and brazing using a conventional fluoride flux is performed. It becomes possible to obtain a joining state equivalent to or better than the method.
Further, according to the brazing method of the aluminum material of the present invention, the fact that the flux inactivation due to the reaction between the fluoride flux and Mg in the aluminum alloy becomes a problem by not using the fluoride flux. Therefore, it is possible to use a member made of an Mg-added aluminum alloy that is effective for increasing the thickness and strength of the member to be joined, and to meet future demands for increasing the strength of the wall in the market.

本発明の一実施形態におけるろう付前の状態を示す概略図である。It is the schematic which shows the state before brazing in one Embodiment of this invention. (a)は本発明におけるろう付評価モデル、(b)は接合部幅についての評価位置を示す図である。(A) is the brazing evaluation model in this invention, (b) is a figure which shows the evaluation position about a junction part width | variety.

以下に、本発明の一実施形態を図1に基づき説明する。
本発明のろう付方法においては、質量%でMgを0.2〜5.0%、Siを3〜13%含有するAl−Mg−Si系ろう材を用いる。前記組成範囲のAl−Mg−Si系ろう材3と芯材2とを重ねて常法によりクラッド圧延し、アルミニウムクラッド材1を得る。なお、芯材の組成、およびクラッド率は、本発明としては特に限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
In the brazing method of the present invention, an Al—Mg—Si brazing material containing 0.2 to 5.0% Mg and 3 to 13% Si by mass% is used. The Al—Mg—Si brazing material 3 and the core material 2 having the above composition range are overlapped and clad and rolled by a conventional method to obtain an aluminum clad material 1. The composition of the core material and the cladding rate are not particularly limited as the present invention.

上記アルミニウムクラッド材1は、被ろう付部材4と接触するように組み付けられる。その際、少なくとも前記被ろう付部材4の接合部表面4aに、予め、常温時に液体であるケイ素化合物を含む組成物5を配する。配する方法としては、本発明として特に限定されるものではなく、塗布、噴霧、浸漬、その他適宜の方法により行うことができる。また、前記ケイ素化合物を含む組成物5を配する領域については、少なくとも被ろう付部材との接合部領域であればよく、接合部領域を越えた範囲(例えば被ろう付部材4の全表面など)であってもよく、接合部表面4aのみであってもよい。この例では、アルミニウムクラッド材1の表面全面に組成物5を塗布している。また、この例では、組成物5はシランカップリング剤のみで構成されている。   The aluminum clad material 1 is assembled so as to be in contact with the member to be brazed 4. At that time, a composition 5 containing a silicon compound that is liquid at room temperature is disposed on at least the joint surface 4a of the brazed member 4 in advance. The distribution method is not particularly limited as the present invention, and can be performed by coating, spraying, dipping, or other appropriate methods. Further, the region where the composition 5 containing the silicon compound is disposed may be at least a joint region with the member to be brazed, such as a range beyond the joint region (for example, the entire surface of the brazed member 4 or the like). ), Or only the joint surface 4a. In this example, the composition 5 is applied to the entire surface of the aluminum clad material 1. Moreover, in this example, the composition 5 is comprised only with the silane coupling agent.

前記組立体は、加熱炉に入れられ、ろう付に供される。ろう付における雰囲気は特に限定されるものではなく大気雰囲気、不活性雰囲気などを選択することができる。ろう付の際の加熱温度は、ろう材の種別などに従って適宜の温度に設定する。
なお、被ろう付部材としては、種々の組成のアルミニウム材を用いることができ、本発明としては特定のものに限定されるものではないが、例えば、薄肉高強度化に有効なMg添加アルミニウム合金材を用いることができる。
上記ろう付により接合されたアルミニウム材は、良好なろう付がなされる。
The assembly is placed in a heating furnace and subjected to brazing. The atmosphere in brazing is not particularly limited, and an air atmosphere, an inert atmosphere, or the like can be selected. The heating temperature at the time of brazing is set to an appropriate temperature according to the type of brazing material.
In addition, as a brazing member, aluminum materials having various compositions can be used, and the present invention is not limited to a specific one. For example, an Mg-added aluminum alloy effective for increasing the thickness and strength Materials can be used.
The aluminum material joined by the brazing is satisfactorily brazed.

以下に、本発明の実施例を説明する。
表1に示す組成(残部はAlと不可避不純物)のAl−Mg−Si系ろう材と、JIS A3003の芯材とをクラッドしたアルミニウムクラッド材を用意した。前記アルミニウムクラッド材は、各種組成ろう材をクラッド率10%とし、H14相当調質の0.25mm厚に仕上げた。
また、被ろう付部材として、JIS A3005合金、H14相当調質のアルミニウムベア材(0.1mm厚)のフィンをコルゲート加工したコルゲートフィン7を用意した。
Examples of the present invention will be described below.
An aluminum clad material in which an Al—Mg—Si brazing material having the composition shown in Table 1 (the balance is Al and inevitable impurities) and a core material of JIS A3003 was clad was prepared. The aluminum clad material was made of various composition brazing materials with a clad rate of 10%, and finished to a thickness of 0.25 mm with a temper equivalent to H14.
Further, a corrugated fin 7 obtained by corrugating a fin of an aluminum bare material (0.1 mm thickness) tempered to JIS A3005 alloy and H14 was prepared as a member to be brazed.

前記アルミニウムクラッド材を用いて幅20mmのチューブ8を製作し、該チューブ8と前記コルゲートフィン7とを組み合わせ、ろう付評価モデルとして図2(a)に示すようなチューブ15段、長さ300mmのコア6とした。その際、少なくともチューブ8とフィン7との接合部に表2に示す組成物を塗布した。この際、バインダとしてメタクリル酸メチル、活性剤としてポリオキシアルキレンアルキルエーテルを配合したものも併せて評価した。   A tube 8 having a width of 20 mm is manufactured using the aluminum clad material, and the tube 8 and the corrugated fin 7 are combined. As a brazing evaluation model, a tube having 15 steps and a length of 300 mm as shown in FIG. It was set as the core 6. At that time, the composition shown in Table 2 was applied to at least the joint portion between the tube 8 and the fin 7. At this time, a combination of methyl methacrylate as a binder and polyoxyalkylene alkyl ether as an activator was also evaluated.

組成物を塗布した前記コア6を、窒素雰囲気中(酸素含有量50ppm)のろう付炉にて、560〜600℃にまで加熱し、そのろう付状態を評価した。   The core 6 coated with the composition was heated to 560 to 600 ° C. in a brazing furnace in a nitrogen atmosphere (oxygen content 50 ppm), and the brazing state was evaluated.

(1)接合率
次式によって接合率を求め、各試料間のろう付性の優劣を評価した。
フィン接合率(%)=(フィン7とチューブ8の総ろう付長さ/フィン7とチューブ8の総接触長さ)×100
ろう付後のフィン接合率が95%以上のものを◎、85%以上95%未満のものを○、85%未満のものを×と評価し、各評価結果を表3に示した。
(1) Joining rate Joining rate was calculated | required by following Formula and the superiority or inferiority of the brazing property between each sample was evaluated.
Fin joint ratio (%) = (total brazing length of fin 7 and tube 8 / total contact length of fin 7 and tube 8) × 100
Those having a fin joint ratio after brazing of 95% or more were evaluated as ◎, those having 85% or more and less than 95% were evaluated as ○, and those having less than 85% were evaluated as ×, and the evaluation results are shown in Table 3.

(2)接合部幅評価
ろう付接合部におけるフィレット形成能の向上を確認するため、接合部幅の評価を行った。図2(b)に示したフィレット9とチューブ8の接合部の幅Wを各試料で20点計測し、その平均値をもってろう付接合状態の優劣を評価した。
接合部幅が0.7mm以上のものを○、0.7mm未満のものを×と評価し、各評価結果を表3に示した。
(2) Joint width evaluation In order to confirm the improvement of fillet forming ability in the brazed joint, the joint width was evaluated. The width W of the joint portion between the fillet 9 and the tube 8 shown in FIG. 2B was measured for each sample at 20 points, and the superiority or inferiority of the brazed joint state was evaluated with the average value.
Those having a joint width of 0.7 mm or more were evaluated as “○”, and those having a joint width of less than 0.7 mm were evaluated as “×”.

(3)表面処理性
ろう付で得られたろう付品に対し、アクリル樹脂系の親水性塗膜を形成する塗料を浸漬塗布した。塗布乾燥後、一部を切出し表面のカーボン量をEPMA(電子線マイクロアナリシス)にてマッピング分析することで、親水性塗膜の付着状態を確認した。分析箇所のカーボン量が15%以上の部位を親水性塗膜形成部として判断し、分析エリアに対するその付着面積を求めた。付着率95%以上のものを◎、付着率90%以上95%未満のものを○、付着率90%未満のものを×と評価し、各評価結果を表3に示した。
(3) Surface treatment property A paint for forming an acrylic resin-based hydrophilic coating film was applied by dip coating to the brazed product obtained by brazing. After coating and drying, a part was cut out, and the amount of carbon on the surface was subjected to mapping analysis by EPMA (electron beam microanalysis) to confirm the adhesion state of the hydrophilic coating film. A site where the carbon content of the analysis site was 15% or more was judged as a hydrophilic coating film forming portion, and the adhesion area with respect to the analysis area was determined. Those having an adhesion rate of 95% or more were evaluated as “◎”, those having an adhesion rate of 90% or more and less than 95% were evaluated as “、”, and those having an adhesion rate of less than 90% were evaluated as “X”.

表3から明らかなように、本発明の実施例のいずれも良好なろう付性を示したのに対し、比較例では十分なフィレット形成能が得られなかった。   As is clear from Table 3, all of the examples of the present invention showed good brazing properties, whereas the comparative example did not have sufficient fillet forming ability.

Figure 2013111634
Figure 2013111634

Figure 2013111634
Figure 2013111634

Figure 2013111634
Figure 2013111634

1 アルミニウムクラッド材
2 芯材
3 Al−Mg−Si系ろう材
4 被ろう付部材
4a 接合部表面
5 ケイ素化合物を含む組成物
6 コア
7 コルゲートフィン
8 チューブ
9 フィレット
W 接合部幅
DESCRIPTION OF SYMBOLS 1 Aluminum clad material 2 Core material 3 Al-Mg-Si type | system | group brazing material 4 Brazed member 4a Joint surface 5 Composition containing a silicon compound 6 Core 7 Corrugated fin 8 Tube 9 Fillet W Joint width

Claims (7)

質量%でMgを0.2〜5.0%、Siを3〜13%含有するAl−Mg−Si系ろう材によりアルミニウム材からなる被接合部材をろう付して接合するアルミニウム材のろう付方法であって、少なくとも前記被接合部材の接合部表面に、常温時液体のケイ素化合物を含む組成物を配して前記Al−Mg−Si系ろう材によるろう付を行うことを特徴とするアルミニウム材のろう付方法。   Brazing of an aluminum material to be joined by brazing a joining member made of an aluminum material with an Al-Mg-Si brazing material containing 0.2 to 5.0% Mg and 3 to 13% Si in mass% A method comprising the steps of: brazing with an Al-Mg-Si brazing material by disposing a composition containing a silicon compound that is liquid at room temperature on at least the surface of the joint portion of the member to be joined. Brazing method of material. 前記ケイ素化合物が、無機または有機化合物から選ばれる1つの化合物または2つ以上の混合物からなることを特徴とする請求項1に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 1, wherein the silicon compound is composed of one compound selected from inorganic or organic compounds or a mixture of two or more. 前記ケイ素化合物が、有機シラン化合物であることを特徴とする請求項1または2に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 1 or 2, wherein the silicon compound is an organosilane compound. 前記有機シラン化合物が、シランカップリング剤であることを特徴とする請求項3に記載のアルミニウム材のろう付方法。   4. The method for brazing an aluminum material according to claim 3, wherein the organosilane compound is a silane coupling agent. 前記ケイ素化合物を含む組成物が硫黄を含むことを特徴とする請求項1〜4のいずれかに記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 1, wherein the composition containing the silicon compound contains sulfur. 前記硫黄が、硫黄含有シランカップリング剤によって供給されるものであることを特徴とする請求項5に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 5, wherein the sulfur is supplied by a sulfur-containing silane coupling agent. 前記接合部材が、Mg添加アルミニウム合金からなることを特徴とする請求項1〜6のいずれかに記載のアルミニウム材のろう付方法。   The said joining member consists of Mg addition aluminum alloys, The brazing method of the aluminum material in any one of Claims 1-6 characterized by the above-mentioned.
JP2011261747A 2011-11-30 2011-11-30 Brazing method of aluminum material Active JP5904772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261747A JP5904772B2 (en) 2011-11-30 2011-11-30 Brazing method of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261747A JP5904772B2 (en) 2011-11-30 2011-11-30 Brazing method of aluminum material

Publications (2)

Publication Number Publication Date
JP2013111634A true JP2013111634A (en) 2013-06-10
JP5904772B2 JP5904772B2 (en) 2016-04-20

Family

ID=48707747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261747A Active JP5904772B2 (en) 2011-11-30 2011-11-30 Brazing method of aluminum material

Country Status (1)

Country Link
JP (1) JP5904772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198803A (en) * 2015-04-13 2016-12-01 三菱アルミニウム株式会社 Method for brazing aluminum member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194050A (en) * 1992-01-23 1993-08-03 Ngk Insulators Ltd Combination of metal with ceramic and method for joining the same
US5593492A (en) * 1995-08-30 1997-01-14 Inorganic Coating, Inc. Weld through primer
JP2003340593A (en) * 2002-05-24 2003-12-02 Mitsubishi Alum Co Ltd Manufacturing method of brazing sheet for vacuum brazing excellent in moldability and erosion resistance
JP2008284565A (en) * 2007-05-16 2008-11-27 Mitsubishi Alum Co Ltd Paint for brazing aluminum alloy excellent in resistance to peeling of coating film, aluminum alloy sheet for brazing and aluminum alloy member for automotive heat exchanger using the same and automotive heat exchanger
JP2009269042A (en) * 2008-05-01 2009-11-19 Mitsubishi Alum Co Ltd Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
JP2010247209A (en) * 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd Fluxless brazing method for aluminum material and aluminum cladding material for fluxless brazing
US20110111254A1 (en) * 2008-07-02 2011-05-12 Aleris Aluminum Koblenz Gmbh Aluminium brazing sheet material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194050A (en) * 1992-01-23 1993-08-03 Ngk Insulators Ltd Combination of metal with ceramic and method for joining the same
US5593492A (en) * 1995-08-30 1997-01-14 Inorganic Coating, Inc. Weld through primer
JP2003340593A (en) * 2002-05-24 2003-12-02 Mitsubishi Alum Co Ltd Manufacturing method of brazing sheet for vacuum brazing excellent in moldability and erosion resistance
JP2008284565A (en) * 2007-05-16 2008-11-27 Mitsubishi Alum Co Ltd Paint for brazing aluminum alloy excellent in resistance to peeling of coating film, aluminum alloy sheet for brazing and aluminum alloy member for automotive heat exchanger using the same and automotive heat exchanger
JP2009269042A (en) * 2008-05-01 2009-11-19 Mitsubishi Alum Co Ltd Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
US20110111254A1 (en) * 2008-07-02 2011-05-12 Aleris Aluminum Koblenz Gmbh Aluminium brazing sheet material
JP2010247209A (en) * 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd Fluxless brazing method for aluminum material and aluminum cladding material for fluxless brazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198803A (en) * 2015-04-13 2016-12-01 三菱アルミニウム株式会社 Method for brazing aluminum member

Also Published As

Publication number Publication date
JP5904772B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP2010247209A (en) Fluxless brazing method for aluminum material and aluminum cladding material for fluxless brazing
JP5921272B2 (en) Brazing method of aluminum material
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP2009106947A (en) Aluminum alloy tube
JP2012061483A (en) Flux-less brazing method of aluminum material
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP2010075966A (en) Compound material for brazing
JP2006307292A (en) Aluminum-alloy sheet material for radiator tube excellent in brazing property, and radiator tube and heat exchanger having the same
JP6282396B2 (en) Brazing method of aluminum material and aluminum material
JP5904772B2 (en) Brazing method of aluminum material
JP5155006B2 (en) Aluminum alloy brazing paint excellent in moisture brazing resistance, aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the same, and method for producing automobile heat exchanger
JP2009269043A (en) Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
JP5904771B2 (en) Brazing method of aluminum material
JP6013779B2 (en) Brazing product manufacturing method
JP2011230173A (en) Aluminum alloy brazing filler metal
JP2011148004A (en) Low-temperature brazing filler metal for joining aluminum alloy
JP2004330266A (en) Manufacturing method of lamination type heat exchanger
KR101982742B1 (en) Clad of aluminium product for brazing and manufacturing method of heat exchanger using the same
JP6470622B2 (en) Brazing method of aluminum member
KR102237180B1 (en) composition for brazing of aluminum heat exchanger
JP3434999B2 (en) Heat exchanger excellent in brazing property and method for manufacturing the heat exchanger
JP2017018959A (en) Brazing method of aluminum alloy member
JP2002172485A (en) Aluminum extrusion multi-hole pipe for brazing excellent in corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5904772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250