JP5904771B2 - Brazing method of aluminum material - Google Patents

Brazing method of aluminum material Download PDF

Info

Publication number
JP5904771B2
JP5904771B2 JP2011259237A JP2011259237A JP5904771B2 JP 5904771 B2 JP5904771 B2 JP 5904771B2 JP 2011259237 A JP2011259237 A JP 2011259237A JP 2011259237 A JP2011259237 A JP 2011259237A JP 5904771 B2 JP5904771 B2 JP 5904771B2
Authority
JP
Japan
Prior art keywords
brazing
silicon compound
aluminum material
brazed
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011259237A
Other languages
Japanese (ja)
Other versions
JP2013111601A (en
Inventor
三宅 秀幸
秀幸 三宅
江戸 正和
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011259237A priority Critical patent/JP5904771B2/en
Publication of JP2013111601A publication Critical patent/JP2013111601A/en
Application granted granted Critical
Publication of JP5904771B2 publication Critical patent/JP5904771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、Al−Si系ろう材を用いたアルミニウム材のろう付方法に関するものである。   The present invention relates to a method for brazing an aluminum material using an Al-Si brazing material.

自動車用熱交換器をはじめとしたろう付分野においては、現在、窒素ガス等の不活性ガス雰囲気下で非腐食性のフッ化物系フラックス(ノコロックフラックス)を用いてろう付されるか、ろう材に0.5〜1.5質量%程度のMgを添加して真空雰囲気下でろう付される工法が主流となっている。   In the brazing field including automotive heat exchangers, brazing is currently performed using a non-corrosive fluoride flux (nocolok flux) in an inert gas atmosphere such as nitrogen gas. A construction method in which about 0.5 to 1.5% by mass of Mg is added to the material and brazed in a vacuum atmosphere has become the mainstream.

しかしながら、上記フラックスを用いた工法においては、常温粉体のフッ化物であるフラックス粉を用いることから、塗料中の沈降防止管理(粉体分散維持)、作業環境中への粉体飛散防止を行う必要がある等、工程管理が煩雑となる問題があった。また、塗着させる製品においては、粉体の粒度ばらつきや凝集等が要因となって、製品接合細部において均一な塗布状態が得られにくく、製品歩留まりの低下を招く問題がある。さらに、ろう付後の製品においては、親水化処理等の表面処理をする場合において、フラックス残渣が表面処理性を阻害し、均一な表面処理性を得られにくいという問題がある。フラックス残渣は材料表面に強固に固着しており、その除去を行うのも容易ではない。
一方、ろう材にMgを添加し真空下でろう付を行う真空ろう付では、Mgがろう付昇温過程で材料中から蒸発する際にアルミニウム材料表面の酸化皮膜を破壊し、雰囲気中では水分や酸素と結合するゲッター作用により、フラックスを使用せずにろう付が可能である。しかし本工法は、フッ化物系フラックスによるろう付方法に比べて、ろう付管理条件も厳しく高価な設備が必要となるというデメリットがある。
However, in the construction method using the above flux, flux powder which is fluoride of room temperature powder is used, so that settling prevention management in the paint (powder dispersion maintenance) and powder scattering prevention in the working environment are performed. There is a problem that process management becomes complicated, such as necessity. In addition, in the product to be applied, there is a problem that it is difficult to obtain a uniform application state in the product joining details due to variations in the particle size of the powder, aggregation, and the like, resulting in a decrease in product yield. Furthermore, in the product after brazing, when surface treatment such as hydrophilization treatment is performed, there is a problem that the flux residue inhibits the surface treatment property and it is difficult to obtain a uniform surface treatment property. The flux residue is firmly fixed on the material surface, and it is not easy to remove it.
On the other hand, in vacuum brazing in which Mg is added to a brazing material and brazing is performed under vacuum, when the Mg evaporates from the material during the brazing temperature rising process, the oxide film on the surface of the aluminum material is destroyed, and moisture is generated in the atmosphere. It is possible to braze without using flux due to the getter action combined with oxygen. However, this method has a demerit that the brazing management conditions are strict and expensive equipment is required as compared with the brazing method using fluoride flux.

これらに対し、最近では上記問題を解消しようとする大気圧下でのフラックスを使用しないろう付の方法が提案されている。
例えば特許文献1では、被ろう付け部材、もしくはそれ以外の部位にMg含有物を配置し、且つ、被ろう付部材に覆いをすることによって非酸化性雰囲気大気圧下のフラックスレスろう付を提案している。
また、特許文献2では、薄皮材と芯材との中間材としてAl−Si系ろう材を挟み込んだ構造のブレージングシートを使用して、不活性ガス雰囲気中でフラックスを使用せずろう付するもので、ろう溶融時に溶融ろうを皮材面に染み出させてろう付を行う方法が提案されている。
On the other hand, recently, a brazing method that does not use a flux under atmospheric pressure to solve the above-described problem has been proposed.
For example, Patent Document 1 proposes fluxless brazing in a non-oxidizing atmosphere under atmospheric pressure by placing an Mg-containing material on a member to be brazed or other part and covering the member to be brazed. doing.
In Patent Document 2, a brazing sheet having a structure in which an Al-Si brazing material is sandwiched as an intermediate material between a thin skin material and a core material is used, and brazing is performed without using flux in an inert gas atmosphere. On the other hand, a method has been proposed in which the brazing is exuded on the skin material surface during brazing.

特開平9−85433号公報JP-A-9-85433 特許3780380号公報Japanese Patent No. 3780380

しかし、特許文献1に記載のろう付方法では、被ろう付け部材に覆いをすることが必須となっており、覆い使用に伴う手間やコストが大きいという問題がある。また、特許文献2に記載のろう付方法は、重ね継手形状のろう付けに限定されるものであり、特殊なブレージングシートのコストも大きいという問題がある。   However, in the brazing method described in Patent Document 1, it is essential to cover the member to be brazed, and there is a problem that labor and cost associated with the use of the cover are large. Moreover, the brazing method described in Patent Document 2 is limited to the brazing of a lap joint shape, and there is a problem that the cost of a special brazing sheet is high.

本発明は、上記事情を背景としてなされたものであり、工程管理が従来よりも容易であり、かつ均一な表面処理性を示し、安定したろう付品質を得られるアルミニウム材のろう付方法を提供することを目的とする。   The present invention has been made in the background of the above circumstances, and provides a brazing method for an aluminum material that is easier to manage than conventional processes, exhibits uniform surface treatment properties, and provides stable brazing quality. The purpose is to do.

すなわち、本発明のアルミニウム材のろう付方法のうち第1の本発明は、アルミニウム材からなる被接合部材をAl−Si系ろう材によりろう付して接合する方法であって、少なくとも前記被接合部材の接合部表面に、常温時液体のケイ素化合物を含む組成物を配して酸化皮膜を破壊するフラックスを用いることなく前記Al−Si系ろう材によるろう付を行うことを特徴とする。 That is, among the brazing methods for an aluminum material according to the present invention, the first present invention is a method for brazing and joining a member to be joined made of an aluminum material with an Al-Si brazing material, and at least the above-mentioned to-be-joined It is characterized in that brazing with the Al-Si brazing material is performed without using a flux that breaks the oxide film by arranging a composition containing a silicon compound that is liquid at room temperature on the surface of the joint portion of the member.

前記第1の本発明によれば、ケイ素化合物を含む組成物をろう付前に、少なくとも被接合部材の接合部表面に配しておくことにより、ろう付熱処理過程で、ケイ素化合物は熱分解を生じながらも部材表面を覆う膜となり、ろう付阻害要素である部材表面の酸化を抑制する酸化防止膜として機能する。ろう付昇温過程での部材表面酸化を抑制することで、素材と酸化皮膜の熱膨張差等による部材表面酸化皮膜の亀裂が生じやすくなり、亀裂部に生じた素材新生面がろう濡れ性を発揮して良好なろう付が得られる。さらに、前記ケイ素化合物は常温時液体であるため工程管理が容易となり、さらにろう付け後にフッ化物系残渣とならないため、均一な表面処理性が得られ、フラックス除去工程も不要となる。なお、前記組成物には常温時液体のケイ素化合物のほかに、塗装性改善のために有機系樹脂バインダ(例えば、アクリル樹脂系やウレタン系のバインダ)や界面活性剤などを含んでもよい。また、塗料化する際の溶媒としては、用いる常温時液体ケイ素化合物との相溶性が得られれば良く、例えば、エタノール、メタノール等の有機溶剤や、水等であっても良い。また、塗装工程は部材表面に塗膜を固定させる為の乾燥工程を用いるものであっても良い。乾燥条件は特に限定されるものではないが、使用するケイ素化合物等によって適当な乾燥条件を用いればよい。例えば、雰囲気200℃程度の乾燥炉に3分間保持するような条件があげられる
なお、本発明では、Mgを添加しないAl−Si系ろう材を用いる。本発明としてはAl−Si系ろう材の組成が特定のものに限定されるものではなく、適宜の組成を選択することができる。例えばSi:3〜13 質量% 、残部Alのろう材を用いることができる。また、Al−Si系ろう材には、その他にZn:0.1〜5.0%を含有するものであってもよい。なお、Mgを不可避不純物として0.2%以下含有するものであってもよいが、0.1%以下とするのが望ましい。
According to the first aspect of the present invention, the silicon compound is thermally decomposed during the brazing heat treatment process by disposing the composition containing the silicon compound on at least the surface of the joint portion of the member to be joined before brazing. Although it occurs, it becomes a film that covers the surface of the member, and functions as an antioxidant film that suppresses oxidation of the surface of the member, which is a brazing inhibitor. By suppressing oxidation of the surface of the member during the brazing temperature rise process, the surface of the oxide film on the surface of the material tends to crack due to the difference in thermal expansion between the material and the oxide film, and the new surface of the material on the crack exhibits brazing wettability. And good brazing is obtained. Furthermore, since the silicon compound is a liquid at room temperature, process management is facilitated, and since it does not become a fluoride-based residue after brazing, uniform surface treatment can be obtained and a flux removing process is not required. In addition to the silicon compound that is liquid at room temperature, the composition may contain an organic resin binder (for example, an acrylic resin-based or urethane-based binder), a surfactant, and the like in order to improve paintability. Moreover, as a solvent at the time of coating, it is sufficient if compatibility with the liquid silicon compound used at normal temperature is obtained. For example, an organic solvent such as ethanol or methanol, water, or the like may be used. Moreover, the coating process may use a drying process for fixing the coating film on the surface of the member. The drying conditions are not particularly limited, but appropriate drying conditions may be used depending on the silicon compound used. For example, the conditions are such that the atmosphere is maintained in a drying furnace at about 200 ° C. for 3 minutes .
In the present invention, an Al—Si brazing material not added with Mg is used. In the present invention, the composition of the Al—Si brazing material is not limited to a specific one, and an appropriate composition can be selected. For example, a brazing material of Si: 3 to 13 mass% and the balance Al can be used. In addition, the Al—Si brazing material may contain Zn: 0.1 to 5.0%. Although Mg may be contained in an amount of 0.2% or less as an inevitable impurity, it is preferably 0.1% or less.

第2の本発明のアルミニウム材のろう付方法は、前記第1の本発明において、前記ケイ素化合物が無機または有機化合物から選ばれる1つの化合物または2つ以上の混合物からなることを特徴とする。   The aluminum material brazing method according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the silicon compound is composed of one compound selected from inorganic or organic compounds or a mixture of two or more.

第3の本発明のアルミニウム材のろう付方法は、前記第1または第2の本発明において、前記ケイ素化合物が有機シラン化合物であることを特徴とする。   A brazing method for an aluminum material according to a third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the silicon compound is an organosilane compound.

第4の本発明のアルミニウム材のろう付方法は、前記第3の本発明において、前記有機シラン化合物がシランカップリング剤であることを特徴とする。   The brazing method for an aluminum material according to a fourth aspect of the present invention is characterized in that, in the third aspect of the present invention, the organosilane compound is a silane coupling agent.

第4の本発明によれば、シランカップリング剤の末端基で脱水縮合反応を起こすアルコキシ基は、無機物(アルミニウム基材)と結合する一方で、末端基である有機官能基は有機物(アクリル樹脂系バインダ等)と結合する。そのため、有機バインダを含む塗料組成物を用いる場合は、有機バインダの塗布均一性によってケイ素化合物も部材表面に均一に分布し、更に、ハンドリング性に優れた密着性に富む塗膜が得られる。また、この分布均一性よって、ろう付ではより安定したフィレット形成が可能となる。
シランカップリング剤は、ろう付熱処理過程で熱分解し、ろう付製品に無害なシリコーンとなる。また、有機バインダを併せて用いる場合にも有機バインダは、ろう付熱処理過程で蒸散して残渣が生じることはない。
According to the fourth aspect of the present invention, the alkoxy group that causes a dehydration condensation reaction at the terminal group of the silane coupling agent is bonded to the inorganic substance (aluminum substrate), while the organic functional group that is the terminal group is an organic substance (acrylic resin). System binder). Therefore, when using a coating composition containing an organic binder, a silicon compound is evenly distributed on the surface of the member due to the coating uniformity of the organic binder, and a coating film having excellent handling properties and excellent adhesion can be obtained. In addition, this distribution uniformity enables more stable fillet formation by brazing.
The silane coupling agent is thermally decomposed during the brazing heat treatment process, and becomes a harmless silicone for the brazed product. Even when an organic binder is used in combination, the organic binder does not evaporate during the brazing heat treatment process and a residue is not generated.

本発明のアルミニウム材のろう付方法によれば、常温時液体のケイ素化合物を含む組成物をアルミニウム材からなる被接合部材の接合部表面に配してろう付することで、材料表面のろう濡れ性が向上し、良好なろう付が可能になる。
また、本発明では、粉体原料であるフッ化物系フラックスを用いなくとも従来より非常に少ない粉体配合比にてろう付が可能となるため、塗料中の沈降防止や作業環境中への飛散防止等の工程管理が簡便になり、ろう付接合においても均一な接合状態が得られる。さらに、ろう付け後のフラックス残渣は生じないため、ろう付後製品の均一な表面処理性が得られ、フラックス残渣除去コストも不要である。
したがって、本発明のろう付方法によれば、従来の工法に比べて工程管理が容易であり、均一な表面処理性を示し、良好で安定したろう付品質を得ることができる。
According to the brazing method for an aluminum material of the present invention, a composition containing a silicon compound that is liquid at normal temperature is placed on the surface of a joint portion of a member to be joined made of aluminum material and brazed, thereby brazing the material surface. Property is improved and good brazing becomes possible.
Further, in the present invention, without using a fluoride-based flux is a powder raw material, of at very low powder blending ratio than conventional since it becomes possible brazing, the anti-settling and working environment in the paint Process management such as scattering prevention is simplified, and a uniform joining state is obtained even in brazing joining. Furthermore, because the flux residue after brazing was Na occurred, uniform surface treatment of the post-brazing product obtained, the flux residue removal cost is unnecessary.
Therefore, according to the brazing method of the present invention, process management is easier than in the conventional construction method, uniform surface treatment properties are exhibited, and good and stable brazing quality can be obtained.

本発明の一実施形態におけるろう付前の状態を示す概略図である。It is the schematic which shows the state before brazing in one Embodiment of this invention. (a)は本発明におけるろう付評価モデル、(b)は接合部幅についての評価位置を示す図である。(A) is the brazing evaluation model in this invention, (b) is a figure which shows the evaluation position about a junction part width | variety.

以下に、本発明の一実施形態を図1に基づき説明する。
本発明のろう付方法においては、Mgを添加しないAl−Si系ろう材を用いる。常法により製造したAl−Si系ろう材3と芯材2とを重ねて常法によりクラッド圧延し、アルミニウムクラッド材1を得る。なお、Al−Si系ろう材および芯材の組成、およびクラッド率は、本発明としては特に限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
In the brazing method of the present invention, an Al—Si brazing material not added with Mg is used. The Al—Si based brazing material 3 and the core material 2 manufactured by a conventional method are stacked and clad and rolled by a conventional method to obtain an aluminum clad material 1. In addition, the composition of the Al—Si brazing material and the core material, and the cladding rate are not particularly limited as the present invention.

上記アルミニウムクラッド材1は、被ろう付部材4と接触するように組み付けられる。その際、少なくとも前記被ろう付部材4の接合部表面4aに、予め、常温時に液体であるケイ素化合物を含む組成物5を配する。配する方法としては、本発明として特に限定されるものではなく、塗布、噴霧、浸漬、その他適宜の方法により行うことができる。また、前記ケイ素化合物を含む組成物5を配する領域については、少なくとも被ろう付部材との接合部領域であればよく、接合部領域を越えた範囲(例えば被ろう付部材4の全表面等)であってもよく、接合部表面のみであってもよい。この例では、アルミニウムクラッド材1の表面全面に組成物5を塗布している。また、この例では、組成物5は、シランカップリング剤で構成されている。   The aluminum clad material 1 is assembled so as to be in contact with the member to be brazed 4. At that time, a composition 5 containing a silicon compound that is liquid at room temperature is disposed on at least the joint surface 4a of the brazed member 4 in advance. The distribution method is not particularly limited as the present invention, and can be performed by coating, spraying, dipping, or other appropriate methods. In addition, the region where the composition 5 containing the silicon compound is disposed may be at least a joint region with the member to be brazed, and a range beyond the joint region (for example, the entire surface of the brazed member 4 or the like). ) Or only the surface of the joint. In this example, the composition 5 is applied to the entire surface of the aluminum clad material 1. Moreover, in this example, the composition 5 is comprised with the silane coupling agent.

前記組立体は、加熱炉に入れられ、ろう付に供される。ろう付における雰囲気は特に限定されるものではないが、窒素ガス等の不活性雰囲気中で行う方が安定したろう付状態を得られやすい。ろう付の際の加熱温度は、ろう材の種別などに従って適宜、ろうの融点(固相線温度)以上の温度に設定する。
なお、被ろう付部材としては、種々の組成のアルミニウム材を用いることができ、本発明としては特定のものに限定されるものではない。
上記ろう付により接合されたアルミニウム材は、良好なろう付がなされる。
The assembly is placed in a heating furnace and subjected to brazing. The atmosphere in brazing is not particularly limited, but it is easier to obtain a stable brazing state when performed in an inert atmosphere such as nitrogen gas. The heating temperature at the time of brazing is appropriately set to a temperature equal to or higher than the melting point (solidus temperature) of the brazing according to the type of brazing material.
In addition, as a member to be brazed, aluminum materials having various compositions can be used, and the present invention is not limited to a specific one.
The aluminum material joined by the brazing is satisfactorily brazed.

以下に、本発明の実施例を説明する。
表1に示す組成(残部はAlと不可避不純物)のAl−Si系ろう材と、JIS A3003の芯材とをクラッドしたアルミニウムクラッド材を用意した。前記アルミニウムクラッド材は、各種組成ろう材をクラッド率10%とし、H14相当調質の0.25mm厚に仕上げた。
また、被ろう付部材として、JIS A3003合金、H14相当調質のアルミニウムベア材(0.1mm厚)のフィンをコルゲート加工したコルゲートフィン7を用意した。
Examples of the present invention will be described below.
An aluminum clad material in which an Al—Si brazing material having the composition shown in Table 1 (the balance is Al and inevitable impurities) and a core material of JIS A3003 was clad was prepared. The aluminum clad material was made of various composition brazing materials with a clad rate of 10%, and finished to a thickness of 0.25 mm with a temper equivalent to H14.
Further, as a member to be brazed, a corrugated fin 7 was prepared by corrugating a fin of aluminum bare material (0.1 mm thickness) tempered with JIS A3003 alloy and H14.

前記アルミニウムクラッド材を用いて幅20mmのチューブ8を製作し、該チューブ8と前記コルゲートフィン7とを組み合わせ、ろう付評価モデルとして図2(a)に示すような、チューブ15段、長さ300mmのコア6を形成した。その際、各供試材の少なくともチューブ8とフィン7との接合部に、表2に示す組成物を表3に示す組み合わせで一様に塗布した。この際、フッ化物を塗布組成物に混ぜたものも評価することとし、フッ化物としてKAlFを配合した塗布組成物を準備した。なお、表中のフッ化物配合比は、質量比でケイ素化合物1に対する割合で示されている。また、バインダとしてメタクリル酸メチル、活性剤としてポオキシアルキレンアルキルエーテルを配合したものも併せて評価した。 A tube 8 having a width of 20 mm is manufactured using the aluminum clad material, and the tube 8 and the corrugated fin 7 are combined. As a brazing evaluation model, the tube has 15 steps and a length of 300 mm as shown in FIG. The core 6 was formed. At that time, the composition shown in Table 2 was uniformly applied in the combination shown in Table 3 to at least the joint portion between the tube 8 and the fin 7 of each test material. At this time, what mixed fluoride with the coating composition was also evaluated, and a coating composition containing KAlF 4 as a fluoride was prepared. In addition, the fluoride compounding ratio in a table | surface is shown by the ratio with respect to the silicon compound 1 by mass ratio. Moreover, what mixed the methyl methacrylate as a binder and the polyoxyalkylene alkyl ether as an activator was evaluated together.

表2に示す組成物を塗布した前記コア6を、窒素雰囲気中(酸素含有量50ppm)のろう付け炉にて、600℃にまで加熱し、そのろう付状態を評価した。   The core 6 coated with the composition shown in Table 2 was heated to 600 ° C. in a brazing furnace in a nitrogen atmosphere (oxygen content 50 ppm), and the brazed state was evaluated.

(1)接合率
次式によって接合率を求め、各試料間のろう付性の優劣を評価した。
フィン接合率(%)=(フィン7とチューブ8の総ろう付け長さ/フィン7とチューブ8の総接触長さ)×100
ろう付け後のフィン接合率が95%以上のものを◎、85%以上95%未満のものを○、80%以上85%未満のものを△、80%未満のものを×と評価し、各評価結果を表3に示した。
(1) Joining rate Joining rate was calculated | required by following Formula and the superiority or inferiority of the brazing property between each sample was evaluated.
Fin joint ratio (%) = (total brazing length of fin 7 and tube 8 / total contact length of fin 7 and tube 8) × 100
Evaluate with a fin joint rate of 95% or more after brazing, ◯ with 85% or more and less than 95%, △ with 80% or more and less than 85%, and x with less than 80%. The evaluation results are shown in Table 3.

(2)接合部幅評価
ろう付接合部におけるフィレット形成能の向上を確認するため、接合部幅の評価を行った。図2(b)に示したフィレット9とチューブ8の接合部の幅Wを各試料で20点計測し、その平均値をもってろう付接合状態の優劣を評価した。
接合部幅が0.6mm以上のものを◎、0.3mm以上0.6mm未満のものを○、0.3mm未満のものを×と評価し、各評価結果を表3に示した。
(2) Joint width evaluation In order to confirm the improvement of fillet forming ability in the brazed joint, the joint width was evaluated. The width W of the joint portion between the fillet 9 and the tube 8 shown in FIG. 2B was measured for each sample at 20 points, and the superiority or inferiority of the brazed joint state was evaluated with the average value.
Those having a joint width of 0.6 mm or more were evaluated as “◎”, those having a joint width of from 0.3 mm to less than 0.6 mm were evaluated as “◯”, and those having a joint width of less than 0.3 mm were evaluated as “×”.

(3)表面処理性
ろう付で得られたろう付品に対し、アクリル樹脂系の親水性塗膜を形成する塗料を浸漬塗布した。塗布乾燥後、一部を切出し表面のカーボン量をEPMA(電子線マイクロアナリシス)にてマッピング分析することで、親水性塗膜の付着状態を確認した。分析箇所のカーボン量が15%以上の部位を親水性塗膜形成部として判断し、分析エリアに対するその付着面積を求めた。付着率95%以上のものを◎、付着率90%以上95%未満のものを○、付着率90%未満のものを×と評価し、各評価結果を表3に示した。
(3) Surface treatment property A paint for forming an acrylic resin-based hydrophilic coating film was applied by dip coating to the brazed product obtained by brazing. After coating and drying, a part was cut out, and the amount of carbon on the surface was subjected to mapping analysis by EPMA (electron beam microanalysis) to confirm the adhesion state of the hydrophilic coating film. A site where the carbon content of the analysis site was 15% or more was judged as a hydrophilic coating film forming portion, and the adhesion area with respect to the analysis area was determined. Those having an adhesion rate of 95% or more were evaluated as “◎”, those having an adhesion rate of 90% or more and less than 95% were evaluated as “、”, and those having an adhesion rate of less than 90% were evaluated as “X”.

表3から明らかなように、本発明の実施例のいずれも良好なろう付性を示したのに対し、比較例では十分な接合が得られなかった。   As is clear from Table 3, all of the examples of the present invention showed good brazing properties, whereas the comparative example did not provide sufficient bonding.

Figure 0005904771
Figure 0005904771

Figure 0005904771
Figure 0005904771

Figure 0005904771
Figure 0005904771

1 アルミニウムクラッド材
2 芯材
3 Al−Si系ろう材
4 被ろう付部材
4a 接合部表面
5 ケイ素化合物を含む組成物
6 コア
7 コルゲートフィン
8 チューブ
9 フィレット
W 接合部幅
DESCRIPTION OF SYMBOLS 1 Aluminum clad material 2 Core material 3 Al-Si type | system | group brazing material 4 Brazed member 4a Joint surface 5 Composition containing a silicon compound 6 Core 7 Corrugated fin 8 Tube 9 Fillet W Joint width

Claims (4)

アルミニウム材からなる被接合部材をAl−Si系ろう材によりろう付して接合する方法であって、少なくとも前記被接合部材の接合部表面に、常温時液体のケイ素化合物を含む組成物を配して酸化皮膜を破壊するフラックスを用いることなく前記Al−Si系ろう材によるろう付を行うことを特徴とするアルミニウム材のろう付方法。 A method for brazing and joining a member to be joined made of an aluminum material with an Al-Si brazing material, wherein at least a composition containing a silicon compound that is liquid at normal temperature is disposed on the surface of the joint part of the member to be joined. And brazing with the Al-Si brazing material without using a flux that breaks the oxide film . 前記ケイ素化合物が、無機または有機化合物から選ばれる1つの化合物または2つ以上の混合物からなることを特徴とする請求項1に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 1, wherein the silicon compound is composed of one compound selected from inorganic or organic compounds or a mixture of two or more. 前記ケイ素化合物が、有機シラン化合物であることを特徴とする請求項1または2に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 1 or 2, wherein the silicon compound is an organosilane compound. 前記有機シラン化合物が、シランカップリング剤であることを特徴とする請求項3に記載のアルミニウム材のろう付方法。   4. The method for brazing an aluminum material according to claim 3, wherein the organosilane compound is a silane coupling agent.
JP2011259237A 2011-11-28 2011-11-28 Brazing method of aluminum material Active JP5904771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259237A JP5904771B2 (en) 2011-11-28 2011-11-28 Brazing method of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259237A JP5904771B2 (en) 2011-11-28 2011-11-28 Brazing method of aluminum material

Publications (2)

Publication Number Publication Date
JP2013111601A JP2013111601A (en) 2013-06-10
JP5904771B2 true JP5904771B2 (en) 2016-04-20

Family

ID=48707717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259237A Active JP5904771B2 (en) 2011-11-28 2011-11-28 Brazing method of aluminum material

Country Status (1)

Country Link
JP (1) JP5904771B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593492A (en) * 1995-08-30 1997-01-14 Inorganic Coating, Inc. Weld through primer
JPH0985433A (en) * 1995-09-19 1997-03-31 Sky Alum Co Ltd Fluxless nonoxidizing atmosphere brazing method
JPH11245080A (en) * 1998-03-05 1999-09-14 Furukawa Electric Co Ltd:The Paste for brazing aluminum material, and aluminum material
JP3780380B2 (en) * 2001-10-23 2006-05-31 古河スカイ株式会社 Aluminum alloy brazing sheet, brazing method using the same, and brazed product
JP4980787B2 (en) * 2007-05-16 2012-07-18 三菱アルミニウム株式会社 Aluminum alloy brazing paint excellent in peeling resistance of coating film, brazing aluminum alloy plate, aluminum alloy member for automobile heat exchanger using the same, and method for producing automobile heat exchanger
JP5155006B2 (en) * 2008-05-01 2013-02-27 三菱アルミニウム株式会社 Aluminum alloy brazing paint excellent in moisture brazing resistance, aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the same, and method for producing automobile heat exchanger

Also Published As

Publication number Publication date
JP2013111601A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP6253212B2 (en) Tube for heat exchanger assembly configuration
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP4611797B2 (en) Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same
JP2010247209A (en) Fluxless brazing method for aluminum material and aluminum cladding material for fluxless brazing
JP2009106947A (en) Aluminum alloy tube
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP2006255755A (en) Aluminum alloy material for brazing and method for brazing aluminum alloy material
JP2013123749A (en) Fluxless brazing method for aluminum material and brazing sheet used for the same
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP2010075966A (en) Compound material for brazing
JP2012050993A (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP2012061483A (en) Flux-less brazing method of aluminum material
JP2012050995A (en) Aluminum alloy brazing material sheet for fluxless brazing and fluxless brazing method for aluminum material
JP5511778B2 (en) Manufacturing method of heat exchanger, and heat exchanger manufactured by the manufacturing method
JP5921272B2 (en) Brazing method of aluminum material
JP2009269043A (en) Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
EP2913144B1 (en) Flux composition
JP5904771B2 (en) Brazing method of aluminum material
JP2009269042A (en) Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
JP2013086103A (en) Aluminum alloy brazing sheet
JP5904772B2 (en) Brazing method of aluminum material
JP2017060989A (en) Aluminum alloy tube for heat exchanger
JP2012030244A (en) Fluxless brazing method for aluminum material
JP2013103265A (en) Aluminum alloy brazing sheet and brazing method
JP2013244499A (en) Method of manufacturing brazing items

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5904771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250