JP2013108574A - Reflective heat insulation material, heat insulation container, and very low temperature device - Google Patents

Reflective heat insulation material, heat insulation container, and very low temperature device Download PDF

Info

Publication number
JP2013108574A
JP2013108574A JP2011254797A JP2011254797A JP2013108574A JP 2013108574 A JP2013108574 A JP 2013108574A JP 2011254797 A JP2011254797 A JP 2011254797A JP 2011254797 A JP2011254797 A JP 2011254797A JP 2013108574 A JP2013108574 A JP 2013108574A
Authority
JP
Japan
Prior art keywords
reflective
heat insulating
heat insulation
insulating material
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011254797A
Other languages
Japanese (ja)
Inventor
Takashi Miki
孝史 三木
Kenichi Inoue
憲一 井上
Hironori Tauchi
裕基 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011254797A priority Critical patent/JP2013108574A/en
Publication of JP2013108574A publication Critical patent/JP2013108574A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To secure excellent durability capable of maintaining a high reflectance of a reflective film on the surface of a reflective heat insulation material.SOLUTION: By forming a reflective film 3 of the surface of a resin film 2 as a base material from an Ag-based alloy containing Ag as its main component and 0.005 to 3.2 atom% of one or more kinds of alloy elements selected from Bi, Sb, and Nd, chemical stability is improved higher than pure Ag and thereby excellent durability capable of maintaining a high reflectance of the reflective film 3 is secured.

Description

本発明は、反射断熱材、反射断熱材を用いた断熱容器、および断熱容器を備えた極低温装置に関する。   The present invention relates to a reflective heat insulating material, a heat insulating container using the reflective heat insulating material, and a cryogenic apparatus including the heat insulating container.

容器や建築物の壁等には、輻射による熱伝達を抑制して内部と外部を断熱するために、片側または両側の表面に反射率の高い反射膜を設けたシート状の反射断熱材を用いることがある。従来、反射膜を形成する材料にはアルミニウムが用いられている(例えば、特許文献1、2参照)。   In order to insulate the inside and outside by suppressing heat transfer due to radiation, a sheet-like reflective heat insulating material provided with a highly reflective reflective film on one or both surfaces is used for containers and building walls. Sometimes. Conventionally, aluminum is used as a material for forming a reflective film (see, for example, Patent Documents 1 and 2).

特許文献1に記載されたものでは、反射断熱材を発泡ポリエチレンシートの表面にアルミニウムフィルムを付着させたものとし、建築物の外壁面に付着させるように施工して、建築物の内部と外部を断熱するようにしている。   In what was described in Patent Document 1, an aluminum film was attached to the surface of the foamed polyethylene sheet as the reflective heat insulating material, and the reflective heat insulating material was applied to the outer wall surface of the building. I try to insulate.

また、特許文献2に記載されたものでは、反射断熱材をアルミニウムシートまたは表面をアルミナイズしたシートとし、間隔を開けて複数層に重ねた反射断熱材を、極低温装置であるMRI(磁気共鳴断層撮影装置)用超伝導磁石アセンブリのヘリウム容器等を収容する真空容器の中に配置して、外側の真空容器と内側のヘリウム容器との間を断熱するようにしている。   Moreover, in what is described in Patent Document 2, the reflective heat insulating material is an aluminum sheet or a sheet having an aluminized surface, and the reflective heat insulating material stacked in a plurality of layers at intervals is used as an MRI (magnetic resonance) which is a cryogenic device. A superconducting magnet assembly for a tomography apparatus) is disposed in a vacuum container that accommodates a helium container or the like so as to insulate between the outer vacuum container and the inner helium container.

特表2011−521187号公報Special table 2011-521187 gazette 特開2000−152922号公報JP 2000-152922 A

特許文献1、2に記載されたもののように、従来の反射断熱材の反射膜はアルミニウムで形成されている。アルミニウムは金、銀とともに反射率の高い金属の代表であり、輻射熱エネルギの大きい赤外線等の長波長の電磁波に対しても高い反射率を示すが、金や銀に較べると反射率は低い。このため、例えば、高い断熱性が要求される超伝導磁石や冷凍機等の極低温装置の断熱容器を断熱する場合は、反射断熱材を重ねる層数を多くする必要があり、層間に隙間を必要とする断熱層の厚さが厚くなって、断熱容器の嵩が大きくなる問題がある。また、アルミニウムは金や銀に較べると化学的安定性と熱的安定性が劣り、反射率を維持する耐久性も劣る。   As described in Patent Documents 1 and 2, the reflective film of the conventional reflective heat insulating material is formed of aluminum. Aluminum is a representative metal having high reflectivity together with gold and silver, and shows high reflectivity with respect to long-wave electromagnetic waves such as infrared rays having large radiant heat energy, but the reflectivity is lower than that of gold or silver. For this reason, for example, when a heat insulating container of a cryogenic device such as a superconducting magnet or a refrigerator that requires high heat insulation is to be insulated, it is necessary to increase the number of layers on which the reflective heat insulating material is stacked. There is a problem that the required heat insulating layer is thickened and the bulk of the heat insulating container is increased. Aluminum is inferior in chemical stability and thermal stability to gold and silver, and inferior in durability to maintain reflectivity.

このような問題に対処するためには、反射膜を金や銀で形成することが考えられるが、金は非常に高価な金属であり実用的でない。一方、銀は金よりも安価で、高い反射率を維持できる耐久性もアルミニウムよりは優れているが、金よりは化学的安定性が劣り、耐久性を十分に確保することはできない。   In order to cope with such a problem, it is conceivable to form the reflective film with gold or silver. However, gold is a very expensive metal and is not practical. On the other hand, silver is cheaper than gold and has higher durability than aluminum to maintain high reflectivity. However, chemical stability is inferior to gold, and sufficient durability cannot be ensured.

そこで、本発明の課題は、反射断熱材の表面の反射膜を高い反射率に維持できる優れた耐久性を確保できるようにすることである。   Then, the subject of this invention is ensuring the outstanding durability which can maintain the reflective film of the surface of a reflective heat insulating material with a high reflectance.

上記の課題を解決するために、本発明は、片側または両側の表面に反射膜を設けたシート状の反射断熱材において、前記反射膜を、Agを主成分とし、Bi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2原子%含有するAg基合金で形成した構成を採用した。   In order to solve the above problems, the present invention provides a sheet-like reflective heat insulating material provided with a reflective film on one or both surfaces, wherein the reflective film is mainly composed of Ag and selected from Bi, Sb, and Nd. The composition formed with an Ag-based alloy containing 0.005 to 3.2 atomic% of one or more alloy elements was adopted.

本発明者は、種々の合金元素を添加したAg基合金について、高温多湿試験と塩水浸漬試験を行い、高温多湿試験前後での反射率変化と塩水浸漬試験後の外観変化を調査した。この結果、後の表1に示すように、Bi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2原子%含有するAg基合金で形成した反射膜は、初期の反射率が純Agの反射率に近く、かつ、試験後の反射率の低下が純Agよりも大幅に低減されることを確認した。   The inventor conducted a high-temperature and high-humidity test and a salt water immersion test on an Ag-based alloy to which various alloy elements were added, and investigated the reflectance change before and after the high-temperature and high humidity test and the appearance change after the salt water immersion test. As a result, as shown in Table 1 below, the reflective film formed of an Ag-based alloy containing 0.005 to 3.2 atomic% of one or more alloy elements selected from Bi, Sb, and Nd It was confirmed that the reflectivity was close to the reflectivity of pure Ag, and the decrease in reflectivity after the test was greatly reduced as compared with pure Ag.

このような結果に基づいて、上記構成を採用することにより、化学的安定性を純Agよりも向上させて、反射膜を高い反射率に維持できる優れた耐久性を確保できるようにした。なお、上記合金元素の添加量を0.005〜3.2原子%としたのは、0.005原子%未満では耐久性を十分に確保することができず、3.2原子%を超えると初期反射率の低下量が大きくなる恐れがあるからである。   Based on such a result, by adopting the above configuration, the chemical stability is improved more than that of pure Ag, and excellent durability capable of maintaining the reflective film at a high reflectance can be secured. In addition, the addition amount of the alloy element is set to 0.005 to 3.2 atomic%. If the amount is less than 0.005 atomic%, sufficient durability cannot be ensured, and if it exceeds 3.2 atomic%. This is because the amount of decrease in the initial reflectance may be increased.

前記反射膜をシート状の基材に蒸着で形成したものとすることにより、広い面積の反射断熱材を容易に得ることができる。蒸着方法としては、真空蒸発法、スパッタリング法、イオンプレーティング法等を採用することができる。特に、スパッタリング法で形成した反射膜は、Ag基合金の合金元素分布や膜厚の均一性に優れており、反射率をより高いレベルに維持することができる。   By forming the reflective film on a sheet-like base material by vapor deposition, a reflective heat insulating material having a large area can be easily obtained. As a vapor deposition method, a vacuum evaporation method, a sputtering method, an ion plating method, or the like can be employed. In particular, the reflective film formed by the sputtering method is excellent in the alloy element distribution and film thickness uniformity of the Ag-based alloy, and the reflectance can be maintained at a higher level.

前記シート状の基材を、300Kにおける平均体積熱伝導率が0.2W/m・K以下の材料で形成することにより、反射断熱材の支持部材等との接触による熱伝導で生じる伝熱を抑制することができる。平均体積熱伝導率が0.2W/m・K以下の材料としては、ポリエステル樹脂、ポリイミド樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリフェニレンサルファイド樹脂、ポリ塩化ビニル樹脂、メタクリル樹脂等を挙げることができる。   By forming the sheet-like base material with a material having an average volume thermal conductivity at 300 K of 0.2 W / m · K or less, heat transfer generated by heat conduction due to contact with the support member of the reflective heat insulating material is generated. Can be suppressed. Examples of the material having an average volume thermal conductivity of 0.2 W / m · K or less include polyester resin, polyimide resin, polypropylene resin, polystyrene resin, polyphenylene sulfide resin, polyvinyl chloride resin, and methacrylic resin.

前記反射膜の平均膜厚は10〜1000nmの範囲とするのが好ましい。平均膜厚が10nm未満では電磁波が透過する恐れがあり、1000nmを超えると必要以上に反射断熱材が厚くなるとともに、成膜過程等で生じる応力によるひずみ等によって表面粗さが粗くなり、反射率を低下させる原因となるからである。   The average thickness of the reflective film is preferably in the range of 10 to 1000 nm. When the average film thickness is less than 10 nm, electromagnetic waves may be transmitted. When the average film thickness exceeds 1000 nm, the reflective heat insulating material becomes thicker than necessary, and the surface roughness becomes rough due to strain due to stress generated during the film formation process, etc. It is because it becomes the cause which lowers.

前記反射膜の表面粗さRaは100nm以下とするのが好ましい。反射率は表面粗さRaが粗くなるほど低下し、100nmを超えるとその低下量が大きくなるからである。   The surface roughness Ra of the reflective film is preferably 100 nm or less. This is because the reflectance decreases as the surface roughness Ra increases, and the amount of decrease increases when the surface roughness Ra exceeds 100 nm.

また、本発明は、少なくとも2重とした内側筐体と外側筐体と、これらの内側筐体と外側筐体を内外方向に隔てる断熱空間を設けた断熱容器において、上述したいずれかの反射断熱材を、前記断熱空間の内外方向に複数層に配置した構成も採用した。   The present invention also provides any one of the above-described reflective heat insulations in a heat insulating container provided with at least a double inner case and an outer case, and a heat insulating space that separates the inner case and the outer case in the inner and outer directions. A configuration in which the materials are arranged in a plurality of layers in the inner and outer directions of the heat insulating space was also adopted.

温度差のある2枚の平行平板間の輻射熱流速は、これらの平板間に平板と同じ輻射率(1−反射率≪1)の断熱材をN層に配置すると、1/(N+1)に低減されることが知られている。したがって、上述した高い反射率(低い輻射率)の反射断熱材を断熱空間の内外方向に複数層に配置することにより、非常に断熱性の高い断熱容器を得ることができる。   The radiant heat flow velocity between two parallel flat plates with a temperature difference is reduced to 1 / (N + 1) when an insulating material having the same emissivity (1-reflectance << 1) as that of the flat plate is arranged between these flat plates in the N layer. It is known that Therefore, a heat insulating container having a very high heat insulating property can be obtained by arranging the above-described reflective heat insulating material having a high reflectance (low emissivity) in a plurality of layers in the inner and outer directions of the heat insulating space.

前記断熱空間を真空とすることにより、対流による伝熱をなくして、より高い断熱性を確保することができる。   By making the said heat insulation space into a vacuum, the heat transfer by a convection can be eliminated and higher heat insulation can be ensured.

前記複数層に配置した反射断熱材を前記内側筐体側に固定することにより、反射断熱材の固定を容易に行うことができる。また、より面積の小さい反射断熱材で内側筐体を断熱することができる。   By fixing the reflective heat insulating material arranged in the plurality of layers to the inner housing side, the reflective heat insulating material can be easily fixed. In addition, the inner housing can be insulated with a reflective heat insulating material having a smaller area.

さらに、本発明は、上述したいずれかの断熱容器を備えた極低温装置の構成も採用した。例えば、極低温装置を、超伝導磁石を液体ヘリウムに浸漬したマグネット槽を囲う熱シールド槽と呼ばれる内側筐体と、外気に曝される外側筐体との間に断熱空間を設けた断熱容器を備え、マグネット槽を冷却する極低温用冷凍機の1段冷却部で内側筐体を冷却するMRI用超伝導磁石アセンブリとする場合は、内側筐体と外側筐体を隔てる断熱空間に、上記高い反射率の反射断熱材を内外方向に複数層に配置することにより、外側筐体から内側筐体への熱侵入の大部分を占める熱輻射を効果的に遮断して、内側筐体を冷却する冷凍機の負荷を小さくすることができる。したがって、冷凍機の容量を小さくすることもでき、省エネルギに大きく貢献することができる。   Furthermore, this invention also employ | adopted the structure of the cryogenic apparatus provided with one of the heat insulation containers mentioned above. For example, in a cryogenic device, a heat insulating container provided with a heat insulating space between an inner casing called a heat shield tank surrounding a magnet tank in which a superconducting magnet is immersed in liquid helium and an outer casing exposed to the outside air. If the superconducting magnet assembly for MRI that cools the inner casing in the one-stage cooling section of the cryogenic refrigerator that cools the magnet tank is provided, the above-mentioned high space is provided in the heat insulating space separating the inner casing and the outer casing. By arranging the reflective heat insulating material of reflectivity in multiple layers in the inner and outer directions, the heat radiation that occupies most of the heat intrusion from the outer housing to the inner housing is effectively blocked, and the inner housing is cooled The load on the refrigerator can be reduced. Therefore, the capacity of the refrigerator can be reduced, which can greatly contribute to energy saving.

本発明に係る反射断熱材は、反射膜を、Agを主成分とし、Bi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2原子%含有するAg基合金で形成したので、化学的安定性を純Agよりも向上させて、反射膜を高い反射率に維持できる優れた耐久性を確保することができる。   In the reflective heat insulating material according to the present invention, the reflective film is formed of an Ag-based alloy containing 0.005 to 3.2 atomic% of one or more alloy elements selected from Bi, Sb, and Nd as a main component. Therefore, it is possible to improve the chemical stability more than pure Ag and to ensure excellent durability that can maintain the reflective film at a high reflectance.

反射断熱材の実施形態を示す縦断面図Longitudinal sectional view showing an embodiment of the reflective heat insulating material 図1の反射断熱材を用いた断熱容器を備えた極低温装置を示す縦断面図The longitudinal cross-sectional view which shows the cryogenic apparatus provided with the heat insulation container using the reflective heat insulating material of FIG. 図2のIII−III線に沿った断面図Sectional view along line III-III in FIG.

以下、図面に基づき、本発明の実施形態を説明する。図1に示すように、この反射断熱材1は、シート状の基材としての樹脂フィルム2の片側の表面に、Bi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2原子%含有するAg基合金をスパッタリング法で蒸着して、反射膜3を形成したものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, this reflective heat insulating material 1 has 0.005-3 one or more alloy elements selected from Bi, Sb and Nd on the surface of one side of a resin film 2 as a sheet-like base material. A reflective film 3 is formed by vapor-depositing an Ag-based alloy containing 2 atomic% by a sputtering method.

前記反射膜3の平均膜厚は10〜1000nmの範囲とされ、表面粗さRaは100nm以下とされている。また、樹脂フィルム2は、300Kでの平均体積熱伝導率が0.2W/m・K以下のポリエステル樹脂とされている。樹脂フィルム2用の樹脂は、ポリイミド樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリフェニレンサルファイド樹脂、ポリ塩化ビニル樹脂、メタクリル樹脂等とすることもできる。   The reflective film 3 has an average film thickness in the range of 10 to 1000 nm and a surface roughness Ra of 100 nm or less. The resin film 2 is a polyester resin having an average volume thermal conductivity at 300 K of 0.2 W / m · K or less. The resin for the resin film 2 may be a polyimide resin, a polypropylene resin, a polystyrene resin, a polyphenylene sulfide resin, a polyvinyl chloride resin, a methacrylic resin, or the like.

図2は、前記反射断熱材1を用いた断熱容器を備えた極低温装置を示す。この極低温装置は、MRI用超伝導磁石アセンブリであり、超伝導磁石11を液体ヘリウム12に浸漬したマグネット槽13を囲う真空室14を形成する熱シールド槽と呼ばれる内側筐体15と、外気に曝される外側筐体16との間に真空断熱空間17を設けた断熱容器を備え、マグネット槽13を冷却する極低温用冷凍機18の1段冷却部でアルミニウム合金製の内側筐体15を冷却するようになっており、真空断熱空間17に内側筐体15の外径側と軸方向外側を覆うように、反射断熱材1が内外方向に複数層に配置されている。マグネット槽13、内側筐体15および外側筐体16はドーナツ状に形成され、外側筐体16の中心孔16aを被検者や被検査物が通過するようになっている。   FIG. 2 shows a cryogenic apparatus provided with a heat insulating container using the reflective heat insulating material 1. This cryogenic apparatus is a superconducting magnet assembly for MRI, and includes an inner housing 15 called a heat shield tank that forms a vacuum chamber 14 surrounding a magnet tank 13 in which a superconducting magnet 11 is immersed in liquid helium 12, and an outside air. A heat insulating container provided with a vacuum heat insulating space 17 between the exposed outer casing 16 and an inner casing 15 made of aluminum alloy at a one-stage cooling unit of a cryogenic refrigerator 18 for cooling the magnet tank 13. The reflective heat insulating material 1 is arranged in multiple layers in the inner and outer directions so as to cover the outer diameter side and the axially outer side of the inner housing 15 in the vacuum heat insulating space 17. The magnet tank 13, the inner casing 15 and the outer casing 16 are formed in a donut shape so that the subject and the test object pass through the center hole 16 a of the outer casing 16.

前記マグネット槽13の上部には筒状の冷凍機スリーブ19が取り付けられ、内側筐体15と外側筐体16の上部に設けられた筒状の各開口部15a、16aを通して、冷凍機18が冷凍機スリーブ19内に着脱可能に挿入されている。各開口部15a、16aは蓋部材20で密閉されている。蓋部材20は冷凍機18に一体に取り付けられ、冷凍機18を挿入したときに各開口部15a、16aを密閉する。   A cylindrical refrigerator sleeve 19 is attached to the upper part of the magnet tank 13, and the refrigerator 18 is refrigerated through the cylindrical openings 15 a and 16 a provided on the inner casing 15 and the outer casing 16. The machine sleeve 19 is detachably inserted. The openings 15 a and 16 a are sealed with a lid member 20. The lid member 20 is integrally attached to the refrigerator 18 and seals the openings 15a and 16a when the refrigerator 18 is inserted.

前記冷凍機18はギフォードマクマホン方式を利用した二段式冷凍機であり、駆動部21と、駆動部21の下に順に連結された第1シリンダ22および第2シリンダ23を有し、第1シリンダ22の下端に1段目冷却ステージ22aが設けられ、第2シリンダ23の下端に2段目冷却ステージ23aが設けられている。2段目冷却ステージ23aの下側にはヘリウムガスの再凝縮器24が取り付けられている。   The refrigerator 18 is a two-stage refrigerator using a Gifford McMahon system, and includes a drive unit 21, a first cylinder 22 and a second cylinder 23 sequentially connected below the drive unit 21, and the first cylinder A first cooling stage 22 a is provided at the lower end of 22, and a second cooling stage 23 a is provided at the lower end of the second cylinder 23. A helium gas recondenser 24 is attached to the lower side of the second cooling stage 23a.

前記駆動部21にはヘリウムガスが供給され、供給されたヘリウムガスは第1シリンダ22および第2シリンダ23の下端から噴出される。第1シリンダ22は内側筐体15の筒状の開口部15a内に位置し、1段目冷却ステージ22aによって内側筐体15を約40Kに冷却する。また、第2シリンダ23は冷凍機スリーブ19内に位置し、2段目冷却ステージ23aによってマグネット槽13内を約4Kに冷却する。   Helium gas is supplied to the drive unit 21, and the supplied helium gas is ejected from the lower ends of the first cylinder 22 and the second cylinder 23. The first cylinder 22 is located in the cylindrical opening 15a of the inner casing 15, and the inner casing 15 is cooled to about 40K by the first cooling stage 22a. The second cylinder 23 is located in the refrigerator sleeve 19 and cools the inside of the magnet tank 13 to about 4K by the second cooling stage 23a.

前記マグネット槽13の上部には、内側筐体15と外側筐体16を貫通する安全排出管25も設けられている。この安全排出管25は、何らかの原因でマグネット槽13への熱侵入量が増加して、マグネット槽13内の圧力が過度に増加したときに、マグネット槽13内のヘリウムガスを外部に排出するための安全手段である。安全排出管25の先端には、圧力が過度に増加したときに破壊する破裂弁26が設けられ、安全排出管25の中には、破裂弁26側からの輻射熱の侵入を抑制する複数のバッフル板27が配設されている。   A safety discharge pipe 25 penetrating the inner casing 15 and the outer casing 16 is also provided at the top of the magnet tank 13. This safety discharge pipe 25 discharges the helium gas in the magnet tank 13 to the outside when the amount of heat penetration into the magnet tank 13 increases for some reason and the pressure in the magnet tank 13 increases excessively. It is a safety measure. A burst valve 26 that breaks when the pressure increases excessively is provided at the distal end of the safety discharge pipe 25, and a plurality of baffles that suppress intrusion of radiant heat from the burst valve 26 side are provided in the safety discharge pipe 25. A plate 27 is provided.

図3に示すように、前記真空断熱空間17に複数層に配置された反射断熱材1は、複数のステーク4によって層間にわずかの間隔を開けて連結され、ドーナツ状の内側筐体15の外周面に巻回固定されている。各反射断熱材1は反射膜3を外側に向けて固定されている。したがって、外周側の外側筐体16から放射される赤外線等の電磁波が各反射断熱材1の高い反射率の反射膜3で反射され、内側筐体15への輻射による熱侵入が効果的に遮断される。   As shown in FIG. 3, the reflective heat insulating materials 1 arranged in a plurality of layers in the vacuum heat insulating space 17 are connected to each other by a plurality of stakes 4 with a slight gap between them, and the outer periphery of the doughnut-shaped inner casing 15. It is wound around the surface. Each reflective heat insulating material 1 is fixed with the reflective film 3 facing outward. Therefore, electromagnetic waves such as infrared rays radiated from the outer casing 16 on the outer peripheral side are reflected by the reflective film 3 having a high reflectivity of each reflective heat insulating material 1, and heat intrusion due to radiation to the inner casing 15 is effectively blocked. Is done.

実施例として、図1に示したように、反射膜3をBi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2at(原子)%含有するAg基合金をスパッタリング法で形成した反射断熱材(実施例1〜18)を用意した。比較例として純Agで反射膜を形成した反射断熱材(比較例1)も用意した。   As an example, as shown in FIG. 1, the reflective film 3 is formed by sputtering with an Ag-based alloy containing 0.005 to 3.2 at (atomic%) of one or more alloy elements selected from Bi, Sb, and Nd. The reflective heat insulating material (Examples 1-18) formed in 1 was prepared. As a comparative example, a reflective heat insulating material (Comparative Example 1) having a reflective film formed of pure Ag was also prepared.

上記実施例1〜18と比較例1の各反射断熱材について、反射膜の初期反射率を測定した。また、これらの各反射断熱材に対して、加速耐久試験として高温多湿試験と塩水浸漬試験を行った。高温多湿試験では試験前後の反射膜の反射率と表面粗さRaを測定し、反射率と表面粗さRaの変化を調査した。塩水浸漬試験では試験後の外観を目視観察し、変色や剥離等の外観変化の有無を調査した。ここでは、赤外領域の長波長の電磁波に対する反射率を精度よく測定することが難しかったので、一般的に波長が長くなるほど反射率は高くなるという知見に基づいて、替りに可視領域の長波長側の波長が650nmの赤色光の反射率を測定した。各試験の試験条件は以下の通りである。
(高温多湿試験)
・温度:80℃
・湿度:90%RH
・保持時間:48時間
(塩水浸漬試験)
・塩水濃度:0.5mol/リットル(NaCl)
・塩水温度:20℃
・浸漬時間:5分間
About each reflective heat insulating material of the said Examples 1-18 and the comparative example 1, the initial stage reflectance of the reflecting film was measured. In addition, a high-temperature and high-humidity test and a salt water immersion test were performed as accelerated durability tests on each of these reflective heat insulating materials. In the high-temperature and high-humidity test, the reflectance and surface roughness Ra of the reflective film before and after the test were measured, and changes in the reflectance and surface roughness Ra were investigated. In the salt water immersion test, the appearance after the test was visually observed, and the presence or absence of appearance changes such as discoloration and peeling was investigated. Here, it was difficult to accurately measure the reflectance of long-wavelength electromagnetic waves in the infrared region, so in general, the longer the wavelength, the higher the reflectance. The reflectance of red light having a side wavelength of 650 nm was measured. The test conditions for each test are as follows.
(High temperature and humidity test)
・ Temperature: 80 ℃
・ Humidity: 90% RH
・ Retention time: 48 hours (salt water immersion test)
Salt concentration: 0.5 mol / liter (NaCl)
・ Salt water temperature: 20 ℃
・ Immersion time: 5 minutes

Figure 2013108574
Figure 2013108574

各実施例と比較例の反射断熱材の初期反射率の測定結果を表1に示す。この測定結果より、各実施例の初期反射率は、反射膜を純Agで形成した比較例1の初期反射率に対して数%以内の低下量に納まっており、赤外領域の電磁波に対しても高い反射率を確保できることが推定できる。   Table 1 shows the measurement results of the initial reflectivity of the reflective heat insulating materials of the examples and comparative examples. From this measurement result, the initial reflectivity of each example is within a decrease of several percent with respect to the initial reflectivity of Comparative Example 1 in which the reflective film is formed of pure Ag. However, it can be estimated that a high reflectance can be secured.

上記高温多湿試験の試験結果を表1に併せて示す。試験前後の反射率変化は、反射膜を純Agで形成した比較例1のものが−3%程度と大きく低下しているのに対して、各実施例のものは、いずれも−1%未満であり、高い反射率を維持できる耐久性が非常に優れていることが分かる。また、試験前後の表面粗さRaの変化も、比較例1のものが3nm程度粗くなっているのに対して、各実施例のものはいずれも0.3nm以下となっており、合金の添加量を0.01at%以上とした実施例1、5を除くものは、粗さRa変化が0.05nm以下とほとんど変化していない。このことは高い反射率を維持できることを裏付けている。   The test results of the high temperature and high humidity test are also shown in Table 1. The change in reflectance before and after the test is greatly reduced to about -3% in Comparative Example 1 in which the reflective film is formed of pure Ag, whereas in each Example, the reflectance change is less than -1% It can be seen that the durability capable of maintaining a high reflectance is very excellent. Further, the change in the surface roughness Ra before and after the test was also about 3 nm for the comparative example 1, whereas it was 0.3 nm or less for each of the examples. Except for Examples 1 and 5 in which the amount was 0.01 at% or more, the change in roughness Ra was hardly changed to 0.05 nm or less. This confirms that high reflectivity can be maintained.

上記塩水浸漬試験の試験結果も表1に併せて示す。反射膜を純Agで形成した比較例1のものは顕著な外観変化が認められたのに対して、各実施例のものはいずれも外観変化が認められなかった。このことも、各実施例のものが高い反射率を維持できたことを裏付けている。なお、表1には、高温多湿試験と塩水浸漬試験の試験結果に基づく耐久性の総合評価も併記した。   The test results of the salt water immersion test are also shown in Table 1. In Comparative Example 1 in which the reflective film was formed of pure Ag, a remarkable change in appearance was observed, whereas in each Example, no change in appearance was observed. This also confirms that each of the examples can maintain a high reflectance. Table 1 also shows a comprehensive evaluation of durability based on the test results of the high temperature and high humidity test and the salt water immersion test.

上述した実施形態では、反射断熱材を片側の表面のみに反射膜を設けたものとしたが、反射断熱材は両側の表面に反射膜を設けたものとすることもできる。   In the embodiment described above, the reflective heat insulating material is provided with the reflective film only on the surface on one side, but the reflective heat insulating material may be provided with the reflective film on the surface on both sides.

上述した実施形態では、極低温装置を真空の断熱空間を有する断熱容器を備えたMRI用超伝導磁石アセンブリとし、真空断熱空間に反射断熱材を複数層に配置したが、本発明に係る断熱容器は、冷蔵庫や冷凍庫等の他の断熱容器に適用することもできる。これらの断熱容器は、気体が存在する断熱空間を有するものであってもよく、断熱空間に反射断熱材を単層に配置したものであってもよい。また、本発明に係る極低温装置はMRI用超伝導磁石アセンブリに限定されることはなく、他の超伝導磁石アセンブリや、液体窒素等を用いる他の極低温装置にも適用することができる。   In the above-described embodiment, the cryogenic apparatus is an MRI superconducting magnet assembly including a heat insulating container having a vacuum heat insulating space, and a plurality of layers of reflective heat insulating materials are disposed in the vacuum heat insulating space. Can also be applied to other insulated containers such as refrigerators and freezers. These heat insulating containers may have a heat insulating space in which gas exists, or may be one in which a reflective heat insulating material is arranged in a single layer in the heat insulating space. Further, the cryogenic apparatus according to the present invention is not limited to the superconducting magnet assembly for MRI, but can be applied to other superconducting magnet assemblies or other cryogenic apparatuses using liquid nitrogen or the like.

また、上述した実施形態では、断熱容器の真空断熱空間に内側筐体を覆うように反射断熱材を配置したが、内側筐体等を固定するボルトやナット等、断熱容器の内部パーツも被覆するように、反射断熱材を一層または複数層に配置してもよい。   Further, in the above-described embodiment, the reflective heat insulating material is disposed so as to cover the inner housing in the vacuum heat insulating space of the heat insulating container, but also covers internal parts of the heat insulating container such as bolts and nuts for fixing the inner housing and the like. Thus, you may arrange | position a reflective heat insulating material in one layer or multiple layers.

1 反射断熱材
2 樹脂フィルム
3 反射膜
4 ステーク
11 超伝導磁石
12 液体ヘリウム
13 マグネット槽
14 真空室
15 内側筐体
16 外側筐体
15a、16a 開口部
17 真空断熱空間
18 冷凍機
19 冷凍機スリーブ
20 蓋部材
21 駆動部
22 第1シリンダ
22a 1段目冷却ステージ
23 第2シリンダ
23a 2段目冷却ステージ
24 再凝縮器
25 安全排出間
26 破裂弁
27 バッフル板
DESCRIPTION OF SYMBOLS 1 Reflection heat insulating material 2 Resin film 3 Reflection film 4 Stake 11 Superconducting magnet 12 Liquid helium 13 Magnet tank 14 Vacuum chamber 15 Inner housing | casing 16 Outer housing | casing 15a, 16a Opening part 17 Vacuum insulation space 18 Refrigerator 19 Refrigerator sleeve 20 Lid member 21 Drive unit 22 First cylinder 22a First stage cooling stage 23 Second cylinder 23a Second stage cooling stage 24 Recondenser 25 Safety discharge interval 26 Rupture valve 27 Baffle plate

Claims (9)

片側または両側の表面に反射膜を設けたシート状の反射断熱材において、前記反射膜を、Agを主成分とし、Bi、SbおよびNdから選ばれる1種以上の合金元素を0.005〜3.2原子%含有するAg基合金で形成したことを特徴とする反射断熱材。   In a sheet-like reflective heat insulating material provided with a reflective film on one or both surfaces, the reflective film is made of Ag as a main component, and one or more alloy elements selected from Bi, Sb, and Nd are added in an amount of 0.005-3. A reflective heat insulating material formed of an Ag-based alloy containing 2 atomic%. 前記反射膜をシート状の基材に蒸着で形成したものとした請求項1に記載の反射断熱材。   The reflective heat insulating material according to claim 1, wherein the reflective film is formed by vapor deposition on a sheet-like base material. 前記シート状の基材を、300Kにおける平均体積熱伝導率が0.2W/m・K以下の材料で形成した請求項2に記載の反射断熱材。   The reflective heat insulating material according to claim 2, wherein the sheet-like base material is formed of a material having an average volume thermal conductivity at 300 K of 0.2 W / m · K or less. 前記反射膜の平均膜厚を10〜1000nmの範囲とした請求項1乃至3のいずれかに記載の反射断熱材。   The reflective heat insulating material in any one of Claims 1 thru | or 3 which made the average film thickness of the said reflective film the range of 10-1000 nm. 前記反射膜の表面粗さRaを100nm以下とした請求項1乃至4のいずれかに記載の反射断熱材。   The reflective heat insulating material according to any one of claims 1 to 4, wherein a surface roughness Ra of the reflective film is 100 nm or less. 少なくとも2重とした内側筐体と外側筐体と、これらの内側筐体と外側筐体を内外方向に隔てる断熱空間を設けた断熱容器において、請求項1乃至5のいずれかに記載の反射断熱材を、前記断熱空間の内外方向に複数層に配置したことを特徴とする断熱容器。   The heat insulation container provided with the heat insulation space which separated the inner housing | casing and the outer housing | casing made into at least 2 layers, and these inner housing | casing and the outer housing | casing in the inside and outside direction, The reflective heat insulation in any one of Claim 1 thru | or 5 The heat insulation container characterized by arrange | positioning material in multiple layers in the inside and outside direction of the said heat insulation space. 前記断熱空間を真空とした請求項6に記載の断熱容器。   The heat insulation container according to claim 6 which made the heat insulation space a vacuum. 前記複数層に配置した反射断熱材を前記内側筐体側に固定した請求項6または7に記載の断熱容器。   The heat insulation container according to claim 6 or 7, wherein the reflective heat insulating material arranged in the plurality of layers is fixed to the inner housing side. 請求項6乃至8のいずれかに記載の断熱容器を備えた極低温装置。   A cryogenic apparatus provided with the heat insulating container according to claim 6.
JP2011254797A 2011-11-22 2011-11-22 Reflective heat insulation material, heat insulation container, and very low temperature device Pending JP2013108574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011254797A JP2013108574A (en) 2011-11-22 2011-11-22 Reflective heat insulation material, heat insulation container, and very low temperature device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011254797A JP2013108574A (en) 2011-11-22 2011-11-22 Reflective heat insulation material, heat insulation container, and very low temperature device

Publications (1)

Publication Number Publication Date
JP2013108574A true JP2013108574A (en) 2013-06-06

Family

ID=48705524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011254797A Pending JP2013108574A (en) 2011-11-22 2011-11-22 Reflective heat insulation material, heat insulation container, and very low temperature device

Country Status (1)

Country Link
JP (1) JP2013108574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125198A1 (en) * 2014-02-18 2015-08-27 パナソニックIpマネジメント株式会社 Temperature-detecting device
CN111540920A (en) * 2020-05-09 2020-08-14 中国工程物理研究院电子工程研究所 Thermal battery vacuum full-coverage type heat insulation structure and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366997A (en) * 1989-07-31 1991-03-22 Kansai Electric Power Co Inc:The Multi-layer heat insulating material
JPH10107328A (en) * 1996-10-01 1998-04-24 Toshiba Corp Refrigerant container
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
JP2006012318A (en) * 2004-06-28 2006-01-12 Mitsubishi Materials Corp Laminated reflection film for optical recording medium and its forming method
JP2008221732A (en) * 2007-03-15 2008-09-25 Kiyoshi Chiba Laminate
JP2010204380A (en) * 2009-03-03 2010-09-16 Kyocera Optec Co Ltd Light reflecting mirror and method of manufacturing the same
JP2011037255A (en) * 2009-07-15 2011-02-24 Kiyoshi Chiba Laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366997A (en) * 1989-07-31 1991-03-22 Kansai Electric Power Co Inc:The Multi-layer heat insulating material
JPH10107328A (en) * 1996-10-01 1998-04-24 Toshiba Corp Refrigerant container
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
JP2006012318A (en) * 2004-06-28 2006-01-12 Mitsubishi Materials Corp Laminated reflection film for optical recording medium and its forming method
JP2008221732A (en) * 2007-03-15 2008-09-25 Kiyoshi Chiba Laminate
JP2010204380A (en) * 2009-03-03 2010-09-16 Kyocera Optec Co Ltd Light reflecting mirror and method of manufacturing the same
JP2011037255A (en) * 2009-07-15 2011-02-24 Kiyoshi Chiba Laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125198A1 (en) * 2014-02-18 2015-08-27 パナソニックIpマネジメント株式会社 Temperature-detecting device
US10072988B2 (en) 2014-02-18 2018-09-11 Panasonic Intellectual Property Management Co., Ltd. Temperature-detecting device
CN111540920A (en) * 2020-05-09 2020-08-14 中国工程物理研究院电子工程研究所 Thermal battery vacuum full-coverage type heat insulation structure and application thereof

Similar Documents

Publication Publication Date Title
KR101106007B1 (en) Constant temperature transport container and conveyance container
JP4177740B2 (en) Superconducting magnet for MRI
JP5972368B2 (en) Cooling container
JP2013108574A (en) Reflective heat insulation material, heat insulation container, and very low temperature device
JP6945554B2 (en) Transport container
JP5086920B2 (en) Cryogenic containment vessel and cryogenic equipment
JP2010016026A (en) Superconductive device
JP2022524347A (en) Transport container and method
JP2021056036A (en) Low temperature thermal conductivity measuring device
JP2009273673A (en) Superconducting electromagnet and mri apparatus
CN108987027A (en) The cooling device of superconducting magnet structure for MRI system
JP6440922B1 (en) Superconducting magnet
JP5138494B2 (en) Biomagnetic field measurement device
JP5916517B2 (en) Cooling container
JP2016018902A (en) Superconducting electromagnet device
JP2013247323A (en) Cooling container
JP6760511B2 (en) Superconducting electromagnet device
US11703556B2 (en) Self-supporting flexible thermal radiation shield
JP2015128098A (en) Superconductivity magnet apparatus and superconduction-applied apparatus
JP5337829B2 (en) Cryogenic container
JP4519363B2 (en) Cryogenic containment vessel and biomagnetic measuring device using the same
JP2004239239A (en) Cryopump
WO2021176604A1 (en) Superconducting electromagnet device
JPS61236175A (en) Cryogenic container
JP2008076011A (en) Cooling storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930