JP4519363B2 - Cryogenic containment vessel and biomagnetic measuring device using the same - Google Patents

Cryogenic containment vessel and biomagnetic measuring device using the same Download PDF

Info

Publication number
JP4519363B2
JP4519363B2 JP2001145743A JP2001145743A JP4519363B2 JP 4519363 B2 JP4519363 B2 JP 4519363B2 JP 2001145743 A JP2001145743 A JP 2001145743A JP 2001145743 A JP2001145743 A JP 2001145743A JP 4519363 B2 JP4519363 B2 JP 4519363B2
Authority
JP
Japan
Prior art keywords
heat insulating
inner container
container
support
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001145743A
Other languages
Japanese (ja)
Other versions
JP2002344037A (en
Inventor
弘之 田中
典英 佐保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001145743A priority Critical patent/JP4519363B2/en
Publication of JP2002344037A publication Critical patent/JP2002344037A/en
Application granted granted Critical
Publication of JP4519363B2 publication Critical patent/JP4519363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な極低温格納容器及びそれを用いた生体磁気計測装置に係り、特に液体ヘリウム等の冷媒を用いて磁束計を冷却する微弱磁場計測用断熱容器に係り、液体ヘリウム等の冷媒の消費量を低減し、運転コストを低減する断熱容器の構造に関する。
【0002】
【従来の技術】
生体から発生する磁気を計測する生体磁気計測装置においては、極めて小さな磁気を計測するために、SQUID(Superconducting Quantum Interference Device:超電導量子干渉素子)を利用した高感度磁束センサが使用されている。このSQUIDは超電導を利用しているため、SQUID磁束センサを超電導臨界温度以下に冷却する必要があり、これまで一般に用いられているNb系超電導体を利用したSQUID磁束センサを使用する場合には沸点が4.2Kである液体ヘリウムを用いて冷却している。この液体ヘリウムは蒸発潜熱が極めて小さく、わずかな熱侵入により液体ヘリウムが蒸発するため定期的な補給が必要となり、生体磁気計測装置のランニングコストが高騰するだけでなく、メンテナンス性においても重大な問題となっていた。
【0003】
液体ヘリウムの蒸発量を低減するには、高レベルの断熱技術が必要とされ、生体磁気計測装置においてセンサを格納し、液体ヘリウムを貯蔵する容器には、デュワーあるいはクライオスタットと呼ばれる極低温格納容器が用いられている。特に生体磁気計測装置においては、容器自体から磁気が発生することを抑制する必要があることや、低熱伝導率、低温での十分な強度が必要であることから、これらの問題をクリアするガラス繊維強化プラスチックが使用されている。
【0004】
図1は、従来の生体磁気計測装置におけるクライオスタットの構造を示す断面図である。クライオスタットは、底部にSQUID磁束センサ3が配置可能であり、液体ヘリウム2を貯蔵するための内容器1と、内容器1との間に真空槽5を形成する外容器4と、真空槽5内に設置される輻射シールド6と、内容器1の開口部に挿入される断熱材7と開口部を塞ぐための蓋(上部フランジ)12により構成される。
【0005】
デュワー内への熱侵入は、内容器1の壁からの熱伝導成分と周囲からの輻射成分の総和であることから、各成分を低減する断熱技術が使用されている。熱伝導成分を低減するために、熱伝導面積を小さく抑制するだけでなく、蒸発するヘリウムガスの顕熱を利用した熱交換を行っている。また、輻射成分を低減するために、内容器1と外容器4との間の真空槽5中には輻射シールド6を設置している。また、輻射シールド6と外容器4の間の真空槽5中には、ポリエステル薄膜の表面にアルミを蒸着したマイラと呼ばれるものと、表面に凹凸があり両面にアルミを蒸着したエンボスと呼ばれるものとを交互に何層も重ねた積層断熱材10を設置している。
【0006】
輻射熱流束は、積層断熱材10の積層枚数及び各薄膜の隙間(積層間隔)に依存することが知られており、積層枚数が多い程、積層間隔が広いほど輻射熱流束が小さくなることが明らかになっている。
【0007】
この積層断熱材10は、極低温が必要な分野、例えば超電導を利用する場合には必要不可欠な技術であり、例えばMRIでは、超電導マグネットの周囲を囲む輻射シールドの周囲に積層断熱材を多層巻き付ける事によって超電導マグネットに加わる輻射熱量を低減化している。ここでMRIの場合には、マグネットはリング状であり、リングの中心部に磁場が発生する構造であるため、マグネットと容器外壁との距離は感度に影響しない。したがって、マグネットの周囲には積層断熱材を多層設置可能なスペースが確保できることから、積層断熱材の巻き方自体は問題にならなかった。
【0008】
また、超電導マグネットの場合には、主に水平軸を中心軸とするようにリングが設置されることから、そのリングの周囲に設置される輻射シールドも水平軸が中心軸となるため、輻射シールドに巻かれる積層断熱材は輻射シールドによって鉛直方向に支えられる構造となり、積層断熱材の落下が問題になることはなかった。
【0009】
一方、生体磁気計測装置においては、内容器1の底部に配置されるセンサと被検査物との距離がセンサ感度に大きく依存するため、底部における内容器1底部と外容器4底部の間に存在する真空槽5の厚さは狭くなっており、この底部に積層断熱材10を多層設置することが困難である。したがって、底部からの熱侵入の影響が大きくなっており、この底面からの熱侵入の低減が必要とされている。
【0010】
また、生体磁気計測装置では側面部に積層断熱材10を巻くため、積層断熱材10自体は鉛直方向に自由に動く事が可能であり、例えば輸送時の振動によって積層断熱材10が外容器4の底部に落下することが考えられる。積層断熱材10が外容器4の底部に落下すると、室温である外容器4と積層断熱材10が接触することになり、この積層断熱材10が外容器4と同じ温度となるため、積層断熱材10の断熱能力が劣化する。特に底面においては、わずか数枚しか積層断熱材10を設置できないため、その断熱性能の劣化の影響が大きく、底部からの侵入熱量が増加し、内容器1内に貯蔵した液体ヘリウム2の消費量が増大する。
【0011】
これまで開発された生体磁気計測装置においては、液体ヘリウムの消費量が1日あたり10L程度と非常に大きいことから、この底面からの侵入熱量自体が大きな問題となることはなかった。しかし、今後液体ヘリウム消費量の低減化を進めていくと、最終的にはこの底部の積層断熱材が外容器に接触するか否かが液体ヘリウムの消費量に影響すると考えられ、液体ヘリウムの低消費量化を進める上で重要な課題となる。
【0012】
特開平3−218079号公報には、輻射シールド、液体窒素タンクを支持する支持部材として特定の材質を用いること、特表平7−507878号公報には、液体窒素容器を真空容器の上方カラケブラーロッドで支持する構造が示されている。
【0013】
【発明が解決しようとする課題】
従来の生体磁気計測装置では、格納容器、特に内容器への侵入熱量の低減が大きな問題である。内容器への侵入熱量により、内容器内部に貯蔵した冷媒が蒸発するため、頻繁に冷媒を補充する必要性が生じ、ランニングコストが高騰するだけでなく、メンテナンス性にも問題があった。
【0014】
特に生体磁気計測装置においては、底面における真空槽が極めて薄い構造であるため、底部における断熱を確実にすることが全侵入熱量の低減に直結している。本発明は底部における断熱性能を安定化するためには、積層断熱材が外容器と接触しない構造を有する必要があることから生まれたものである。
【0015】
前記従来技術等を見ても、積層断熱材は通常数層から数十層設置することを前提として記述されており、わずか1層や2層程度の断熱材しか設置できない構造について言及されているものはない。液体ヘリウムの消費量を低減化した生体磁気計測装置においては、この1層や2層程度の断熱材が外容器に接するか否かが冷媒の消費量に与える影響は大きく、格納容器の性能を安定化させるためには積層断熱材が外容器に接触しない構造を有する必要がある。
【0016】
積層断熱材の鉛直方向へのずれを抑制するために、例えば容器側に突起を設け、この突起で積層断熱材を支える方法が考えられるが、積層断熱材は多層構造であるため内側の数層は突起の影響を受ける事が可能であるが、外側の積層断熱材はこの突起の影響を受けないために外側の断熱材は鉛直方向へ平行移動する事が可能である。
【0017】
また、例えば積層断熱材を強く巻き付ける事によって摩擦力を大きくし、積層断熱材の落下を防止する方法も考えられるが、積層断熱材の能力が各薄膜の積層間隔に依存するため、容器に強く巻き付ける事によって積層断熱材の積層間隔は狭くなり、結果として断熱性能が劣化する。
【0018】
また、積層断熱材を袋状にして輻射シールドのフランジ面で積層断熱材を支える方法が考えられるが、積層断熱材の自重を支える形になるために一部の断熱材が破断した場合には積層断熱材が落下し、やはり底面における断熱性能を劣化する。
【0019】
また、前述のいずれの公報にも真空槽内の断熱材を直接支持する構造は示されていない。
【0020】
本発明の目的は、積層断熱材が外容器に接触しない構造を有し、且つ積層断熱材の落下を防止し、断熱性能の劣化を防止する極低温格納容器及びそれを用いた生体磁気計測装置を提供することにある。
【0021】
【課題を解決するための手段】
本発明は、内部に冷媒を貯蔵し被冷却物を格納する内容器と、
内容器が内部に配置され、該内容器の上部と接続した外容器と
前記内容器と外容器との間に配置され、少なくとも前記内容器の底部及び側面部を覆うよう置された輻射シールドと
該輻射シールドの底部及び側面部に配置された断熱手段と、
を有する極低温格納容器において、
前記輻射シールドの底部に配置された前記断熱手段と前記外容器との間に前記断熱手段を支える第1の支持体を配置し、
該第1の支持体を支持し、前記外容器の上部と接続された第2の支持体を備えたことを特徴とする極低温格納容器にあり、好ましくは支持糸又は支持棒からなる第2の支持体で支え、前記断熱手段を下方より支える構造を有することを特徴とする。
【0022】
又、本発明は、前述の極低温格納容器において、前記内容器から前記外容器に連通し前記内容器の上部に前記内容器より細径に形成されたネック部と、該ネック部内に充填される第2の断熱手段とを有することを特徴とするものである。
【0023】
また、前記第1の支持体及び第2の支持の少なくとも一方が非磁性材料で構成され、第2の支持が支持糸又は支持棒であることが好ましい。
【0024】
更に、本発明は、前記被冷却物として前記内容器の底部に配置された超電導量子干渉素子であり、超電導量子干渉素子を格納し冷却する極低温格納容器が前述の極低温格納容器から成ることを特徴とする生体磁気計測装置にある。
【0025】
【発明の実施の形態】
(実施例1)
図2は本発明における生体磁気計測装置の断面図である。内容器1は底部にSQUID磁束センサ3を格納するための面積を有し、内部には液体ヘリウム2を貯蔵できる構造である。また、内容器1と結合し、開口部の大きさが内容器1の底面の大きさよりも小さなネック部11を有する狭首型構造を採用することによって、開口した室温端から液体ヘリウム温度を結ぶ部分の熱伝導面積を減少し、開口部上端からの熱伝導成分の低減化を行っている。ここで、内容器1の底面の大きさよりも小さなネック部11は、内容器1の径よりも小さな径を持つ容器である。さらに、ネック部11の壁の厚さを強度的に十分な信頼性が保証できる範囲で可能な限り薄くすることにより熱伝導成分の低減化を行っている。
【0026】
ネック部11の内側には、熱伝導率が小さい発泡ポリウレタンで構成された第2の断熱手段である断熱材7を積層することにより、室温である上面からの熱伝導による侵入熱量を低減している。発泡ポリウレタン製断熱材7は複数個重ねて積層され、各断熱材7の間には温度を均一化させるため熱伝導率の高い材料を配置しており、本実施例ではアルミニウム製の薄板を使用している。発泡ポリウレタン内部に存在する気泡は、極低温状態では液化するため真空断熱の役割を果たし、極低温域で高い断熱性能を有する。
【0027】
外容器4は内容器1との間に真空槽5を形成するために、図示しない真空排気口を有する。ここで真空排気口をネック部11の側面位置に配置することにより、真空排気時に真空排気口から断熱材を吸い込む事を防止している。
【0028】
内容器1、ネック部11、外容器4は熱伝導率が小さく且つ極低温域での高い強度を有するガラス繊維強化プラスチック(GFRP)製であり、高分子接着剤を用いて形成するか、一体形成で製作されている。ネック部11の内側に挿入される断熱材7の外径はネック部11の内径よりも小さくなっており、蒸発したヘリウムガスは断熱材7とネック部11の隙間を流れる構造になっている。また、検出信号を取り出すケーブルもこの隙間を利用して取り出す。蒸発したヘリウムガスは断熱材7とネック部11の隙間を流れ、上部フランジ取り付けられた図示しないガス抜きポートより大気中に放出されるが、この時断熱材7とネック部11との間で熱交換を行うことにより、ネック部11を伝わる熱伝導成分の低減に寄与している。
【0029】
内容器1の真空側の表面と輻射シールド6の表面には、表面にアルミニウムが蒸着されたテープを全面にわたって貼り付けており、輻射面の放射率を小さくすることによって、内容器1が輻射シールド6から受ける輻射熱量と、輻射シールド6が外容器4から受ける輻射熱量それぞれを低減している。
【0030】
輻射シールド6と外容器4の間の真空槽5には積層断熱材10を施しており、輻射熱量の低減を図っている。ここで、輻射シールド6と外容器4の隙間は、側面では10mm程度確保できるが、底部では非検査物とSQUID磁束センサ3との距離を近づける必要があることから、2mm程度しか真空槽5の厚さを取る事ができない。
【0031】
積層断熱材10は輻射シールド6と外容器4の間の側面に巻き付ける形で施している。また輻射シールド6と内容器1とを結合するフランジ面13の上にも施している。輻射シールド6の底面と外容器4の間には、積層断熱材を1層(エンボスと片面アルミ蒸着マイラを各1枚ずつ)設置している。
【0032】
輻射シールド6の底面における積層断熱材10の最外層と外容器4との間に、厚さ0.5mmの第1の支持体である支持板8を設置している。ここで支持板8の両面には、表面にアルミニウムを蒸着したテープを貼りつけており、支持板8が受ける輻射熱量を低減している。支持板8はSUQID磁束センサ3と非検査物の間に装着されるため、非磁性である必要があり、GFRPを使用している。この支持板8を、支持板8より上面にあり、且つ真空槽側に一端を固定した支持糸もしくは支持棒9により吊下げ、積層断熱材10を底部から支える構造となっている。そして、支持板8は第2の支持体である支持糸もしくは支持棒9により吊下げられ、外容器4に接しないように浮いた構造を有している。従って、高い断熱性が得られる。
【0033】
又、支持糸もしくは支持棒9は外容器4の上方又は上面に吊り下げられて設けられ、その内容器1側に積層断熱材10が設けられ、支持糸もしくは支持棒9によって積層断熱材10が押さえられるので、積層断熱材10が外容器4に接することがなく高い断熱性が得られる。
【0034】
内容器1に液体ヘリウム2を注入すると、内容器1は熱収縮により縮むが、上面から吊下げられた形状である内容器1は、固定端である上面に向かって縮むため、内容器1に固定された輻射シールド6および積層断熱材10自体が上方に移動する事になる。一方で、積層断熱材10を支えている支持板8自体は熱収縮の影響を受けないため、積層断熱材10と支持板8との間には間隙が生じることとなり、断熱性能が向上する。
【0035】
積層断熱材10は輻射シールド6の側面に巻かれており、支持板8が受ける荷重は支持板8の縁側に作用するため、支持板8に厚さ0.5mm程度の薄い材料を用いても十分に積層断熱材10の荷重を支える事が可能である。
【0036】
実験により積層断熱材が落下して積層断熱材の底面が外容器に接触した場合には、積層断熱材の底面が外容器に接触していない場合に比べて液体ヘリウム消費量が約0.4L/日増大することを確認しており、本構造を用いることによって積層断熱材の落下による液体ヘリウム消費量の増大を防止することが可能となる。
【0037】
(実施例2)
図3は、本発明の他の実施例を示す生体磁気計測装置の断面図である。この実施例は、支持糸もしくは支持棒9を外容器4の側面に設けた突起部14に固定した事に特徴がある。支持糸もしくは支持棒9は支持板8よりも上方にあれば積層断熱材10の重量を支える事が可能であるが、支持板10と固定端の距離が近い場合には、支持糸もしくは支持棒9を伝わる熱伝導による侵入熱量が問題となる。したがって、外容器4に設ける突起部14は、支持板8から離れた位置に設置することが望ましい。他の構造は実施例1と同様である。
【0038】
【発明の効果】
本発明によれば、積層断熱材の落下が防止でき、生体磁気計測装置における断熱性能が安定するとともに、液体ヘリウムの消費量を低減でき、安定度の高い生体磁気計測装置を提供できる。
【図面の簡単な説明】
【図1】 従来の生体磁気計測装置におけるクライオスタットの断面図。
【図2】 本発明の実施例1におけるクライオスタットの断面図。
【図3】 本発明の実施例2におけるクライオスタットの断面図。
【符号の説明】
1…内容器、2…液体ヘリウム、3…SQUID磁束センサ、4…外容器、5…真空槽、6…輻射シールド、7…断熱材、8…支持板、9…支持糸あるいは支持棒、10…積層断熱材、11…ネック、12…蓋、13…輻射シールドフランジ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel cryogenic storage container and a biomagnetic measurement device using the same, and more particularly to a heat insulating container for measuring a weak magnetic field that cools a magnetometer using a refrigerant such as liquid helium, and a refrigerant such as liquid helium. It is related with the structure of the heat insulation container which reduces the consumption of gas and reduces operating cost.
[0002]
[Prior art]
In a biomagnetism measuring apparatus that measures magnetism generated from a living body, a high-sensitivity magnetic flux sensor using a SQUID (Superconducting Quantum Interference Device) is used to measure extremely small magnetism. Since this SQUID uses superconductivity, it is necessary to cool the SQUID magnetic flux sensor to below the superconducting critical temperature. When using a SQUID magnetic flux sensor using an Nb-based superconductor that has been generally used so far, the boiling point is required. Is cooled with liquid helium, which is 4.2K. This liquid helium has a very small latent heat of vaporization, and liquid helium evaporates due to slight heat penetration, so regular replenishment is required, which not only raises the running cost of the biomagnetic measurement device, but is also a serious problem in maintainability. It was.
[0003]
In order to reduce the evaporation amount of liquid helium, a high level of heat insulation technology is required, and a cryogenic storage container called a dewar or cryostat is used as a container for storing a sensor in a biomagnetic measuring device and storing liquid helium. It is used. Especially in biomagnetism measuring devices, it is necessary to suppress the generation of magnetism from the container itself, and since low heat conductivity and sufficient strength at low temperatures are necessary, glass fibers that clear these problems Reinforced plastic is used.
[0004]
FIG. 1 is a cross-sectional view showing the structure of a cryostat in a conventional biomagnetic measuring apparatus. In the cryostat, a SQUID magnetic flux sensor 3 can be arranged at the bottom, an inner container 1 for storing liquid helium 2, an outer container 4 that forms a vacuum tank 5 between the inner container 1, and a vacuum tank 5 A radiation shield 6 installed on the inner container 1, a heat insulating material 7 inserted into the opening of the inner container 1, and a lid (upper flange) 12 for closing the opening.
[0005]
Since the heat intrusion into the dewar is the sum of the heat conduction component from the wall of the inner container 1 and the radiation component from the surroundings, a heat insulation technique for reducing each component is used. In order to reduce the heat conduction component, not only the heat conduction area is reduced, but also heat exchange is performed using the sensible heat of the evaporated helium gas. In order to reduce the radiation component, a radiation shield 6 is provided in the vacuum chamber 5 between the inner container 1 and the outer container 4. Moreover, in the vacuum chamber 5 between the radiation shield 6 and the outer container 4, what is called mylar in which aluminum is vapor-deposited on the surface of the polyester thin film, and what is called emboss in which the surface has irregularities and vapor-deposited aluminum on both sides A laminated heat insulating material 10 in which several layers are alternately stacked is installed.
[0006]
It is known that the radiant heat flux depends on the number of laminated heat insulating materials 10 and the gaps (lamination intervals) between the thin films, and the larger the number of layers, the smaller the radiant heat flux becomes. It has become clear.
[0007]
This laminated heat insulating material 10 is an indispensable technique in the field where extremely low temperature is required, for example, when using superconductivity. For example, in MRI, multilayer heat insulating material is wound around a radiation shield surrounding the superconducting magnet in multiple layers. As a result, the amount of radiant heat applied to the superconducting magnet is reduced. Here, in the case of MRI, since the magnet is ring-shaped and has a structure in which a magnetic field is generated at the center of the ring, the distance between the magnet and the outer wall of the container does not affect the sensitivity. Therefore, since a space in which the multilayer heat insulating material can be installed in multiple layers can be secured around the magnet, the method of winding the laminated heat insulating material has not been a problem.
[0008]
In the case of a superconducting magnet, the ring is installed mainly with the horizontal axis as the central axis, so the radiation shield installed around the ring also has the horizontal axis as the central axis. The laminated heat insulating material wound around the structure has a structure that is supported in the vertical direction by the radiation shield, and dropping of the laminated heat insulating material did not cause a problem.
[0009]
On the other hand, in the biomagnetic measuring device, the distance between the sensor arranged at the bottom of the inner container 1 and the object to be inspected greatly depends on the sensor sensitivity, and therefore exists between the bottom of the inner container 1 and the bottom of the outer container 4 at the bottom. The thickness of the vacuum chamber 5 to be reduced is narrow, and it is difficult to install multiple layers of the laminated heat insulating material 10 at the bottom. Therefore, the influence of heat intrusion from the bottom is increasing, and it is necessary to reduce heat intrusion from the bottom surface.
[0010]
In addition, since the laminated heat insulating material 10 is wound around the side surface portion in the biomagnetic measuring device, the laminated heat insulating material 10 itself can freely move in the vertical direction. For example, the laminated heat insulating material 10 can be moved by the vibration during transportation. It is conceivable that it will fall to the bottom of the. When the laminated heat insulating material 10 falls to the bottom of the outer container 4, the outer container 4 at room temperature and the laminated heat insulating material 10 come into contact with each other, and this laminated heat insulating material 10 has the same temperature as the outer container 4. The heat insulation capability of the material 10 is deteriorated. Especially on the bottom surface, since only a few layers of the heat insulating material 10 can be installed, the effect of deterioration of the heat insulation performance is great, the amount of heat entering from the bottom increases, and the consumption of liquid helium 2 stored in the inner container 1 Will increase.
[0011]
In biomagnetism measuring devices developed so far, the consumption of liquid helium is as large as about 10 L per day, so that the amount of heat intrusion from the bottom surface has not been a big problem. However, if the liquid helium consumption is further reduced in the future, it is thought that the final heat insulation of the bottom layer will affect the liquid helium consumption. This is an important issue in promoting low consumption.
[0012]
Japanese Patent Laid-Open No. 3-218079 discloses that a specific material is used as a support member for supporting the radiation shield and the liquid nitrogen tank, and Japanese Patent Publication No. 7-507878 discloses that the liquid nitrogen container is an upper colorizer of the vacuum container. A structure supported by a rod is shown.
[0013]
[Problems to be solved by the invention]
In the conventional biomagnetic measuring device, the reduction of the amount of heat entering the storage container, particularly the inner container, is a big problem. The amount of heat entering the inner container evaporates the refrigerant stored inside the inner container, which necessitates frequent replenishment of the refrigerant, which not only increases the running cost, but also has a problem in maintainability.
[0014]
In particular, in the biomagnetic measuring device, since the vacuum chamber at the bottom has an extremely thin structure, ensuring heat insulation at the bottom directly leads to a reduction in the total amount of intrusion heat. The present invention was born from the need to have a structure in which the laminated heat insulating material does not contact the outer container in order to stabilize the heat insulating performance at the bottom.
[0015]
Even when looking at the prior art, the laminated heat insulating material is described on the assumption that usually several to several tens of layers are installed, and a structure in which only one or two layers of heat insulating material can be installed is mentioned. There is nothing. In a biomagnetic measuring device with reduced consumption of liquid helium, whether or not this one-layer or two-layer heat insulating material is in contact with the outer container has a large influence on the refrigerant consumption, and the performance of the storage container In order to stabilize, it is necessary to have a structure in which the laminated heat insulating material does not contact the outer container.
[0016]
In order to suppress the vertical displacement of the laminated heat insulating material, for example, a method of providing a protrusion on the container side and supporting the laminated heat insulating material with this protrusion can be considered, but since the laminated heat insulating material has a multilayer structure, several layers on the inside Can be influenced by protrusions, but the outer laminated heat insulating material is not affected by the protrusions, so that the outer heat insulating material can be translated in the vertical direction.
[0017]
In addition, for example, a method of increasing the frictional force by strongly winding the laminated heat insulating material and preventing the laminated heat insulating material from falling can be considered, but the ability of the laminated heat insulating material depends on the stacking interval of each thin film, so By winding, the lamination | stacking space | interval of a laminated heat insulating material becomes narrow, and as a result, heat insulation performance deteriorates.
[0018]
In addition, a method of supporting the laminated heat insulating material with the flange surface of the radiation shield by making the laminated heat insulating material into a bag shape is conceivable, but when some of the heat insulating material breaks in order to support the self weight of the laminated heat insulating material The laminated heat insulating material falls and also deteriorates the heat insulating performance at the bottom surface.
[0019]
Further, none of the above-mentioned publications show a structure for directly supporting the heat insulating material in the vacuum chamber.
[0020]
An object of the present invention is to provide a cryogenic storage container having a structure in which a laminated heat insulating material does not come into contact with an outer container, and preventing the laminated heat insulating material from falling to prevent deterioration of heat insulating performance, and a biomagnetic measuring device using the same Is to provide.
[0021]
[Means for Solving the Problems]
The present invention includes an inner container for storing a refrigerant and storing an object to be cooled,
The inner container is disposed within the outer container connected with the upper part of the inner container,
Disposed between the inner container and the outer container, a radiation shield that is placed so as to cover at least the bottom of the inner container and the side surface portion,
Heat insulating means disposed on the bottom and side portions of the radiation shield ;
In a cryogenic containment vessel having
A first support that supports the heat insulating means is disposed between the heat insulating means and the outer container disposed at the bottom of the radiation shield ;
A cryogenic containment vessel comprising a second support that supports the first support and is connected to the upper portion of the outer container , preferably a second comprising a support thread or a support bar . It is characterized by having a structure which is supported by the support body and supports the heat insulating means from below.
[0022]
Further, according to the present invention, in the above-described cryogenic storage container, a neck portion that communicates from the inner container to the outer container and is formed on the upper portion of the inner container and has a smaller diameter than the inner container, and the neck portion is filled. And a second heat insulating means .
[0023]
At least hand of the first support and the second support is made of a nonmagnetic material, it is preferred second support is a support yarn or support rods.
[0024]
Furthermore, the present invention is a superconducting quantum interference device arranged at the bottom of the inner container as the object to be cooled, wherein the cryogenic storage container for storing and cooling the superconducting quantum interference device comprises the above-mentioned cryogenic storage container. The biomagnetic measuring device is characterized by the following.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 2 is a cross-sectional view of the biomagnetic measurement apparatus according to the present invention. The inner container 1 has an area for storing the SQUID magnetic flux sensor 3 at the bottom, and has a structure capable of storing liquid helium 2 therein. Further, by adopting a narrow neck type structure that is coupled to the inner container 1 and has a neck portion 11 in which the size of the opening is smaller than the size of the bottom surface of the inner container 1, the liquid helium temperature is controlled from the open room temperature end. The heat conduction area of the connecting portion is reduced, and the heat conduction component from the upper end of the opening is reduced. Here, the neck portion 11 smaller than the size of the bottom surface of the inner container 1 is a container having a diameter smaller than the diameter of the inner container 1. Further, the heat conduction component is reduced by reducing the thickness of the wall of the neck portion 11 as much as possible within a range in which sufficient reliability can be ensured in terms of strength.
[0026]
By laminating a heat insulating material 7 as a second heat insulating means made of polyurethane foam having a low thermal conductivity inside the neck portion 11, the amount of intrusion heat due to heat conduction from the upper surface at room temperature is reduced. ing. A plurality of polyurethane foam heat insulating materials 7 are stacked and laminated, and a material having high thermal conductivity is arranged between the heat insulating materials 7 to make the temperature uniform. In this embodiment, a thin aluminum plate is used. I use it. Bubbles existing inside the polyurethane foam are liquefied in a cryogenic state and thus serve as a vacuum insulation, and have a high insulation performance in a cryogenic temperature range.
[0027]
The outer container 4 has a vacuum exhaust port (not shown) in order to form a vacuum chamber 5 between the outer container 4 and the inner container 1. Here, the vacuum exhaust port is disposed at the side surface position of the neck portion 11 to prevent the heat insulating material from being sucked from the vacuum exhaust port during vacuum exhaust.
[0028]
The inner container 1, the neck part 11 , and the outer container 4 are made of glass fiber reinforced plastic (GFRP) having a low thermal conductivity and high strength in a cryogenic temperature range, and are formed using a polymer adhesive, It is manufactured as a single unit. The outer diameter of the heat insulating material 7 to be inserted inside of the neck portion 1 1 is smaller than the inner diameter of the neck portion 1 1, evaporated helium gas a structure through the gap between the heat insulating material 7 and the neck portion 1 1 ing. Also, the cable for taking out the detection signal is taken out using this gap. The evaporated helium gas flows through the gap between the heat insulating material 7 and the neck portion 11 and is released into the atmosphere from a gas vent port (not shown) attached to the upper flange. At this time, the space between the heat insulating material 7 and the neck portion 11 is released. By exchanging heat, the heat conduction component transmitted through the neck portion 11 is reduced.
[0029]
The surface of the inner container 1 on the vacuum side and the surface of the radiation shield 6 are affixed with a tape having aluminum deposited on the entire surface. By reducing the emissivity of the radiation surface, the inner container 1 is protected from the radiation shield. The amount of radiant heat received from 6 and the amount of radiant heat received by the radiation shield 6 from the outer container 4 are reduced.
[0030]
A laminated heat insulating material 10 is applied to the vacuum chamber 5 between the radiation shield 6 and the outer container 4 to reduce the amount of radiant heat. Here, the gap between the radiation shield 6 and the outer container 4 can be secured about 10 mm on the side surface, but it is necessary to make the distance between the non-inspection object and the SQUID magnetic flux sensor 3 close to the bottom, so that the vacuum chamber 5 has only about 2 mm. I can't take the thickness.
[0031]
The laminated heat insulating material 10 is applied around the side surface between the radiation shield 6 and the outer container 4. Moreover, it has also given on the flange surface 13 which couple | bonds the radiation shield 6 and the inner container 1. FIG. Between the bottom surface of the radiation shield 6 and the outer container 4, one layer of laminated heat insulating material (one embossed and one-sided aluminum vapor deposited mylar) is installed.
[0032]
Between the outermost layer of the laminated heat insulating material 10 on the bottom surface of the radiation shield 6 and the outer container 4 , a support plate 8 that is a first support body having a thickness of 0.5 mm is installed. Here, on both surfaces of the support plate 8, tape having aluminum deposited on the surface is attached, so that the amount of radiant heat received by the support plate 8 is reduced. Since the support plate 8 is mounted between the SUQID magnetic flux sensor 3 and the non-inspection object, it needs to be non-magnetic and uses GFRP. The support plate 8 is suspended by a support thread or a support rod 9 that is on the upper surface of the support plate 8 and has one end fixed to the vacuum chamber side, and supports the laminated heat insulating material 10 from the bottom. The support plate 8 is suspended by a support thread or a support rod 9 as a second support, and has a structure that floats so as not to contact the outer container 4. Therefore, high heat insulation is obtained.
[0033]
Further, the support yarn or support rod 9 is provided suspended above or on the upper surface of the outer container 4, and a laminated heat insulating material 10 is provided on the inner container 1 side, and the laminated heat insulating material 10 is formed by the support yarn or support rod 9. Since the laminated heat insulating material 10 does not come into contact with the outer container 4, a high heat insulating property can be obtained.
[0034]
When liquid helium 2 is injected into the inner container 1, the inner container 1 contracts due to thermal contraction, but the inner container 1 that is suspended from the upper surface contracts toward the upper surface that is the fixed end. The fixed radiation shield 6 and laminated heat insulating material 10 itself move upward. On the other hand, since the support plate 8 itself supporting the laminated heat insulating material 10 is not affected by heat shrinkage, a gap is generated between the laminated heat insulating material 10 and the support plate 8, and the heat insulating performance is improved.
[0035]
Since the laminated heat insulating material 10 is wound around the side surface of the radiation shield 6 and the load received by the support plate 8 acts on the edge side of the support plate 8, even if a thin material having a thickness of about 0.5 mm is used for the support plate 8. It is possible to support the load of the laminated heat insulating material 10 sufficiently.
[0036]
When the laminated heat insulating material falls by experiment and the bottom surface of the laminated heat insulating material contacts the outer container, the liquid helium consumption is about 0.4 L compared to the case where the bottom surface of the laminated heat insulating material does not contact the outer container. The use of this structure makes it possible to prevent an increase in liquid helium consumption due to the fall of the laminated heat insulating material.
[0037]
(Example 2)
FIG. 3 is a cross-sectional view of a biomagnetic measuring apparatus showing another embodiment of the present invention. This embodiment is characterized in that the supporting thread or the supporting rod 9 is fixed to the protruding portion 14 provided on the side surface of the outer container 4. The support yarn or support bar 9 can support the weight of the laminated heat insulating material 10 if it is above the support plate 8, but if the distance between the support plate 10 and the fixed end is short, the support yarn or support rod The amount of intrusion heat due to heat conduction through 9 is a problem. Therefore, it is desirable that the protrusion 14 provided on the outer container 4 be installed at a position away from the support plate 8. Other structures are the same as those in the first embodiment.
[0038]
【The invention's effect】
According to the present invention, it is possible to prevent the laminated heat insulating material from falling, stabilize the heat insulation performance of the biomagnetic measuring device, reduce the consumption of liquid helium, and provide a highly stable biomagnetic measuring device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cryostat in a conventional biomagnetic measurement apparatus.
FIG. 2 is a cross-sectional view of the cryostat according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a cryostat in Embodiment 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner container, 2 ... Liquid helium, 3 ... SQUID magnetic flux sensor, 4 ... Outer container, 5 ... Vacuum tank, 6 ... Radiation shield, 7 ... Heat insulation material, 8 ... Support plate, 9 ... Support thread or support rod, 10 ... laminated heat insulating material, 11 ... neck, 12 ... cover, 13 ... radiation shield flange.

Claims (6)

内部に冷媒を貯蔵し被冷却物を格納する内容器と、
該内容器が内部に配置され、該内容器の上部と接続した外容器と、
前記内容器と外容器との間に配置され、少なくとも前記内容器の底部及び側面部を覆うよう置された輻射シールドと、
輻射シールドの底部及び側面部に配置された断熱手段と、
を有する極低温格納容器において、
前記輻射シールドの底部に配置された前記断熱手段と外容器との間に前記断熱手段を支える第1の支持体を配置し
該第1の支持体を支持し、前記外容器の上部と接続された第2の支持体を備えたことを特徴とする極低温格納容器。
An inner container for storing the refrigerant and storing the object to be cooled;
An inner container disposed inside and connected to an upper part of the inner container ;
Disposed between the inner container and the outer container, a radiation shield that is placed so as to cover at least the bottom of the inner container and the side surface portion,
And insulation means disposed on the bottom and side portions of the radiation shield,
In a cryogenic containment vessel having
A first support supporting the thermal insulation means between said heat-insulating means and the outer container, which is located at the bottom of the radiation shield is disposed,
Cryogenic storage vessel supporting the first support, characterized by comprising a second support connected to the upper portion of the outer container.
請求項1において、
前記内容器は、該内容器より細径に形成されたネック部により前記外容器と接続され、該ネック部の内部に第2の断熱手段を備えたことを特徴とする極低温格納容器。
In claim 1 ,
The cryogenic storage container, wherein the inner container is connected to the outer container by a neck portion formed to have a diameter smaller than that of the inner container , and has a second heat insulating means inside the neck portion.
請求項1において、
前記第1の支持体及び第2の支持体の少なくとも一方が、非磁性材料により構成されていることを特徴とする極低温格納容器。
Oite to claim 1,
A cryogenic storage container, wherein at least one of the first support and the second support is made of a nonmagnetic material.
内部に冷媒を貯蔵し被冷却物を格納する内容器と、
該内容器が内部に配置され、該内容器の上部と接続した外容器と、
前記内容器と外容器との間に配置され、少なくとも前記内容器の底部及び側面部を覆うように配置された輻射シールドと、
該輻射シールドの底部及び側面部に配置された断熱手段と、
前記内容器の底部に配置された超電導量子干渉素子と、
を有する生体磁気計測装置において、
前記輻射シールドの底部に配置された前記断熱手段と外容器との間に前記断熱手段を支える第1の支持体を配置し、
該第1の支持体を支持し、前記外容器の上部と接続された第2の支持体を備えたことを特徴とする生体磁気計測装置。
An inner container for storing the refrigerant and storing the object to be cooled;
An inner container disposed inside and connected to an upper part of the inner container ;
A radiation shield disposed between the inner container and the outer container, and disposed so as to cover at least a bottom portion and a side surface portion of the inner container ;
Heat insulating means disposed on the bottom and side portions of the radiation shield;
A superconducting quantum interference device disposed at the bottom of the inner container ;
In a biomagnetic measuring device having
A first support that supports the heat insulating means is disposed between the heat insulating means and an outer container disposed at the bottom of the radiation shield ;
Supporting the first support, the biomagnetic measurement apparatus characterized by comprising a second support connected to the upper portion of the outer container.

請求項4において、
前記内容器は、該内容器より細径に形成されたネック部により前記外容器と接続され、前記ネック部の内部に第2の断熱手段を備えたことを特徴とする生体磁気計測装置。
)
In claim 4 ,
The inner container is connected to the outer container by a neck portion having a diameter smaller than that of the inner container, and has a second heat insulating means inside the neck portion.
請求項4において、
前記第1の支持体及び第2の支持体の少なくとも一方が、非磁性材料で構成されていることを特徴とする生体磁気計測装置。
Oite to claim 4,
A biomagnetic measuring apparatus, wherein at least one of the first support and the second support is made of a nonmagnetic material.
JP2001145743A 2001-05-16 2001-05-16 Cryogenic containment vessel and biomagnetic measuring device using the same Expired - Fee Related JP4519363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145743A JP4519363B2 (en) 2001-05-16 2001-05-16 Cryogenic containment vessel and biomagnetic measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145743A JP4519363B2 (en) 2001-05-16 2001-05-16 Cryogenic containment vessel and biomagnetic measuring device using the same

Publications (2)

Publication Number Publication Date
JP2002344037A JP2002344037A (en) 2002-11-29
JP4519363B2 true JP4519363B2 (en) 2010-08-04

Family

ID=18991504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145743A Expired - Fee Related JP4519363B2 (en) 2001-05-16 2001-05-16 Cryogenic containment vessel and biomagnetic measuring device using the same

Country Status (1)

Country Link
JP (1) JP4519363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032435A1 (en) * 2006-07-13 2008-01-17 Sixt, Bernhard, Dr. Transport container for keeping refrigerated frozen goods
JP5033772B2 (en) * 2008-04-28 2012-09-26 株式会社日立製作所 Sample cryopreservation container and biological transport support system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258520A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Superconductor cooling device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142466U (en) * 1985-02-25 1986-09-03
JPS63308906A (en) * 1987-06-11 1988-12-16 Kawasaki Heavy Ind Ltd Superconductive energy storing equipment
JPH0278281A (en) * 1988-09-14 1990-03-19 Hitachi Ltd Cryostat provided with adsorber
JP2765044B2 (en) * 1989-05-02 1998-06-11 住友電気工業株式会社 Cryogenic support structure
JP3779749B2 (en) * 1995-06-21 2006-05-31 株式会社日立製作所 Heat insulation equipment
JP3581536B2 (en) * 1997-09-16 2004-10-27 株式会社日立製作所 Cryogenic container for storing superconducting quantum interference devices
JPH11237456A (en) * 1998-02-23 1999-08-31 Hitachi Ltd Heat shield body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258520A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Superconductor cooling device

Also Published As

Publication number Publication date
JP2002344037A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP2662639B2 (en) Magnetometer
JP4177740B2 (en) Superconducting magnet for MRI
US5339650A (en) Cryostat
JP5086920B2 (en) Cryogenic containment vessel and cryogenic equipment
JP4763656B2 (en) Cryogenic containment cooling system and operation method thereof
JP4519363B2 (en) Cryogenic containment vessel and biomagnetic measuring device using the same
US20230263445A1 (en) Magnetocardiography measuring apparatus
KR102354391B1 (en) Dual Helmets Magnetoencephalography Apparatus
JP5179947B2 (en) Superconducting magnet and MRI system
JP2007522682A (en) Liquefied gas cryostat
US5349291A (en) Superconducting magnetic sensor having a cryostat for improved sensitivity of magnetic detection
JP3292524B2 (en) Cryostat
JP3557984B2 (en) Dewar and biomagnetic field measurement device using the same
KR102356508B1 (en) Multimodal Position Transformation Dual Helmet MEG Apparatus
JP4443127B2 (en) Biomagnetic field measurement device
JP7131147B2 (en) Cooling device and sensor device
CA3122543A1 (en) Cryostat for operation with liquid helium and method of operating the same
JP5085454B2 (en) Biomagnetic field measurement device
JP4360037B2 (en) Cryostat
JP3770026B2 (en) Magnetic measuring device
JPH04321897A (en) Vacuum insulation support method, vacuum insulation vessel using the same and vacuum insulation
JPH10107328A (en) Refrigerant container
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPH04194765A (en) Cooling method for squid sensor
KR20240070853A (en) The Refrigerant Containing Apparatus For Magnetic Field Measurement System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees