JP2013108419A - Failure diagnosis method for nox sensor, failure diagnosis system for nox sensor, and internal combustion engine - Google Patents

Failure diagnosis method for nox sensor, failure diagnosis system for nox sensor, and internal combustion engine Download PDF

Info

Publication number
JP2013108419A
JP2013108419A JP2011253264A JP2011253264A JP2013108419A JP 2013108419 A JP2013108419 A JP 2013108419A JP 2011253264 A JP2011253264 A JP 2011253264A JP 2011253264 A JP2011253264 A JP 2011253264A JP 2013108419 A JP2013108419 A JP 2013108419A
Authority
JP
Japan
Prior art keywords
nox
sensor
cyl
concentration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011253264A
Other languages
Japanese (ja)
Other versions
JP5831162B2 (en
Inventor
Hidekazu Fujie
英和 藤江
Tetsushi Hanawa
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011253264A priority Critical patent/JP5831162B2/en
Publication of JP2013108419A publication Critical patent/JP2013108419A/en
Application granted granted Critical
Publication of JP5831162B2 publication Critical patent/JP5831162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a failure diagnosis method for a NOx sensor and a failure diagnosis system for the NOx sensor capable of continuously performing failure diagnosis of the NOx sensor, by comparing a calculation value of a NOx concentration with a detection value of the NOx sensor, and to provide an internal combustion engine.SOLUTION: A NOx concentration NOx_cyl is calculated on the basis of a detection value m_air of an intake amount sensor 31 disposed at an intake passage 12 of an internal combustion engine 10, a detection value Ti of a temperature sensor 32 disposed at an intake manifold 11a, a detection value Pi of a pressure sensor 33 disposed at the intake manifold 11a, and a fuel injection amount q. The calculated NOx concentration NOx_cyl is compared with a detection value NOx_m of the NOx sensor to perform diagnosis whether the NOx sensor 34 disposed at an exhaust passage 18 is abnormal.

Description

本発明は、多大な実験工数を掛けることなく、また、連続してNOxセンサの異常を診断できるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関に関する。   The present invention relates to an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine that can continuously diagnose abnormality of a NOx sensor without taking a large number of experimental steps.

トラックやバス等の車両においては、この車両に搭載された内燃機関から排出されるNOx(窒素酸化物)の量を減少するために排気ガス浄化処理装置を用いて窒素(N2)に還元して大気中に放出するようにしている。このNOx浄化を効率良く行うためには排気ガス中のNOx濃度及びNOx量を正確に測定する必要があり、そのために、NOxセンサが使用されている。 In vehicles such as trucks and buses, in order to reduce the amount of NOx (nitrogen oxides) discharged from the internal combustion engine mounted on the vehicle, it is reduced to nitrogen (N 2 ) using an exhaust gas purification treatment device. In the atmosphere. In order to perform this NOx purification efficiently, it is necessary to accurately measure the NOx concentration and the NOx amount in the exhaust gas. For this purpose, a NOx sensor is used.

このNOxセンサの検出値に基づいて、排気ガス中のNOxを還元するのに必要な尿素等の還元剤を供給しているため、このNOxセンサが正常状態であるか、故障等の異常状態であるかが重要となる。万一、NOxセンサが異常であると、還元剤の供給量を適正な量にすることができず、還元剤が不十分の場合には、排気ガス中のNOxの還元浄化が不十分になった大気中に基準以上のNOxが放出されてしまい、還元剤が過剰の場合には、NOxの還元で消費されなかった還元剤が大気中に放出され、還元剤が無駄に消費されることになる。   Since a reducing agent such as urea necessary for reducing NOx in the exhaust gas is supplied based on the detected value of the NOx sensor, the NOx sensor is in a normal state or in an abnormal state such as a failure. It is important whether there is. If the NOx sensor is abnormal, the amount of reducing agent supplied cannot be made appropriate, and if the reducing agent is insufficient, the reduction and purification of NOx in the exhaust gas becomes insufficient. If NOx above the standard is released into the atmosphere and the reducing agent is excessive, the reducing agent that was not consumed by the reduction of NOx is released into the atmosphere and the reducing agent is consumed wastefully. Become.

そのため、NOxセンサの異常診断が重要であり、例えば、排出NOx流量演算記憶手段と検出NOx濃度記憶手段を備えて、排出NOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを規定して、内燃機関が通常運転モードにある場合に排出NOx流量が基準パターンに対して所定の関係をもって推移したときに、検出NOx濃度が追従パターンに対して所定の関係をもって推移したか否かを判別することによって、NOxセンサの応答性を判定する故障判定手段を備えたNOxセンサの故障診断装置が提案されている(例えば、特許文献1参照)。   For this reason, abnormality diagnosis of the NOx sensor is important. For example, the NOx sensor is provided with an exhaust NOx flow rate calculation storage means and a detected NOx concentration storage means, and is detected by the NOx sensor with a reference pattern as a reference for the temporal change of the exhaust NOx flow rate. A follow-up pattern is defined as a reference for the temporal change in the detected NOx concentration, and when the internal combustion engine is in the normal operation mode, the detected NOx concentration follows when the exhaust NOx flow changes with a predetermined relationship with respect to the reference pattern. There has been proposed a NOx sensor failure diagnosis device including failure determination means for determining the responsiveness of the NOx sensor by determining whether or not the pattern has changed with a predetermined relationship (for example, Patent Document 1). reference).

このNOxセンサの診断方法では、予め内燃機関から排出されるNOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを予め設定する必要があるが、排出されるNOxの流量は内燃機関の運転状態等の環境条件により大きく変化するため、基準パターンを多数設定する必要があり、多大な工数がかかってしまうという問題がある。   In this NOx sensor diagnosis method, a reference pattern as a reference for the temporal change of the NOx flow rate discharged from the internal combustion engine and a follow-up pattern as a reference for the temporal change of the detected NOx concentration detected by the NOx sensor are set in advance. Although it is necessary, since the flow rate of exhausted NOx varies greatly depending on environmental conditions such as the operating state of the internal combustion engine, it is necessary to set a large number of reference patterns, and there is a problem that it takes a lot of man-hours.

一方、還元触媒の上流側でのNOx量を算出する上流側NOx量演算部とNOxセンサ値検出部と、上流側でのNOx量の推移に現れたピークに対してNOxセンサが応答しているか否かを判定することによりNOxセンサの合理性を判定する合理性判定部と、内燃機関から排出される排気ガス量を算出する排気ガス量演算部とを備え、合理性診断部は、排気ガス量に応じてピークの発生を認識してNOxセンサの合理性を判断するNOxセンサの合理性診断装置(例えば、特許文献2参照)や内燃機関が予め設定された基準稼働条件になったとき、NOxセンサの出力値と、前記基準稼働条件に応じて予め設定された基準出力値との偏差に基づき、NOxセンサの出力を補正する第1補正手段を備えたNOx補正システム(例えば、特許文献3参照)が提案されている。   On the other hand, whether the NOx sensor is responding to the peak appearing in the transition of the NOx amount on the upstream side, the upstream NOx amount calculating unit and the NOx sensor value detecting unit for calculating the NOx amount on the upstream side of the reduction catalyst A rationality determination unit that determines the rationality of the NOx sensor by determining whether or not, and an exhaust gas amount calculation unit that calculates the amount of exhaust gas discharged from the internal combustion engine. When the NOx sensor rationality diagnosis device (see, for example, Patent Document 2) that recognizes the occurrence of a peak in accordance with the amount and determines the rationality of the NOx sensor or the internal combustion engine reaches a preset reference operating condition, A NOx correction system comprising first correction means for correcting the output of the NOx sensor based on the deviation between the output value of the NOx sensor and a reference output value preset in accordance with the reference operating condition (for example, a patent document) 3 reference) has been proposed.

更に、NOxセンサに到達する排気ガス中のNOx濃度を強制的に変動させ、このときにNOxセンサが出力する出力値の変動が当該NOxセンサが正常であるときに取りうる変動からずれている場合に、NOxセンサに異常があると判定する故障判定手段を備えたNOxセンサの故障診断装置(例えば、特許文献4参照)や、内燃機関の所定の運転状態における異常判定モード時に、NOxセンサに到達する排気ガス中のNOx濃度を、一旦増大させて減少変化させる、NOx濃度増減変化手段と、NOx濃度が増減変化されたとき、NOxセンサの所定の第1出力値の出力状態から、NOxセンサが所定の第2の出力値を出力するまでの経過時間を計測する経過時間計測手段と、計測された経過時間と基準経過時間とに基づき、NOxセンサの正常又は異常を判定する判定手段を備えた、排気ガス浄化システムが提案されている(例えば、特許文献5参照)。   Further, the NOx concentration in the exhaust gas reaching the NOx sensor is forcibly changed, and the output value output from the NOx sensor at this time deviates from the change that can be taken when the NOx sensor is normal. In addition, a NOx sensor failure diagnosis device (see, for example, Patent Document 4) provided with a failure determination means that determines that the NOx sensor is abnormal or reaches the NOx sensor during an abnormality determination mode in a predetermined operating state of the internal combustion engine. NOx concentration increase / decrease changing means for once increasing and decreasing the NOx concentration in the exhaust gas to be emitted, and when the NOx concentration is increased / decreased, the NOx sensor detects from the output state of the predetermined first output value of the NOx sensor. Based on the elapsed time measuring means for measuring the elapsed time until the predetermined second output value is output, the measured elapsed time and the reference elapsed time, With a determination means for determining normality or abnormality of the support, the exhaust gas purification system has been proposed (e.g., see Patent Document 5).

しかしながら、これらのNOxセンサの異常診断では、内燃機関の運転状態がNOx濃度のピーク発生時や、強制的にNOx濃度を変化させて作った特定の状態で行っているので、内燃機関の特別の条件下の状態の時にしか診断できず、連続的に異常診断を行うことができないという問題がある。   However, in the abnormality diagnosis of these NOx sensors, the operation state of the internal combustion engine is performed when the peak of the NOx concentration occurs or in a specific state created by forcibly changing the NOx concentration. There is a problem that diagnosis can be performed only under conditions under conditions, and abnormality diagnosis cannot be performed continuously.

特開2008−190383号公報JP 2008-190383 A 特開2010−265781号公報JP 2010-255781 A 特開2009−127552号公報JP 2009-127552 A 特開2003−120399号公報JP 2003-120399 A 特開2009−1801550号公報JP 2009-181550 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関を提供することにある。   The present invention has been made in view of the above-described situation, and an object of the present invention is to continuously perform abnormality diagnosis of the NOx sensor by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. An object of the present invention is to provide a NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine.

上記のような目的を達成するための本発明のNOxセンサの異常診断方法は、内燃機関の排気通路に配置されるNOxセンサの異常診断方法であって、前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と、吸気マニホールドに配置された温度センサの検出値(Ti)と、前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからNOx濃度(NOx_cyl)を算出し、該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行うことを特徴とする方法である。   The NOx sensor abnormality diagnosis method of the present invention for achieving the above object is a NOx sensor abnormality diagnosis method disposed in an exhaust passage of an internal combustion engine, and is disposed in an intake passage of the internal combustion engine. Detection value (m_air) of the intake air amount sensor, detection value (Ti) of the temperature sensor arranged in the intake manifold, detection value (Pi) of the pressure sensor arranged in the intake manifold, and fuel injection amount (q) The NOx concentration (NOx_cyl) is calculated from the above, and the calculated NOx concentration (NOx_cyl) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. It is the method characterized by this.

この方法によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。   According to this method, by determining the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously.

また、上記のNOxセンサの異常診断方法において、前記NOx濃度(NOx_cyl)の算出を行う演算ステップが、前記吸気量センサで検出した吸入空気の質量流量(新規空気流量:m_air)と、前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算ステップと、

Figure 2013108419
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、排気空気過剰率(λ)を算出する第2演算ステップと、
Figure 2013108419
前記排気空気過剰率(λ)からEGRガスの時間遅れを考慮して算出したEGR空気過剰率(λ_egr)と、大気中の酸素濃度(O2_air)と、理論空燃比(L_st)とから、(3)式によりEGRガス中の酸素濃度(O2_egr)を算出する第3演算ステップと、
Figure 2013108419
(4)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第4演算ステップと、
Figure 2013108419
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第5演算ステップと、
Figure 2013108419
前記(5)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第5演算ステップとを備えて構成すると、排気ガス中のNOx濃度を容易に計算できる。 Further, in the abnormality diagnosis method for the NOx sensor, the calculation step for calculating the NOx concentration (NOx_cyl) includes a mass flow rate of the intake air (new air flow rate: m_air) detected by the intake air amount sensor and the temperature sensor. The mass flow rate (m_egr) of the EGR gas is calculated by the equation (1) from the mass flow rate (m_cyl) in the cylinder calculated from the detection value (Ti) detected by the pressure sensor and the detection value (Pi) detected by the pressure sensor. A first computing step to:
Figure 2013108419
A second calculation step of calculating an exhaust air excess ratio (λ) by the equation (2) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q);
Figure 2013108419
From the EGR air excess rate (λ_egr) calculated from the exhaust air excess rate (λ) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) Equation to calculate the oxygen concentration (O2_egr) in the EGR gas,
Figure 2013108419
A fourth calculation step for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (4);
Figure 2013108419
The oxygen concentration (O2_ref) in the cylinder in the formula (5) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. A NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship between the NOx concentration discharged from the cylinder (NOx_cyl),
Figure 2013108419
The NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (5) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. When configured to include the fifth calculation step to be performed, the NOx concentration in the exhaust gas can be easily calculated.

そして、上記の目的を達成するためのNOxセンサの異常診断システムは、内燃機関の排気通路に配置されるNOxセンサの異常診断を行う制御装置を備えたNOxセンサの異常診断システムであって、前記制御装置が、前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と吸気マニホールドに配置された温度センサの検出値(Ti)と前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う比較診断手段を備えて構成される。   A NOx sensor abnormality diagnosis system for achieving the above object is a NOx sensor abnormality diagnosis system comprising a control device for performing abnormality diagnosis of a NOx sensor disposed in an exhaust passage of an internal combustion engine, The control device detects a detected value (m_air) of an intake air amount sensor disposed in the intake passage of the internal combustion engine, a detected value (Ti) of a temperature sensor disposed in the intake manifold, and a detection of a pressure sensor disposed in the intake manifold. The NOx concentration calculating means for calculating the NOx concentration (NOx_cyl) from the value (Pi) and the fuel injection amount (q), and the calculated NOx concentration (NOx_cyl) and the detected value (NOx_m) of the NOx sensor are compared. And it comprises a comparative diagnosis means for diagnosing whether or not the NOx sensor is abnormal.

この構成によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。   According to this configuration, by calculating the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously.

上記のNOxセンサの異常診断システムにおいて、前記NOx濃度算出手段が、前記吸気量センサで検出した吸入空気の質量流量(新規空気流量:m_air)と前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算手段と、

Figure 2013108419
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、排気空気過剰率(λ)を算出する第2演算手段と、
Figure 2013108419
前記排気空気過剰率(λ)からEGRガスの時間遅れを考慮して算出したEGR空気過剰率(λ_egr)と、大気中の酸素濃度(O2_air)と、理論空燃比(L_st)とから、(3)式によりEGRガス中の酸素濃度(O2_egr)を算出する第3演算手段と、
Figure 2013108419
(4)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第4演算手段と、
Figure 2013108419
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式のシリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第5演算手段とを備え、
Figure 2013108419
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算手段を備えて構成されると、排気ガス中のNOx濃度を容易に計算できる。 In the above NOx sensor abnormality diagnosis system, the NOx concentration calculating means includes a mass flow rate of intake air (new air flow rate: m_air) detected by the intake air amount sensor, a detection value (Ti) detected by the temperature sensor, and the A first calculating means for calculating a mass flow rate (m_egr) of EGR gas from the mass flow rate (m_cyl) in the cylinder calculated from the detection value (Pi) detected by the pressure sensor;
Figure 2013108419
A second calculating means for calculating an exhaust air excess ratio (λ) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) by the equation (2);
Figure 2013108419
From the EGR air excess rate (λ_egr) calculated from the exhaust air excess rate (λ) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) The third calculating means for calculating the oxygen concentration (O2_egr) in the EGR gas by the equation;
Figure 2013108419
A fourth calculation means for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (4);
Figure 2013108419
The oxygen concentration (O2_ref) in the cylinder at the constant time, the NOx concentration (NOx_ref) discharged from the cylinder at the steady state, and the index i are set in advance. Fifth calculating means for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship of the NOx concentration (NOx_cyl) discharged from the cylinder;
Figure 2013108419
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. If it comprises the 6th calculating means which performs this, the NOx density | concentration in exhaust gas can be calculated easily.

そして、上記の目的を達成するための内燃機関は、上記のNOxセンサの異常診断システムを備えて構成され、上記のNOxセンサの異常診断システムと同様の効果を奏することができる。   An internal combustion engine for achieving the above object includes the above NOx sensor abnormality diagnosis system, and can achieve the same effects as the above NOx sensor abnormality diagnosis system.

本発明に係るNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、排気ガス中のNOx濃度を計算により求め、この計算されたNOx濃度とNOxセンサで検出されたNOx濃度とを比較することで、多大な実験工数をかけることなくNOxセンサの異常診断ができる。また、内燃機関の運転状態が特別な条件下にある状態ではなく、常にNOx濃度の値を計算して比較できるので、NOxセンサの異常診断を連続的に行うことができる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine according to the present invention, the NOx concentration in the exhaust gas is obtained by calculation, and the calculated NOx concentration and the NOx detected by the NOx sensor are calculated. By comparing the concentration, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours. In addition, since the operating state of the internal combustion engine is not in a special condition and the value of the NOx concentration can always be calculated and compared, the abnormality diagnosis of the NOx sensor can be performed continuously.

本発明の実施の形態のNOxセンサの異常診断システム及び内燃機関の構成を示す図である。It is a figure which shows the structure of the abnormality diagnosis system of the NOx sensor of embodiment of this invention, and an internal combustion engine. 本発明の実施の形態のNOxセンサの異常診断システムの制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of the abnormality diagnosis system of the NOx sensor of embodiment of this invention.

以下、本発明に係る実施の形態のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関について、図面を参照しながら説明する。図1に示すように、この内燃機関10は、エンジン本体11と、吸気マニホールド11aに接続する吸気通路12と、排気マニホールド11bに接続する排気通路18を有して構成される。   Hereinafter, an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the internal combustion engine 10 includes an engine body 11, an intake passage 12 connected to the intake manifold 11a, and an exhaust passage 18 connected to the exhaust manifold 11b.

この吸気通路12には、上流側から順にエアクリーナー13、ターボチャージャー(ターボ式過給機)14のコンプレッサー14a、インタークーラー15、吸気スロットル(吸気弁)16が設けられている。また、排気通路18には、ターボチャージャー14のタービン14b、排気ガス浄化装置19が設けられている。   The intake passage 12 is provided with an air cleaner 13, a compressor 14 a of a turbocharger (turbo turbocharger) 14, an intercooler 15, and an intake throttle (intake valve) 16 in order from the upstream side. The exhaust passage 18 is provided with a turbine 14b of the turbocharger 14 and an exhaust gas purification device 19.

なお、図1の構成では、排気ガス浄化装置19は上流側のDPF(ディーゼルパティキュレートフィルタ)19aと下流側のSCR触媒(選択的還元型触媒)19bを備えている。このSCR触媒19bの上流側には、NOxの還元剤となる尿素水等のアンモニア系溶液(アンモニアを発生する溶液、又はアンモニア水)を排気通路18中に噴霧する還元剤噴射装置(図示しない)が設けられている。   In the configuration of FIG. 1, the exhaust gas purification device 19 includes an upstream DPF (diesel particulate filter) 19a and a downstream SCR catalyst (selective reduction catalyst) 19b. On the upstream side of the SCR catalyst 19b, a reducing agent injection device (not shown) that sprays an ammonia-based solution (a solution that generates ammonia or ammonia water) such as urea water serving as a NOx reducing agent into the exhaust passage 18. Is provided.

更に、EGR(排気再循環)のために、排気通路18と吸気通路12とを連通するEGR通路20が設けられ、このEGR通路20には、EGRクーラー21とEGR弁22が配設されている。また、EGRガスGeのEGRクーラー21による過冷却を防止するために、流量調整弁24を備えた排気戻し通路23がEGRクーラー21の出口と排気通路18とを接続して設けられている。   Further, for EGR (exhaust gas recirculation), an EGR passage 20 that connects the exhaust passage 18 and the intake passage 12 is provided, and an EGR cooler 21 and an EGR valve 22 are provided in the EGR passage 20. . Further, in order to prevent overcooling of the EGR gas Ge by the EGR cooler 21, an exhaust return passage 23 provided with a flow rate adjusting valve 24 is provided connecting the outlet of the EGR cooler 21 and the exhaust passage 18.

そして、空気Aは、吸気通路12のエアクリーナー13で埃等を除去され、コンプレッサー14aにより過給されて圧力と温度が上昇した状態となり、インテーククーラー15で冷却された後、吸気スロットル16で流量を制御され、必要に応じてEGRガスGeと混合されて吸気マニホールド11aからエンジン本体11の各シリンダ(気筒)17内に入る。なお、EGRガスGeは、排気通路18からEGR通路20や排気戻り通路23に分岐され、適度にEGRクーラー21で冷却され、また、EGR弁22や流量調整弁24により流量を調整されて吸気通路12に供給される。   The air A is dust-removed by the air cleaner 13 in the intake passage 12, is supercharged by the compressor 14 a, rises in pressure and temperature, is cooled by the intake cooler 15, and then is flowed by the intake throttle 16. And is mixed with EGR gas Ge as required and enters each cylinder (cylinder) 17 of the engine body 11 from the intake manifold 11a. The EGR gas Ge is branched from the exhaust passage 18 to the EGR passage 20 and the exhaust return passage 23, and is appropriately cooled by the EGR cooler 21, and the flow rate is adjusted by the EGR valve 22 and the flow rate adjusting valve 24, and the intake passage. 12 is supplied.

シリンダ17内では、燃料噴射弁(図示しない)から噴射された燃料と空気Aが混合して燃焼して排気ガスGを発生する。発生した排気ガスGは排気マニホールド11bから排気通路18に排出され、タービン14aを駆動した後、DPF19aでPM(粒子状物質)等を除去されたのち、排気通路18に供給された還元剤によりSCR触媒19bでNOxが窒素に還元され、その後、サイレンサー(図示しない)等を通過して大気中に放出される。なお、排気ガスGの一部はEGR通路20に分岐され、EGRガスGeとして再循環される。   In the cylinder 17, the fuel injected from a fuel injection valve (not shown) and air A are mixed and burned to generate exhaust gas G. The generated exhaust gas G is discharged from the exhaust manifold 11 b to the exhaust passage 18, and after driving the turbine 14 a, PM (particulate matter) and the like are removed by the DPF 19 a, and then the SCR is used by the reducing agent supplied to the exhaust passage 18. NOx is reduced to nitrogen by the catalyst 19b, and then released into the atmosphere through a silencer (not shown) or the like. A part of the exhaust gas G is branched into the EGR passage 20 and recirculated as the EGR gas Ge.

そして、この内燃機関10の運転制御やDPF19aの再生制御や、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うために、吸気系では、エアクリーナー13とコンプレッサー14aとの間に吸気量m_airを計測するためのエアフローセンサ(吸気量センサ)31が、吸気マニホールド11aに吸気温度Tiを計測するための温度センサ(インテークマニホールド温度センサ)32と吸気圧Piを計測するための圧力センサ(吸気圧センサ:ブースト圧センサ)33が配設される。また、排気系では、DPF19aとSCR触媒19bとの間にNOx濃度NOx_mを計測するNOxセンサ34が配設される。   In order to perform the operation control of the internal combustion engine 10, the regeneration control of the DPF 19a, the reducing agent supply control for NOx purification in the SCR catalyst 19b, etc., in the intake system, the intake air is interposed between the air cleaner 13 and the compressor 14a. An airflow sensor (intake air amount sensor) 31 for measuring the amount m_air includes a temperature sensor (intake manifold temperature sensor) 32 for measuring the intake air temperature Ti in the intake manifold 11a and a pressure sensor (for measuring the intake air pressure Pi). An intake pressure sensor (boost pressure sensor) 33 is provided. In the exhaust system, a NOx sensor 34 that measures the NOx concentration NOx_m is disposed between the DPF 19a and the SCR catalyst 19b.

これらのセンサ31〜34の検出値を入力して、内燃機関10の運転制御、DPF19aの再生制御、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うECU(エンジンコントロールユニット)と呼ばれる制御装置(ECU)30が設けられる。   It is called an ECU (engine control unit) that inputs the detection values of these sensors 31 to 34 and performs operation control of the internal combustion engine 10, regeneration control of the DPF 19a, reductant supply control for NOx purification in the SCR catalyst 19b, and the like. A control device (ECU) 30 is provided.

そして、この内燃機関10の排気通路18に配置されるNOxセンサ34の異常診断のために、内燃機関10にNOxセンサの異常診断システムが備えられ、このNOxセンサの異常診断システムの制御装置40が制御装置(ECU)30に組み込まれて構成される。   The internal combustion engine 10 is provided with a NOx sensor abnormality diagnosis system for abnormality diagnosis of the NOx sensor 34 disposed in the exhaust passage 18 of the internal combustion engine 10, and a control device 40 of the NOx sensor abnormality diagnosis system is provided. A control unit (ECU) 30 is built in and configured.

この制御装置40は、吸気量センサ31の検出値m_airと温度センサ32の検出値(吸気温度)Tiと圧力センサ33の検出値(吸気圧力)Piと、燃料噴射量qとからNOx濃度NOx_cylを算出するNOx濃度算出手段41と、この算出されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mとを比較して、NOxセンサ34が異常であるか否かの診断を行う比較診断手段42を備えて構成される。この燃料噴射量qは、制御装置(ECU)30内の指示燃料噴射量の値とするのが簡単であるが、実燃料噴射量を計測している場合は、計測した実燃料噴射量の値としてもよい。   The control device 40 calculates the NOx concentration NOx_cyl from the detection value m_air of the intake air amount sensor 31, the detection value (intake air temperature) Ti of the temperature sensor 32, the detection value (intake air pressure) Pi of the pressure sensor 33, and the fuel injection amount q. A NOx concentration calculating means 41 for calculating, and a comparison diagnosis means 42 for comparing the calculated NOx concentration NOx_cyl and the detected value NOx_m of the NOx sensor 34 to diagnose whether or not the NOx sensor 34 is abnormal are provided. Configured. The fuel injection amount q can be easily set to the value of the commanded fuel injection amount in the control unit (ECU) 30, but when the actual fuel injection amount is measured, the value of the measured actual fuel injection amount It is good.

このNOx濃度算出手段41は、図2に示すように、第1〜第5演算手段41a〜41eを備え、第1演算ステップで、第1演算手段41aにより、吸気量センサ31で検出した吸入空気Aの質量流量(新規空気流量)m_airとシリンダ17内の質量流量m_cylとから、(1)式によりEGRガスGeの質量流量m_egrを算出する。つまり、「(EGRガスの質量流量:m_egr)=(シリンダ内の質量流量m_cyl)−(吸入空気の質量流量:m_air)」となる。なお、シリンダ内の質量流量m_cylは、温度センサ32で検出した温度Tiと圧力センサ33で検出した圧力Piとから算出する。

Figure 2013108419
As shown in FIG. 2, the NOx concentration calculating means 41 includes first to fifth calculating means 41a to 41e, and the intake air detected by the intake air amount sensor 31 by the first calculating means 41a in the first calculating step. The mass flow rate m_egr of the EGR gas Ge is calculated from the mass flow rate (new air flow rate) m_air of A and the mass flow rate m_cyl in the cylinder 17 by the equation (1). That is, “(mass flow rate of EGR gas: m_egr) = (mass flow rate of cylinder m_cyl) − (mass flow rate of intake air: m_air)”. The mass flow rate m_cyl in the cylinder is calculated from the temperature Ti detected by the temperature sensor 32 and the pressure Pi detected by the pressure sensor 33.
Figure 2013108419

ここで、吸入空気Aの質量流量(新規空気流量)m_airには、吸気量センサ31で検出した計測値を用い、シリンダ17内の質量流量m_cylは、Vをシリンダ容積とし、Rをガス定数とし、ηを体積効率とすると、「m_cyl=〔(Pi×V)/(R×Ti)〕×η」で算出される算出値を用いる。   Here, the measured value detected by the intake air amount sensor 31 is used for the mass flow rate (new air flow rate) m_air of the intake air A, and the mass flow rate m_cyl in the cylinder 17 is set such that V is the cylinder volume and R is the gas constant. , Η is volume efficiency, a calculated value calculated by “m_cyl = [(Pi × V) / (R × Ti)] × η” is used.

また、第2演算ステップで、第2演算手段41bにより、吸気量センサ31で検出した吸入空気の質量流量m_airと燃料噴射量qとから、(2)式により、排気空気過剰率λを算出する。なお、理論空燃比L_stは、燃料によって多少変化するが、ディーゼルエンジンに使用される軽油の場合には、14.6となり、ガソリンエンジンに使用されるガソリンの場合には、14.5〜14.7となる。

Figure 2013108419
Further, in the second calculation step, the exhaust air excess ratio λ is calculated by the second calculation means 41b from the intake air mass flow rate m_air detected by the intake air amount sensor 31 and the fuel injection amount q by the equation (2). . The theoretical air-fuel ratio L_st varies slightly depending on the fuel, but is 14.6 in the case of light oil used in a diesel engine, and 14.5 to 14 in the case of gasoline used in a gasoline engine. 7
Figure 2013108419

次に、第3演算ステップで、第3演算手段41cにより、EGRガスG_egrの酸素濃度O2_egrを計算する。大気中の酸素濃度O2_airとEGR空気過剰率λ_egrと理論空燃比L_stとから、(3)式により、EGRガスGe中の酸素濃度O2_egrを算出する。このEGR空気過剰率λ_egrには、排気空気過剰率λからEGRガスGeの時間遅れを考慮した値を用いる。

Figure 2013108419
Next, in the third calculation step, the third calculation means 41c calculates the oxygen concentration O2_egr of the EGR gas G_egr. The oxygen concentration O2_egr in the EGR gas Ge is calculated from the oxygen concentration O2_air in the atmosphere, the excess EGR air ratio λ_egr, and the theoretical air-fuel ratio L_st by the equation (3). As the EGR excess air ratio λ_egr, a value taking into account the time delay of the EGR gas Ge from the exhaust air excess ratio λ is used.
Figure 2013108419

また、第4演算ステップで、第4演算手段41dにより、(4)式より、シリンダ17内の酸素濃度O2_cylを算出する。

Figure 2013108419
In the fourth calculation step, the fourth calculation means 41d calculates the oxygen concentration O2_cyl in the cylinder 17 from the equation (4).
Figure 2013108419

また、第5演算ステップで、第5演算手段41eにより、シリンダ17内の酸素濃度O2_cylを変換して、シリンダ17内のNOx濃度NOx_cylを算出する。ここでは、定常時のシリンダ17内の酸素濃度O2_refと定常時のシリンダ17から排出されるNOx濃度NOx_refと、指数iとが予め設定されている(5)式及び(6)式のシリンダ17内の酸素濃度O2_cylとシリンダ17から排出されるNOx濃度NOx_cylの関係から、現在のシリンダ17から排出されるNOx濃度NOx_cylを算出する。   In the fifth calculation step, the fifth calculation means 41e converts the oxygen concentration O2_cyl in the cylinder 17 to calculate the NOx concentration NOx_cyl in the cylinder 17. Here, the oxygen concentration O2_ref in the cylinder 17 at the normal time, the NOx concentration NOx_ref discharged from the cylinder 17 at the normal time, and the index i are set in advance in the cylinder 17 of the equations (5) and (6). The NOx concentration NOx_cyl discharged from the current cylinder 17 is calculated from the relationship between the oxygen concentration O2_cyl of NO2 and the NOx concentration NOx_cyl discharged from the cylinder 17.

これらの酸素濃度O2_refとNOx濃度NOx_refと指数iは予め定常時のエンジンの実験で求めておき、設定しておく。

Figure 2013108419
Figure 2013108419
The oxygen concentration O2_ref, the NOx concentration NOx_ref, and the index i are previously determined and set in advance through steady-state engine experiments.
Figure 2013108419
Figure 2013108419

そして、比較診断手段42には、算出された現在のシリンダ17から排出されるNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mとを比較して、NOxセンサ34が異常であるか否かの診断を行う第6演算手段42aを備える。   Then, the comparison diagnosis means 42 compares the calculated NOx concentration NOx_cyl discharged from the current cylinder 17 with the detected value NOx_m of the NOx sensor 34 to diagnose whether the NOx sensor 34 is abnormal. A sixth calculating means 42a is provided.

第6演算ステップでは、この第6演算手段42aにより、NOxセンサ34が異常であるか否かの診断を行うが、このNOxセンサ34が異常であるか否かの診断では、NOxセンサ34が正常な状態であれば、算出されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mと差の絶対値が適正な値に設定された判定値NOx_jud以下となるはずであり、逆にNOxセンサ34が異常な状態であれば、その差の絶対値が判定値NOx_judを超えるはずである。従って、その差の絶対値が判定値NOx_judを超えた場合にNOxセンサ34は異常であると判定する。   In the sixth calculation step, the sixth calculation means 42a diagnoses whether or not the NOx sensor 34 is abnormal. In the diagnosis of whether or not the NOx sensor 34 is abnormal, the NOx sensor 34 is normal. If this is the case, the absolute value of the difference between the calculated NOx concentration NOx_cyl and the detected value NOx_m of the NOx sensor 34 should be equal to or less than the determination value NOx_jud set to an appropriate value. Conversely, the NOx sensor 34 is abnormal. In such a state, the absolute value of the difference should exceed the determination value NOx_jud. Accordingly, when the absolute value of the difference exceeds the determination value NOx_jud, it is determined that the NOx sensor 34 is abnormal.

つまり、|NOx_cyl−NOx_m|≦NOx_judで正常、|NOx_cyl−NOx_m|>NOx_judで異常と判定する。これにより、計算されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mを比較することで、NOxセンサ34の異常診断を行うことができる。   That is, it is determined that | NOx_cyl-NOx_m | ≦ NOx_jud is normal and | NOx_cyl-NOx_m |> NOx_jud is abnormal. Accordingly, the NOx sensor 34 can be diagnosed for abnormality by comparing the calculated NOx concentration NOx_cyl with the detected value NOx_m of the NOx sensor 34.

上記のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関10によれば、排気ガスG中のNOx濃度NOx_cylを計算により求めることで、多大な実験工数を掛けることなくNOxセンサ34の異常診断を行うことができ、しかも、常時NOx濃度NOx_cylを計算しているので、NOxセンサ34の異常診断を行う時期を内燃機関10の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine 10 described above, the NOx concentration in the exhaust gas G NOx_cyl is obtained by calculation, so that the NOx sensor 34 does not require much experimentation. In addition, since the NOx concentration NOx_cyl is always calculated, it is not necessary to limit the timing for performing the abnormality diagnosis of the NOx sensor 34 when the operating state of the internal combustion engine 10 is in a special condition. Can be done continuously.

本発明のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるので、車両に搭載するような多くの内燃機関に利用できる。   According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine of the present invention, the NOx sensor abnormality diagnosis is continuously performed by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. This can be used for many internal combustion engines that are mounted on vehicles.

10 内燃機関
11 エンジン本体
11a 吸気マニホールド
12 吸気通路
17 シリンダ(気筒)
18 排気通路
19 排気ガス浄化装置
19a DPF
19b SCR触媒(選択的還元型触媒)
20 EGR通路
30 制御装置(ECU)
31 吸気量センサ(エアフローセンサ)
32 温度センサ(インテークマニホールド温度センサ)
33 圧力センサ(吸気圧センサ:ブースト圧センサ)
34 NOxセンサ
40 制御装置(NOxセンサの異常診断システムの制御装置)
41 NOx濃度算出手段
41a 第1演算手段
41b 第2演算手段
41c 第3演算手段
41d 第4演算手段
41e 第5演算手段
42 比較診断手段
42a 第6演算手段
A 空気
G 排気ガス
Ge EGRガス
L_st 理論空燃比
NOx_cyl NOx濃度の算出値
NOx_jud 判定値
NOx_m NOx濃度の計測値
m_air 吸気量センサの検出値
m_cyl シリンダ内の質量流量
m_egr EGRガスの質量流量
O2_air 大気中の酸素濃度
O2_egr EGR空気過剰率
Pi 吸気圧
Ti 吸気温度
q 燃料噴射量
λ 排気空気過剰率
λ_egr EGRガスの空気過剰率
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Engine main body 11a Intake manifold 12 Intake passage 17 Cylinder
18 Exhaust passage 19 Exhaust gas purification device 19a DPF
19b SCR catalyst (selective reduction catalyst)
20 EGR passage 30 control unit (ECU)
31 Intake air volume sensor (air flow sensor)
32 Temperature sensor (Intake manifold temperature sensor)
33 Pressure sensor (Intake pressure sensor: Boost pressure sensor)
34 NOx sensor 40 control device (control device for abnormality diagnosis system of NOx sensor)
41 NOx concentration calculating means 41a 1st calculating means 41b 2nd calculating means 41c 3rd calculating means 41d 4th calculating means 41e 5th calculating means 42 Comparative diagnostic means 42a 6th calculating means A Air G Exhaust gas Ge EGR gas L_st Theoretical sky Fuel ratio NOx_cyl Calculated value of NOx concentration NOx_jud Determination value NOx_m Measured value of NOx concentration m_air Detected value of intake air sensor m_cyl Mass flow rate m_egr in cylinder Mass flow rate of EGR gas O2_air Oxygen concentration O2_egr EGR air excess pressure P in air Intake air temperature q Fuel injection amount λ Exhaust air excess ratio λ_egr EGR gas excess air ratio

Claims (5)

内燃機関の排気通路に配置されるNOxセンサの異常診断方法であって、
前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と、吸気マニホールドに配置された温度センサの検出値(Ti)と、前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからNOx濃度(NOx_cyl)を算出し、
該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行うことを特徴とするNOxセンサの異常診断方法。
An abnormality diagnosis method for a NOx sensor disposed in an exhaust passage of an internal combustion engine,
A detection value (m_air) of an intake air amount sensor arranged in the intake passage of the internal combustion engine, a detection value (Ti) of a temperature sensor arranged in the intake manifold, and a detection value (Ti) of a pressure sensor arranged in the intake manifold ( Pi) and the fuel injection amount (q) to calculate the NOx concentration (NOx_cyl),
Comparing the calculated NOx concentration (NOx_cyl) with the detected value (NOx_m) of the NOx sensor, a diagnosis is made as to whether or not the NOx sensor is abnormal. .
前記NOx濃度(NOx_cyl)の算出を行う演算ステップが、
前記吸気量センサで検出した吸入空気の質量流量(m_air)と、前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算ステップと、
Figure 2013108419
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、排気空気過剰率(λ)を算出する第2演算ステップと、
Figure 2013108419
前記排気空気過剰率(λ)からEGRガスの時間遅れを考慮して算出したEGR空気過剰率(λ_egr)と、大気中の酸素濃度(O2_air)と、理論空燃比(L_st)とから、(3)式によりEGRガス中の酸素濃度(O2_egr)を算出する第3演算ステップと、
Figure 2013108419
(4)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第4演算ステップと、
Figure 2013108419
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第5演算ステップと、
Figure 2013108419
前記(5)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算ステップとを備えたことを特徴とするNOxセンサの異常診断方法。
An arithmetic step for calculating the NOx concentration (NOx_cyl)
Mass flow rate in the cylinder calculated from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor, the detection value (Ti) detected by the temperature sensor, and the detection value (Pi) detected by the pressure sensor ( m_cyl), a first calculation step for calculating the mass flow rate (m_egr) of the EGR gas by the equation (1),
Figure 2013108419
A second calculation step of calculating an exhaust air excess ratio (λ) by the equation (2) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q);
Figure 2013108419
From the EGR air excess rate (λ_egr) calculated from the exhaust air excess rate (λ) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) Equation to calculate the oxygen concentration (O2_egr) in the EGR gas,
Figure 2013108419
A fourth calculation step for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (4);
Figure 2013108419
The oxygen concentration (O2_ref) in the cylinder in the formula (5) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. A NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship between the NOx concentration discharged from the cylinder (NOx_cyl),
Figure 2013108419
The NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (5) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. A NOx sensor abnormality diagnosis method, comprising: a sixth calculation step.
内燃機関の排気通路に配置されるNOxセンサの異常診断を行う制御装置を備えたNOxセンサの異常診断システムであって、
前記制御装置が、
前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と吸気マニホールドに配置された温度センサの検出値(Ti)と前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、
該算出されたNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う比較診断手段を備えたことを特徴とするNOxセンサの異常診断システム。
A NOx sensor abnormality diagnosis system comprising a control device for performing abnormality diagnosis of a NOx sensor disposed in an exhaust passage of an internal combustion engine,
The control device is
A detection value (m_air) of an intake air amount sensor arranged in the intake passage of the internal combustion engine, a detection value (Ti) of a temperature sensor arranged in the intake manifold, and a detection value (Pi) of a pressure sensor arranged in the intake manifold And NOx concentration calculating means for calculating the NOx concentration (NOx_cyl) from the fuel injection amount (q),
Comparing the calculated NOx concentration (NOx_cyl) with the detected value (NOx_m) of the NOx sensor, a comparison diagnosis means for diagnosing whether or not the NOx sensor is abnormal is provided. NOx sensor abnormality diagnosis system.
前記NOx濃度算出手段が、
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算手段と、
Figure 2013108419
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記燃料噴射量(q)とから、(2)式により、排気空気過剰率(λ)を算出する第2演算手段と、
Figure 2013108419
前記排気空気過剰率(λ)からEGRガスの時間遅れを考慮して算出したEGR空気過剰率(λ_egr)と、大気中の酸素濃度(O2_air)と、理論空燃比(L_st)とから、(3)式によりEGRガス中の酸素濃度(O2_egr)を算出する第3演算手段と、
Figure 2013108419
(4)式より、シリンダ内の酸素濃度(O2_cyl)を算出する第4演算手段と、
Figure 2013108419
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式のシリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出する第5演算手段とを備え、
Figure 2013108419
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算手段を備えていることを特徴とするNOxセンサの異常診断システム。
The NOx concentration calculating means
The mass flow rate (m_cyl) in the cylinder calculated from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor, the detection value (Ti) detected by the temperature sensor, and the detection value (Pi) detected by the pressure sensor. ) From the first calculation means for calculating the mass flow rate (m_egr) of the EGR gas by the equation (1),
Figure 2013108419
A second calculating means for calculating an exhaust air excess ratio (λ) from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor and the fuel injection amount (q) by the equation (2);
Figure 2013108419
From the EGR air excess rate (λ_egr) calculated from the exhaust air excess rate (λ) in consideration of the time delay of EGR gas, the oxygen concentration (O2_air) in the atmosphere, and the theoretical air-fuel ratio (L_st), (3 ) The third calculating means for calculating the oxygen concentration (O2_egr) in the EGR gas by the equation;
Figure 2013108419
A fourth calculation means for calculating the oxygen concentration (O2_cyl) in the cylinder from the equation (4);
Figure 2013108419
The oxygen concentration (O2_ref) in the cylinder at the constant time, the NOx concentration (NOx_ref) discharged from the cylinder at the steady state, and the index i are set in advance. Fifth calculating means for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship of the NOx concentration (NOx_cyl) discharged from the cylinder;
Figure 2013108419
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. An NOx sensor abnormality diagnosis system comprising: sixth arithmetic means for performing
請求項3又は4に記載のNOxセンサの異常診断システムを備えた内燃機関。   An internal combustion engine comprising the NOx sensor abnormality diagnosis system according to claim 3 or 4.
JP2011253264A 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine Expired - Fee Related JP5831162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253264A JP5831162B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253264A JP5831162B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013108419A true JP2013108419A (en) 2013-06-06
JP5831162B2 JP5831162B2 (en) 2015-12-09

Family

ID=48705416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253264A Expired - Fee Related JP5831162B2 (en) 2011-11-18 2011-11-18 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5831162B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358158A (en) * 2018-10-08 2019-02-19 宁波安创电子科技有限公司 A kind of detection method for judging nitrogen oxide sensor and whether failing
CN111044684A (en) * 2019-12-30 2020-04-21 潍柴动力股份有限公司 Method and device for judging tampering of nitrogen-oxygen sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139983A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp NOx EMISSION AMOUNT ESTIMATING METHOD FOR INTERNAL COMBUSTION ENGINE
JP2006274905A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139983A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp NOx EMISSION AMOUNT ESTIMATING METHOD FOR INTERNAL COMBUSTION ENGINE
JP2006274905A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358158A (en) * 2018-10-08 2019-02-19 宁波安创电子科技有限公司 A kind of detection method for judging nitrogen oxide sensor and whether failing
CN111044684A (en) * 2019-12-30 2020-04-21 潍柴动力股份有限公司 Method and device for judging tampering of nitrogen-oxygen sensor

Also Published As

Publication number Publication date
JP5831162B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US8973431B2 (en) Apparatus for diagnosing causes of NOx conversion efficiency degradation
KR101231325B1 (en) Low pressure EGR system and the Method for determination of intake air leakage therefor
JP6452365B2 (en) System for detecting leaks in the intake line of an internal combustion engine
JP2006316746A (en) Exhaust emission control device for internal combustion engine
JP5913619B2 (en) Diesel engine control device
JP5404600B2 (en) Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine
JP5834906B2 (en) Exhaust gas purification device for internal combustion engine
JP5831162B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
US11536209B2 (en) Control device, engine, and control method of engine
JP5891734B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
US20190293617A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
US20160230635A1 (en) Diagnostic device
JP5874342B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine
JP5915111B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine
JP6071636B2 (en) Control device and control method for internal combustion engine
JP2002070619A (en) Exhaust emission control device for internal combustion engine
JP2008231951A (en) Engine exhaust emission temperature estimation device and engine exhaust emission control device
US20190292961A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
JP2016200111A (en) Exhaust emission control system
JP2019116876A (en) Sensor diagnostic system
JP2013213473A (en) Temperature estimating device and temperature sensor failure diagnostic device
JP2019044627A (en) Diagnostic device for internal combustion engine
JP4539466B2 (en) Exhaust gas purification system for internal combustion engine
JP7159584B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees