JP2013108156A - Member for valve drive system of internal combustion engine and method of using the same - Google Patents

Member for valve drive system of internal combustion engine and method of using the same Download PDF

Info

Publication number
JP2013108156A
JP2013108156A JP2011256251A JP2011256251A JP2013108156A JP 2013108156 A JP2013108156 A JP 2013108156A JP 2011256251 A JP2011256251 A JP 2011256251A JP 2011256251 A JP2011256251 A JP 2011256251A JP 2013108156 A JP2013108156 A JP 2013108156A
Authority
JP
Japan
Prior art keywords
film
dlc
internal combustion
combustion engine
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011256251A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
広行 森
Hiroji Tokoro
博治 所
Masaru Okuyama
勝 奥山
Mamoru Toyama
護 遠山
Shunei Omori
俊英 大森
Tetsushi Jinno
哲史 神野
Takatoshi Arayoshi
隆利 新吉
Yoshio Fuwa
良雄 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2011256251A priority Critical patent/JP2013108156A/en
Publication of JP2013108156A publication Critical patent/JP2013108156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for a valve drive system for an internal combustion engine, such as a valve lifter and a shim, which provides low friction and exerts steady slidability.SOLUTION: The member for a valve drive system for the internal combustion engine consists of a cam follower having a slide contact surface that is in slide-contact with a cam surface of a cam to follow the cam under a wet process condition where a lubricating oil lies. The slide contact surface of the cam follower is coated by a DLC film (DLC-B film) that consists of 5-25 atom% of H, 4-25 atom% of B, and the remainder of C when assuming the whole as 100 atom%. The slide contact surface that consists of the DLC-B film has high toughness and excellent impact resistance, and causes no lack, etc., even if received an impact force of 150-250 MPa/deg from the cam surface. Moreover, the cam follower exerts an excellent low friction coefficient when used under the wet process condition where the lubricating oil not containing molybdenum dialkyl dithiocarbamate (MoDTC) lies.

Description

本発明は、低摩擦を安定して発揮する摺動性に優れたカムフォロアからなる内燃機関用バルブ駆動系部材およびその使用方法に関する。   The present invention relates to a valve drive system member for an internal combustion engine comprising a cam follower excellent in slidability that stably exhibits low friction and a method of using the same.

自動車等に搭載される内燃機関(適宜「エンジン」という。)は、低燃費性を向上させるため、各摺動部における摩擦係数の大幅な低減が要求されるようになってきた。これを実現するために、例えば、摩擦係数の低減を図れるダイヤモンドライクカーボン膜と呼ばれる非晶質炭素膜(適宜「DLC膜」という。)を摺動面に形成することが提案されている。これに関連する記載が下記の特許文献1にある。   2. Description of the Related Art Internal combustion engines (referred to as “engines” as appropriate) mounted on automobiles and the like have been required to significantly reduce the coefficient of friction at each sliding portion in order to improve fuel efficiency. In order to realize this, for example, it has been proposed to form an amorphous carbon film called diamond-like carbon film (referred to as “DLC film” as appropriate) on the sliding surface, which can reduce the friction coefficient. There is a description related to this in the following Patent Document 1.

特開2011−26591号公報JP 2011-26591 A

特許文献1は、ホウ素(B)を含有した非晶質硬質炭素膜を摺動部に形成した低摩擦摺動部材を提案している。そして、その低摩擦摺動部材をMoを含まない特定の潤滑油の下で使用することにより、摺動間における摩擦係数の低減が図られる旨が記載されている。   Patent Document 1 proposes a low friction sliding member in which an amorphous hard carbon film containing boron (B) is formed on a sliding portion. And it is described that the friction coefficient during sliding can be reduced by using the low friction sliding member under a specific lubricating oil not containing Mo.

しかし、特許文献1には単に「低摩擦摺動部材」と記載されているのみであり、具体的な摺動部材に関する実施例が全く記載されていない。また種々の添加元素を含んだDLC膜について記載されているものの、どのような種類のDLC膜が、どのような摺動部材に適しているか、具体的な評価は全くされていない。   However, Patent Document 1 merely describes “low friction sliding member”, and does not describe any specific examples regarding the sliding member. Although a DLC film containing various additive elements is described, no specific evaluation has been made on what kind of DLC film is suitable for which sliding member.

本発明はこのような事情に鑑みて為されたものであり、摺動部材のなかでも、特に内燃機関の動力損失の低減ひいては燃費の低減に非常に有効な内燃機関用バルブ駆動系部材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a valve drive system member for an internal combustion engine that is extremely effective for reducing power loss of an internal combustion engine and, in particular, for reducing fuel consumption, among sliding members. The purpose is to do.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、内燃機関用バルブ駆動系部材であるバルブリフターやシム等のカムフォロアの摺接面にホウ素(B)を含有した非晶質炭素膜(適宜「DLC−B膜」)を形成した場合、他のDLC膜等を形成した場合と異なり、その摩擦係数が著しく低減されることを新たに見い出した。しかもカムフォロアの摺接面に形成されたDLC−B膜は、他のDLC膜と異なり、摺接するカム面から高荷重を受けても欠け等を生じず、エンジンの運転状況や運転時間等が変化しても、摩擦係数を安定的に低減させ得ることが新たにわかった。これらの成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of extensive research and trial and error, the inventor of the present invention has made a trial and error. When the crystalline carbon film (appropriately “DLC-B film”) is formed, it has been newly found that the friction coefficient is remarkably reduced, unlike the case of forming other DLC films or the like. In addition, unlike other DLC films, the DLC-B film formed on the slidable contact surface of the cam follower does not cause chipping or the like even when subjected to a high load from the slidable cam surface, and changes in engine operating conditions and operating time However, it has been newly found that the friction coefficient can be stably reduced. By developing these results, the present invention described below has been completed.

《内燃機関用バルブ駆動系部材》
(1)本発明の内燃機関用バルブ駆動系部材は、内燃機関の吸気または排気を制御するバルブの軸端部と該バルブを開閉駆動するカムとの間に介在すると共に、潤滑油が介在する湿式条件下で該カムのカム面と摺接して該カムに従動し得る摺接面を有するカムフォロアからなる内燃機関用バルブ駆動系部材であって、該カムフォロアの摺接面は、全体を100原子%(単に「%」という。)としたときに5〜25%の水素(H)と4〜25%のホウ素(B)と残部である炭素(C)とからなる非晶質炭素膜を表面に有することを特徴とする。
《Valve drive system member for internal combustion engine》
(1) The valve drive system member for an internal combustion engine of the present invention is interposed between a shaft end portion of a valve that controls intake or exhaust of the internal combustion engine and a cam that drives the valve to open and close, and lubricating oil is interposed. A valve drive system member for an internal combustion engine comprising a cam follower having a slidable contact surface that can slide and follow the cam surface of the cam under wet conditions, wherein the slidable contact surface of the cam follower has a total of 100 atoms. % (Simply referred to as “%”), an amorphous carbon film composed of 5 to 25% hydrogen (H), 4 to 25% boron (B), and the balance carbon (C). It is characterized by having.

(2)本発明の内燃機関用バルブ駆動系部材では、カムフォロアの摺接面にDLC−B膜が設けられている。これにより、カム面とカムフォロアの摺接面との間の摩擦係数が著しく低減される。しかも、このDLC−B膜はカム面との接触開始時等に、非常に大きな衝撃力が印加されても、欠けや割れ等を生じることなく、良好な摺接面を安定して維持し得る。従って本発明によれば、カムフォロアとカム面の間の摺動または摺接が、安定した低摩擦下で円滑になされ、エンジンの動力損失ひいては燃費が大幅に改善され得る。 (2) In the valve drive system member for an internal combustion engine of the present invention, the DLC-B film is provided on the sliding contact surface of the cam follower. As a result, the coefficient of friction between the cam surface and the sliding contact surface of the cam follower is significantly reduced. Moreover, the DLC-B film can stably maintain a good slidable contact surface without any chipping or cracking even when a very large impact force is applied at the start of contact with the cam surface. . Therefore, according to the present invention, the sliding or sliding contact between the cam follower and the cam surface is smoothly performed under a stable low friction, and the power loss of the engine and the fuel consumption can be greatly improved.

なお、カムの回動によりカムフォロアの摺接面へ印加される衝撃力は一概に特定され難いが、例えば150〜300MPa/degさらには200〜250MPa/degという厳しい高荷重下(高荷重が瞬間的に付与される高衝撃面圧下)でも、本発明の内燃機関用バルブ駆動系部材は安定した摺動性を発現し得る。   The impact force applied to the sliding surface of the cam follower by the rotation of the cam is not easily specified. However, for example, 150 to 300 MPa / deg or 200 to 250 MPa / deg under severe high load (high load is instantaneous The valve drive system member for an internal combustion engine of the present invention can exhibit stable slidability even under high impact surface pressure applied to the internal combustion engine.

(3)カムフォロアの摺接面に形成されたDLC−B膜がこのような優れた特性を発揮し得る理由は必ずしも定かではないが、現状では次のように考えられる。本発明に係るDLC−B膜はカムフォロアの基材よりも硬質で耐摩耗性等に優れるが、弾性率は基材(鋼材)よりも低く弾性に富む。このため本発明に係るDLC−B膜は高靱性であり、耐衝撃性にも優れる。従って、本発明に係るDLC−B膜で被覆されたカムフォロアの摺接面は、バルブが開く直前に、カム面によって叩くような高い衝撃力(または衝撃面圧)が繰り返し印加されても、欠けや割れ等を生じることがない。そして内燃機関を様々な回転数の下で長期間運転した場合でも、DLC−B膜による低摩擦で良好な摺接面が安定して維持され得る。 (3) The reason why the DLC-B film formed on the slidable contact surface of the cam follower can exhibit such excellent characteristics is not necessarily clear, but at present, it is considered as follows. The DLC-B film according to the present invention is harder than a cam follower base material and is excellent in wear resistance, etc., but its elastic modulus is lower than that of the base material (steel material) and rich in elasticity. Therefore, the DLC-B film according to the present invention has high toughness and excellent impact resistance. Therefore, the sliding contact surface of the cam follower coated with the DLC-B film according to the present invention is chipped even if a high impact force (or impact surface pressure) such as hitting with the cam surface is repeatedly applied immediately before the valve is opened. And no cracking. Even when the internal combustion engine is operated at various rotational speeds for a long period of time, a good sliding contact surface with low friction by the DLC-B film can be stably maintained.

ところで、DLC膜の中でも特に、本発明に係るDLC−B膜が上述したようなカムフォロアの摺接面に最適な特性(特に低摩擦化)を発揮する理由は必ずしも定かではないが、現状では次のように考えられる。本発明者の研究調査によると、カムフォロアの摺接面に好適なDLC−B膜は、アモルファス構造をしているのみならず、炭化物等が形成されておらず、無配向性であることがわかっている。このためDLC−B膜全体は、マクロ的のみならず、ミクロ的にも非常に均質である。このカムフォロアの摺接面を形成するDLC−B膜の表面には、潤滑油、特にそこに含まれる種々の添加剤が均一的に吸着され易い。この結果、DLC−B膜と摺接する相手材のカム面との間には、摩擦低減効果が非常に大きい特殊な境界膜が形成されると考えられる。こうして本発明に係るカムフォロアを用いた場合、バルブ駆動系の動力損失が大幅に低減され、内燃機関の燃費が改善されたと考えられる。   By the way, the reason why the DLC-B film according to the present invention exerts the optimum characteristics (particularly, low friction) on the sliding surface of the cam follower as described above is not necessarily certain among the DLC films. It seems like. According to the research conducted by the inventor, it is found that the DLC-B film suitable for the sliding contact surface of the cam follower not only has an amorphous structure but also has no carbides formed and is non-oriented. ing. For this reason, the entire DLC-B film is very homogeneous not only macroscopically but also microscopically. Lubricating oil, especially various additives contained therein, are easily adsorbed uniformly on the surface of the DLC-B film forming the sliding surface of the cam follower. As a result, it is considered that a special boundary film having a very large friction reducing effect is formed between the DLC-B film and the cam surface of the mating member in sliding contact. Thus, when the cam follower according to the present invention is used, it is considered that the power loss of the valve drive system is greatly reduced and the fuel efficiency of the internal combustion engine is improved.

《内燃機関用バルブ駆動系部材の使用方法》
(1)本発明は内燃機関用バルブ駆動系部材としてのみならず、その使用方法としても把握される。例えば本発明は、100ppm以下のモリブデン(Mo)を含みジアルキルジチオカルバミン酸モリブデン(MoDTC)を含まない潤滑油が介在する湿式条件下で使用されることを特徴とする内燃機関用バルブ駆動系部材の使用方法としても把握できる。
<< Usage of valve drive system member for internal combustion engine >>
(1) The present invention is understood not only as a valve drive system member for an internal combustion engine but also as a method of using the same. For example, the present invention is used in a valve drive system member for an internal combustion engine, characterized in that it is used under wet conditions in which a lubricating oil containing 100 ppm or less of molybdenum (Mo) and not containing molybdenum dialkyldithiocarbamate (MoDTC) is present. It can be grasped as a method.

(2)本発明の内燃機関用バルブ駆動系部材は、潤滑油(エンジンオイル)が存在する湿式条件下で使用されることが前提となっている。一般的なエンジンオイルが用いられる限り、その種類を問わず、本発明の内燃機関用バルブ駆動系部材は上述したような効果を発現し得る。 (2) The valve drive system member for an internal combustion engine of the present invention is premised on being used under wet conditions in which lubricating oil (engine oil) is present. As long as general engine oil is used, regardless of the type, the valve drive system member for an internal combustion engine of the present invention can exhibit the effects described above.

もっとも環境負荷低減が要求される昨今、従来から摩擦調整剤等として用いられてきたジアルキルジチオカルバミン酸モリブデン(MoDTC)を含まない潤滑油(適宜「MoDTC非含有オイル」という。)が使用されつつある。このようなMoDTC非含有オイルを用いた場合、従来のMoDTCを含む潤滑油(適宜「MoDTC含有オイル」という。)を用いた場合よりも、カムフォロアの摺接面とカム面の間の摩擦係数が高くなり得る。特にカムフォロアの摺接面が、従来のリュブライト処理のままであったり他のDLC膜で被覆されているような場合に摩擦係数が大きくなり易かった。   However, in recent years when environmental load reduction is required, lubricating oils that do not contain molybdenum dialkyldithiocarbamate (MoDTC), which has been conventionally used as a friction modifier or the like (referred to as “MoDTC-free oil” as appropriate) are being used. When such an oil containing no MoDTC is used, the coefficient of friction between the sliding surface of the cam follower and the cam surface is higher than when using a conventional lubricating oil containing MoDTC (referred to as “MoDTC-containing oil” as appropriate). Can be expensive. In particular, the friction coefficient tends to increase when the sliding surface of the cam follower remains in the conventional Lubrite process or is covered with another DLC film.

ところが、本発明に係るDLC−B膜でカムフォロアの摺接面を被覆した場合、潤滑油がMoDTC含有オイルであるかMoDTC非含有オイルであるかを問わず、摩擦係数が大幅に安定的に低減される。特に、MoDTC非含有オイルの湿式条件下におけるDLC−B膜による摩擦係数の低減率は、他のDLC膜や従来の表面処理層よりも、著しく大きくなることが確認されている。よって、本発明の内燃機関用バルブ駆動系部材は、MoDTC非含有オイルが介在する湿式条件下で使用されるとより好ましいといえる。なお、このような優れた効果が得られる理由は必ずしも定かではないが、摺動部に上述した特殊な境界膜が形成されるためと考えられる。   However, when the sliding surface of the cam follower is coated with the DLC-B film according to the present invention, the friction coefficient is greatly reduced regardless of whether the lubricating oil is an oil containing MoDTC or not containing MoDTC. Is done. In particular, it has been confirmed that the reduction rate of the coefficient of friction by the DLC-B film under the wet conditions of the MoDTC-free oil is significantly higher than that of other DLC films or conventional surface treatment layers. Therefore, it can be said that the valve drive system member for an internal combustion engine of the present invention is more preferable when it is used under wet conditions in which MoDTC-free oil is interposed. The reason why such an excellent effect is obtained is not necessarily clear, but it is considered that the above-described special boundary film is formed on the sliding portion.

《その他》
(1)本明細書中でいう「非晶質炭素膜」は、C、HおよびB(さらにはO)以外であって、非晶質炭素膜の特性改善に有効な元素を含み得る。改善される特性の種類は問わない。また当然ながら、原料中に含まれる不純物や成膜時等に混入する不純物など、コスト的または技術的な理由により除去困難な「不可避不純物」も本発明に係る非晶質炭素膜中に含有され得る。
<Others>
(1) The “amorphous carbon film” referred to in the present specification may contain elements effective for improving the characteristics of the amorphous carbon film other than C, H, and B (and O). The type of property to be improved is not limited. Of course, “inevitable impurities” that are difficult to remove due to cost or technical reasons, such as impurities contained in the raw material or impurities mixed during film formation, are also contained in the amorphous carbon film according to the present invention. obtain.

(2)本発明の内燃機関用バルブ駆動系部材を用いると、カムフォロアの摺接面とカム面との間の摩擦係数が大幅に低減され得るが、その摩擦係数の絶対値は問わない。摩擦係数自体は、潤滑油の種類、摺接相手であるカム面の材質や性状等により変化し得る。このため、本明細書でいう摩擦低減効果は、カムフォロアの摺接面を除く状況が同一である場合における相対評価であることを断っておく。本発明に係るカムフォロアを湿式条件下で用いた場合の摩擦係数を敢えていうと、例えば0.03〜0.05である。 (2) When the valve drive system member for an internal combustion engine of the present invention is used, the friction coefficient between the sliding surface of the cam follower and the cam surface can be greatly reduced, but the absolute value of the friction coefficient is not limited. The coefficient of friction itself may vary depending on the type of lubricating oil, the material and properties of the cam surface that is the sliding contact. For this reason, it should be noted that the friction reduction effect referred to in this specification is a relative evaluation in the case where the situation except the sliding contact surface of the cam follower is the same. The friction coefficient when the cam follower according to the present invention is used under wet conditions is, for example, 0.03 to 0.05.

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような数値範囲を新設し得る。 (3) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. Any numerical value included in the various numerical values or numerical ranges described in the present specification can be newly established as a new lower limit value or upper limit value such as “ab”.

本発明に係るDLC−B膜の電子線回折像である。It is an electron beam diffraction image of the DLC-B film concerning the present invention. そのDLC−B膜の断面のTEM像である。It is a TEM image of the section of the DLC-B film. そのDLC−B膜のEELSによる分析スペクトル図である。It is an analysis spectrum figure by the EELS of the DLC-B film. そのDLC−B膜の電子線回折パターンの強度を二方向で分析したグラフである。It is the graph which analyzed the intensity | strength of the electron diffraction pattern of the DLC-B film | membrane in two directions. DLC−Si膜の電子線回折パターンの強度を二方向で分析したグラフである。It is the graph which analyzed the intensity | strength of the electron diffraction pattern of a DLC-Si film in two directions. DLC−B膜のB量と硬さの関係を示すグラフである。It is a graph which shows the amount of B of DLC-B film, and the relation of hardness. 各種のDLC膜の摩擦係数を比較した棒グラフである。It is the bar graph which compared the friction coefficient of various DLC films. DLC−B膜のB量と摩擦係数の関係を示すグラフである。It is a graph which shows the relationship between B amount of a DLC-B film | membrane, and a friction coefficient. シム(カムフォロア)の摺接面上において、その摺接面とカム面の接触軌跡を示す模式図である。It is a schematic diagram which shows the contact locus | trajectory of the slidable contact surface and cam surface on the slidable contact surface of a shim (cam follower). カム角度とシムの摺接面に作用する接触荷重との関係示すグラフである。It is a graph which shows the relationship between a cam angle and the contact load which acts on the sliding contact surface of a shim. MoDTC非含有オイルの湿式条件下における各被膜の摩擦係数を示す棒グラフである。It is a bar graph which shows the friction coefficient of each film in the wet conditions of MoDTC non-containing oil. MoDTC含有オイルの湿式条件下における各被膜の摩擦係数を示す棒グラフである。It is a bar graph which shows the friction coefficient of each film in the wet conditions of MoDTC containing oil. MoDTC非含有オイルの湿式条件下における各被膜の摩擦係数を示すグラフである。It is a graph which shows the friction coefficient of each film in the wet conditions of MoDTC non-containing oil. MoDTC含有オイルの湿式条件下における各被膜の摩擦係数を示すグラフである。It is a graph which shows the friction coefficient of each film in the wet conditions of MoDTC containing oil. DLC−B膜で被覆されたシム表面の摺動試験後の様子を示す写真である。It is a photograph which shows the mode after the sliding test of the shim surface coat | covered with the DLC-B film | membrane. DLC−Si膜で被覆されたシム表面の摺動試験後の様子を示す写真である。It is a photograph which shows the mode after the sliding test of the shim surface coat | covered with the DLC-Si film | membrane.

発明の実施形態を挙げて本発明をより詳しく説明する。上述した本発明の構成に本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。本明細書で説明する内容は、本発明に係る内燃機関用バルブ駆動系部材のみならず、その使用方法や製造方法にも適用され得る。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. One or two or more configurations arbitrarily selected from the present specification may be added to the configuration of the present invention described above. The contents described in the present specification can be applied not only to the valve drive system member for an internal combustion engine according to the present invention, but also to its usage and manufacturing method. A configuration related to a manufacturing method can be a configuration related to an object if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《内燃機関用バルブ駆動系部材》
〈カムフォロア〉
(1)カムフォロアは、エンジン等により駆動されるカムに従動し、エンジンの吸気バルブまたは排気バルブ(両者を合わせて適宜「エンジンバルブ」という。)の軸端部(バルブエンド)を押動する。こうしてカムフォロアを介してエンジンバルブの開閉動がなされる。カムフォロアは、カムにより直接的にエンジンバルブの開閉動がなされる直打式でも、ロッカーアームを介して間接的にエンジンバルブの開閉動がなされるロッカーアーム式でもよい。
《Valve drive system member for internal combustion engine》
<Cam follower>
(1) The cam follower is driven by a cam driven by an engine or the like, and pushes a shaft end portion (valve end) of an intake valve or exhaust valve of the engine (referred to as “engine valve” as appropriate). Thus, the engine valve is opened and closed through the cam follower. The cam follower may be a direct hit type in which the opening and closing movement of the engine valve is directly performed by a cam, or a rocker arm type in which the opening and closing movement of the engine valve is indirectly performed through a rocker arm.

直打式の場合、カムフォロアは、バルブエンドの往復動をガイドするバルブリフター自身でも、バルブクリアランスを調整するためにバルブリフターとカム面との間に介在させるシムでもよい。このようなバルブリフターやシムの摺接面は、カム面から大きな衝撃力や接触面圧等を受け易い。このような場合でも摺接面を被覆する本発明に係るDLC−B膜は、安定した摩擦低減効果を発揮する。従って、使用環境が厳しいバルブリフターまたはシムこそ、本発明に係るカムフォロアとして好適である。   In the case of direct hitting, the cam follower may be a valve lifter itself that guides the reciprocating movement of the valve end, or a shim interposed between the valve lifter and the cam surface to adjust the valve clearance. Such a slidable contact surface of the valve lifter or shim is likely to receive a large impact force or contact surface pressure from the cam surface. Even in such a case, the DLC-B film according to the present invention that covers the sliding contact surface exhibits a stable friction reducing effect. Therefore, a valve lifter or shim having a severe use environment is suitable as the cam follower according to the present invention.

(2)DLC−B膜で被覆されるカムフォロアは、その材質(基材)を問わないが、通常は鉄鋼(炭素鋼または合金鋼)材からなる。ちなみに、カムは鋳鉄製または鉄鋼製等からなる。なお、カムのカム面には、耐摩耗性を向上させる浸炭等の表面改質がされていることが多い。 (2) The cam follower covered with the DLC-B film is not limited to the material (base material), but is usually made of steel (carbon steel or alloy steel). Incidentally, the cam is made of cast iron or steel. Note that the cam surface of the cam is often subjected to surface modification such as carburizing to improve wear resistance.

DLC−B膜の被覆前のカムフォロアは、表面粗さRa(中心線平均粗さ/JIS)が0.1μm以下、0.04μm以下さらには0.01μm以下であると好ましい。またカムフォロアの基材表面とDLC−B膜との密着性を向上させるために、両者間にCrやCrC等からなる中間層が一層以上形成されていると好ましい。   The cam follower before coating with the DLC-B film preferably has a surface roughness Ra (centerline average roughness / JIS) of 0.1 μm or less, 0.04 μm or less, and further 0.01 μm or less. In order to improve the adhesion between the substrate surface of the cam follower and the DLC-B film, it is preferable that one or more intermediate layers made of Cr, CrC or the like be formed between them.

〈非晶質炭素膜(DLC−B膜)〉
(1)組成
カムフォロアの摺接面を構成するDLC−B膜は、B、Hおよび残部(主成分)であるCを必須元素とする。
<Amorphous carbon film (DLC-B film)>
(1) Composition The DLC-B film constituting the slidable contact surface of the cam follower contains B, H and the balance (main component) C as essential elements.

B量は、膜全体を100原子%(適宜「%」という。)としたときに、4〜25%、5〜23%、6〜21%、6.5〜20%さらには7〜18%であると好ましい。Bが過少ではDLC−B膜の摩擦係数や硬さが過大となり好ましくない。Bが過多になると、良好なDLC−B膜の形成が困難となる。   The amount of B is 4 to 25%, 5 to 23%, 6 to 21%, 6.5 to 20%, or 7 to 18% when the entire film is 100 atomic% (referred to as “%” as appropriate). Is preferable. If B is too small, the coefficient of friction and hardness of the DLC-B film will be excessive, which is not preferable. When B is excessive, it becomes difficult to form a good DLC-B film.

H量は、膜全体を100%としたときに5〜25%、10〜23%さらには15〜22%であると好ましい。Hが過少では、DLC−B膜が過度に硬質となり靱性が低下し得る。Hが過多では、DLC−B膜が過度に軟質となって耐摩耗性が低下する。   The amount of H is preferably 5 to 25%, 10 to 23%, and more preferably 15 to 22% when the entire film is 100%. When H is too small, the DLC-B film becomes excessively hard and the toughness can be lowered. When H is excessive, the DLC-B film becomes excessively soft and wear resistance decreases.

O量は、膜全体を100%としたときに、6%未満さらには3%未満であると好ましい。O量が過多になると、DLC−B膜が過度に軟化したり、良好な膜形成が困難となって好ましくない。   The amount of O is preferably less than 6% or even less than 3% when the entire film is taken as 100%. An excessive amount of O is not preferable because the DLC-B film is excessively softened or a good film formation is difficult.

上述した元素以外に、本発明に係るDLC−B膜は、その摺動特性等を改善する改質元素や不可避不純物を含み得る。このような元素として、Al、Mn、Mo、Si、Ti、Cr、W、V、Ni等がある。これら元素の含有量は問わないが、8原子%未満さらには4原子%未満であると好ましい。   In addition to the elements described above, the DLC-B film according to the present invention may contain a modifying element or an unavoidable impurity that improves its sliding characteristics. Examples of such elements include Al, Mn, Mo, Si, Ti, Cr, W, V, and Ni. The content of these elements is not limited, but it is preferably less than 8 atomic% or even less than 4 atomic%.

なお、非晶質炭素膜の組成は、DLC−B膜の厚さ方向に関して、均質的でも多少変化していても、さらには傾斜していてもよい。   Note that the composition of the amorphous carbon film may be homogeneous, slightly changed, or may be inclined with respect to the thickness direction of the DLC-B film.

(2)構造・組織
本発明に係るDLC−B膜は、従来のDLC膜と同様にアモルファス構造からなるが、それのみならず、炭化物を実質的に含まず、無配向性組織からなると、より好ましいことがわかっている。
(2) Structure / Organization The DLC-B film according to the present invention has an amorphous structure as in the conventional DLC film. However, the DLC-B film does not substantially contain carbides and has a non-oriented structure. It turns out to be preferable.

先ず、DLC−B膜中に炭化物があると、潤滑油中に含まれる添加剤等がその炭化物近傍に凝集し易くなる。このためDLC−B膜中に炭化物が実質的に含まれないと、カム面と摺接するDLC−B膜上に均一な境界膜が形成され易くなり、摩擦係数の安定した低減が図られる。なお、詳細は後述するが、炭化物の有無は、DLC−B膜を透過型電子顕微鏡(TEM)で観察して得られた電子線回折像に基づいて判断される。   First, if there is a carbide in the DLC-B film, the additives contained in the lubricating oil easily aggregate near the carbide. Therefore, if the carbide is not substantially contained in the DLC-B film, a uniform boundary film is easily formed on the DLC-B film that is in sliding contact with the cam surface, and the friction coefficient is stably reduced. Although details will be described later, the presence or absence of carbide is determined based on an electron beam diffraction image obtained by observing the DLC-B film with a transmission electron microscope (TEM).

また、DLC−B膜中に配向性がある場合も、上述した均一的な境界膜の形成が阻害されるので、本発明に係るDLC−B膜は実質的に配向していない無配向性組織からなると好ましい。この配向性も、電子線回折像のグラファイト(002)面に帰属する回折リングの形状(ほぼ真円か否か)から判断される。   In addition, even when the DLC-B film has orientation, the formation of the above-described uniform boundary film is inhibited, so that the DLC-B film according to the present invention is not substantially oriented. Preferably it consists of. This orientation is also determined from the shape of the diffraction ring (substantially a perfect circle) belonging to the graphite (002) plane of the electron diffraction image.

(3)特性
カムフォロアの摺接面を形成するDLC−B膜は、カムフォロアを構成する鉄鋼(炭素鋼または合金鋼)基材よりも硬く、この鉄鋼基材よりも弾性率が小さいと好ましい。これにより本発明に係るDLC−B膜は、高耐摩耗性と、高靱性または高耐衝撃性とを発揮し得る。
(3) Characteristics The DLC-B film forming the sliding contact surface of the cam follower is preferably harder than the steel (carbon steel or alloy steel) base material constituting the cam follower, and preferably has a smaller elastic modulus than this steel base material. Thereby, the DLC-B film according to the present invention can exhibit high wear resistance and high toughness or high impact resistance.

DLC−B膜の硬さは、例えば10GPa以上、12GPa以上さらには14GPa以上であると好ましい。もっとも、硬さが過大になるとDLC−B膜の割れ等を生じ易くなるため、30GPa以下さらには25GPa以下であると好ましい。ちなみに、鉄鋼基材は、熱処理を施すことにより8GPaぐらいまで硬さが向上し得る。   The hardness of the DLC-B film is preferably, for example, 10 GPa or more, 12 GPa or more, and further 14 GPa or more. However, if the hardness is excessive, cracking of the DLC-B film is likely to occur, and therefore it is preferably 30 GPa or less, more preferably 25 GPa or less. Incidentally, the steel substrate can be improved in hardness to about 8 GPa by performing heat treatment.

DLC−B膜の弾性率は、例えば200GPa以下、190GPa以下さらには170GPa以下であると好ましい。もっとも、弾性率が過小になると硬さも低下するため、弾性率は100GPa以上さらには120GPaであると好ましい。   The elastic modulus of the DLC-B film is preferably 200 GPa or less, 190 GPa or less, and further 170 GPa or less, for example. However, when the elastic modulus is too small, the hardness is also lowered, and therefore the elastic modulus is preferably 100 GPa or more and further 120 GPa.

DLC−B膜の密着力は、安定した耐摩耗性を維持する観点から、例えば、スクラッチ試験(CSM社製 REVETEST)で20N以上さらには25N以上であると好ましい。   From the viewpoint of maintaining stable wear resistance, for example, the adhesion of the DLC-B film is preferably 20 N or more, and more preferably 25 N or more in a scratch test (REVETEST manufactured by CSM).

DLC−B膜は、表面粗さRaが0.05μm以下、0.02μm以下さらには0.01μm以下であると好ましい。Raが過大になると、摩擦係数の増加や耐摩耗性の低下を生じ得る。表面粗さの下限値は問わないが、Raが0.001μm以上さらには0.005μm以上であると、潤滑油中の添加剤がDLC−B膜の表面に吸着して境界膜が形成され易くなって好ましい。   The DLC-B film preferably has a surface roughness Ra of 0.05 μm or less, 0.02 μm or less, and further 0.01 μm or less. If Ra is excessive, the friction coefficient may increase and the wear resistance may decrease. The lower limit of the surface roughness is not limited, but when Ra is 0.001 μm or more, further 0.005 μm or more, the additive in the lubricating oil is easily adsorbed on the surface of the DLC-B film and a boundary film is easily formed. It is preferable.

DLC−B膜の膜厚は問わないが、0.5〜3μmさらには0.7〜2μmであると好ましい。膜厚が過小では耐久性が不十分となり好ましくない。   Although the film thickness of a DLC-B film | membrane is not ask | required, it is preferable in it being 0.5-3 micrometers further 0.7-2 micrometers. If the film thickness is too small, the durability becomes insufficient, which is not preferable.

《内燃機関用バルブ駆動系部材の使用方法》
〈潤滑油〉
本発明の内燃機関用バルブ駆動系部材は、潤滑油が存在する湿式条件下で使用される場合に優れた摺動特性を発揮する。本発明では潤滑油の種類を問わないが、潤滑油がMoDTC非含有オイルである場合に、本発明に係るDLC−B膜は他の表面処理膜等よりも特に優れた特性を発揮する。
<< Usage of valve drive system member for internal combustion engine >>
<Lubricant>
The valve drive system member for an internal combustion engine of the present invention exhibits excellent sliding characteristics when used under wet conditions where lubricating oil is present. In the present invention, the type of lubricating oil is not limited, but when the lubricating oil is a MoDTC-free oil, the DLC-B film according to the present invention exhibits particularly superior characteristics than other surface treatment films and the like.

このMoDTC非含有オイルは、全体を100質量%としたときに、硫黄(S)またはリン(P)の一種以上と、亜鉛(Zn)、カルシウム(Ca)、マグネシウム(Mg)、ナトリウム(Na)、バリウム(Ba)または銅(Cu)の一種以上とを合計で500ppm以上含むと好適である。   This MoDTC-free oil is composed of one or more of sulfur (S) or phosphorus (P), zinc (Zn), calcium (Ca), magnesium (Mg), sodium (Na) when the total amount is 100% by mass. It is preferable that 500 ppm or more in total of at least one of barium (Ba) and copper (Cu) is contained.

SやP等の負イオンとなる元素は、Zn、Ca、Mg、Na、Ba、Cu等の正イオンとなる元素と協働して、DLC−B膜の表面に優先的に吸着され、摩擦係数の低減に有効な境界膜が形成され得る。これらの元素が500ppm以上さらには1000ppm以上あると、摩擦調整剤であるMoDTCが含有されていなくても、従来と同等以上の摩擦低減効果がより発揮され易くなる。   Elements that become negative ions such as S and P are preferentially adsorbed on the surface of the DLC-B film in cooperation with elements that become positive ions such as Zn, Ca, Mg, Na, Ba, Cu, and friction. A boundary film effective for reducing the coefficient can be formed. When these elements are 500 ppm or more, further 1000 ppm or more, even if the friction modifier MoDTC is not contained, a friction reduction effect equivalent to or higher than that of the conventional one is more easily exhibited.

なお、MoDTC非含有オイルの場合でも、MoDTCとは異なる形態でMoを含み得る。例えば、Moは酸化防止剤等として有効であり、MoDTC非含有オイルも100ppm以下のMoを含むと好ましい。   Even in the case of MoDTC-free oil, Mo may be included in a form different from that of MoDTC. For example, Mo is effective as an antioxidant and the like, and MoDTC-free oil preferably contains 100 ppm or less of Mo.

《内燃機関用バルブ駆動系部材の製造方法(DLC−B膜の成膜方法)》
本発明の内燃機関用バルブ駆動系部材は、カムフォロアの表面(さらには中間層の表面)にDLC−B膜を成膜することにより得られる。ここではDLC−B膜の成膜方法について詳述する。
<< Method for Manufacturing Valve Drive System Member for Internal Combustion Engine (DLC-B Film Formation Method) >>
The valve drive system member for an internal combustion engine of the present invention is obtained by forming a DLC-B film on the surface of the cam follower (and the surface of the intermediate layer). Here, a method for forming a DLC-B film will be described in detail.

DLC−B膜の成膜方法は問わないが、例えばスパッタリング法、特にアンバランスドマグネトロンスパッタリング(UBMS)法によると、緻密なDLC−B膜が効率的に形成されて好ましい。   The method for forming the DLC-B film is not limited, but, for example, a sputtering method, particularly an unbalanced magnetron sputtering (UBMS) method, is preferable because a dense DLC-B film is efficiently formed.

DLC−B膜の成膜前に、チャンバー内を10−5Pa以下まで真空排気するか、チャンバー内に水素ガスを導入して、成膜前のチャンバー内に残存する酸素および水分を除去すると好ましい。水素ガスの導入量は、DLC−B膜中のH量に応じて調整するとよい。 Before forming the DLC-B film, it is preferable to evacuate the chamber to 10 −5 Pa or less, or introduce hydrogen gas into the chamber to remove oxygen and moisture remaining in the chamber before film formation. . The amount of hydrogen gas introduced may be adjusted according to the amount of H in the DLC-B film.

スパッタガスは、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、窒素(N2)ガスなどの希ガスの一種以上を用いることができる。H含有ガスとしては、メタン(CH)、アセチレン(C)、ベンゼン(C)などの炭化水素系ガスの一種以上を用いることができる。 As the sputtering gas, for example, one or more of rare gases such as argon (Ar) gas, helium (He) gas, and nitrogen (N 2) gas can be used. As the H-containing gas, one or more hydrocarbon-based gases such as methane (CH 4 ), acetylene (C 2 H 2 ), and benzene (C 6 H 6 ) can be used.

ガスの流量は、例えば、希ガス:200〜500sccm、炭化水素ガス:10〜25sccmとするとよい。これらに加えて、Hガス:1〜25sccmを導入して、膜中のO量や不純物の混入を低減させてもよい。なお、単位:sccmは、大気圧(1013hPa)の室温における流量である。 The gas flow rate may be, for example, noble gas: 200 to 500 sccm and hydrocarbon gas: 10 to 25 sccm. In addition to these, H 2 gas: 1 to 25 sccm may be introduced to reduce the amount of O and impurities in the film. The unit: sccm is a flow rate at room temperature of atmospheric pressure (1013 hPa).

DLC−B膜の成膜温度は150〜300℃であると、炭化物の生成を抑制できて好ましい。なお、成膜温度は、成膜中の基材の表面温度であり、熱電対または放熱温度計により測定され得る。   The film forming temperature of the DLC-B film is preferably 150 to 300 ° C., because the formation of carbides can be suppressed. The film formation temperature is the surface temperature of the base material during film formation, and can be measured by a thermocouple or a heat radiation thermometer.

この他、ガス圧は0.5〜1.5Pa、ターゲットに印可する電力は1kW〜3kW、カムフォロア(基材)近傍の磁場の強度は6〜10mTとしてスパッタリングを行うと好ましい。さらには基材へ100〜500Vの負のバイアス電圧を印加してもよい。   In addition, it is preferable to perform sputtering with a gas pressure of 0.5 to 1.5 Pa, a power applied to the target of 1 kW to 3 kW, and a magnetic field strength in the vicinity of the cam follower (base material) of 6 to 10 mT. Further, a negative bias voltage of 100 to 500 V may be applied to the substrate.

スパッタリング法の他、アークイオンプレーティング(AIP)法によりDLC−B膜を成膜してもよい。AIP法は、真空中でアーク放電を生じさせ、各ターゲットから蒸発させたCおよびB等を、反応容器内の処理ガスと反応させて、基材の表面にDLC−B膜を形成する方法である。   In addition to the sputtering method, the DLC-B film may be formed by an arc ion plating (AIP) method. The AIP method is a method of forming a DLC-B film on the surface of a substrate by causing arc discharge in a vacuum and reacting C and B evaporated from each target with a processing gas in a reaction vessel. is there.

実施例を挙げて本発明をより具体的に説明する。
《非晶質炭素膜》
先ず内燃機関用バルブ駆動系部材に適した非晶質炭素膜(DLC膜)を選定するため、試験用の基材表面に表1に示す種々の被膜を形成した試料を製作した。
The present invention will be described more specifically with reference to examples.
《Amorphous carbon film》
First, in order to select an amorphous carbon film (DLC film) suitable for a valve drive system member for an internal combustion engine, samples in which various coatings shown in Table 1 were formed on the test substrate surface were manufactured.

〈基材〉
基材として、6.3mm×15.7mm×10.1mmの鋼材(マルテンサイト系ステンレス鋼:SUS440C)を用意した。成膜前の表面硬さはHRC60、表面粗さRa(中心線平均粗さ/JIS)は0.005μmであった。
<Base material>
A steel material (martensitic stainless steel: SUS440C) of 6.3 mm × 15.7 mm × 10.1 mm was prepared as a base material. The surface hardness before film formation was HRC60, and the surface roughness Ra (centerline average roughness / JIS) was 0.005 μm.

〈成膜〉
基材表面上へのDLC膜の成膜は、アンバランスドマグネトロンスパッタリング装置(株式会社神戸製鋼所製UBMS504)を用いて行った。具体的には次の通りである。
<Film formation>
The DLC film was formed on the substrate surface using an unbalanced magnetron sputtering apparatus (UBMS504 manufactured by Kobe Steel, Ltd.). Specifically, it is as follows.

(1)中間層の形成
DLC膜を形成する前に、予め基材表面に中間層を形成した。具体的には、上記のスパッタリング装置内を1×10−5Paまで排気して、基材表面に対向配置した純クロムターゲットをArガスでスパッタした。こうして基材表面に柱状晶のCr膜を形成した。これに続けて、CHガスを装置内へ導入し、Cr膜の表面にCr−C系膜を形成した。こうして合計の厚さが約0.8μm程度の中間層を形成した。なお本実施例を通じて、基材表面とターゲット表面との距離は100〜800mmに調整した。なお、膜厚はCMS社製Calotestにより特定した(以下同様)。
(1) Formation of intermediate layer Before forming the DLC film, an intermediate layer was formed on the surface of the substrate in advance. Specifically, the inside of the sputtering apparatus was evacuated to 1 × 10 −5 Pa, and a pure chromium target arranged to face the substrate surface was sputtered with Ar gas. Thus, a columnar Cr film was formed on the substrate surface. Subsequently, CH 4 gas was introduced into the apparatus to form a Cr—C film on the surface of the Cr film. Thus, an intermediate layer having a total thickness of about 0.8 μm was formed. Throughout this example, the distance between the substrate surface and the target surface was adjusted to 100 to 800 mm. In addition, the film thickness was specified by Caltest made by CMS (hereinafter the same).

(2)DLC−B膜の形成(試料No.1〜7)
上記と同様にして、基材表面に対向配置したホウ素源であるBCターゲットおよびグラファイトターゲットをArガスでスパッタリングした。これに続けて、200sccmのArガス、10sccmのCHガス(炭化水素系ガス)および1sccmのHガスを装置内へ導入した。このときの装置内のガス圧は0.7Paであった。こうして中間層およびDLC−B膜からなる被膜が、基材表面に形成された試料を得た。なお、DLC−B膜の厚さは約1.5μmであった。
(2) Formation of DLC-B film (Sample Nos. 1 to 7)
In the same manner as described above, a B 4 C target and a graphite target, which are boron sources arranged opposite to the substrate surface, were sputtered with Ar gas. Subsequently, 200 sccm of Ar gas, 10 sccm of CH 4 gas (hydrocarbon gas) and 1 sccm of H 2 gas were introduced into the apparatus. At this time, the gas pressure in the apparatus was 0.7 Pa. In this way, a sample was obtained in which the coating composed of the intermediate layer and the DLC-B film was formed on the surface of the substrate. The thickness of the DLC-B film was about 1.5 μm.

(3)他のDLC膜(試料No.C1〜C4)
DLC−B膜以外のDLC膜を成膜した試料も用意した。いずれの場合も、中間層を形成した基材表面にDLC膜を形成した。具体的には、表1に示した試料No.C1のDLC−Si膜は、特許4372663号公報に記載されている直流プラズマCVD法により形成した。試料No.C2のDLC−Ti膜は、ターゲットをBCからTiに替えてDLC−B膜の場合と同様な方法で形成した。試料No.C3のDLC−H膜は、ターゲットをCに変更し、CHガスを導入して形成した。試料No.C4の水素フリーDLC膜は、特開2004−115826号公報に記載されているアークイオンプレティーング法により形成した。
(3) Other DLC films (Sample Nos. C1 to C4)
A sample on which a DLC film other than the DLC-B film was formed was also prepared. In either case, a DLC film was formed on the surface of the base material on which the intermediate layer was formed. Specifically, the sample No. shown in Table 1 was used. The C1 DLC-Si film was formed by the DC plasma CVD method described in Japanese Patent No. 4372663. Sample No. The C2 DLC-Ti film was formed by the same method as in the case of the DLC-B film by changing the target from B 4 C to Ti. Sample No. The C3 DLC-H film was formed by changing the target to C and introducing CH 4 gas. Sample No. The hydrogen free DLC film of C4 was formed by the arc ion plating method described in Japanese Patent Application Laid-Open No. 2004-115826.

〈測定・評価〉
表1に示した各DLC膜について、膜組成、膜構造、配向性、表面硬さ(ナノ硬さ)、弾性率、表面粗さおよび摩擦係数をそれぞれ測定した。
<Measurement / Evaluation>
For each DLC film shown in Table 1, the film composition, film structure, orientation, surface hardness (nano hardness), elastic modulus, surface roughness and friction coefficient were measured.

(1)膜組成
膜中のB、Si、TiおよびOは、電子プローブ微小部分析法(EPMA)、X線光電子分光法(XPS)、オージェ電子分光法(AES)またはラザフォード後方散乱法(RBS)により定量した。Hは、弾性反跳粒子検出法(ERDA)により定量した。ERDAは、2MeVのヘリウムイオンビームを膜表面に照射して、その膜からはじき出される水素を半導体検出器により検出して水素濃度を測定する方法である。こうして得られたDLC膜の組成を表1に併せて示した。
(1) Film composition B, Si, Ti and O in the film are electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), or Rutherford backscattering (RBS). ). H was quantified by elastic recoil detection method (ERDA). ERDA is a method of measuring the hydrogen concentration by irradiating the surface of a film with a 2 MeV helium ion beam, detecting hydrogen ejected from the film with a semiconductor detector. The composition of the DLC film thus obtained is also shown in Table 1.

(2)膜構造
試料No.5のDLC−B膜の厚さ方向の断面中央部に電子線を照射して得た電子線回折像を図1Aに示した。この電子線回折像は透過型電子顕微鏡(TEM))を用いて、図1Bに示すTEM像の微小領域No.3について観察したものである。この電子線回折像から、ハロー状のパターンが観察されており、試料No.5のDLC−B膜がアモルファス構造であることがわかる。なお、他の試料のDLC膜も同様な電子線回折像が観察されており、アモルファス構造であった。
(2) Film structure Sample No. An electron beam diffraction image obtained by irradiating an electron beam to the central portion of the cross section in the thickness direction of the DLC-B film No. 5 is shown in FIG. 1A. This electron beam diffraction image is obtained by using a transmission electron microscope (TEM)) to obtain a micro region No. 1 of the TEM image shown in FIG. 3 is observed. From this electron beam diffraction image, a halo-like pattern is observed. 5 shows that the DLC-B film of No. 5 has an amorphous structure. In addition, similar electron beam diffraction images were observed in the DLC films of other samples, and they had an amorphous structure.

また図1Bに示したTEM像から、試料No.5のDLC−B膜は、Cr層およびCrC層からなるCr系中間層上に、約1μmの厚さで均一的に形成されていることがわかる。   Further, from the TEM image shown in FIG. 5 shows that the DLC-B film 5 is uniformly formed with a thickness of about 1 μm on the Cr-based intermediate layer composed of the Cr layer and the CrC layer.

このDLC−B膜の密着力は、スクラッチ試験(CSM社製 REVETEST)により調べたところ、30N以上であった。従って中間層を介在させることにより、DLC−B膜は高密着性となることがわかった。   The adhesion of the DLC-B film was 30 N or more when examined by a scratch test (REVETEST manufactured by CSM). Therefore, it was found that the DLC-B film has high adhesion by interposing the intermediate layer.

また図1Bに示した4つの微小領域を、電子エネルギー損失分光法(EELS)により分析して得た、CおよびBに関するスペクトル像を図1Cに示した。先ずCに関して観ると、π結合を指標するピーク(π*エッジ)は認められたが、σ結合を指標するピーク(σ*エッジ)は認められずブロードとなっていた。このことから、本実施例のDLC−B膜も共有結合を有していると考えられる。   Moreover, the spectrum image regarding C and B obtained by analyzing the four minute regions shown in FIG. 1B by electron energy loss spectroscopy (EELS) is shown in FIG. 1C. First, regarding C, a peak (π * edge) indicating a π bond was recognized, but a peak (σ * edge) indicating a σ bond was not recognized and was broad. From this, it is considered that the DLC-B film of this example also has a covalent bond.

次にBに関して観ると、検出されたものの、そのスペクトルは全体的にブロードであり、炭化物の検出は認められなかった。この傾向はB量が多い他の試料についても同様であった。従って本実施例のDLC−B膜は炭化物を実質的に含まないことがわかった。なお、上述した内容はEELS分析した4つの領域全てについていえ、本実施例のDLC−B膜は膜厚方向に均質的であった。   Next, when it observed about B, although it detected, the spectrum was broad broadly and the detection of the carbide | carbonized_material was not recognized. This tendency was the same for other samples with a large amount of B. Therefore, it was found that the DLC-B film of this example substantially does not contain carbide. Note that the above description applies to all four regions subjected to EELS analysis, and the DLC-B film of this example was homogeneous in the film thickness direction.

(3)配向性
試料No.5のDLC−B膜の配向性を、前述した電子線回折像(図1A)に基づいて分析した結果を図2Aに示した。また試料No.C4のDLC膜について同様に分析した結果を図2Bに示した。なお、この結果は、電子線回折パターンの強度を、回折リングの径方向に延びる直交二方向(図1Aの水平方向(H方向)および垂直方向(V方向))に沿ってそれぞれ測定し、それらを解析ソフトで処理したものである。図2Aおよび図2Bのグラフの横軸は透過波と回折波の距離(r:単位はnm−1)であり、縦軸は強度である。
(3) Orientation Sample No. FIG. 2A shows the result of analyzing the orientation of the DLC-B film No. 5 based on the electron diffraction pattern (FIG. 1A) described above. Sample No. FIG. 2B shows the result of the same analysis on the C4 DLC 0 film. This result shows that the intensity of the electron diffraction pattern is measured along two orthogonal directions (horizontal direction (H direction) and vertical direction (V direction) in FIG. 1A) extending in the radial direction of the diffraction ring. Is processed by analysis software. 2A and 2B, the horizontal axis is the distance between the transmitted wave and the diffracted wave (r: unit is nm −1 ), and the vertical axis is the intensity.

図2Aのグラフでは、V方向およびH方向ともに、r値が大きくなるにしたがい強度がなだらかに減少し、両者間で電子線回折パターンに強度差がなかった。このことからDLC−B膜は、炭化物を含まず、配向していない(無配向性組織からなる)ことがわかった。一方、図2Bのグラフでは、V方向とH方向で電子線回折パターンに強度差が現れており(r=2.803(1/nm)近傍)、配向していることが明らかとなった。ちなみに、そのr値をJCPDSカードに記載の面間隔と照合すると、グラファイト(002)面に帰属することから、(002)配向であることも明らかとなった。同様な配向は、試料No.C1のDLC−Si膜についても確認している。   In the graph of FIG. 2A, the intensity gradually decreased as the r value increased in both the V direction and the H direction, and there was no intensity difference in the electron diffraction pattern between the two. This indicates that the DLC-B film does not contain carbide and is not oriented (consists of a non-oriented structure). On the other hand, in the graph of FIG. 2B, an intensity difference appears in the electron diffraction pattern between the V direction and the H direction (r = 2.803 (1 / nm) vicinity), and it is clear that the films are oriented. Incidentally, when the r value was compared with the face spacing described in the JCPDS card, it was found to be (002) orientation because it belonged to the graphite (002) face. A similar orientation was obtained for sample no. The C1 DLC-Si film has also been confirmed.

(4)機械的性状
各DLC膜の表面硬さおよび弾性率は、ナノインデンター試験機(株式会社東陽テクニカ製MTS)による測定値から求めた。表面粗さは、非接触の表面形状測定機(Zygo社製NewView5000)により測定した。こうして得られたDLC膜の性状を表1に併せて示した。
(4) Mechanical properties The surface hardness and elastic modulus of each DLC film were determined from the measured values with a nanoindenter testing machine (MTS manufactured by Toyo Corporation). The surface roughness was measured with a non-contact surface shape measuring instrument (New View 5000, manufactured by Zygo). The properties of the DLC film thus obtained are also shown in Table 1.

表1の結果に基づき、DLC−B膜に関するB量と硬さの関係を図3に示した。これからわかるように、DLC−B膜の硬さはB量の増加と共に減少するが、B量が5%以上さらには6%以上でその硬さは14〜17GPaの範囲で安定化した。この硬さは、試料No.C1のDLC−Si膜の硬さと同等であるが、基材の硬さ(6GPa)よりは十分に大きい。   Based on the results in Table 1, the relationship between the amount of B and the hardness regarding the DLC-B film is shown in FIG. As can be seen, the hardness of the DLC-B film decreases with an increase in the amount of B, but the hardness is stabilized in the range of 14 to 17 GPa when the amount of B is 5% or more, further 6% or more. This hardness is the same as Sample No. Although it is equivalent to the hardness of the CLC DLC-Si film, it is sufficiently larger than the hardness of the substrate (6 GPa).

DLC−B膜の弾性率についても、表1から明らかなように、硬さと同様な傾向が観られた。またDLC−B膜の弾性率は、B量を問わず基材(弾性率200GPa)よりも小さかった。特にB量が4%以上のDLC−B膜は、弾性率が160〜120GPaと低く、弾性に富むことが明らかとなった。   As is clear from Table 1, the same tendency as hardness was observed for the elastic modulus of the DLC-B film. The elastic modulus of the DLC-B film was smaller than that of the base material (elastic modulus 200 GPa) regardless of the amount of B. In particular, it was revealed that a DLC-B film having a B content of 4% or more has a low elastic modulus of 160 to 120 GPa and is rich in elasticity.

(5)摩擦特性
表1に示すDLC膜の摩擦係数を、リング・オン・ブロック型摩擦試験機(LFW−1、FALEX社製)を用いて測定した。この摩擦試験は、潤滑油が存在する湿式条件下で、上述した基材(ブロック)表面にあるDLC膜と相手材(リング)を一定の摩擦条件下で摺動させてなされる。相手材には、浸炭鋼材(SAE 4620)からなり、表面粗さRz(十点平均粗さ/JIS)が13μmのリング(φ35mm、幅8mm)を用いた。潤滑油には、摩擦調整剤であるMoDTC(ジアルキルジチオカルバミン酸モリブデン)を含有しないエンジンオイル(トヨタキャッスル SM 5W−30(SAE粘度規格)/ILSAC規格:GF−4)を用いた。摩擦条件は、荷重:130N(最大ヘルツ面圧:210MPa)、摺動速度:0.3m/s(回転数:160rpm)、油温:80℃、摺動時間:30分とした。ブロックとリングの摺動部への潤滑油の供給は、潤滑油中に半浴状態にあるリングを回転させることにより行った。こうして得られたそれぞれのDLC膜の摩擦係数を図4Aおよび図4Bに示した。なお、ここで示した摩擦係数は、試験終了直前に測定した値である。
(5) Friction characteristics The friction coefficient of the DLC film shown in Table 1 was measured using a ring-on-block friction tester (LFW-1, manufactured by FALEX). This friction test is performed by sliding the DLC film and the counterpart material (ring) on the surface of the base material (block) described above under a certain friction condition under wet conditions in which lubricating oil is present. A ring (φ 35 mm, width 8 mm) made of carburized steel (SAE 4620) and having a surface roughness Rz (10-point average roughness / JIS) of 13 μm was used as the counterpart material. As the lubricating oil, an engine oil (Toyota Castle SM 5W-30 (SAE viscosity standard) / ILSAC standard: GF-4) not containing MoDTC (molybdenum dialkyldithiocarbamate) as a friction modifier was used. The friction conditions were as follows: load: 130 N (maximum Hertz surface pressure: 210 MPa), sliding speed: 0.3 m / s (rotation speed: 160 rpm), oil temperature: 80 ° C., sliding time: 30 minutes. Lubricating oil was supplied to the sliding part of the block and the ring by rotating the ring in a half bath state in the lubricating oil. The friction coefficients of the respective DLC films thus obtained are shown in FIGS. 4A and 4B. In addition, the friction coefficient shown here is a value measured immediately before the end of the test.

先ず図4Aから明らかなように、湿式条件下における鋼材に対する摩擦係数は、DLC−B膜が他のDLC膜よりも著しく低くなった。具体的にいうと、DLC−B膜の摩擦係数は他のDLC膜よりも40〜50%程度低くなった。   First, as apparent from FIG. 4A, the coefficient of friction with respect to the steel material under wet conditions was significantly lower in the DLC-B film than in other DLC films. Specifically, the friction coefficient of the DLC-B film was lower by about 40 to 50% than the other DLC films.

次に図4Bから明らかなように、湿式条件下における鋼材に対する摩擦係数は、DLC−B膜中のB量によっても変化した。具体的にいうと、DLC−B膜の摩擦係数は、B量の増加と共に低下し、B量が4%以上で0.03〜0.05程度の低値で安定化した。   Next, as apparent from FIG. 4B, the coefficient of friction with respect to the steel material under wet conditions also changed depending on the amount of B in the DLC-B film. Specifically, the friction coefficient of the DLC-B film decreased with an increase in the B amount, and stabilized at a low value of about 0.03 to 0.05 when the B amount was 4% or more.

《内燃機関用バルブ駆動系部材》
前述した各種のDLC膜を表面に成膜したシム(カムフォロア)の摩擦摺動特性を、エンジン動弁系試験装置を用いて測定した。用いたシムは、シム径φ25mmのアウタ式シムである。
《Valve drive system member for internal combustion engine》
The frictional sliding characteristics of a shim (cam follower) having the above-described various DLC films formed on the surface thereof were measured using an engine valve system test device. The shim used is an outer shim having a shim diameter of φ25 mm.

〈試験装置〉
試験装置は、実機の小型ガソリンエンジン(排気量:1600cc)を構成する動弁系部分からなり、その一部であるカムシャフトはモータにより駆動とした。カムシャフトが回転すると、バルブスプリングにより所定の荷重(バネ荷重)を付与されたシムのDLC膜上を、カム面が摺接する。そしてシムは、カムプロフィールに沿った従動を行う。
<Test equipment>
The test apparatus consisted of a valve system part constituting an actual small gasoline engine (displacement: 1600 cc), and a camshaft as a part thereof was driven by a motor. When the camshaft rotates, the cam surface slides on the shim DLC film to which a predetermined load (spring load) is applied by the valve spring. Sim then follows the cam profile.

ここで用いたカムは、材質:鋳鉄、ベース円:φ28mm、カム幅:9.5mm、開き角:110°(クランク角度で220°)であり、カムプロフィールは開側と閉側でほぼ対称であった。バルブスプリングの取り付け荷重は220Nであった。   The cam used here is made of material: cast iron, base circle: φ28 mm, cam width: 9.5 mm, opening angle: 110 ° (crank angle is 220 °), and the cam profile is almost symmetrical between the open side and the closed side. there were. The mounting load of the valve spring was 220N.

この試験装置を運転した際に、シム面(DLC膜面)上におけるカム面との接触軌跡を図5Aに、両者の接触位置における接触荷重変動を図5Bにそれぞれ示した。図5Aからわかるように、カム面は、シムの中心から1mmほど離れた位置(接触開始点)から接触を開始した後、区間I → 区間II → 区間III と順に接触位置を変化させて、中心から1mmほど離れた位置(離脱点)でシムから離脱する。ここで図5Bからわかるように、接触開始点または離脱点の近傍で両面間に作用する接触荷重が急変する。具体的にいうと、そのとき、カム角度1degぐらいの間に接触荷重が220N程度変化している。このため、接触開始点近傍では、両者間に大きな衝撃力が作用していることがわかる。   When this test apparatus was operated, the contact locus with the cam surface on the shim surface (DLC film surface) is shown in FIG. 5A, and the contact load fluctuation at the contact position between them is shown in FIG. 5B. As can be seen from FIG. 5A, the cam surface starts contact from a position about 1 mm away from the center of the shim (contact start point), and then changes the contact position in the order of section I → section II → section III, From the shim at a position (disengagement point) about 1 mm away from the shim. Here, as can be seen from FIG. 5B, the contact load acting between both surfaces changes suddenly in the vicinity of the contact start point or the separation point. Specifically, at that time, the contact load changes by about 220 N during the cam angle of about 1 deg. For this reason, it can be seen that a large impact force acts between both in the vicinity of the contact start point.

〈摩擦摺動試験〉
この試験装置に、DLC−B膜(試料No.5)を被膜したシム(表面粗さRz:0.3μm)、 DLC−Si膜(試料No.C1)を被膜したシム(表面粗さRz:1.1μm)および前述した小型エンジン(市販品)に現実に採用されている現行シム(表面粗さRz:2.9μm)を順次組み付けて、それぞれの摩擦摺動特性を調べた。なお、各シムは全てSCM材(JIS)からなる。また現行シムは、その基材上にリュブライト処理が施されていた。
<Friction sliding test>
Shim (surface roughness Rz: 0.3 μm) coated with a DLC-B film (sample No. 5), shim (surface roughness Rz: coated with a DLC-Si film (sample No. C1)) 1.1 μm) and current shims (surface roughness Rz: 2.9 μm) actually used in the above-described small engine (commercially available) were sequentially assembled and the respective frictional sliding characteristics were examined. Each shim is made of SCM material (JIS). In addition, the current shim has been subjected to a rubrite treatment on its base material.

本試験は、いずれも潤滑油の存在する湿式条件下で行った。潤滑油には、MoDTCを含有しないエンジンオイル(トヨタキャッスル SN 0W−20/ILSAC規格:GF−5)またはMoDTCを含有するエンジンオイル(トヨタキャッスル SM 0W−20/ILSAC規格:GF−4)を用いた。前者をMoDTC非含有オイル、後者をMoDTC含有オイルと呼ぶ。それぞれの潤滑油を用いた場合における各シムの摩擦係数を求めた。その結果を図6Aおよび図6B(両者を併せて適宜「図6」という。)と、図7Aおよび図7B(両者を併せて適宜「図7」という。)に示した。なお、摩擦係数は開弁期間(カム角度で110°)の平均値とした。また試験時間はいずれの場合も20時間以上とした。   All of these tests were performed under wet conditions in the presence of lubricating oil. For the lubricating oil, use engine oil that does not contain MoDTC (Toyota Castle SN 0W-20 / ILSAC standard: GF-5) or engine oil that contains MoDTC (Toyota Castle SM 0W-20 / ILSAC standard: GF-4) It was. The former is called MoDTC-free oil, and the latter is called MoDTC-containing oil. The friction coefficient of each shim when each lubricant was used was determined. The results are shown in FIGS. 6A and 6B (both are appropriately referred to as “FIG. 6”) and FIGS. 7A and 7B (both are appropriately referred to as “FIG. 7”). The friction coefficient was the average value during the valve opening period (110 ° cam angle). In all cases, the test time was 20 hours or longer.

〈評価〉
(1)摩擦係数
図6に示した摩擦係数は、カムシャフトの回転速度:500rpm(エンジン回転速度:1000rpm相当)、潤滑油温:80℃のときの値である。DLC−B膜で被膜されたシムを用いると、潤滑油の種類に依らず、摩擦係数が0.04以下となり、他のいずれのシムよりも摩擦係数が低くなった。特に図6Aからわかるように、MoDTC非含有オイルを用いる場合、シムの摺動面にDLC−B膜を設けると、摩擦係数が著しく低下することが明らかとなった。具体的にいうと、現行シムとの比較でいうと約60%も摩擦係数が低下した。
<Evaluation>
(1) Friction coefficient The friction coefficient shown in FIG. 6 is a value when the camshaft rotation speed is 500 rpm (engine rotation speed: equivalent to 1000 rpm) and the lubricating oil temperature is 80 ° C. When a shim coated with a DLC-B film was used, the friction coefficient was 0.04 or less regardless of the type of lubricating oil, and the friction coefficient was lower than any other shim. As can be seen from FIG. 6A in particular, when MoDTC-free oil is used, it is clear that the friction coefficient is remarkably lowered when a DLC-B film is provided on the sliding surface of the shim. Specifically, the coefficient of friction decreased by about 60% compared with the current shim.

図7に示した摩擦係数は、潤滑油温:80℃として、カムシャフトの回転速度を250〜1000rpm(エンジン回転速度:500〜2000rpm相当)間で変化させたときの値である。この場合も図6の場合と同様に、DLC−B膜で被膜されたシムを用いると、潤滑油の種類に依らず、摩擦係数がいずれの回転速度でも、ほぼ0.04以下となり、他のいずれのシムよりも摩擦係数が低くなった。特に現行シムと比較すると、DLC−B膜で被膜されたシムの摩擦係数は、低回転域で約1/3となり、高回転域でも約1/2と、非常に低い値となった。   The friction coefficient shown in FIG. 7 is a value when the lubricating oil temperature is 80 ° C. and the rotational speed of the camshaft is changed between 250 to 1000 rpm (equivalent to the engine rotational speed: 500 to 2000 rpm). In this case as well, as in the case of FIG. 6, when a shim coated with a DLC-B film is used, the friction coefficient becomes almost 0.04 or less at any rotational speed regardless of the type of lubricating oil. The friction coefficient was lower than any of the shims. In particular, compared with the current shim, the friction coefficient of the shim coated with the DLC-B film was about 1/3 in the low rotation range and about 1/2 in the high rotation range, which was a very low value.

(2)摺動性
MoDTC含有オイルの湿式条件下で上記の試験を行った後、各シムのDLC−B膜(試料No.5)表面と、DLC−Si膜(試料No.C1)表面を光学式三次元形状測定機(Zygo社製New View)により観察した。それらの外観写真を図8Aおよび図8Bにそれぞれ示した。DLC−B膜からなるシムの摺接面には、シムの中心部から1mmほど離れた位置(接触開始点近傍)に微細な摺動痕が観察された程度で、欠け等は観察されなかった。一方、DLC−Si膜からなるシムの摺接面には、シムの中心部から1mmほど離れた位置(接触開始点近傍)に大きな摺動痕が観察され、さらには欠けも観察された。
(2) Slidability After performing the above test under the wet condition of MoDTC-containing oil, the surface of each DLC-B film (sample No. 5) and the surface of the DLC-Si film (sample No. C1) It observed with the optical three-dimensional shape measuring machine (New View by Zygo). The external appearance photographs thereof are shown in FIGS. 8A and 8B, respectively. On the sliding contact surface of the shim made of the DLC-B film, no chipping or the like was observed to the extent that a minute sliding mark was observed at a position about 1 mm away from the center of the shim (near the contact start point). . On the other hand, on the slidable contact surface of the shim made of the DLC-Si film, a large sliding mark was observed at a position about 1 mm away from the center of the shim (near the contact start point), and chipping was also observed.

同様の傾向は、MoDTC非含有オイルを用いた場合にも現れた。さらに、シムの取り付け荷重(バルブスプリングの取付け荷重)を220Nから、100Nまたは300Nに変更した場合にも、やはり同様の傾向が確認された。つまり、シム表面に形成されたDLC−B膜は、いずれの場合も欠け等の損傷が生じることなく、DLC−B膜は低摩擦な安定したシム摺接面を維持していた。   The same tendency appeared when using a MoDTC-free oil. Further, when the shim mounting load (valve spring mounting load) was changed from 220N to 100N or 300N, the same tendency was confirmed. That is, the DLC-B film formed on the shim surface did not cause damage such as chipping in any case, and the DLC-B film maintained a stable shim sliding surface with low friction.

このようにDLC−B膜で被覆されたシムの摺接面が大きな衝撃力を受けるにもかかわらず安定的であったのは、DLC−B膜が前述した適度な硬さと弾性を併せ持ち、DLC−Si膜等よりも遙かに高靱性(高耐衝撃性)であるためと考えられる。   The reason why the contact surface of the shim covered with the DLC-B film is stable despite receiving a large impact force is that the DLC-B film has both the above-mentioned appropriate hardness and elasticity, and the DLC. This is considered to be due to the much higher toughness (high impact resistance) than the Si film or the like.

ちなみに、その接触開始点で生じる衝撃力は、例えば100〜300N/deg(150〜250MPa/deg)であり、図5Bに示した場合なら220N/deg(230MPa/deg)となる。なお、シム間に作用する面圧は、カムの接触円半径および接触幅、バルブスプリングの取付け荷重、各部材の縦弾性係数等により算出した。   Incidentally, the impact force generated at the contact start point is, for example, 100 to 300 N / deg (150 to 250 MPa / deg), and is 220 N / deg (230 MPa / deg) in the case shown in FIG. 5B. The surface pressure acting between the shims was calculated from the contact circle radius and contact width of the cam, the mounting load of the valve spring, the longitudinal elastic modulus of each member, and the like.

Claims (11)

内燃機関の吸気または排気を制御するバルブの軸端部と該バルブを開閉駆動するカムとの間に介在すると共に、潤滑油が介在する湿式条件下で該カムのカム面と摺接して該カムに従動し得る摺接面を有するカムフォロアからなる内燃機関用バルブ駆動系部材であって、
該カムフォロアの摺接面は、全体を100原子%(単に「%」という。)としたときに5〜25%の水素(H)と4〜25%のホウ素(B)と残部である炭素(C)とからなる非晶質炭素膜を表面に有することを特徴とする内燃機関用バルブ駆動系部材。
The cam is interposed between a shaft end portion of a valve for controlling intake or exhaust of the internal combustion engine and a cam for driving the valve to open and close, and is in sliding contact with the cam surface of the cam under a wet condition in which lubricating oil is interposed. A valve drive system member for an internal combustion engine comprising a cam follower having a sliding contact surface that can be driven,
The sliding surface of the cam follower is 5 to 25% hydrogen (H), 4 to 25% boron (B), and the balance carbon (100% by mass). A valve drive system member for an internal combustion engine having an amorphous carbon film made of C) on the surface.
前記カムフォロアの摺接面には、前記カムの回動により150〜300MPa/degの衝撃力が作用し得る請求項1に記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to claim 1, wherein an impact force of 150 to 300 MPa / deg can act on the sliding contact surface of the cam follower by the rotation of the cam. 前記非晶質炭素膜は、無配向性組織からなる請求項1または2に記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to claim 1, wherein the amorphous carbon film is made of a non-oriented structure. 前記非晶質炭素膜は、炭化物を実質的に含まない請求項1〜3のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to claim 1, wherein the amorphous carbon film does not substantially contain carbide. 前記非晶質炭素膜は、前記カムフォロアを構成する鉄鋼基材よりも硬く、該鉄鋼基材よりも弾性率が小さい請求項1〜4のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to any one of claims 1 to 4, wherein the amorphous carbon film is harder than a steel base constituting the cam follower and has a smaller elastic modulus than the steel base. 前記非晶質炭素膜中のホウ素は、6.5〜20%である請求項1〜5のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to claim 1, wherein boron in the amorphous carbon film is 6.5 to 20%. 前記非晶質炭素膜は、酸素(O)の含有量が6%未満である請求項1〜6のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to any one of claims 1 to 6, wherein the amorphous carbon film has an oxygen (O) content of less than 6%. 前記非晶質炭素膜は、前記カムフォロアの基材表面に形成された中間層上に形成されている請求項1〜7のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to any one of claims 1 to 7, wherein the amorphous carbon film is formed on an intermediate layer formed on a surface of a base material of the cam follower. 前記カムは鋳鉄からなる請求項1〜8のいずれかに記載の内燃機関用バルブ駆動系部材。   The valve drive system member for an internal combustion engine according to any one of claims 1 to 8, wherein the cam is made of cast iron. 100ppm以下のモリブデン(Mo)を含み、ジアルキルジチオカルバミン酸モリブデン(MoDTC)を実質的に含まない潤滑油が介在する湿式条件下で請求項1〜9のいずれかに記載の内燃機関用バルブ駆動系部材を使用することを特徴とする内燃機関用バルブ駆動系部材の使用方法。   The valve drive system member for an internal combustion engine according to any one of claims 1 to 9, under a wet condition in which a lubricating oil containing 100 ppm or less of molybdenum (Mo) and substantially free of molybdenum dialkyldithiocarbamate (MoDTC) is interposed. A method of using a valve drive system member for an internal combustion engine, characterized in that 前記潤滑油は、全体を100質量%としたときに、硫黄(S)またはリン(P)の一種以上と、亜鉛(Zn)、カルシウム(Ca)、マグネシウム(Mg)、ナトリウム(Na)、バリウム(Ba)または銅(Cu)の一種以上とを合計で500ppm以上含む請求項10に記載の内燃機関用バルブ駆動系部材の使用方法。   The lubricating oil is composed of at least one of sulfur (S) and phosphorus (P), zinc (Zn), calcium (Ca), magnesium (Mg), sodium (Na), and barium when the total amount is 100% by mass. The usage method of the valve drive system member for internal combustion engines of Claim 10 which contains 500 ppm or more in total of 1 or more types of (Ba) or copper (Cu).
JP2011256251A 2011-11-24 2011-11-24 Member for valve drive system of internal combustion engine and method of using the same Pending JP2013108156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256251A JP2013108156A (en) 2011-11-24 2011-11-24 Member for valve drive system of internal combustion engine and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011256251A JP2013108156A (en) 2011-11-24 2011-11-24 Member for valve drive system of internal combustion engine and method of using the same

Publications (1)

Publication Number Publication Date
JP2013108156A true JP2013108156A (en) 2013-06-06

Family

ID=48705215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256251A Pending JP2013108156A (en) 2011-11-24 2011-11-24 Member for valve drive system of internal combustion engine and method of using the same

Country Status (1)

Country Link
JP (1) JP2013108156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517788B1 (en) * 2013-08-26 2015-05-07 현대자동차주식회사 Low friction coating and coating method thereof
JPWO2017022659A1 (en) * 2015-07-31 2018-05-31 日本ピストンリング株式会社 piston ring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125254A (en) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc Engine valve system component
JP2008195903A (en) * 2007-02-15 2008-08-28 Toyota Motor Corp Sliding structure
JP2010112527A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assy
JP2010249306A (en) * 2008-07-02 2010-11-04 Kobe Steel Ltd Sliding member and sliding method
JP2011026591A (en) * 2009-07-03 2011-02-10 Toyota Central R&D Labs Inc Low friction sliding member
JP2011032429A (en) * 2009-08-05 2011-02-17 Toyota Central R&D Labs Inc Low-frictional sliding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125254A (en) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc Engine valve system component
JP2008195903A (en) * 2007-02-15 2008-08-28 Toyota Motor Corp Sliding structure
JP2010249306A (en) * 2008-07-02 2010-11-04 Kobe Steel Ltd Sliding member and sliding method
JP2010112527A (en) * 2008-11-10 2010-05-20 Ntn Corp Rocker arm assy
JP2011026591A (en) * 2009-07-03 2011-02-10 Toyota Central R&D Labs Inc Low friction sliding member
JP2011032429A (en) * 2009-08-05 2011-02-17 Toyota Central R&D Labs Inc Low-frictional sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517788B1 (en) * 2013-08-26 2015-05-07 현대자동차주식회사 Low friction coating and coating method thereof
JPWO2017022659A1 (en) * 2015-07-31 2018-05-31 日本ピストンリング株式会社 piston ring

Similar Documents

Publication Publication Date Title
JP4007440B2 (en) Hard carbon film sliding member
JP6327915B2 (en) Sliding machine
JP5358521B2 (en) Low friction sliding member
US9090965B2 (en) Slide part
US20080076683A1 (en) Slide member
JP6177267B2 (en) Sliding member and sliding machine
CN110770362B (en) Sliding member and coating film
WO2013137060A1 (en) Combination of cylinder and piston ring
JP5141654B2 (en) Sliding parts
JP2003247060A (en) Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
WO2017130587A1 (en) Sliding member and production method therefor
US9121548B2 (en) Sliding member
JP4201557B2 (en) Hard carbon film sliding member
WO2019078052A1 (en) Sliding member and piston ring
JP2013108156A (en) Member for valve drive system of internal combustion engine and method of using the same
JP2017149881A (en) Slide system
JP6343581B2 (en) Sliding member and sliding machine
JP2009052081A (en) Hard carbon film
JP2007247038A (en) Hard carbon film
JP4372663B2 (en) Engine valve system parts
KR20190024844A (en) Piston ring coated low-friction layer and method of fabricating the same
JP2019007059A (en) Hard coating and method for manufacturing the same
JP5712919B2 (en) Low friction sliding member
JP6938807B1 (en) Sliding members and piston rings
JP2013091823A (en) Sliding component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224