JP2013107059A - Ultrasonic radiator, ultrasonic radiation device, ultrasonic treatment device - Google Patents

Ultrasonic radiator, ultrasonic radiation device, ultrasonic treatment device Download PDF

Info

Publication number
JP2013107059A
JP2013107059A JP2011255648A JP2011255648A JP2013107059A JP 2013107059 A JP2013107059 A JP 2013107059A JP 2011255648 A JP2011255648 A JP 2011255648A JP 2011255648 A JP2011255648 A JP 2011255648A JP 2013107059 A JP2013107059 A JP 2013107059A
Authority
JP
Japan
Prior art keywords
ultrasonic
radiator
vibrators
vibrator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011255648A
Other languages
Japanese (ja)
Other versions
JP5887588B2 (en
Inventor
Nobunaga Shibuya
信長 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2011255648A priority Critical patent/JP5887588B2/en
Publication of JP2013107059A publication Critical patent/JP2013107059A/en
Application granted granted Critical
Publication of JP5887588B2 publication Critical patent/JP5887588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic radiator capable of fully obtaining a radiation area of ultrasonic waves, and uniformly radiating the ultrasonic waves.SOLUTION: The ultrasonic radiator 15 includes a plurality of vibrators 21 which axisymmetrically vibrate in the axial direction. Each vibrator 21 has a through-hole 23 at the center, which is formed in a regular octagon shape viewed from above in the axial direction. In the ultrasonic radiator 15, each radiator 21 is arranged at regular intervals in a matrix shape composed of a plurality of rows and columns in such a state in which the external surface of the vibrator 21 is connected thereto. The vibrator 21 adjoining with each other in the row direction and column direction alternatively repeats expansion and contraction so that the ultrasonic radiator 15 radiates ultrasonic waves from each vibrator 21.

Description

本発明は、超音波を放射するための超音波放射体、その超音波放射体を備える超音波放射装置及び超音波処理装置に関するものである。   The present invention relates to an ultrasonic emitter for emitting ultrasonic waves, an ultrasonic emission device including the ultrasonic emitter, and an ultrasonic processing device.

超音波エネルギーの利用による化学的作用(ソノケミストリー)と機械的・物理的作用の両面を利用した化学工学的プロセスはソノプロセスと呼ばれている。ソノプロセスは、高効率で環境負荷が少ないプロセスとして近年注目されており、環境、エネルギー、バイオ、材料などの幅広い産業分野への応用が期待されている。超音波キャビテーションによる物理的・化学的作用を利用した液体プロセスとしては、洗浄、分散、乳化、混合、攪拌、破砕、抽出、結晶成長促進、環境浄化、材料合成、殺菌、高分子重合、化学反応促進などのプロセスが挙げられる。また、超音波は単独で使用するよりも他のプロセス(オゾン、紫外線、電磁波、電気分解、プラズマ、光触媒、マイクロバブル、過酸化水素、還元剤や薬剤の添加、加熱、減圧などのプロセス)と併用することで効果を発揮できる場合が多い。   A chemical engineering process utilizing both chemical action (sonochemistry) by utilizing ultrasonic energy and mechanical and physical action is called a sonoprocess. The sono process has attracted attention in recent years as a highly efficient process with a low environmental impact, and is expected to be applied to a wide range of industrial fields such as the environment, energy, biotechnology and materials. Liquid processes using physical and chemical action by ultrasonic cavitation include washing, dispersion, emulsification, mixing, stirring, crushing, extraction, crystal growth promotion, environmental purification, material synthesis, sterilization, polymer polymerization, chemical reaction Examples include promotion. In addition, ultrasonic waves are different from those used alone (e.g., ozone, ultraviolet rays, electromagnetic waves, electrolysis, plasma, photocatalysts, microbubbles, hydrogen peroxide, addition of reducing agents and chemicals, heating, decompression, etc.) There are many cases where the effect can be exhibited by the combined use.

液体プロセスを行う具体的な超音波処理装置としては、例えば、反応槽の内壁に超音波振動子が取り付けられ、その超音波振動子から反応槽内に超音波が放射される反応装置が開示されている(例えば、特許文献1参照)。また、洗浄槽における底板外面に超音波振動子が取り付けられ、超音波振動子によって底板(振動板)を振動させることにより、その底板から洗浄液中に超音波が放射される洗浄装置が開示されている(例えば、特許文献2参照)。   As a specific ultrasonic processing apparatus for performing a liquid process, for example, a reaction apparatus in which an ultrasonic vibrator is attached to the inner wall of a reaction tank and ultrasonic waves are emitted from the ultrasonic vibrator into the reaction tank is disclosed. (For example, refer to Patent Document 1). Also, a cleaning device is disclosed in which an ultrasonic vibrator is attached to the outer surface of the bottom plate in the cleaning tank, and ultrasonic waves are emitted from the bottom plate into the cleaning liquid by vibrating the bottom plate (vibrating plate) with the ultrasonic vibrator. (For example, refer to Patent Document 2).

特開2000−202277号公報JP 2000-202277 A 特開2003−320328号公報JP 2003-320328 A

従来の超音波処理装置において、超音波キャビテーション(気泡)は、超音波振動子の周りや液面付近などに局在するため、処理槽の全体を反応に寄与させた装置を作製することが困難であった。例えば、特許文献1の反応装置では、槽壁面の一部に超音波振動子が設けられ、この振動子から槽中心に向かって超音波が放射される。この反応装置では、超音波の放射面積が小さいため、槽内に伝搬される超音波の音場が不均一になる。また、放射される超音波のエネルギーも小さいので、反応の処理量を十分に確保することができない。従って、プラントレベルに対応した大量処理が可能な処理装置を実現することが困難である。   In conventional ultrasonic processing equipment, since ultrasonic cavitation (bubbles) is localized around the ultrasonic transducer and near the liquid surface, it is difficult to produce an apparatus in which the entire processing tank contributes to the reaction. Met. For example, in the reaction apparatus of Patent Document 1, an ultrasonic vibrator is provided on a part of a tank wall surface, and ultrasonic waves are emitted from the vibrator toward the center of the tank. In this reaction apparatus, since the ultrasonic radiation area is small, the ultrasonic field propagated in the tank becomes non-uniform. In addition, since the energy of the emitted ultrasonic wave is small, a sufficient amount of reaction cannot be ensured. Therefore, it is difficult to realize a processing apparatus capable of mass processing corresponding to the plant level.

また、特許文献2の洗浄装置では、洗浄槽の底板から超音波が放射される。この洗浄装置において、キャビテーション(気泡)が活発に発生する位置は、超音波の定在波音圧の腹位置に限られる。また、洗浄槽が深くなると、気泡の膨張・収縮による超音波の吸収・拡散が顕著になるため、底板の振動面から遠方では超音波の強度が弱くなって洗浄能力が低下してしまう。   Further, in the cleaning device of Patent Document 2, ultrasonic waves are radiated from the bottom plate of the cleaning tank. In this cleaning device, the position where cavitation (bubbles) is actively generated is limited to the antinode position of the ultrasonic standing wave sound pressure. Further, when the cleaning tank is deepened, the absorption / diffusion of ultrasonic waves due to the expansion / contraction of bubbles becomes remarkable, so that the ultrasonic wave intensity is weakened far away from the vibration surface of the bottom plate and the cleaning ability is lowered.

さらに、超音波ホモジナイザ等で使用される強力なホーン型の超音波放射体を用いた超音波処理装置も具体化されている。この超音波処理装置では、キャビテーション(気泡)が活発に発生するエリアがホーン放射面の近傍に限られるため、反応エリアが非常に狭いといった欠点がある。特に、被処理液体に粘性がある場合、超音波の減衰が激しいため、ホーン近傍でしか超音波効果は得られない。   Furthermore, an ultrasonic processing apparatus using a powerful horn type ultrasonic radiator used in an ultrasonic homogenizer or the like is also embodied. This ultrasonic processing apparatus has a drawback that the reaction area is very narrow because the area where cavitation (bubbles) is actively generated is limited to the vicinity of the horn radiation surface. In particular, when the liquid to be treated is viscous, the attenuation of ultrasonic waves is so severe that the ultrasonic effect can be obtained only in the vicinity of the horn.

本発明は上記の課題に鑑みてなされたものであり、その目的は、超音波の放射面積を十分に確保し、被処理液体に対して超音波を均一に放射することができる超音波放射体、及び超音波放射装置を提供することにある。また、別の目的は、前記超音波放射体から超音波を均一に放射して、被処理液体の処理を効率よく行うことができる超音波処理装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an ultrasonic radiator that can sufficiently radiate ultrasonic waves to a liquid to be processed while ensuring a sufficiently large ultrasonic radiation area. And providing an ultrasonic radiation device. Another object of the present invention is to provide an ultrasonic processing apparatus capable of efficiently radiating ultrasonic waves from the ultrasonic radiator and processing a liquid to be processed efficiently.

上記課題を解決するために、請求項1に記載の発明は、径方向に軸対称振動をする複数の振動体を備えた超音波放射体であって、前記振動体の外面が接続された状態で該各振動体が複数行及び複数列からなるマトリクス状に規則正しく配列され、行方向及び列方向において隣り合う前記振動体が交互に伸縮を繰り返すことにより前記各振動体から超音波を放射することを特徴とする超音波放射体をその要旨とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is an ultrasonic radiator including a plurality of vibrating bodies that perform axially symmetric vibrations in a radial direction, wherein the outer surfaces of the vibrating bodies are connected to each other. The vibrators are regularly arranged in a matrix composed of a plurality of rows and a plurality of columns, and the vibrators adjacent in the row direction and the column direction repeat expansion and contraction alternately to emit ultrasonic waves from the vibrators. The gist is an ultrasonic emitter characterized by the following.

請求項1に記載の発明によると、径方向に軸対称振動をする複数の振動体が複数行及び複数列からなるマトリクス状に規則正しく配列され、隣り合う振動体が交互に伸縮を繰り返すことにより各振動体から超音波が放射される。このように超音波放射体を構成すると、超音波の放射面の面積を十分に確保することができる。従って、超音波放射体から被処理液体に超音波を均一に作用させることができ、多数のキャビテーションをムラなく発生させることができる。さらに、比較的強いエネルギーの超音波が作用する近距離音場が各振動体の周囲に形成されるため、超音波の減衰が少なく、強力なキャビテーションを発生させることができる。また、比較的広い範囲で超音波キャビテーションによる均一な反応場が形成されるため、被処理液体の処理を効率よく確実に行うことができる。   According to the first aspect of the present invention, a plurality of vibrators that perform axially symmetric vibrations in a radial direction are regularly arranged in a matrix composed of a plurality of rows and a plurality of columns, and adjacent vibrators repeatedly expand and contract alternately. Ultrasonic waves are emitted from the vibrating body. When the ultrasonic radiator is configured in this manner, a sufficient area of the ultrasonic radiation surface can be ensured. Therefore, ultrasonic waves can be uniformly applied to the liquid to be processed from the ultrasonic radiator, and a large number of cavitations can be generated without unevenness. In addition, since a short-distance sound field on which a relatively strong energy ultrasonic wave acts is formed around each vibrating body, the ultrasonic wave is less attenuated and strong cavitation can be generated. In addition, since a uniform reaction field is formed by ultrasonic cavitation in a relatively wide range, the liquid to be processed can be processed efficiently and reliably.

請求項2に記載の発明は、請求項1において、前記振動体は、中心部に貫通孔を有する円柱状または多角柱状に形成され、前記振動体の外面側に加えて、前記貫通孔の内面側から超音波を放射することをその要旨とする。   According to a second aspect of the present invention, in the first aspect, the vibrating body is formed in a columnar shape or a polygonal column shape having a through hole at a central portion, and in addition to the outer surface side of the vibrating body, the inner surface of the through hole. The gist is to emit ultrasonic waves from the side.

請求項2に記載の発明によると、振動体の外面側に加えて、貫通孔の内面側から超音波を放射することができ、被処理液体の処理効率を高めることができる。   According to invention of Claim 2, in addition to the outer surface side of a vibrating body, an ultrasonic wave can be radiated | emitted from the inner surface side of a through-hole, and the process efficiency of a to-be-processed liquid can be improved.

請求項3に記載の発明は、請求項1または2に記載の超音波放射体と、前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器とを備えたことを特徴とする超音波放射装置をその要旨とする。   Invention of Claim 3 is provided in the edge part of the row direction and column direction of the ultrasonic radiator of Claim 1 or 2 and the some vibration body in the said ultrasonic radiator, The said row direction and A plurality of ultrasonic vibrators that vibrate each vibrator so that the vibrators adjacent in the column direction alternately expand and contract, and an ultrasonic wave that outputs a drive signal for driving the plurality of ultrasonic vibrators The gist of the present invention is an ultrasonic radiation device comprising a sound wave oscillator.

請求項3に記載の発明によると、超音波放射体における複数の振動体の行方向及び列方向の端部に複数の超音波振動子が設けられおり、超音波発振器から出力された駆動信号によって複数の超音波振動子が駆動される。そして、各超音波振動子によって、隣り合う振動体が交互に伸縮を繰り返すように各振動体が振動され、各振動体の外周面や内周面から超音波が放射される。この場合、行方向の端部に配置された超音波振動子と列方向の端部に配置された超音波振動子との超音波パワーを合成して各振動体を振動させることができる。従って、本発明の超音波放射装置では、各振動体から高出力の超音波を放射することができ、キャビテーションをより確実に発生させることができる。この結果、被処理液体の処理を効率よく確実に行うことができる。   According to the third aspect of the present invention, the plurality of ultrasonic transducers are provided at the end portions in the row direction and the column direction of the plurality of vibrators in the ultrasonic radiator, and the drive signal output from the ultrasonic oscillator is used. A plurality of ultrasonic transducers are driven. The ultrasonic vibrators are vibrated by the ultrasonic vibrators so that adjacent vibrators alternately expand and contract, and ultrasonic waves are radiated from the outer peripheral surface and the inner peripheral surface of each vibrator. In this case, each vibrator can be vibrated by synthesizing the ultrasonic powers of the ultrasonic transducers arranged at the end portions in the row direction and the ultrasonic transducers arranged at the end portions in the column direction. Therefore, in the ultrasonic radiation device of the present invention, high-power ultrasonic waves can be emitted from each vibrating body, and cavitation can be generated more reliably. As a result, the liquid to be processed can be efficiently and reliably processed.

請求項4に記載の発明は、請求項3において、前記行方向及び前記列方向に直交する方向に、複数の前記超音波放射体が積層されたことをその要旨とする。   The gist of the invention described in claim 4 is that, in claim 3, a plurality of the ultrasonic radiators are stacked in a direction orthogonal to the row direction and the column direction.

請求項4に記載の発明によると、複数の超音波放射体が積層されるので、超音波の放射面積を十分に増やすことができ、被処理液体の処理効率を高めることができる。   According to the invention described in claim 4, since the plurality of ultrasonic radiators are stacked, the ultrasonic radiation area can be sufficiently increased, and the processing efficiency of the liquid to be processed can be increased.

請求項5に記載の発明は、被処理液体を流す配管の途中に設けられ、前記被処理液体の流通方向と前記振動体の軸方向とを合わせた状態で配置される請求項1または2に記載の超音波放射体と、前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器とを備えたことを特徴とする超音波処理装置をその要旨とする。   Invention of Claim 5 is provided in the middle of piping which flows a to-be-processed liquid, and is arrange | positioned in the state which match | combined the distribution direction of the to-be-processed liquid, and the axial direction of the said vibrating body. The ultrasonic radiator described above and the vibrators adjacent to each other in the row direction and the column direction are alternately expanded and contracted at the end portions in the row direction and the column direction of the plurality of vibrators in the ultrasonic radiator. An ultrasonic processing apparatus comprising: a plurality of ultrasonic transducers that vibrate each of the vibrators; and an ultrasonic oscillator that outputs a drive signal for driving the plurality of ultrasonic transducers. Is the gist.

請求項5に記載の発明によると、超音波放射体は、被処理液体を流す配管の途中に設けられ、被処理液体の流通方向と振動体の軸方向とを合わせた状態で配置されている。また、超音波放射体における複数の振動体の行方向及び列方向の端部に複数の超音波振動子が設けられおり、超音波発振器から出力された駆動信号によって複数の超音波振動子が駆動される。そして、各超音波振動子によって、隣り合う振動体が交互に伸縮を繰り返すように各振動体が振動され、各振動体の外周面や内周面から超音波が放射される。この場合、超音波放射体において、各振動体の行方向の端部に配置された超音波振動子と列方向の端部に配置された超音波振動子との超音波パワーを合成して各振動体を振動させることができる。従って、各振動体から高出力の超音波を放射することができ、キャビテーションを確実に発生させることができる。また、配管の被処理液体は、超音波放射体の周囲に形成される反応場(近距離音場)に確実に流通するため、被処理液体の処理を効率よく確実に行うことができる。   According to the invention described in claim 5, the ultrasonic radiator is provided in the middle of the pipe through which the liquid to be processed flows, and is arranged in a state where the flow direction of the liquid to be processed and the axial direction of the vibrating body are combined. . In addition, a plurality of ultrasonic vibrators are provided at the row and column ends of the plurality of vibrators in the ultrasonic radiator, and the plurality of ultrasonic vibrators are driven by a drive signal output from the ultrasonic oscillator. Is done. The ultrasonic vibrators are vibrated by the ultrasonic vibrators so that adjacent vibrators alternately expand and contract, and ultrasonic waves are radiated from the outer peripheral surface and the inner peripheral surface of each vibrator. In this case, in the ultrasonic radiator, the ultrasonic powers of the ultrasonic transducers arranged at the end portions in the row direction of the respective vibrators and the ultrasonic transducers arranged at the end portions in the column direction are synthesized to The vibrating body can be vibrated. Therefore, high-power ultrasonic waves can be radiated from each vibrator, and cavitation can be reliably generated. In addition, since the liquid to be processed in the pipe surely circulates in the reaction field (short-range sound field) formed around the ultrasonic radiator, the liquid to be processed can be efficiently and reliably processed.

請求項6に記載の発明は、被処理液体を貯留する処理槽内に設けられた請求項1または2に記載の超音波放射体と、前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器とを備えたことを特徴とする超音波処理装置をその要旨とする。   According to a sixth aspect of the present invention, there is provided the ultrasonic radiator according to the first or second aspect, provided in a processing tank that stores a liquid to be processed, and a row direction of a plurality of vibrators in the ultrasonic radiator; A plurality of ultrasonic transducers that are provided at end portions in the column direction and that vibrate each of the vibrating bodies so that the vibrating bodies adjacent in the row direction and the column direction alternately expand and contract; and the plurality of ultrasonic waves The gist of the ultrasonic processing apparatus includes an ultrasonic oscillator that outputs a driving signal for driving the vibrator.

請求項6に記載の発明によると、被処理液体を貯留する処理槽内に超音波放射体が設けられている。また、超音波放射体における複数の振動体の行方向及び列方向の端部に複数の超音波振動子が設けられており、超音波発振器から出力された駆動信号によって複数の超音波振動子が駆動される。そして、各超音波振動子によって、隣り合う振動体が交互に伸縮を繰り返すように各振動体が振動され、各振動体の外周面や内周面から超音波が放射される。この場合、超音波放射体において、各振動体の行方向の端部に配置された超音波振動子と列方向の端部に配置された超音波振動子との超音波パワーを合成して各振動体を振動させることができる。従って、各振動体から高出力の超音波を放射することができ、キャビテーションを確実に発生させることができる。また、処理槽内の被処理液体に超音波放射体から超音波を均一に作用させることができるため、被処理液体の処理を効率よく確実に行うことができる。   According to the sixth aspect of the present invention, the ultrasonic radiator is provided in the processing tank for storing the liquid to be processed. In addition, a plurality of ultrasonic transducers are provided at the end portions in the row direction and the column direction of the plurality of vibrators in the ultrasonic radiator, and the plurality of ultrasonic transducers are driven by a drive signal output from the ultrasonic oscillator. Driven. The ultrasonic vibrators are vibrated by the ultrasonic vibrators so that adjacent vibrators alternately expand and contract, and ultrasonic waves are radiated from the outer peripheral surface and the inner peripheral surface of each vibrator. In this case, in the ultrasonic radiator, the ultrasonic powers of the ultrasonic transducers arranged at the end portions in the row direction of the respective vibrators and the ultrasonic transducers arranged at the end portions in the column direction are synthesized to The vibrating body can be vibrated. Therefore, high-power ultrasonic waves can be radiated from each vibrator, and cavitation can be reliably generated. In addition, since the ultrasonic wave can be applied uniformly to the liquid to be processed in the processing tank, the liquid to be processed can be efficiently and reliably processed.

以上詳述したように、請求項1〜4に記載の発明によると、超音波放射体における超音波の放射面積を十分に確保し、被処理液体に対して超音波を均一に放射することができる。また、請求項5または6に記載の発明によると、超音波放射体から超音波を均一に放射して、被処理液体の処理を効率よく行うことができる。   As described above in detail, according to the first to fourth aspects of the present invention, it is possible to sufficiently ensure an ultrasonic radiation area in the ultrasonic radiator and to uniformly radiate ultrasonic waves to the liquid to be processed. it can. In addition, according to the invention described in claim 5 or 6, it is possible to uniformly treat the liquid to be treated by emitting ultrasonic waves uniformly from the ultrasonic radiator.

一実施の形態の超音波放射装置を示す概略構成図。1 is a schematic configuration diagram illustrating an ultrasonic radiation device according to an embodiment. FIG. 一実施の形態の超音波処理装置を示す平面図。The top view which shows the ultrasonic processing apparatus of one embodiment. 一実施の形態の超音波放射体を示す平面図。The top view which shows the ultrasonic radiator of one Embodiment. 一実施の形態の超音波放射体の振動モードを示す説明図。Explanatory drawing which shows the vibration mode of the ultrasonic radiator of one Embodiment. 別の実施の形態の超音波放射体を示す平面図。The top view which shows the ultrasonic radiator of another embodiment. 別の実施の形態の超音波処理装置を示す斜視図。The perspective view which shows the ultrasonic processing apparatus of another embodiment.

以下、本発明を超音波処理装置に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態の超音波放射装置を示す概略構成図である。図2は、その超音波放射装置を用いて構成された超音波処理装置を示す平面図である。   Hereinafter, an embodiment in which the present invention is embodied in an ultrasonic processing apparatus will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing the ultrasonic radiation apparatus of the present embodiment. FIG. 2 is a plan view showing an ultrasonic processing apparatus configured using the ultrasonic radiation apparatus.

図2に示されるように、本実施の形態の超音波処理装置11は、被処理液体W1を流す配管12(流通型容器)と、その配管12の途中に設けられる超音波放射装置13とによって構成されている。この超音波処理装置11は、被処理液体W1に超音波を作用させることにより、ソノケミカル反応を発生させる反応装置である。   As shown in FIG. 2, the ultrasonic processing apparatus 11 of the present embodiment includes a pipe 12 (flow-through container) for flowing the liquid W1 to be processed and an ultrasonic radiation apparatus 13 provided in the middle of the pipe 12. It is configured. The ultrasonic processing apparatus 11 is a reaction apparatus that generates a sonochemical reaction by applying ultrasonic waves to the liquid W1 to be processed.

図1に示されるように、超音波放射装置13は、超音波放射体15と、超音波放射体15を支持する支持フレーム16と、超音波放射体15を振動させる複数の超音波振動子17と、各超音波振動子17を駆動するための駆動信号を出力する超音波発振器18とを備える。   As shown in FIG. 1, the ultrasonic radiation device 13 includes an ultrasonic radiator 15, a support frame 16 that supports the ultrasonic radiator 15, and a plurality of ultrasonic transducers 17 that vibrate the ultrasonic radiator 15. And an ultrasonic oscillator 18 that outputs a drive signal for driving each ultrasonic transducer 17.

図3に示されるように、超音波放射体15は、外面が接続された状態で複数行及び複数列からなるマトリクス状に規則正しく配列された複数の振動体21と、各振動体21の行方向及び列方向の端部に延設された縦振動伝送体22とからなる。各振動体21は、中心部に貫通孔23を有する正八角形の柱状に形成されており、径方向に軸対称振動をする。本実施の形態の超音波放射体15では、3行×3列の振動体21が配置されている。これら振動体21における径方向の外形寸法(八角形の外接円の直径)は、20mm程度であり、軸方向の厚さは、10mm程度である。   As shown in FIG. 3, the ultrasonic radiator 15 includes a plurality of vibrators 21 regularly arranged in a matrix having a plurality of rows and a plurality of columns with the outer surfaces connected, and the row direction of each vibrator 21. And a longitudinal vibration transmission body 22 extending at the end in the column direction. Each vibrating body 21 is formed in a regular octagonal columnar shape having a through hole 23 in the center, and vibrates axially symmetrically in the radial direction. In the ultrasonic radiator 15 of the present embodiment, 3 rows × 3 columns of vibrators 21 are arranged. The external dimensions (diameter of the octagonal circumscribed circle) in the radial direction of these vibrating bodies 21 are about 20 mm, and the thickness in the axial direction is about 10 mm.

超音波放射体15を構成する縦振動伝送体22は、直径が10mm程度の円柱状に形成された伝送体であって、半波長共振をして超音波を各振動体21に伝搬する。超音波放射体15において、各振動体21の配列方向と平行に各縦振動伝送体22が設けられている。なお、本実施の形態の超音波放射体15は、連結部分のない一体の金属塊(例えば、ステンレス鋼の塊)からなり、例えば、ロストワックス製法にて成形されている。また、超音波放射体15は、ステンレス鋼板などの金属塊を切削加工することで形成してもよい。   The longitudinal vibration transmission body 22 constituting the ultrasonic radiation body 15 is a transmission body formed in a columnar shape having a diameter of about 10 mm, and propagates ultrasonic waves to the respective vibration bodies 21 through half-wave resonance. In the ultrasonic radiator 15, the longitudinal vibration transmission bodies 22 are provided in parallel with the arrangement direction of the vibration bodies 21. In addition, the ultrasonic radiator 15 of the present embodiment is formed of an integral metal lump (for example, a lump of stainless steel) without a connecting portion, and is formed by, for example, a lost wax manufacturing method. The ultrasonic radiator 15 may be formed by cutting a metal lump such as a stainless steel plate.

図1に示されるように、超音波放射体15においてマトリクス状に配列した各振動体21を取り囲むように支持フレーム16が設けられている。そして、超音波放射体15における各縦振動伝送体22の端部が支持フレーム16の外部に突出している。支持フレーム16は、4つの側壁部25からなる四角形状の枠体であり、超音波放射体15を支持するとともに、被処理液体W1を流すための流路の外壁面を形成する。支持フレーム16において、それぞれの側壁部25には3つの貫通溝26が形成されており、各貫通溝26に縦振動伝送体22が挿通された状態で超音波放射体15が固定される。本実施の形態において、支持フレーム16は、半波長共振する縦振動伝送体22の振動節位置に設けられている。   As shown in FIG. 1, a support frame 16 is provided so as to surround each vibrating body 21 arranged in a matrix in the ultrasonic radiator 15. The end portions of the longitudinal vibration transmission bodies 22 in the ultrasonic radiator 15 protrude outside the support frame 16. The support frame 16 is a quadrangular frame body including four side wall portions 25, and supports the ultrasonic radiator 15 and forms an outer wall surface of a flow path for flowing the liquid W1 to be processed. In the support frame 16, three through grooves 26 are formed in each side wall portion 25, and the ultrasonic radiator 15 is fixed in a state where the longitudinal vibration transmission body 22 is inserted into each through groove 26. In the present embodiment, the support frame 16 is provided at the vibration node position of the longitudinal vibration transmission body 22 that resonates at half wavelength.

図2に示されるように、2つの配管12の連結部分に、超音波放射体15を固定した支持フレーム16が配置される。より詳しくは、各配管12の端部に設けられたフランジ部31と支持フレーム16との間にパッキン32が介在され、その状態でボルト33を用いて支持フレーム16が配管12に連結されている。このように、支持フレーム16を配管12に連結することにより、支持フレーム16内において、超音波放射体15の各振動体21の外面にて形成される流路や、各振動体21の貫通孔23の内面にて形成される流路に、配管12からの被処理液体W1が流れるようになっている。   As shown in FIG. 2, a support frame 16 to which the ultrasonic radiator 15 is fixed is disposed at a connection portion between the two pipes 12. More specifically, a packing 32 is interposed between the flange portion 31 provided at the end of each pipe 12 and the support frame 16, and the support frame 16 is connected to the pipe 12 using a bolt 33 in this state. . In this way, by connecting the support frame 16 to the pipe 12, a flow path formed on the outer surface of each vibration body 21 of the ultrasonic radiator 15 and a through hole of each vibration body 21 in the support frame 16. The liquid W1 to be processed from the pipe 12 flows through the flow path formed on the inner surface of the pipe 23.

また、図1に示されるように、超音波放射体15において、支持フレーム16の側壁部25から突出している縦振動伝送体22の端面に、超音波振動子17がネジなどの連結手段35によってそれぞれ接続固定されている。本実施の形態では、12個の超音波振動子17が超音波放射体15に固定されている。超音波振動子17は、ボルト締めランジュバン型縦振動子(圧電振動子)であり、圧電セラミックスを2つの金属ブロックで挟み込んでボルトで締め付けた構造を有している。   As shown in FIG. 1, in the ultrasonic radiator 15, the ultrasonic transducer 17 is connected to the end face of the longitudinal vibration transmission body 22 protruding from the side wall portion 25 of the support frame 16 by connecting means 35 such as a screw. Each connection is fixed. In the present embodiment, twelve ultrasonic transducers 17 are fixed to the ultrasonic radiator 15. The ultrasonic vibrator 17 is a bolted Langevin type vertical vibrator (piezoelectric vibrator) and has a structure in which piezoelectric ceramics are sandwiched between two metal blocks and fastened with bolts.

各超音波振動子17は、超音波発振器18に電気的に接続されており、その超音波発振器18から供給される駆動信号(高周波電力)に基づいて機械振動する。なお、超音波発振器18から出力される駆動信号の周波数は、各振動体21が径方向軸対称振動モードで共振する共振周波数付近に設定され、例えば60kHz程度の周波数である。   Each ultrasonic transducer 17 is electrically connected to an ultrasonic oscillator 18 and mechanically vibrates based on a drive signal (high frequency power) supplied from the ultrasonic oscillator 18. The frequency of the drive signal output from the ultrasonic oscillator 18 is set near the resonance frequency at which each vibrator 21 resonates in the radial axially symmetric vibration mode, and is, for example, a frequency of about 60 kHz.

本実施の形態では、隣り合う超音波振動子17において、振動位相を逆相とするために分極方向の異なる超音波振動子17を互い違いに配置している。そして、各超音波振動子17の機械振動が縦振動伝送体22を介して各振動体21に伝搬される。このとき、超音波放射体15において隣り合う各振動体21の振動モードの位相が逆相となる。この結果、図4に示されるように、行方向及び列方向において隣り合う各振動体21が交互に伸縮を繰り返すように各振動体21が振動され、各振動体21の外面及び貫通孔23の内面から被処理液体W1中に超音波が放射される。そして、各振動体21からの超音波の放射によって、被処理液体W1中にキャビテーションが発生し、被処理液体の化学反応処理が行われる、   In the present embodiment, the ultrasonic transducers 17 having different polarization directions are alternately arranged in the adjacent ultrasonic transducers 17 in order to reverse the vibration phase. The mechanical vibration of each ultrasonic transducer 17 is propagated to each vibrating body 21 via the longitudinal vibration transmitting body 22. At this time, the phases of the vibration modes of the adjacent vibrators 21 in the ultrasonic radiator 15 are reversed. As a result, as shown in FIG. 4, each vibrating body 21 is vibrated so that each vibrating body 21 adjacent in the row direction and the column direction alternately expands and contracts, and the outer surface of each vibrating body 21 and the through hole 23. Ultrasonic waves are emitted from the inner surface into the liquid W1 to be processed. And by the radiation | emission of the ultrasonic wave from each vibrating body 21, cavitation generate | occur | produces in the to-be-processed liquid W1, and the chemical reaction process of the to-be-processed liquid is performed.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態の超音波処理装置11では、複数の振動体21が行方向及び列方向に配列した超音波放射体15を用いており、各振動体21の中央部に貫通孔23が形成されている。この場合、各振動体21の外周面及び内周面が超音波の放射面となり、その放射面の面積を十分に確保することができる。また、超音波放射体15における各振動体21は、超音波振動子17によって軸対称に振動される。この結果、被処理液体W1に超音波を均一に作用させることができ、多数のキャビテーションをムラなく発生させることができる。さらに、超音波処理装置11では、比較的強いエネルギーの超音波が作用する近距離音場が各振動体21の周囲及び貫通孔23内に形成される。このため、超音波の減衰が少なく、強力なキャビテーションを発生させることができる。また、超音波放射体15によって、比較的広い範囲で超音波キャビテーションによる均一な反応場が形成され、被処理液体W1の処理(例えば、化学反応による物質の分解処理や材料の合成処理)を効率よく行うことができる。   (1) In the ultrasonic processing apparatus 11 according to the present embodiment, the ultrasonic radiator 15 in which a plurality of vibrators 21 are arranged in the row direction and the column direction is used, and a through hole 23 is formed at the center of each vibrator 21. Is formed. In this case, the outer peripheral surface and the inner peripheral surface of each vibrating body 21 become an ultrasonic radiation surface, and a sufficient area of the radiation surface can be secured. Further, each vibrating body 21 in the ultrasonic radiator 15 is vibrated in an axial symmetry by the ultrasonic vibrator 17. As a result, ultrasonic waves can be applied uniformly to the liquid W1 to be processed, and a large number of cavitations can be generated without unevenness. Furthermore, in the ultrasonic processing apparatus 11, a short-distance sound field on which ultrasonic waves with relatively strong energy act is formed around each vibrating body 21 and in the through hole 23. For this reason, there is little attenuation | damping of an ultrasonic wave and it can generate strong cavitation. Further, the ultrasonic radiator 15 forms a uniform reaction field by ultrasonic cavitation in a relatively wide range, so that the processing of the liquid W1 to be processed (for example, a substance decomposition process or a material synthesis process by a chemical reaction) is efficient. Can be done well.

(2)本実施の形態の超音波処理装置11では、被処理液体W1を流す配管12の途中に超音波放射装置13が設けられ、被処理液体W1の流通方向と振動体21の軸方向とを合わせた状態で超音波放射体15が配置されている。この場合、配管12の被処理液体W1は、超音波放射体15の周囲に形成された反応場(近距離音場)に確実に流通するため、被処理液体W1の処理を効率よく確実に行うことができる。   (2) In the ultrasonic processing apparatus 11 of the present embodiment, the ultrasonic radiation device 13 is provided in the middle of the pipe 12 through which the liquid to be processed W1 flows, and the flow direction of the liquid to be processed W1 and the axial direction of the vibrating body 21 The ultrasonic radiator 15 is arranged in a state where the two are combined. In this case, the liquid to be treated W1 in the pipe 12 reliably flows to the reaction field (short-distance sound field) formed around the ultrasonic radiator 15, so that the liquid to be treated W1 is efficiently and reliably processed. be able to.

(3)本実施の形態では、超音波放射体15を構成する各振動体21は、その軸方向から見た平面視で正八角形状に形成されているので、各振動体21の外面の接続を容易に行うことができる。また、各振動体21の外面によって、被処理液体W1を流すための流路を配管12の流通方向と平行な方向に形成することができる。さらに、各振動体21には被処理液体W1の流路となる貫通孔23が形成されるので、被処理液体W1の流量を十分に確保することができる。   (3) In the present embodiment, each vibrating body 21 constituting the ultrasonic radiator 15 is formed in a regular octagonal shape in a plan view as viewed from the axial direction, so that the outer surface of each vibrating body 21 is connected. Can be easily performed. Moreover, the flow path for flowing the liquid W1 to be processed can be formed in the direction parallel to the flow direction of the pipe 12 by the outer surface of each vibrating body 21. Furthermore, since each through-hole 23 serving as a flow path of the liquid to be processed W1 is formed in each vibrating body 21, a sufficient flow rate of the liquid to be processed W1 can be ensured.

(4)本実施の形態の超音波放射装置13では、各振動体21の行方向及び列方向の両端に超音波振動子17が配置されており、これら超音波振動子17の超音波パワーを合成して各振動体21を振動させることができる。具体的には、超音波放射体15における各振動体21には4つの超音波振動子17(図1では左右方向及び上下方向に配置される各超音波振動子17)から超音波が伝搬され、各振動体21で超音波が合成されて出力されるようになっている。このように超音波放射装置13を構成すると、各振動体21から高出力の超音波を被処理液体W1に放射することができる。   (4) In the ultrasonic radiation device 13 according to the present embodiment, the ultrasonic transducers 17 are arranged at both ends in the row direction and the column direction of each vibrating body 21, and the ultrasonic power of these ultrasonic transducers 17 is obtained. Each vibrator 21 can be vibrated by being synthesized. Specifically, ultrasonic waves are propagated from the four ultrasonic transducers 17 (the ultrasonic transducers 17 arranged in the horizontal direction and the vertical direction in FIG. 1) to each vibrating body 21 in the ultrasonic radiator 15. The ultrasonic waves are synthesized and output by each vibrator 21. If the ultrasonic radiation device 13 is configured in this way, high-power ultrasonic waves can be emitted from the vibrators 21 to the liquid W1 to be processed.

(5)本実施の形態では、超音波放射体15の縦振動伝送体22における振動節位置に支持フレーム16が設けられているので、支持フレーム16での振動漏れがなく、超音波放射体15を安定的に支持することができる。また、パッキン32を介して配管12側に振動が伝わらないので、支持フレーム16と配管12との連結部におけるシール性を長期間にわたって確保することができる。さらに、超音波放射装置13の支持フレーム16はボルト33で連結することで配管12に装着されている。この場合、配管12に対する超音波放射装置13の着脱を容易に行うことができ、超音波放射装置13のメンテナンス性を高めることができる。   (5) In this embodiment, since the support frame 16 is provided at the vibration node position in the longitudinal vibration transmission body 22 of the ultrasonic radiator 15, there is no vibration leakage at the support frame 16, and the ultrasonic radiator 15. Can be stably supported. Moreover, since vibration is not transmitted to the piping 12 side via the packing 32, the sealing performance in the connection part of the support frame 16 and the piping 12 can be ensured over a long period of time. Further, the support frame 16 of the ultrasonic radiation device 13 is attached to the pipe 12 by being connected by a bolt 33. In this case, the ultrasonic radiation device 13 can be easily attached to and detached from the pipe 12, and the maintainability of the ultrasonic radiation device 13 can be improved.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、超音波放射体15を構成する各振動体21が正八角形状に形成されていたが、軸対称振動をするものであれば、その形状を適宜変更することができる。具体的には、例えば、図5に示すように、円柱状の振動体21Aをマトリクス状に配置して超音波放射体15Aを形成してもよい。なお、上記実施の形態の振動体21,21Aは、中央に貫通孔23を有するものであったが、貫通孔23が形成されていない円柱状や多角柱状の振動体によって超音波放射体を形成してもよい。   In the above embodiment, each vibrating body 21 constituting the ultrasonic radiator 15 is formed in a regular octagonal shape. However, the shape can be changed as appropriate as long as it vibrates axially. Specifically, for example, as illustrated in FIG. 5, the ultrasonic radiator 15 </ b> A may be formed by arranging columnar vibrators 21 </ b> A in a matrix. In addition, although the vibrators 21 and 21A of the above-described embodiment have the through hole 23 in the center, an ultrasonic radiator is formed by a columnar or polygonal vibrator having no through hole 23 formed therein. May be.

・上記実施の形態の超音波処理装置11では、配管12の途中に超音波放射装置13の超音波放射体15を配置する構成としたが、これに限定されるものではない。具体的には、例えば、被処理液体W1を貯留する処理槽内に超音波放射体15を配置して、超音波処理装置を構成してもよい。なおこの場合、超音波放射体15を支持する支持フレーム16を処理槽の側壁に装着する。そして、超音波放射体15における縦振動伝送体22の端部を処理槽の側壁から外部に突出させ、その縦振動伝送体22の端部に超音波振動子17を固定することで超音波処理装置を構成する。このようにしても、処理槽内に貯留された被処理液体W1にキャビテーションを均一に発生させることができ、被処理液体W1の処理を効率よく行うことができる。   -In the ultrasonic processing apparatus 11 of the said embodiment, although it set it as the structure which arrange | positions the ultrasonic radiator 15 of the ultrasonic emission apparatus 13 in the middle of the piping 12, it is not limited to this. Specifically, for example, the ultrasonic treatment apparatus may be configured by arranging the ultrasonic radiator 15 in a treatment tank that stores the liquid W1 to be treated. In this case, the support frame 16 that supports the ultrasonic radiator 15 is mounted on the side wall of the processing tank. Then, the end of the longitudinal vibration transmission body 22 in the ultrasonic radiator 15 is projected outside from the side wall of the processing tank, and the ultrasonic vibrator 17 is fixed to the end of the longitudinal vibration transmission body 22 to perform ultrasonic processing. Configure the device. Even if it does in this way, cavitation can generate | occur | produce uniformly in the to-be-processed liquid W1 stored in the processing tank, and the to-be-processed liquid W1 can be processed efficiently.

・上記実施の形態の超音波処理装置11では、振動体21が3行×3列で配列した超音波放射体15,15Aを用いたが、超音波放射体15,15Aにおける行方向及び列方向の振動体21,21Aの配列数は、配管12や処理槽のサイズ、作用させる超音波の周波数等に応じて適宜変更することができる。また、各振動体21のサイズも、作用させる超音波の周波数に応じて適宜変更することができる。   In the ultrasonic processing apparatus 11 of the above embodiment, the ultrasonic radiators 15 and 15A in which the vibrators 21 are arranged in 3 rows × 3 columns are used. However, the row direction and the column direction in the ultrasonic radiators 15 and 15A are used. The number of the vibrators 21 and 21A can be appropriately changed according to the size of the pipe 12 and the processing tank, the frequency of the ultrasonic wave to be applied, and the like. Moreover, the size of each vibrating body 21 can also be suitably changed according to the frequency of the ultrasonic wave to act.

・上記実施の形態では、超音波放射体15,15Aは、一体的に成形されるものであったが、各振動体21や各縦振動伝送体22を個別に形成して、ネジなの連結手段にて各振動体21や各縦振動伝送体22を連結することで超音波放射体15,15Aを形成してもよい。超音波放射体15,15Aを分離可能に形成する場合、エロージョン等によってダメージを受けた振動体21,21Aを適宜変更することができる。このようにすると、超音波放射装置13において超音波放射体15,15Aを修理交換する際のメンテナンスコストを低く抑えることができる。   In the above embodiment, the ultrasonic radiators 15 and 15A are integrally formed. However, each of the vibrators 21 and each of the longitudinal vibration transmitters 22 is individually formed to be a screw-like connecting means. The ultrasonic radiators 15 and 15A may be formed by connecting the vibrators 21 and the longitudinal vibration transmitters 22 in FIG. When the ultrasonic radiators 15 and 15A are formed to be separable, the vibrators 21 and 21A damaged by erosion or the like can be appropriately changed. If it does in this way, the maintenance cost at the time of repairing and exchanging ultrasonic radiator 15 and 15A in ultrasonic radiating device 13 can be held down low.

・上記実施の形態の超音波処理装置11では、被処理液体W1の化学反応を行う反応装置であったが、化学反応以外のソノプロセス(洗浄、分散、乳化、混合、攪拌、破砕、抽出、結晶成長促進、環境浄化、殺菌など)を行う装置として具体化してもよい。また、オゾン、紫外線、電磁波、電気分解、プラズマ、光触媒、マイクロバブルなどの他のプロセスと併用した超音波処理装置として具体化してもよい。   -In the ultrasonic processing apparatus 11 of the said embodiment, although it was a reaction apparatus which performs the chemical reaction of the to-be-processed liquid W1, sono processes other than a chemical reaction (washing, dispersion | distribution, emulsification, mixing, stirring, crushing, extraction, The present invention may be embodied as an apparatus that performs crystal growth promotion, environmental purification, sterilization, and the like. Moreover, you may actualize as an ultrasonic processing apparatus used together with other processes, such as ozone, an ultraviolet-ray, electromagnetic waves, electrolysis, plasma, a photocatalyst, and a microbubble.

・上記実施の形態の超音波処理装置11は、配管12の途中に1つの超音波放射体15を設けるものであったが、これに限定されるものではない。図6に示される超音波処理装置11Aのように、超音波放射体15とその超音波放射体15を支持した支持フレーム16とからなる超音波放射モジュールを配管12の途中に多段状に積層して処理装置を構成してもよい。この超音波処理装置11Aでは、配管12内を流れる被処理液体W1の流通方向に沿って複数の超音波放射体15が配置される。このため、被処理液体W1の流速を速めて処理量を増大させた場合でも、各段の超音波放射体15における各振動体21から超音波を確実に作用させることができ、キャビテーションによるソノプロセスを効率よく行うことができる。このようにすると、プラントレベルに対応して超音波処理装置11Aの大型化を実現することができ、難分解性物質の大量処理や材料合成での大量生成を行うことが可能となる。   -Although the ultrasonic processing apparatus 11 of the said embodiment provided the one ultrasonic radiator 15 in the middle of the piping 12, it is not limited to this. As in the ultrasonic processing apparatus 11 </ b> A shown in FIG. 6, an ultrasonic radiation module including an ultrasonic radiator 15 and a support frame 16 that supports the ultrasonic radiator 15 is stacked in a multistage manner in the middle of the pipe 12. A processing apparatus may be configured. In this ultrasonic processing apparatus 11A, a plurality of ultrasonic radiators 15 are arranged along the flow direction of the liquid to be processed W1 flowing in the pipe 12. For this reason, even when the flow rate of the liquid to be processed W1 is increased to increase the processing amount, the ultrasonic waves can be reliably applied from the vibrating bodies 21 in the ultrasonic radiators 15 at each stage, and the sono process by cavitation is performed. Can be performed efficiently. If it does in this way, enlargement of 11 A of ultrasonic processing apparatuses can be implement | achieved corresponding to a plant level, and it will become possible to perform mass production by mass processing of a hardly decomposable substance and material synthesis | combination.

・図6に示される超音波処理装置11Aにおいて、配管12の上流側の超音波放射体15と下流側の超音波放射体15とで異なる周波数で各振動体21を振動させるように構成してもよい。具体的には、上流側の超音波放射体15から低周波の超音波を被処理液体W1に作用させた後、下流側の超音波放射体15から高周波の超音波を被処理液体W1に作用させるように構成する。このように超音波処理装置11Aを構成すると、例えばソノプロセスとして分散処理を行う場合、比較的大きな粒体粒子を上流側で粉砕し、下流側でさらに微細な粒子に粉砕することができ、分散処理を効率よく確実に行うことができる。   In the ultrasonic processing apparatus 11A shown in FIG. 6, the vibrators 21 are configured to vibrate at different frequencies between the upstream ultrasonic radiator 15 and the downstream ultrasonic radiator 15 of the pipe 12. Also good. Specifically, after applying low frequency ultrasonic waves from the upstream ultrasonic radiator 15 to the liquid to be processed W1, high frequency ultrasonic waves from the downstream ultrasonic radiator 15 to the liquid to be processed W1. To be configured. When the ultrasonic processing apparatus 11A is configured in this manner, for example, when dispersion processing is performed as a sono process, relatively large granular particles can be pulverized on the upstream side and further pulverized into finer particles on the downstream side. Processing can be performed efficiently and reliably.

・上記実施の形態の超音波放射体15は、複数の振動体21が行方向及び列方向に二次元的に配列される放射体であったが、それら行方向及び列方向に加えて、行方向及び列方向と直交する方向にも複数の振動体21を配列させてもよい。すなわち、複数の振動体21を三次元的に配列した超音波放射体を形成してもよい。なおこの場合、球体や多角形状の振動体を用いて立体的な超音波放射体を形成することが好ましい。また、この立体的な超音波放射体は、例えば処理槽内に配置されて使用される。さらに、立体的な超音波放射体では、行方向及び列方向と直交する方向の両端にも超音波振動子17を配置して、縦振動伝送体22を介して各振動体21を振動させるように構成する。このように構成すると、行方向及び列方向に配置された4つの超音波振動子17に加えて、直交方向からの2つの超音波振動子17によって各振動体21を振動させることができ、より強力な超音波を各振動体21から放射することが可能となる。   The ultrasonic radiator 15 according to the above embodiment is a radiator in which the plurality of vibrators 21 are two-dimensionally arranged in the row direction and the column direction, but in addition to the row direction and the column direction, the row A plurality of vibrators 21 may also be arranged in a direction orthogonal to the direction and the column direction. That is, an ultrasonic radiator in which a plurality of vibrators 21 are arranged three-dimensionally may be formed. In this case, it is preferable to form a three-dimensional ultrasonic radiator using a spherical body or a polygonal vibrating body. In addition, this three-dimensional ultrasonic radiator is used, for example, disposed in a processing tank. Further, in the case of a three-dimensional ultrasonic radiator, the ultrasonic vibrators 17 are arranged at both ends in the direction orthogonal to the row direction and the column direction so that each vibrator 21 is vibrated via the longitudinal vibration transmitter 22. Configure. If comprised in this way, in addition to the four ultrasonic transducer | vibrators 17 arrange | positioned in the row direction and the column direction, each vibrating body 21 can be vibrated by the two ultrasonic transducer | vibrators 17 from an orthogonal direction, It becomes possible to radiate powerful ultrasonic waves from each vibrator 21.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)請求項1または2において、前記複数の振動体が一体的に連結された金属塊からなることを特徴とする超音波放射体。   (1) The ultrasonic radiator according to claim 1 or 2, wherein the plurality of vibrators are made of a metal block integrally connected.

(2)請求項1または2において、前記複数の振動体が分離可能に形成されたことを特徴とする超音波放射体。   (2) The ultrasonic radiator according to claim 1 or 2, wherein the plurality of vibrators are separable.

(3)請求項1または2において、前記複数の振動体は、その軸方向から見た平面視で正八角形状に形成されていることを特徴とする超音波放射体。   (3) The ultrasonic radiator according to claim 1 or 2, wherein the plurality of vibrators are formed in a regular octagonal shape in a plan view as viewed from the axial direction.

(4)請求項3または4において、前記超音波放射体を支持するための支持フレームをさらに備え、前記超音波放射体には、前記各振動体の前記行方向及び前記列方向の端部に延設され、半波長共振して超音波を前記各振動体に伝搬する縦振動伝送体が設けられ、前記半波長共振する前記縦振動伝送体の振動節位置に前記支持フレームが固定されることを特徴とする超音波放射装置。   (4) In Claim 3 or 4, further comprising a support frame for supporting the ultrasonic radiator, wherein the ultrasonic radiator is provided at an end in the row direction and the column direction of each vibrator. A longitudinal vibration transmission body that is extended and resonates at half wavelength and propagates ultrasonic waves to the respective vibration bodies is provided, and the support frame is fixed at a vibration node position of the longitudinal vibration transmission body that resonates at half wavelength. Ultrasonic radiation device characterized by.

(5)請求項5において、前記配管の途中にて前記被処理液体の流通方向に沿って複数の前記超音波放射体を配置し、上流側の前記超音波放射体と下流側の前記超音波放射体とで異なる周波数で前記各振動体を振動させるようにしたことを特徴とする超音波処理装置。   (5) In Claim 5, a plurality of the ultrasonic radiators are arranged along the flow direction of the liquid to be processed in the middle of the pipe, and the ultrasonic radiators on the upstream side and the ultrasonic waves on the downstream side are arranged. An ultrasonic processing apparatus characterized in that each of the vibrators is vibrated at a frequency different from that of the radiator.

11,11A…超音波処理装置
12…配管
13…超音波放射装置
15,15A…超音波放射体
17…超音波振動子
18…超音波発振器
21,21A…振動体
23…貫通孔
W1…被処理液体
DESCRIPTION OF SYMBOLS 11, 11A ... Ultrasonic processing apparatus 12 ... Pipe 13 ... Ultrasonic radiation apparatus 15, 15A ... Ultrasonic radiation body 17 ... Ultrasonic vibrator 18 ... Ultrasonic oscillator 21, 21A ... Vibrating body 23 ... Through-hole W1 ... To-be-processed liquid

Claims (6)

径方向に軸対称振動をする複数の振動体を備えた超音波放射体であって、
前記振動体の外面が接続された状態で該各振動体が複数行及び複数列からなるマトリクス状に規則正しく配列され、行方向及び列方向において隣り合う前記振動体が交互に伸縮を繰り返すことにより前記各振動体から超音波を放射することを特徴とする超音波放射体。
An ultrasonic radiator including a plurality of vibrators that vibrate in axial symmetry.
The vibrators are regularly arranged in a matrix composed of a plurality of rows and a plurality of columns in a state where the outer surfaces of the vibrators are connected, and the vibrators adjacent in the row direction and the column direction repeat expansion and contraction alternately. An ultrasonic radiator characterized in that ultrasonic waves are emitted from each vibrator.
前記振動体は、中心部に貫通孔を有する円柱状または多角柱状に形成され、前記振動体の外面側に加えて、前記貫通孔の内面側から超音波を放射することを特徴とする請求項1に記載の超音波放射体。   The vibrating body is formed in a columnar shape or a polygonal column shape having a through hole in a central portion, and emits ultrasonic waves from the inner surface side of the through hole in addition to the outer surface side of the vibrating body. The ultrasonic emitter according to 1. 請求項1または2に記載の超音波放射体と、
前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、
前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器と
を備えたことを特徴とする超音波放射装置。
The ultrasonic radiator according to claim 1 or 2,
Provided at the end of the plurality of vibrators in the row direction and the column direction in the ultrasonic radiator, and vibrates each vibrator so that the vibrators adjacent in the row direction and the column direction repeat expansion and contraction alternately. A plurality of ultrasonic transducers,
An ultrasonic radiation apparatus comprising: an ultrasonic oscillator that outputs a drive signal for driving the plurality of ultrasonic transducers.
前記行方向及び前記列方向に直交する方向に、複数の前記超音波放射体が積層されたことを特徴とする請求項3に記載の超音波放射装置。   The ultrasonic radiation apparatus according to claim 3, wherein a plurality of the ultrasonic radiators are stacked in a direction orthogonal to the row direction and the column direction. 被処理液体を流す配管の途中に設けられ、前記被処理液体の流通方向と前記振動体の軸方向とを合わせた状態で配置される請求項1または2に記載の超音波放射体と、
前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、
前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器と
を備えたことを特徴とする超音波処理装置。
The ultrasonic radiator according to claim 1 or 2, which is provided in the middle of a pipe through which the liquid to be processed flows, and is arranged in a state in which a flow direction of the liquid to be processed and an axial direction of the vibrator are combined.
Provided at the end of the plurality of vibrators in the row direction and the column direction in the ultrasonic radiator, and vibrates each vibrator so that the vibrators adjacent in the row direction and the column direction repeat expansion and contraction alternately. A plurality of ultrasonic transducers,
An ultrasonic processing apparatus comprising: an ultrasonic oscillator that outputs a drive signal for driving the plurality of ultrasonic transducers.
被処理液体を貯留する処理槽内に設けられた請求項1または2に記載の超音波放射体と、
前記超音波放射体における複数の振動体の行方向及び列方向の端部に設けられ、前記行方向及び前記列方向において隣り合う前記振動体が交互に伸縮を繰り返すように前記各振動体を振動させる複数の超音波振動子と、
前記複数の超音波振動子を駆動するための駆動信号を出力する超音波発振器と
を備えたことを特徴とする超音波処理装置。
The ultrasonic radiator according to claim 1 or 2 provided in a treatment tank for storing a liquid to be treated;
Provided at the end of the plurality of vibrators in the row direction and the column direction in the ultrasonic radiator, and vibrates each vibrator so that the vibrators adjacent in the row direction and the column direction repeat expansion and contraction alternately. A plurality of ultrasonic transducers,
An ultrasonic processing apparatus comprising: an ultrasonic oscillator that outputs a drive signal for driving the plurality of ultrasonic transducers.
JP2011255648A 2011-11-23 2011-11-23 Ultrasonic radiation equipment, ultrasonic treatment equipment Active JP5887588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255648A JP5887588B2 (en) 2011-11-23 2011-11-23 Ultrasonic radiation equipment, ultrasonic treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255648A JP5887588B2 (en) 2011-11-23 2011-11-23 Ultrasonic radiation equipment, ultrasonic treatment equipment

Publications (2)

Publication Number Publication Date
JP2013107059A true JP2013107059A (en) 2013-06-06
JP5887588B2 JP5887588B2 (en) 2016-03-16

Family

ID=48704409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255648A Active JP5887588B2 (en) 2011-11-23 2011-11-23 Ultrasonic radiation equipment, ultrasonic treatment equipment

Country Status (1)

Country Link
JP (1) JP5887588B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771527B1 (en) * 2016-02-16 2017-08-29 주식회사 이오테크닉스 Ultrasonic cleaning apparatus and ultrasonic cleaning method using the ultrasonic cleaning apparatus
KR20180111336A (en) * 2017-03-31 2018-10-11 셈코프 머린 리패어즈 앤드 업그래이즈 피티이. 엘티디. Ultrasonic device having large radiating area
JP2019058883A (en) * 2017-09-28 2019-04-18 本多電子株式会社 Ultrasonic wave generator and vibration plate unit
CN110844968A (en) * 2019-12-16 2020-02-28 无锡蓝天电子股份有限公司 Detachable vibrating plate type ultrasonic treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006906B2 (en) 2017-07-31 2022-01-24 多賀電気株式会社 Sonicator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175722A (en) * 1997-09-04 1999-03-23 Dai Ichi High Frequency Co Ltd Treating apparatus
JP2005256954A (en) * 2004-03-11 2005-09-22 Japan Science & Technology Agency Linear guide and feeding screw friction reducing method
WO2008080888A1 (en) * 2007-01-02 2008-07-10 Heraeus Psp France Sas Device for producing ultrasonic vibrations
WO2011094925A1 (en) * 2010-02-05 2011-08-11 广州市新栋力超声电子设备有限公司 Clamp type ultrasonic processor and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175722A (en) * 1997-09-04 1999-03-23 Dai Ichi High Frequency Co Ltd Treating apparatus
JP2005256954A (en) * 2004-03-11 2005-09-22 Japan Science & Technology Agency Linear guide and feeding screw friction reducing method
WO2008080888A1 (en) * 2007-01-02 2008-07-10 Heraeus Psp France Sas Device for producing ultrasonic vibrations
WO2011094925A1 (en) * 2010-02-05 2011-08-11 广州市新栋力超声电子设备有限公司 Clamp type ultrasonic processor and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771527B1 (en) * 2016-02-16 2017-08-29 주식회사 이오테크닉스 Ultrasonic cleaning apparatus and ultrasonic cleaning method using the ultrasonic cleaning apparatus
KR20180111336A (en) * 2017-03-31 2018-10-11 셈코프 머린 리패어즈 앤드 업그래이즈 피티이. 엘티디. Ultrasonic device having large radiating area
KR102159856B1 (en) * 2017-03-31 2020-09-24 셈코프 머린 리패어즈 앤드 업그래이즈 피티이. 엘티디. Ultrasonic device having large radiating area
JP2019058883A (en) * 2017-09-28 2019-04-18 本多電子株式会社 Ultrasonic wave generator and vibration plate unit
CN110844968A (en) * 2019-12-16 2020-02-28 无锡蓝天电子股份有限公司 Detachable vibrating plate type ultrasonic treatment device

Also Published As

Publication number Publication date
JP5887588B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5887588B2 (en) Ultrasonic radiation equipment, ultrasonic treatment equipment
Gallego-Juárez et al. Power ultrasonic transducers with extensive radiators for industrial processing
US7504075B2 (en) Ultrasonic reactor and process for ultrasonic treatment of materials
US20130315025A1 (en) Method of ultrasonic cavitation treatment of liquid media and the objects placed therein
JP2011218308A (en) Gas-dissolved liquid generating apparatus and method for generation
JP6902787B2 (en) Ultrasonic generator, diaphragm unit
Keil et al. Reactors for sonochemical engineering-present status
EA009880B1 (en) Hydrodynamic generator of ultrasonic range acoustic oscillations and method for generating the same
JP2014198327A (en) Method and apparatus for producing fine bubble
JP2012066218A (en) Ultrasonic wave generator
JP2005199253A (en) Ultrasonic liquid treatment apparatus
JP4883617B2 (en) Ultrasonic multifrequency vibrator, ultrasonic vibration unit, ultrasonic vibration device, ultrasonic processing device, tip surface ultrasonic radiation device, tip surface ultrasonic wave receiving device, and ultrasonic processing device
JP7094544B2 (en) Ultrasonic cleaning device and method, wave generator
Gogate Theory of cavitation and design aspects of cavitational reactors
JP2008086898A (en) Ultrasonic cleaning device
KR101217167B1 (en) Apparatus for mixing chemicals using ultrasonic waves
JP6327789B2 (en) Ultrasonic reactor
JP4278095B2 (en) Ultrasonic radiator, ultrasonic radiation unit, ultrasonic radiation device, and ultrasonic treatment device using the same
US20160136598A1 (en) Ultrasonic system for mixing multiphase media and liquids, and associated method
JP2004337800A (en) Ultrasonic cavitation generator
RU154888U1 (en) DEVICE FOR INTENSIFICATION OF REACTIVE AND MASS-EXCHANGE PROCESSES
Gâmbuțeanu et al. Principles and effects of acoustic cavitation.
ES2893279B2 (en) MULTI-FREQUENCY INTENSIFIED SOUND REACTION DEVICE
JP5531192B2 (en) Ultrasonic generator
RU132000U1 (en) ULTRASONIC VIBRATION SYSTEM FOR GAS MEDIA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5887588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250