JP2013106462A - Rotary electric machine - Google Patents
Rotary electric machine Download PDFInfo
- Publication number
- JP2013106462A JP2013106462A JP2011249674A JP2011249674A JP2013106462A JP 2013106462 A JP2013106462 A JP 2013106462A JP 2011249674 A JP2011249674 A JP 2011249674A JP 2011249674 A JP2011249674 A JP 2011249674A JP 2013106462 A JP2013106462 A JP 2013106462A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rotor
- permanent magnets
- magnetic
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010349 pulsation Effects 0.000 claims abstract description 21
- 239000000696 magnetic material Substances 0.000 claims abstract description 5
- 230000005415 magnetization Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 29
- 230000004907 flux Effects 0.000 description 26
- 238000010248 power generation Methods 0.000 description 20
- 230000001629 suppression Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2796—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/18—Windings for salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
- H02K1/246—Variable reluctance rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Windings For Motors And Generators (AREA)
Abstract
Description
本発明は、回転電機に係り、特に脈動トルクを低減した回転電機に関する。 The present invention relates to a rotating electrical machine, and more particularly to a rotating electrical machine with reduced pulsating torque.
従来の回転電機、例えば発電機では、水力、火力等のエネルギーを回転エネルギに変換し、変換した回転エネルギで発電機を駆動して発電を行っている。一般に使用される発電機は、N極およびS極を有する永久磁石を回転軸に取り付けた回転子、前記永久磁石により形成される磁極数に応じた磁極を有する電機子鉄心、および該電機子鉄心に巻回した発電コイルを備え、前記回転子を回転駆動することにより、電機子鉄心内に交流磁界を発生し、発生した交流磁界により前記発電コイルに交流電圧を発生させている。 In a conventional rotating electrical machine, for example, a generator, energy such as hydraulic power or thermal power is converted into rotational energy, and the generator is driven by the converted rotational energy to generate electric power. Generally used generators include a rotor in which a permanent magnet having N poles and S poles is attached to a rotating shaft, an armature core having magnetic poles corresponding to the number of magnetic poles formed by the permanent magnets, and the armature core The generator coil is wound around and the rotor is driven to rotate, thereby generating an AC magnetic field in the armature core and generating an AC voltage in the generator coil by the generated AC magnetic field.
ところで、発電機あるいは電動機等の回転電機を構成する電機子鉄心は、電機子鉄心に巻回したコイルに十分な磁界を供給するため、前記回転子に取り付けた磁石と近接して配置することが望まれる。永久磁石と電機子鉄心とを近接して配置すると、永久磁石と鉄心の間に吸引力が働く。この吸引力は、回転電機の出力の向上を図るため、強力な永久磁石を用いる場合には、特に大きな値となる。 By the way, an armature core constituting a rotating electric machine such as a generator or an electric motor may be disposed close to a magnet attached to the rotor to supply a sufficient magnetic field to a coil wound around the armature core. desired. When the permanent magnet and the armature core are arranged close to each other, an attractive force acts between the permanent magnet and the iron core. This attractive force is particularly large when a strong permanent magnet is used to improve the output of the rotating electrical machine.
また、この吸引力は回転子の回転角度に依存して変動し、回転子の回転トルクに影響を及ぼす。このトルク、すなわち、電機子と回転子との間の磁気的吸引力に基づくトルク(脈動トルク)が大きくなると、回転子の回転角速度にばらつきが発生し、発電機には、異常振動あるいは騒音等の問題が発生する。また、例えば、風力発電等に用いられる発電機においては、回転翼が動き始める始動トルクが大きくなる。また、回転翼を連続して回転させるための抵抗も大きくなる。よって、微風の状態で発電することは困難となる。 Further, this suction force varies depending on the rotation angle of the rotor, and affects the rotation torque of the rotor. When this torque, that is, torque based on the magnetic attractive force between the armature and the rotor (pulsation torque) increases, the rotational angular speed of the rotor varies, and the generator has abnormal vibration or noise. Problems occur. For example, in a generator used for wind power generation or the like, the starting torque at which the rotor blades start to move increases. Moreover, the resistance for continuously rotating the rotor blades also increases. Therefore, it is difficult to generate power in a breeze.
このような脈動トルクによる不具合を抑制する技術として、特許文献1が知られている。特許文献1によれば、回転軸の回転方向に偶数の磁極が配置された磁石と、前記磁石の偶数の磁極に対応した鉄片が該磁極に近接され前記回転軸と同軸に配置されたヨークとを含む発電手段の3以上が前記回転軸によって連結され、一の発電手段の磁石とヨーク及び他の発電手段の磁石とヨークを、それぞれ相対的に回転させ、一の発電手段の磁石とヨークの鉄片が引き合う力と、他の発電手段の磁石とヨークの鉄片が引き合う力とを相殺させるようにしている。また、特許文献2には、回転板の回転方向と交叉する方向が長手方向となる矩形の磁石が複数配置され、隣の磁石の極性が交互に相違するようにされた回転板と、回転板上の特定磁極の磁石を回転板の上下から挟みこむ位置に設けられた電機子鉄心が複数配置され、複数の電機子鉄心の間に共通に巻線が巻かれた電機子とを備える回転電機が示されている。 Patent Document 1 is known as a technique for suppressing such a problem caused by pulsating torque. According to Patent Document 1, a magnet in which an even number of magnetic poles are arranged in the rotation direction of a rotating shaft, and a yoke in which an iron piece corresponding to the even number of magnetic poles of the magnet is disposed close to the magnetic pole and coaxial with the rotating shaft, 3 or more of the power generation means including the power generation means are coupled by the rotating shaft, and the magnets and yokes of one power generation means and the magnets and yokes of the other power generation means are relatively rotated, respectively. The force attracted by the iron pieces and the force attracted by the magnet pieces of the other power generation means and the iron pieces of the yoke are offset. Patent Document 2 discloses a rotating plate in which a plurality of rectangular magnets whose longitudinal direction intersects the rotating direction of the rotating plate are arranged and the polarities of adjacent magnets are alternately different from each other, and the rotating plate A rotating electrical machine including an armature in which a plurality of armature cores provided at positions where the magnet of the specific magnetic pole is sandwiched from above and below the rotating plate are disposed, and a common winding is wound between the plurality of armature cores It is shown.
前記従来技術によれば、脈動トルクを抑制するため、発電手段は、1つの回転軸に、複数の起電手段を連結する構造を備える。 According to the prior art, in order to suppress the pulsating torque, the power generation means has a structure in which a plurality of electromotive means are connected to one rotating shaft.
ここで、前記起電手段は、外部から回転力が供給される回転軸に対して放射状且つ、円周方向に沿って交互に磁極を配置した永久磁石と、前記回転軸の外周にボビンを介して巻回したコイルと、永久磁石から発生する磁束を前記コイルと鎖交するように誘導するヨークと、前記回転軸に対して放射状且つ円周方向に沿って配置され、前記永久磁石によって磁化される複数の被吸着片を備えた引力手段とから構成される。なお、前記引力手段は永久磁石の極と被吸着片間に働く引力をある程度打ち消すことにより回転軸にかかる引力である脈動トルクを減少させる手段である。 Here, the electromotive means includes a permanent magnet in which magnetic poles are arranged radially and alternately along the circumferential direction with respect to a rotating shaft to which a rotational force is supplied from the outside, and a bobbin is provided on the outer periphery of the rotating shaft. A coil wound around, a yoke for inducing magnetic flux generated from the permanent magnet to interlink with the coil, and a radial and circumferential direction with respect to the rotating shaft, and magnetized by the permanent magnet. And an attraction means having a plurality of attracted pieces. The attraction means is means for reducing pulsation torque, which is attraction applied to the rotating shaft, by canceling out to some extent the attraction acting between the pole of the permanent magnet and the attracted piece.
このため、前記従来技術によれば発電手段はその構成が複雑となる。また発電手段を小型化することは困難である。 For this reason, according to the said prior art, the structure of an electric power generation means becomes complicated. In addition, it is difficult to reduce the size of the power generation means.
本発明は、これらの問題点に鑑みてなされたもので、脈動トルクの回転子の回転に与える影響を抑制することのできる回転電機を提供するものである。 The present invention has been made in view of these problems, and provides a rotating electrical machine capable of suppressing the influence of pulsating torque on the rotation of a rotor.
本発明は上記課題を解決するため、次のような手段を採用した。 In order to solve the above problems, the present invention employs the following means.
回転軸と同心に且つ前記回転軸と並行して等間隔で且つ磁化方向が交番するように配置した複数の永久磁石、および該永久磁石の間に非磁性体を挟んで配置した磁性体を備えた回転子と、前記永久磁石の前面端部と背面端部間をそれぞれ空隙を介して接続するように配置したステータ鉄心と、前記ステータ鉄心に巻回したコイルを備えた。 A plurality of permanent magnets arranged concentrically with the rotation axis and in parallel with the rotation axis at an equal interval and having alternate magnetization directions; and a magnetic body arranged with a non-magnetic material sandwiched between the permanent magnets And a stator core disposed so as to connect the front end portion and the back end portion of the permanent magnet via gaps, respectively, and a coil wound around the stator core.
本発明は、以上の構成を備えるため、脈動トルクの回転子の回転に与える影響を抑制し、回転子をスムーズに回転させることができる。 Since this invention is provided with the above structure, the influence which it has on the rotation of the rotor of a pulsation torque can be suppressed, and a rotor can be rotated smoothly.
以下、本発明の実施形態を添付図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
(第1の実施形態)
図1は、第1の実施形態にかかる発電機(24極)を説明する斜視図であり、図2は、図1に示す回転子を説明する図であり、図2aは12極、図2bは6極の場合を示している。
(First embodiment)
1 is a perspective view for explaining a generator (24 poles) according to the first embodiment, FIG. 2 is a view for explaining a rotor shown in FIG. 1, FIG. 2a is a 12 pole, FIG. 2b. Indicates the case of 6 poles.
これらの図において、10は回転電機、11は回転軸、12は回転子、12M(12M−1,12M−2・・・)は永久磁石であり、回転軸11と同心に且つ前記回転軸11と並行して等間隔で且つ磁化方向が交番するように複数個配置されている。13(13−1,13−2,・・・)はC字型のステータ鉄心である。ステータ鉄心は図示しないハウジングに収容されている。 In these drawings, 10 is a rotating electrical machine, 11 is a rotating shaft, 12 is a rotor, 12M (12M-1, 12M-2...) Is a permanent magnet, concentric with the rotating shaft 11 and the rotating shaft 11. In parallel, the plurality of magnets are arranged at equal intervals so that the magnetization directions alternate. Reference numeral 13 (13-1, 13-2,...) Denotes a C-shaped stator iron core. The stator iron core is accommodated in a housing (not shown).
回転子12には回転軸11が貫通して、回転軸11は図示しない軸受を介して前記ハウジングに支持されている。 A rotating shaft 11 passes through the rotor 12, and the rotating shaft 11 is supported by the housing via a bearing (not shown).
永久磁石12Mの回転方向Wの前後には磁性体板12F、12Rが配置される。また、隣り合う永久磁石12Mの間には、磁性体板12F、12Rを介して非磁性体板12Cが配置される。前記非磁性体板12Cとしてはステンレス鋼板、ベークライト板等が、また、磁性体板12F、12Rとしては電磁鋼鈑が用いられる。なお、永久磁石12Mと、磁性体版12F,12Rおよび非磁性体板12Cの積層体が円周方向に占める角度θは等しく(θ1=θ2,θ3=θ4)設定する。 The magnetic plates 12F and 12R are arranged before and after the rotation direction W of the permanent magnet 12M. In addition, a non-magnetic plate 12C is disposed between adjacent permanent magnets 12M via magnetic plates 12F and 12R. A stainless steel plate, a bakelite plate or the like is used as the nonmagnetic plate 12C, and an electromagnetic steel plate is used as the magnetic plates 12F and 12R. The angle θ that the permanent magnet 12M, the laminate of the magnetic plates 12F and 12R, and the nonmagnetic plate 12C occupy in the circumferential direction is set equal (θ1 = θ2, θ3 = θ4).
前記C字型のステータ鉄心13(13−1,13−2・・・)は、前記複数の永久磁石12M(12Mー1,12M−2・・・)のそれぞれ前面端部(図の上側面)と背面端部(図の下側面)間をそれぞれ空隙を介して接続するように配置する。また、C字型のステータ鉄心には、それぞれコイル14を巻回し、これらのコイルは、例えば直列に接続する。 The C-shaped stator cores 13 (13-1, 13-2,...) Are front end portions of the plurality of permanent magnets 12M (12M-1, 12M-2,. ) And the rear end (the lower side of the figure) are arranged so as to be connected via a gap. Moreover, the coil 14 is each wound around a C-shaped stator iron core, and these coils are connected in series, for example.
これにより、例えば、回転軸11を外部から駆動すると、永久磁石→ステータ鉄心→永久磁石を通る磁束は断続し、コイル14から交流出力を得ることができる。 Thereby, for example, when the rotating shaft 11 is driven from the outside, the magnetic flux passing through the permanent magnet → the stator iron core → the permanent magnet is intermittent, and an AC output can be obtained from the coil 14.
図1においては、コイル14をC字型のステータ鉄心の直線部のそれぞれ(14a,14b,14c,14d,14eに巻回したが、例えば、14a、および14eにのみ巻回しても良い。 In FIG. 1, the coil 14 is wound around each of the straight portions (14a, 14b, 14c, 14d, and 14e) of the C-shaped stator core, but may be wound only around 14a and 14e, for example.
図3,4,5,6は、回転子に働くトルクを説明する図であり、図3は、回転子に配置された永久磁石12Mの前面がステータ鉄心の前面に全面で対向し、永久磁石の背面がステータ鉄心の背面に全面で対向する位置にある。なお、図3,4,5,6は回転子12を構成する複数の永久磁石、磁性体板、非磁性体板、およびC字型ステータ鉄心の前記永久磁石と対向する部分を永久磁石の外表面に沿って展開して示す図である。 3, 4, 5, and 6 are diagrams illustrating torque acting on the rotor, and FIG. 3 is a diagram in which the front surface of the permanent magnet 12 </ b> M arranged on the rotor is opposed to the front surface of the stator iron core in its entirety. Is in a position facing the entire back surface of the stator core. 3, 4, 5, and 6 show a plurality of permanent magnets, magnetic plates, nonmagnetic plates, and portions of the C-shaped stator core that constitute the rotor 12 that face the permanent magnets. It is a figure developed and shown along the surface.
図4は、回転子12が回転し、永久磁石が左方向に磁石幅の1/2移動した状態を示し、永久磁石の移動方向の後半部分(永久磁石の右半分)と磁性体板12Rがステータ鉄心の前面および背面に対向している。 FIG. 4 shows a state in which the rotor 12 has rotated and the permanent magnet has moved to the left by half of the magnet width. The latter half of the permanent magnet movement direction (the right half of the permanent magnet) and the magnetic plate 12R Opposite the front and back of the stator core.
図5は、更に、回転子が回転し、永久磁石が左方向に磁石幅の1/2移動した状態を示し、永久磁石は、ステータ鉄心の前面および背面の何れとも対向していない。 FIG. 5 further shows a state in which the rotor has rotated and the permanent magnet has moved 1/2 of the magnet width in the left direction, and the permanent magnet does not face either the front surface or the back surface of the stator core.
図6は、更に、回転子が回転し、永久磁石が左方向に磁石幅の1/2移動した状態を示し、永久磁石の回転方向の前半部分と磁性体板12Fがステータ鉄心の前面および背面に対向している。 FIG. 6 further shows a state in which the rotor has rotated and the permanent magnet has moved 1/2 of the magnet width to the left, and the front half and the magnetic plate 12F in the rotational direction of the permanent magnet are the front and back surfaces of the stator core. Opposite to.
ところで、回転電機には、「リラクタンストルク」と「マグネットトルク」が作用する。リラクタンストルクは、磁石が鉄心等の磁性体を引きつける力に基づくトルクであり、マグネットトルクは磁極が互いに反発したり吸引したりする力に基づくトルクである。 By the way, “reluctance torque” and “magnet torque” act on the rotating electrical machine. The reluctance torque is a torque based on the force with which the magnet attracts a magnetic body such as an iron core, and the magnet torque is a torque based on the force with which the magnetic poles repel or attract each other.
永久磁石が、図3の位置にあるとき、例えば、永久磁石12M−2による磁束φmは、永久磁石12M−2→ステータ鉄心13の前面→ステータ鉄心13の背面→永久磁石12M−2を通り、ステータ鉄心に巻回した発電コイル14と鎖交する。前記鎖交に伴い発電コイル14には起電力eが誘起される。 When the permanent magnet is at the position shown in FIG. 3, for example, the magnetic flux φm generated by the permanent magnet 12M-2 passes through the permanent magnet 12M-2 → the front surface of the stator core 13 → the back surface of the stator core 13 → the permanent magnet 12M-2. Interlinking with the power generation coil 14 wound around the stator core. An electromotive force e is induced in the power generation coil 14 with the linkage.
発電コイルに起電力が発生して負荷電流iが流れると負荷磁束2φcが発生する。負荷磁束2φcは、主として永久磁石の回転方向の前後に配置された磁性体板12F,12Rを通過する(永久磁石の比透磁率μs=1,磁性体のμs=6000である。このため、磁束の大部分は磁性体板を通る)。 When an electromotive force is generated in the power generation coil and a load current i flows, a load magnetic flux 2φc is generated. The load magnetic flux 2φc mainly passes through the magnetic plates 12F and 12R arranged before and after the rotation direction of the permanent magnet (relative permeability μs = 1 of the permanent magnet = 1, μs = 6000 of the magnetic material. Therefore, the magnetic flux. Most of it passes through the magnetic plate).
永久磁石が、図4に示す位置にあるとき、永久磁石12M−2による磁束φmの一部αφmは、永久磁石→ステータ鉄心の前面→ステータ鉄心の背面→永久磁石を通る。このとき、永久磁石には回転子を右方向に回転させようとするリラクタンストルクが働いている。このリラクタンストルクは脈動トルク原因となる。また、前記磁束αφmは発電コイルと鎖交する。 When the permanent magnet is at the position shown in FIG. 4, a part αφm of the magnetic flux φm by the permanent magnet 12M-2 passes through the permanent magnet → the front surface of the stator core → the back surface of the stator core → the permanent magnet. At this time, the reluctance torque which tries to rotate the rotor in the right direction is acting on the permanent magnet. This reluctance torque causes pulsation torque. The magnetic flux αφm is linked to the power generation coil.
また、前記磁束φmの一部βφmは磁性体板12F、12Rを通過して前記永久磁石に戻る。 A part βφm of the magnetic flux φm passes through the magnetic plates 12F and 12R and returns to the permanent magnet.
前記鎖交に伴い、ステータ鉄心に巻回した発電コイルには起電力eが誘起され、発電コイルには負荷電流icが流れ、負荷磁束2φc(φc1+φc2)が発生する。 Along with the linkage, an electromotive force e is induced in the power generation coil wound around the stator core, a load current ic flows through the power generation coil, and a load magnetic flux 2φc (φc1 + φc2) is generated.
負荷磁束2φcは、主として永久磁石の回転方向の前後に配置された磁性体板12F,12Rを通過する。すなわち、2φcの一部φc1は磁性体板12Rを通り、2φcの一部φc2は磁性体板12Fを通る。 The load magnetic flux 2φc mainly passes through the magnetic plates 12F and 12R arranged before and after the rotation direction of the permanent magnet. That is, a part φc1 of 2φc passes through the magnetic plate 12R, and a part φc2 of 2φc passes through the magnetic plate 12F.
このようにして、回転子の磁性体板12F、12Rには、それぞれ磁束φc1+βφm、磁束φc2−βφmが通過する。この磁束により回転子には回転子を左方向に駆動するようなトルクが発生する。 In this way, the magnetic fluxes φc1 + βφm and the magnetic flux φc2-βφm pass through the magnetic plates 12F and 12R of the rotor, respectively. This magnetic flux generates torque that drives the rotor in the left direction.
この回転子を左方向に駆動するようなトルクは永久磁石とステータ鉄心間に働く前記リラクタンストルクとは逆方向である。このため永久磁石とステータ鉄心間に働く前記リラクタンストルクに基づく脈動トルクを抑制することができる。 The torque for driving the rotor in the left direction is opposite to the reluctance torque acting between the permanent magnet and the stator core. For this reason, the pulsation torque based on the reluctance torque acting between the permanent magnet and the stator iron core can be suppressed.
永久磁石12M−2が図5の位置にあるとき、永久磁石からステータ鉄心に流れ込む磁束は、コイル内で打ち消し合う。このため、発電コイルに電圧は誘起されない。 When the permanent magnet 12M-2 is in the position of FIG. 5, the magnetic flux flowing from the permanent magnet into the stator core cancels out in the coil. For this reason, no voltage is induced in the power generation coil.
また、永久磁石が図6の位置にあるとき、永久磁石による磁束φmの一部αφmは、永久磁石→ステータ鉄心の前面→ステータ鉄心の背面→永久磁石を通る。このとき、永久磁石には回転子を左方向に回転させようとするリラクタンストルクが働く。このリラクタンストルクは脈動トルクの原因となる。また、前記磁束αφmは発電コイルと鎖交する。また、磁束φmの一部βφmは磁性体板12F、12Rを通過して前記永久磁石に戻る。 Further, when the permanent magnet is at the position shown in FIG. 6, a part αφm of the magnetic flux φm by the permanent magnet passes through the permanent magnet → the front surface of the stator core → the back surface of the stator core → the permanent magnet. At this time, a reluctance torque that tries to rotate the rotor in the left direction acts on the permanent magnet. This reluctance torque causes pulsation torque. The magnetic flux αφm is linked to the power generation coil. Further, a part βφm of the magnetic flux φm passes through the magnetic plates 12F and 12R and returns to the permanent magnet.
前記鎖交に伴い、背面ステータ鉄心に巻回した発電コイルには起電力eが誘起され、発電コイルには負荷電流icが流れ、負荷磁束2φcが発生する。 Along with the linkage, an electromotive force e is induced in the power generation coil wound around the back stator core, a load current ic flows through the power generation coil, and a load magnetic flux 2φc is generated.
負荷磁束2φcは、主として永久磁石の回転方向の前後に配置された磁性体板12F,12Rを通過する。すなわち、φcの一部φc1は磁性体板12Fを通り、φcの一部φc2は磁性体板12Rを通る。 The load magnetic flux 2φc mainly passes through the magnetic plates 12F and 12R arranged before and after the rotation direction of the permanent magnet. That is, a part φc1 of φc passes through the magnetic plate 12F, and a part φc2 of φc passes through the magnetic plate 12R.
すなわち、回転子の磁性体板12F、12Rには、それぞれ磁束φc1+βφm、磁束φC2−βφmが通過する。この磁束により回転子には回転子を右方向に駆動するようなトルクが発生する。 That is, the magnetic flux φc1 + βφm and the magnetic flux φC2-βφm pass through the rotor magnetic plates 12F and 12R, respectively. The magnetic flux generates torque that drives the rotor in the right direction.
この回転子を右方向に駆動するようなトルクは永久磁石とステータ鉄心間に働く前記リラクタンストルクとは逆方向である。このため永久磁石とステータ鉄心間に働く前記リラクタンストルクに基づく脈動トルクを抑制することができる。なお、ステータ鉄心の形状はC字型のステータ鉄心13(13−1,13−2・・・)は、永久磁石12Mの前面端部(図の下側面)と背面端部(図の上側面)間を空隙を介して接続できる形状であれば良い。 The torque for driving the rotor in the right direction is opposite to the reluctance torque acting between the permanent magnet and the stator core. For this reason, the pulsation torque based on the reluctance torque acting between the permanent magnet and the stator iron core can be suppressed. The shape of the stator iron core is a C-shaped stator iron core 13 (13-1, 13-2...). The front end (lower side) of the permanent magnet 12M and the rear end (upper side of the figure). ) As long as it can be connected via a gap.
以上説明したように、本発明の第1の実施形態によれば、リラクタンストルクに基づく脈動トルクを抑制することができる。 As described above, according to the first embodiment of the present invention, the pulsation torque based on the reluctance torque can be suppressed.
(第2の実施形態)
第1の実施形態においては、ステータ鉄心(第1のステータ鉄心)を回転方向に間隔を空けて配置している。このため、例えば、回転子が前記図5に示す位置あるとき永久磁石のから出る磁束は有効に利用されない。本実施形態によれば、第1のステータ鉄心と同一形状の第2のステータ鉄心(13−1’、13−2’・・・)を用意し、これを、図8に示すように前記第1のステータ鉄心(13−1,13−2・・・)の間に挿入する。このため、回転子の永久磁石は、何れかのステータ鉄心に影響を及ぼす位置に置かれることになり、回転電機の出力を増大することができる。
(Second Embodiment)
In the first embodiment, stator iron cores (first stator iron cores) are arranged at intervals in the rotational direction. For this reason, for example, when the rotor is at the position shown in FIG. 5, the magnetic flux emitted from the permanent magnet is not effectively used. According to the present embodiment, second stator cores (13-1 ′, 13-2 ′...) Having the same shape as the first stator core are prepared, and the second stator cores are prepared as shown in FIG. 1 between the stator cores (13-1, 13-2...). For this reason, the permanent magnet of the rotor is placed at a position that affects any of the stator cores, and the output of the rotating electrical machine can be increased.
なお、以上の例では、リラクタンストルクに基づく脈動トルクを抑制するのに、回転子の磁性体板12F、12Rを通る磁束φc1+βφm、および磁束φc2−βφmにより発生する反抗トルクを利用したが、この反抗トルクをステータ鉄心に巻回したコイルを励磁することにより生成することができる。 In the above example, the repulsive torque generated by the magnetic flux φc1 + βφm and the magnetic flux φc2-βφm passing through the magnetic plates 12F and 12R of the rotor is used to suppress the pulsation torque based on the reluctance torque. The torque can be generated by exciting a coil wound around the stator core.
図7−1、7−2は、パルス電流による脈動トルクの抑制動作を説明する図であり、前記第1および第2のステータ鉄心を備えた発電機の回転子および電機子部分を周方向に展開した展開図である。なお、図7−1および図7−2中の(1)〜(10)は、各時点毎の回転子の移動位置を示している。 FIGS. 7A and 7B are diagrams for explaining a pulsating torque suppression operation by a pulse current, in which a rotor and an armature portion of a generator including the first and second stator cores are arranged in a circumferential direction. FIG. In addition, (1)-(10) in FIGS. 7-1 and 7-2 has shown the movement position of the rotor for every time.
図7−1(2)〜(3)、図7−2(6)〜(7)に示すように、例えば永久磁石12M−1に対向するステータ鉄心の辺のうち、回転方向(図の例では左方向)に先行するステータ鉄心13−1の辺aと前記永久磁石12M−1との対向面積が、回転方向に後行するステータ鉄心13−1’の辺bと前記永久磁石との対向面積よりも少ないとき、すなわち、回転方向に先行するステータ鉄心13−1の辺aと前記永久磁石との間に働くリラクタンストルクが、回転方向に後行するステータ鉄心13−1’の辺bと前記永久磁石との間に働くリラクタンストルクよりも少ないとき(このような場合には、回転電機の回転子は回転方向に後行するステータ鉄心13−1’の辺bと前記永久磁石との間に働くリラクタンストルクにより、回転方向とは逆の方向に駆動される)、前記回転方向に先行するステータ鉄心13−1に巻回したコイル(脈動抑制コイル)に前記永久磁石を吸引する方向に磁極が生成されるようにパルス電流を供給する。あるいはステータ鉄心13−1’に巻回したコイル(脈動抑制コイル)に前記永久磁石を反発する方向に磁極が生成されるようにパルス電流を供給する。なお脈動抑制コイルは発電コイルと共用することができる。 As shown in FIGS. 7-1 (2) to (3) and FIGS. 7-2 (6) to (7), for example, among the sides of the stator core facing the permanent magnet 12M-1, the rotation direction (example in the figure) In this case, the facing area between the side a of the stator iron core 13-1 preceding (in the left direction) and the permanent magnet 12M-1 is such that the side b of the stator iron core 13-1 ′ following in the rotation direction faces the permanent magnet. When the area is smaller, that is, the reluctance torque acting between the side a of the stator iron core 13-1 preceding in the rotation direction and the permanent magnet is the side b of the stator iron core 13-1 ′ following in the rotation direction. When the reluctance torque acting between the permanent magnet and the permanent magnet is smaller (in this case, the rotor of the rotating electrical machine is located between the side b of the stator iron core 13-1 'following in the rotation direction and the permanent magnet). Reluctance torque acting on the rotation direction Is driven in the opposite direction), and a pulse current is generated so that a magnetic pole is generated in a direction in which the permanent magnet is attracted to a coil (pulsation suppressing coil) wound around the stator core 13-1 preceding the rotation direction. Supply. Alternatively, a pulse current is supplied to a coil (pulsation suppressing coil) wound around the stator core 13-1 'so that a magnetic pole is generated in a direction in which the permanent magnet is repelled. The pulsation suppression coil can be shared with the power generation coil.
ここで、図7−1、7−2において、ステータ鉄心上に「N」、「S」で示した位置にある磁極は、前記磁極に巻回したコイル(脈動抑制コイル)に供給したパルス電流により形成された磁極を示す。このように磁極を生起させることにより、例えば前記永久磁石12M−1と回転方向に後行するステータ鉄心13−1’の辺bとの間に働くリラクタンストルクを抑制して、該リラクタンストルクに基づく脈動トルクを抑制することができる。 なお、脈動抑制コイルは1箇所(例えばステータ鉄心13−1)に巻回すればよいが、第2のステータ鉄心のすべてに巻回してこれらを直列に接続した回路に前記パルス電流を供給してもよい。なお、脈動抑制コイルに供給するパルス電流の供給タイミングは回転子の回転位置を検出する位置センサ等から得ることができる。 Here, in FIGS. 7A and 7B, the magnetic poles at the positions indicated by “N” and “S” on the stator core are pulse currents supplied to the coil (pulsation suppressing coil) wound around the magnetic poles. The magnetic pole formed by is shown. By generating the magnetic poles in this way, for example, the reluctance torque acting between the permanent magnet 12M-1 and the side b of the stator iron core 13-1 ′ following in the rotation direction is suppressed, and based on the reluctance torque. Pulsating torque can be suppressed. The pulsation suppressing coil may be wound around one place (for example, the stator core 13-1), but the pulse current is supplied to a circuit in which the second stator core is wound around and connected in series. Also good. The supply timing of the pulse current supplied to the pulsation suppression coil can be obtained from a position sensor or the like that detects the rotational position of the rotor.
以上説明したように、永久磁石を吸引あるいは反発する方向に磁極が生成されるようにパルス電流を供給して回転子を駆動することにより、前記脈動トルクを抑制することができる。 As described above, the pulsation torque can be suppressed by supplying the pulse current so that the magnetic pole is generated in the direction of attracting or repelling the permanent magnet and driving the rotor.
このように、永久磁石と対向するステータ鉄心の間に働く吸引力による回転子の回転方向が、回転子の回転方向(駆動方向)と異なるとき(例えば、図4に示すように永久磁石の中心がステータ鉄心の中心よりも回転方向前方にずれており、回転子に回転方向とは逆方向にトルクが発生するとき)、第1あるいは第2のステータ鉄心に巻回した脈動抑制コイルに前記永久磁石を吸引または反発する方向のパルス電流を供給するので、前記脈動トルクに反抗するトルクを生成して、前記脈動トルクを抑制することができる。 As described above, when the rotation direction of the rotor by the attractive force acting between the stator iron core and the permanent magnet is different from the rotation direction (drive direction) of the rotor (for example, as shown in FIG. 4, the center of the permanent magnet). Is shifted forward in the rotational direction from the center of the stator core, and torque is generated in the rotor in the direction opposite to the rotational direction), the pulsation suppressing coil wound around the first or second stator core is Since a pulse current is supplied in a direction that attracts or repels the magnet, it is possible to suppress the pulsating torque by generating a torque that opposes the pulsating torque.
以上、本発明の実施形態を発電機を例に説明したが、電動機にも同様に適用することができる。 As mentioned above, although embodiment of this invention was described taking the generator as an example, it is applicable similarly to an electric motor.
10 回転電機
11 回転軸
12 回転子
12M 永久磁石
12F、12R 磁性体板
12C 非磁性体板
13 ステータ鉄心
14 コイル
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 11 Rotating shaft 12 Rotor 12M Permanent magnet 12F, 12R Magnetic body plate 12C Nonmagnetic body plate 13 Stator iron core 14 Coil
Claims (4)
前記永久磁石の前面端部と背面端部間をそれぞれ空隙を介して接続するように配置したステータ鉄心と、
前記ステータ鉄心に巻回したコイルを備えたことを特徴とする回転電機。 A plurality of permanent magnets arranged concentrically with the rotation axis and in parallel with the rotation axis at an equal interval and having alternate magnetization directions; and a magnetic body arranged with a non-magnetic material sandwiched between the permanent magnets Rotor and
A stator core disposed so as to connect the front end portion and the back end portion of the permanent magnet via a gap;
A rotating electrical machine comprising a coil wound around the stator core.
前記永久磁石の円周方向幅と、永久磁石の間に非磁性体を挟んで配置した磁性体の円周方向幅は等しいことを特徴とする回転電機。 The rotating electrical machine according to claim 1, wherein
A rotating electric machine characterized in that a circumferential width of the permanent magnet is equal to a circumferential width of a magnetic body disposed with a non-magnetic body interposed between the permanent magnets.
前記ステータ鉄心は各永久磁石に対応して配置したことを特徴とする回転電機。 The rotating electrical machine according to claim 1, wherein
The rotating electric machine according to claim 1, wherein the stator core is disposed corresponding to each permanent magnet.
それぞれの永久磁石の前記回転軸方向前面端部と背面端部間をそれぞれ空隙を介して接続するように配置したステータ鉄心と、
前記ステータ鉄心のそれぞれに巻回した電機子コイルと、
少なくとも1つの前記ステータ鉄心に巻回した脈動抑制コイルを備え、前記コイルにパルス電流を供給して、回転子に働く脈動トルクを抑制したことを特徴とする回転電機。 A plurality of permanent magnets arranged concentrically with the rotation axis and in parallel with the rotation axis at an equal interval and having alternate magnetization directions; and a magnetic body arranged with a non-magnetic material sandwiched between the permanent magnets A disc-shaped rotor,
Stator cores arranged so as to connect the respective front end portions and back end portions of the respective permanent magnets via gaps,
An armature coil wound around each of the stator cores;
A rotating electrical machine comprising a pulsation suppressing coil wound around at least one of the stator cores, and supplying a pulse current to the coil to suppress a pulsating torque acting on a rotor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011249674A JP5372115B2 (en) | 2011-11-15 | 2011-11-15 | Rotating electric machine |
PCT/JP2012/078708 WO2013073416A1 (en) | 2011-11-15 | 2012-11-06 | Dynamo-electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011249674A JP5372115B2 (en) | 2011-11-15 | 2011-11-15 | Rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013106462A true JP2013106462A (en) | 2013-05-30 |
JP5372115B2 JP5372115B2 (en) | 2013-12-18 |
Family
ID=48429480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011249674A Active JP5372115B2 (en) | 2011-11-15 | 2011-11-15 | Rotating electric machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5372115B2 (en) |
WO (1) | WO2013073416A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017028790A (en) * | 2015-07-17 | 2017-02-02 | 小林 和明 | Rotary electric machine |
JP2018029420A (en) * | 2016-08-16 | 2018-02-22 | マツダ株式会社 | Dynamo-electric machine and manufacturing method thereof |
JP2018029421A (en) * | 2016-08-16 | 2018-02-22 | マツダ株式会社 | Rotary electric machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5596646B2 (en) * | 2011-09-20 | 2014-09-24 | 和明 小林 | Rotating electric machine |
JP6944750B2 (en) * | 2017-01-25 | 2021-10-06 | Jr東日本コンサルタンツ株式会社 | Power generation equipment and power generation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001136721A (en) * | 1999-08-26 | 2001-05-18 | Toyota Motor Corp | Axially-spaced permanent magnet synchronous machine |
JP2008172884A (en) * | 2007-01-10 | 2008-07-24 | Honda Motor Co Ltd | Axial gap type motor and motor-driven power steering device |
JP2009118551A (en) * | 2007-11-01 | 2009-05-28 | Honda Motor Co Ltd | Axial gap motor |
WO2010150492A1 (en) * | 2009-06-23 | 2010-12-29 | 国立大学法人北海道大学 | Axial motor |
JP2011101545A (en) * | 2009-11-09 | 2011-05-19 | Hitachi Ltd | Rotary electrical machine |
-
2011
- 2011-11-15 JP JP2011249674A patent/JP5372115B2/en active Active
-
2012
- 2012-11-06 WO PCT/JP2012/078708 patent/WO2013073416A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001136721A (en) * | 1999-08-26 | 2001-05-18 | Toyota Motor Corp | Axially-spaced permanent magnet synchronous machine |
JP2008172884A (en) * | 2007-01-10 | 2008-07-24 | Honda Motor Co Ltd | Axial gap type motor and motor-driven power steering device |
JP2009118551A (en) * | 2007-11-01 | 2009-05-28 | Honda Motor Co Ltd | Axial gap motor |
WO2010150492A1 (en) * | 2009-06-23 | 2010-12-29 | 国立大学法人北海道大学 | Axial motor |
JP2011101545A (en) * | 2009-11-09 | 2011-05-19 | Hitachi Ltd | Rotary electrical machine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017028790A (en) * | 2015-07-17 | 2017-02-02 | 小林 和明 | Rotary electric machine |
JP2018029420A (en) * | 2016-08-16 | 2018-02-22 | マツダ株式会社 | Dynamo-electric machine and manufacturing method thereof |
JP2018029421A (en) * | 2016-08-16 | 2018-02-22 | マツダ株式会社 | Rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
WO2013073416A1 (en) | 2013-05-23 |
JP5372115B2 (en) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5798072B2 (en) | Rotating machine | |
JP2008271640A (en) | Axial gap motor | |
JP5372115B2 (en) | Rotating electric machine | |
WO2021131071A1 (en) | Hybrid-field double-gap synchronous machine and drive system | |
JP2011078202A (en) | Axial gap motor | |
JPH1198794A (en) | Torque-generating equipment | |
JP5596646B2 (en) | Rotating electric machine | |
JP6083640B2 (en) | Permanent magnet embedded motor | |
JP2012249347A (en) | Rotor of axial gap rotary electric machine | |
JP2012182945A (en) | Rotary electric machine | |
JP7277068B2 (en) | Motor with rotational force output device and rotational starting force assist | |
KR20060094514A (en) | Rotary machine and electromagnetic machine | |
JP4124621B2 (en) | Rotating electric machine | |
KR102449461B1 (en) | Power generation device with improved back electromotive force reduction efficiency | |
JP5481456B2 (en) | Rotating electric machine | |
KR20220107356A (en) | Generator armature Left and right Rotating field magnet instrument Generators rotating in reverse direction to each other | |
JP2016201978A (en) | Power storage device | |
US7375451B2 (en) | Electric motor having a permanent magnet rotor and a stator core of united poles | |
JP2010093929A (en) | Axial gap-type motor | |
JP7042536B1 (en) | Rotating electric machine | |
JP5874246B2 (en) | Linear drive mover | |
JP6545025B2 (en) | Electric rotating machine | |
JP2014057502A (en) | Power generating device suppressing cogging force | |
JP2019216530A (en) | Permanent magnet generator | |
TWM564862U (en) | Magnetic-assisted power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5372115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |