JP2013105964A - Method for manufacturing columnar bond magnet - Google Patents

Method for manufacturing columnar bond magnet Download PDF

Info

Publication number
JP2013105964A
JP2013105964A JP2011250201A JP2011250201A JP2013105964A JP 2013105964 A JP2013105964 A JP 2013105964A JP 2011250201 A JP2011250201 A JP 2011250201A JP 2011250201 A JP2011250201 A JP 2011250201A JP 2013105964 A JP2013105964 A JP 2013105964A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
bonded magnet
cylindrical
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011250201A
Other languages
Japanese (ja)
Other versions
JP5884425B2 (en
Inventor
Muneo Yamamoto
宗生 山本
Tomoshi Inohara
知士 井ノ原
Rie Yoshida
理恵 吉田
Michiya Kume
道也 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2011250201A priority Critical patent/JP5884425B2/en
Publication of JP2013105964A publication Critical patent/JP2013105964A/en
Application granted granted Critical
Publication of JP5884425B2 publication Critical patent/JP5884425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Adornments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a columnar bond magnet excellent in magnetic characteristics.SOLUTION: In a method for manufacturing a columnar bond magnet to be obtained by performing extrusion molding of a bond magnet composition consisting of anisotropic magnetic powder and resin, it has processes of: forming a magnetic field for orientation in which a magnetic field line goes along the axis direction in a space inside a columnar magnet axially oriented in the axis direction by arranging the columnar magnet in a metal mold 2 for extrusion molding as a magnet 5 for orientation; orienting the magnetic powder in the axis direction and performing extrusion molding of a bond magnet composition by making the bond magnet composition passing through in the magnetic field for orientation; preparing a magnetizer with at least a pair of air-core coils which are constituted by winding thin metallic wire for a plurality of times, respectively, in forward and backward directions; and performing magnetization processing of the bond magnet composition whose extrusion molding is performed by the magnetizer, and the magnetic field line which radially goes in and out of the radial direction of the columnar bond magnet is formed by the processes.

Description

本発明は、軸方向にN極とS極が交互に多極磁化されており、1つの極から径方向に放射状の磁力を発生する円柱状ボンド磁石の製造方法に関する。   The present invention relates to a method of manufacturing a cylindrical bonded magnet in which N poles and S poles are alternately magnetized in the axial direction and a radial magnetic force is generated from one pole in the radial direction.

円柱状の磁石で、軸方向にN極とS極が交互に多極磁化した磁石は、様々な分野で使用されている。例えば、製品粉末の中から鉄粉等を除去する異物除去装置や、リニアモータの固定子や、磁気ネックレスである。   A cylindrical magnet having a multipole magnetized alternately with N and S poles in the axial direction is used in various fields. For example, a foreign matter removing device that removes iron powder or the like from product powder, a stator of a linear motor, or a magnetic necklace.

特開2003−303714号公報JP 2003-303714 A 特開2008−182873号公報JP 2008-182873 A 特開2005−73466号公報Japanese Patent Laid-Open No. 2005-73466 特開2004−320827号公報JP 2004-320827 A 特許3421779号公報Japanese Patent No. 3421799 特開平8−130862号公報JP-A-8-130862 特開2003−068527号公報Japanese Patent Laid-Open No. 2003-068527 特開2008−173405号公報JP 2008-173405 A 特開2009−22341号公報JP 2009-22341 A 特許2008−173405号公報Japanese Patent No. 2008-173405

以下に述べる先行技術文献は、大きく分けて、特許文献1乃至3が、複数の焼結磁石を組み立てて円柱状磁石としたものであり、特許文献4乃至5が、ボンド磁石にて円柱状磁石を構成したものである。   Prior art documents described below are broadly divided into Patent Documents 1 to 3, in which a plurality of sintered magnets are assembled into a columnar magnet. Patent Documents 4 to 5 are bonded magnets and columnar magnets. Is configured.

特許文献1乃至3は、複数の焼結磁石を、同極同士が向かい合うように配置して、反発させながら円柱状磁石を組み立てている。これにより、円柱状磁石の軸方向にN極とS極が交互に多極磁化した磁石を製造することができる。これらの特許文献による製造方法では、円柱状磁石を焼結磁石で構成することになるため、製造された円柱状磁石の磁力は強力になる。しかし、複数の焼結磁石を並べる組立の作業が必須となり、しかも、その組立作業は、複数の焼結磁石を互いに反発させながら行う作業であるため、組立作業には多大な時間と労力を要することとなる。また、焼結磁石は、機械的な強度がボンド磁石と比較して低いため、組立作業中や使用中に、焼結磁石に割れや欠けが生じることがある。   In Patent Documents 1 to 3, a plurality of sintered magnets are arranged so that the same poles face each other, and a cylindrical magnet is assembled while being repelled. Thereby, a magnet in which N poles and S poles are alternately multipolar magnetized in the axial direction of the cylindrical magnet can be manufactured. In the manufacturing methods according to these patent documents, since the cylindrical magnet is composed of a sintered magnet, the magnetic force of the manufactured cylindrical magnet becomes strong. However, an assembling work for arranging a plurality of sintered magnets is indispensable, and the assembling work is performed while repelling the plurality of sintered magnets, so that the assembling work requires a lot of time and labor. It will be. Further, since the sintered magnet has a lower mechanical strength than the bonded magnet, the sintered magnet may be cracked or chipped during assembly work or use.

特許文献4乃至6は、ボンド磁石にて円柱状磁石を構成することにより、上述した焼結磁石の問題を解決しようとしたものである。   Patent Documents 4 to 6 attempt to solve the above-described problems of sintered magnets by forming a cylindrical magnet with bonded magnets.

特許文献4と5に記載の製造方法では、射出成形または圧縮成形により、磁性粉末を所望のパターンに配向させることにより、1回の成形工程で、円柱状ボンド磁石の軸方向にN極とS極が交互に多極磁化した磁石成形品を得ることができる。しかしながら、射出成形も圧縮成形もバッチ式であるため、成形のし易さを考慮すると、磁石成形品の長さには限界がある。特に、磁性粉末のバインダー樹脂としてゴムを採用したフレキシブルなボンド磁石を成形する場合には、長尺になるほど成形品を金型から取り出す際の突き出し力がその成形品自体に吸収され、突き出し不良が起こりやすくなる。つまり、成形した後、金型から取り出しにくくなる。   In the production methods described in Patent Documents 4 and 5, the magnetic powder is oriented in a desired pattern by injection molding or compression molding, so that the N pole and S in the axial direction of the cylindrical bonded magnet are formed in one molding step. A magnet molded product in which the poles are alternately magnetized in multiple poles can be obtained. However, since injection molding and compression molding are both batch-type, there is a limit to the length of the magnet molded product in consideration of ease of molding. In particular, when molding a flexible bonded magnet that employs rubber as a binder resin for magnetic powder, the longer the length of the molded product is, the more the ejection force when the molded product is taken out of the mold is absorbed by the molded product itself, and the ejection failure is reduced. It tends to happen. That is, it becomes difficult to remove from the mold after molding.

特許文献6では、等方性の磁性粉末を材料とした長尺ボンド磁石を、着磁処理により、その軸方向にN極とS極が交互に多極磁化したボンド磁石を作製している。しかし、磁性粉末として等方性の磁性粉末を利用したボンド磁石であるため、その磁気特性は、異方性の磁性粉末を利用した場合と比較して低くなる。   In Patent Document 6, a long bonded magnet made of isotropic magnetic powder is magnetized to produce a bonded magnet in which N poles and S poles are alternately magnetized in the axial direction. However, since it is a bonded magnet using an isotropic magnetic powder as the magnetic powder, its magnetic properties are lower than when an anisotropic magnetic powder is used.

特許文献7は、上述したような円柱状ボンド磁石とは異なり、シート状のボンド磁石に関するものである。本特許文献に開示された配向方法および着磁方法は、シート状ボンド磁石を押出成形で製造する際に、電磁石により押出方向に平行な磁界を発生させ、磁性粉末を押出方向に面内配向させている。その後、永久磁石により面内で反発するように着磁処理することにより、磁力線を外部へ取り出している。この製造方法による場合、押出成形中は、常に電磁石に電流を流す必要があり、莫大な電気代が必要になる。また、このシート状のボンド磁石を切削加工により切り出して円筒状に丸め、円筒状の磁石を製造するとなると、多大な手間がかかるだけでなく、長尺ものになるほど加工精度の面で問題が大きくなる。   Patent Document 7 relates to a sheet-like bonded magnet, unlike the cylindrical bonded magnet as described above. In the orientation method and the magnetization method disclosed in this patent document, when a sheet-like bonded magnet is produced by extrusion, a magnetic field parallel to the extrusion direction is generated by an electromagnet, and the magnetic powder is oriented in-plane in the extrusion direction. ing. Thereafter, the magnetic lines of force are extracted to the outside by performing a magnetizing process so as to repel in-plane with a permanent magnet. In the case of this manufacturing method, it is necessary to always pass an electric current through the electromagnet during the extrusion molding, which requires a huge electricity bill. In addition, when this sheet-like bonded magnet is cut out and rounded into a cylindrical shape to produce a cylindrical magnet, not only is it time-consuming, but the longer the length, the greater the problem in terms of processing accuracy. Become.

特許文献8乃至10は、フレキシブルな長尺円柱状ボンド磁石を屈曲させることにより形成させ、その端部に接合部を設けた磁気ネックレスに関するものである。これらの特許文献に開示される磁気ネックレスは、例えば、特許文献10の図2(本明細書中では図13)に記載されているように、フレキシブルな長尺円柱状ボンド磁石からなる磁石部22と、その磁石部22を覆う被覆部21とから構成されており、その磁力のパターンは、径方向に関してN極となるc点と、そこから180°回転させた位置であるe点に、S極を発生させるようになっている。このような磁極の配置の場合には、N極となるc点から90°回転させた位置であるd点と、N極となるc点から270°回転させた位置であるf点では磁力が殆ど出ていない。従って、磁気ネックレスが、このd点やf点の位置で人の皮膚に接しても、磁気治療の効果が得られないという問題があった。   Patent Documents 8 to 10 relate to a magnetic necklace formed by bending a flexible long cylindrical bonded magnet and having a joint at its end. The magnetic necklace disclosed in these patent documents, for example, as described in FIG. 2 of the patent document 10 (FIG. 13 in this specification), is a magnet portion 22 made of a flexible long cylindrical bond magnet. And a covering portion 21 that covers the magnet portion 22, and the magnetic force pattern is expressed by the point c that is the N pole in the radial direction and the point e that is a position rotated 180 ° therefrom. A pole is generated. In the case of such an arrangement of magnetic poles, there is a magnetic force at point d, which is a position rotated 90 ° from point c that is the N pole, and point f, which is a position rotated 270 ° from point c that is the N pole. Almost no. Therefore, even if the magnetic necklace is in contact with the human skin at the positions of the d point and the f point, there is a problem that the magnetic treatment effect cannot be obtained.

そこで、本発明は、斯かる事情に鑑みてなされたものであり、磁気特性と生産性に優れ、長さ方向に加工上の制限が無い押出成形を利用して、軸方向にN極とS極が交互に多極磁化された円柱状ボンド磁石の製造方法を提供することにある。   Therefore, the present invention has been made in view of such circumstances, and uses N-pole in the axial direction and S in the axial direction by utilizing extrusion molding which is excellent in magnetic characteristics and productivity and has no processing restrictions in the length direction. An object of the present invention is to provide a method for producing a cylindrical bonded magnet having poles alternately magnetized in multiple poles.

以上の目的を達成するために本発明に係る円柱状ボンド磁石の製造方法は、異方性の磁性粉末と樹脂とからなるボンド磁石組成物を押出成形することにより得られる円柱状ボンド磁石の製造方法において、軸方向にアキシャル配向された円筒状磁石を、配向用磁石として押出成形用金型に配置することにより、その円筒状磁石の内側の空間に、磁力線が軸方向に沿った配向用磁場を形成する工程と、上記配向用磁場内に上記ボンド磁石組成物を通過させることにより、軸方向に上記磁性粉末を配向させるとともに、上記ボンド磁石組成物を押出成形する工程と、金属細線を正逆方向それぞれ複数回巻回させてなる少なくとも一対の空芯コイルを備えた着磁装置を準備する工程と、上記着磁装置にて、上記押出成形されたボンド磁石組成物を着磁処理する工程と、を有しており、これらの工程により、円柱状ボンド磁石の径方向に放射状に出入りする磁力線を形成することを特徴とする。   In order to achieve the above object, a method for producing a cylindrical bonded magnet according to the present invention is the production of a cylindrical bonded magnet obtained by extrusion molding a bonded magnet composition comprising anisotropic magnetic powder and resin. In the method, a cylindrical magnet axially oriented in the axial direction is arranged in an extrusion mold as an orientation magnet, whereby a magnetic field for orientation in which magnetic lines of force extend in the axial direction in the space inside the cylindrical magnet. Forming the magnetic powder in the axial direction by passing the bonded magnet composition through the orientation magnetic field, extruding the bonded magnet composition, and forming a fine metal wire. A step of preparing a magnetizing device provided with at least a pair of air-core coils each wound in the reverse direction a plurality of times, and applying the extruded bonded magnet composition in the magnetizing device. A step of processing, has, by these steps, and forming the magnetic field lines in and out radially in a radial direction of the cylindrical bonded magnet.

上記配向用磁石に接する押出成形用金型が、非磁性鋼により構成されていることが好ましい。上記磁性粉末が、異方性Sm−Fe−N系磁性粉末であることが好ましい。上記樹脂が、シリコーンゴムであることが好ましい。   It is preferable that the extrusion mold in contact with the orientation magnet is made of nonmagnetic steel. The magnetic powder is preferably an anisotropic Sm—Fe—N based magnetic powder. The resin is preferably silicone rubber.

また、本発明は、上記製造方法を利用した磁気ネックレスの製造方法である。さらに、本発明は、上記製造方法により製造された磁気ネックレスである。   Moreover, this invention is a manufacturing method of the magnetic necklace using the said manufacturing method. Furthermore, the present invention is a magnetic necklace manufactured by the above manufacturing method.

本発明は、その軸方向にN極とS極が交互に多極磁化しており、1つの極からは径方向に放射状の磁力を発生させた円柱状ボンド磁石の製造方法である。押出成形により、本発明にかかる円柱状ボンド磁石の製造方法は、磁気特性と生産性に優れ、長さ方向に加工上の制限を無くすることができる。特に、本発明にかかる円柱状ボンド磁石にて磁気ネックレスを構成した場合、円柱状ボンド磁石径方向に放射状の磁力線がくまなく出ているため、使用者がどのような向きに磁気ネックレスを装着しても磁力線を効果的に体に作用させることができる。   The present invention is a method of manufacturing a cylindrical bonded magnet in which N poles and S poles are alternately magnetized in the axial direction and radial magnetic force is generated from one pole in the radial direction. By the extrusion molding, the method for producing a cylindrical bonded magnet according to the present invention is excellent in magnetic properties and productivity, and can eliminate the restriction on processing in the length direction. In particular, when the magnetic necklace is configured with the cylindrical bond magnet according to the present invention, since the radial magnetic lines of force appear in the radial direction of the cylindrical bond magnet, the user wears the magnetic necklace in any direction. However, the lines of magnetic force can be effectively applied to the body.

図1は、本発明の製造方法にかかる押出成形機の概略図である。FIG. 1 is a schematic view of an extruder according to the production method of the present invention. 図2は、図1の金型部のA−A断面における断面図である。2 is a cross-sectional view taken along the line AA of the mold part of FIG. 図3は、本発明の製造方法にかかる配向用磁石から出る磁力線の分布の模式図である。FIG. 3 is a schematic diagram of the distribution of magnetic lines of force emitted from the magnet for orientation according to the manufacturing method of the present invention. 図4は、押出成形後のボンド磁石内における磁性粉末の配向方向を示す模式図である。FIG. 4 is a schematic diagram showing the orientation direction of the magnetic powder in the bonded magnet after extrusion. 図5は、着磁装置を構成するコイルの概略図である。FIG. 5 is a schematic view of a coil constituting the magnetizing device. 図6は、着磁処理後のボンド磁石内における磁性粉末の着磁方向と磁力線を示す模式図である。FIG. 6 is a schematic diagram showing the magnetization direction and magnetic field lines of the magnetic powder in the bonded magnet after the magnetization process. 図7は、図6のB−B断面における磁力線を示す模式図である。FIG. 7 is a schematic diagram showing the lines of magnetic force in the BB cross section of FIG. 図8は、実施例1の円柱状ボンド磁石の軸方向に表面磁束密度を測定した結果である。FIG. 8 shows the result of measuring the surface magnetic flux density in the axial direction of the columnar bonded magnet of Example 1. 図9は、比較例1の円柱状ボンド磁石の軸方向に表面磁束密度を測定した結果である。FIG. 9 shows the result of measuring the surface magnetic flux density in the axial direction of the cylindrical bonded magnet of Comparative Example 1. 図10は、比較例2の円柱状ボンド磁石の軸方向に表面磁束密度を測定した結果である。FIG. 10 shows the result of measuring the surface magnetic flux density in the axial direction of the cylindrical bonded magnet of Comparative Example 2. 図11は、図8のa点に相当する円柱状ボンド磁石の表面上の点から、その円周方向に一周分の表面磁束密度を測定した結果である。FIG. 11 shows the result of measuring the surface magnetic flux density for one round in the circumferential direction from the point on the surface of the cylindrical bonded magnet corresponding to the point a in FIG. 図12は、図8のb点に相当する円柱状ボンド磁石の表面上の点から、その円周方向に一周分の表面磁束密度を測定した結果である。FIG. 12 shows the result of measuring the surface magnetic flux density for one round in the circumferential direction from the point on the surface of the cylindrical bonded magnet corresponding to the point b in FIG. 図13は、従来の磁気ネックレスの断面図を示す。FIG. 13 shows a cross-sectional view of a conventional magnetic necklace.

上記の課題を解決すべく、本発明者らは、鋭意検討を重ねた結果、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied and, as a result, have completed the present invention.

本発明は、異方性の磁性材料と樹脂とからなるボンド磁石組成物を押出成形することにより得られる円柱状ボンド磁石の製造方法において、押出成形時に長手方向に配向させた後、少なくとも一点で同極が向かい合うように着磁することで径方向に放射状の磁力線を発生させることを特徴とする円柱状ボンド磁石の製造方法である。   The present invention provides a method for producing a cylindrical bonded magnet obtained by extruding a bonded magnet composition comprising an anisotropic magnetic material and a resin, at least at one point after being oriented in the longitudinal direction during extrusion molding. A method for producing a cylindrical bonded magnet, wherein radial magnetic lines of force are generated in a radial direction by magnetizing the same poles so as to face each other.

すなわち、本発明に係る円柱状ボンド磁石の製造方法は、少なくとも以下の工程を有することを特徴とする。   That is, the method for manufacturing a cylindrical bonded magnet according to the present invention includes at least the following steps.

(1)軸方向にアキシャル配向された円筒状磁石を、配向用磁石として押出成形用金型に配置することにより、その円筒状磁石の内側の空間に、磁力線が軸方向に沿った配向用磁場を形成する工程。   (1) A cylindrical magnet that is axially oriented in the axial direction is arranged in an extrusion mold as an orientation magnet, whereby a magnetic field for orientation in which magnetic lines of force extend in the axial direction in the space inside the cylindrical magnet. Forming.

(2)先の工程で形成させた配向用磁場内に、ボンド磁石組成物を通過させることにより、軸方向に磁性粉末を配向させるとともに、ボンド磁石組成物を押出成形する工程。   (2) A step of orienting the magnetic powder in the axial direction by passing the bonded magnet composition through the orientation magnetic field formed in the previous step, and extruding the bonded magnet composition.

(3)金属細線を正方向と逆方向とに、それぞれ複数回巻回させてなる少なくとも一対の空芯コイルを備えた着磁装置を準備する工程。   (3) A step of preparing a magnetizing device including at least a pair of air-core coils formed by winding a thin metal wire in a forward direction and a reverse direction a plurality of times.

(4)その着磁装置にて、押出成形されたボンド磁石組成物を着磁処理する工程。
本発明は、これらの工程により、円柱状ボンド磁石の径方向に放射状に出入りする磁力線を形成させる。
(4) A step of magnetizing the extruded bonded magnet composition with the magnetizing apparatus.
The present invention forms magnetic lines of force entering and exiting radially in the radial direction of the cylindrical bonded magnet by these steps.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。図1は、本発明の製造方法にかかる押出成形機の概略図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an extruder according to the production method of the present invention.

まず、円柱状ボンド磁石を、図1に示す押出成形機により作製する。原料は、異方性の磁性粉末と樹脂を混ぜ合わせたボンド磁石組成物であり、ペレット形状であることが好ましい。異方性の磁性粉末としては、例えば、フェライト系、Sm−Co系、Nd−Fe−B系、Sm−Fe−N系などが挙げられる。上記の磁性材料は、1種類単独でも、2種類以上の混合物としてもよい。磁力を強くするためには、フェライト系磁性粉末よりも、Sm−Fe−N系磁性粉末を使用することが好ましい。磁性粉末の残留磁束密度Brは、フェライト系磁性粉末で約0.4Tであり、Sm−Fe−N系磁性粉末では、その約3倍の1.3Tである。Sm−Co系やNd−Fe−B系磁性粉末は、磁性粉末の粒子径が大きいものが多いため、特に成形品が小さい場合、磁力のばらつきが大きくなる。磁性粉末の粒子径は、Sm−Co系やNd−Fe−B系磁性粉末で50〜100μm、Sm−Fe−N系磁性粉末は、その10分の1以下の約3μmである。よって、Sm−Fe−N系磁性粉末のほうが、成形品が小さい場合でも、磁力のばらつきを小さくすることができる。   First, a cylindrical bonded magnet is produced by an extruder shown in FIG. The raw material is a bonded magnet composition obtained by mixing anisotropic magnetic powder and a resin, and preferably has a pellet shape. Examples of the anisotropic magnetic powder include ferrite, Sm—Co, Nd—Fe—B, and Sm—Fe—N. The magnetic material may be a single type or a mixture of two or more types. In order to increase the magnetic force, it is preferable to use Sm—Fe—N magnetic powder rather than ferrite magnetic powder. The residual magnetic flux density Br of the magnetic powder is about 0.4 T for the ferrite-based magnetic powder, and 1.3 T, which is about three times that of the Sm—Fe—N-based magnetic powder. Since many Sm—Co-based and Nd—Fe—B-based magnetic powders have a large particle size, the variation in magnetic force is particularly large when the molded product is small. The magnetic powder has a particle diameter of 50 to 100 μm for Sm—Co and Nd—Fe—B magnetic powders, and about 3 μm of Sm—Fe—N magnetic powder, which is 1/10 or less. Therefore, the Sm—Fe—N based magnetic powder can reduce the variation in magnetic force even when the molded product is smaller.

磁性材料に対しては、必要に応じて、耐酸化処理やカップリング処理を施しても良い。本発明において、磁性粉末のバインダーとして利用される樹脂は、特に限定されるものではないが、熱可塑性樹脂、熱硬化性樹脂、ゴムを利用することができる。   If necessary, the magnetic material may be subjected to an oxidation resistance treatment or a coupling treatment. In the present invention, the resin used as the binder of the magnetic powder is not particularly limited, but a thermoplastic resin, a thermosetting resin, and rubber can be used.

例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂などの熱可塑性樹脂や、エステル系、ポリアミド系、などの熱可塑性エラストマー、または、エポキシ樹脂やフェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジリアルフタレート樹脂、ポリウレタン樹脂などの熱硬化性樹脂、または、天然ゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム、アクリルゴム、クロルスルホン化ポリエチレンゴム、フッ素ゴム、水素化ニトリルゴム、エピクロルヒドリンゴム、液状ゴムなどのゴム材料を使用することができる。   For example, thermoplastic resin such as polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide, acrylic resin, thermoplastic elastomer such as ester or polyamide, or epoxy resin, phenol resin, urea resin , Thermosetting resins such as melamine resin, unsaturated polyester resin, direal phthalate resin, polyurethane resin, or natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, Uses rubber materials such as urethane rubber, silicone rubber, acrylic rubber, chlorosulfonated polyethylene rubber, fluorine rubber, hydrogenated nitrile rubber, epichlorohydrin rubber, liquid rubber Rukoto can.

これらの樹脂のうち、磁気ネックレス用の円柱状ボンド磁石のようなフレキシブルな成形品を得たい場合には、成形性、可撓性および人体に対する化学的安定性を考慮すると、シリコーンゴムを選択することが好ましい。   Among these resins, if you want to obtain flexible molded products such as cylindrical bonded magnets for magnetic necklaces, select silicone rubber considering moldability, flexibility, and chemical stability to the human body. It is preferable.

図1に概略図を示したように、押出成形機に投入されたボンド磁石組成物は、まず、押出成形機の本体部1でスクリュー9により混練される。次いで、溶融されたボンド磁石組成物は、押出成形機の金型部2に入り、ここで円柱状に成形されると共に、金型部2に配置された配向用磁石5によって形成された配向用磁場によって、押し出し方向、すなわち、円柱状ボンド磁石の長手方向に配向される。   As shown schematically in FIG. 1, the bonded magnet composition charged into the extruder is first kneaded by a screw 9 in the main body 1 of the extruder. Next, the melted bonded magnet composition enters the mold part 2 of the extrusion molding machine, where it is molded into a columnar shape and is formed by the orientation magnet 5 disposed in the mold part 2. The magnetic field is oriented in the extrusion direction, that is, the longitudinal direction of the cylindrical bonded magnet.

図2は、図1に示した金型部2のA−A断面図である。図2に示されるように、ボンド磁石組成物が通過する空間であり、ボンド磁石組成物が円柱状に成形される空間である、流路8と、その流路8の外側の成形用金型に配置された配向用磁石5は、隔壁6によって隔てられている。   FIG. 2 is a cross-sectional view of the mold part 2 shown in FIG. As shown in FIG. 2, the flow path 8 is a space through which the bonded magnet composition passes and is a space in which the bonded magnet composition is formed into a columnar shape, and a molding die outside the flow path 8. The orienting magnets 5 arranged in the are separated by a partition wall 6.

図3は、本発明の製造方法にかかる配向用磁石から出る磁力線の分布を示す模式的な断面図である。この配向用磁石5は、図3に示されるように、円筒状であり、その一方の底面がN極、他方の底面がS極となっており、N極から出た磁力線がS極に戻るような配向用磁場が形成されている。ここで、図3中の磁力線10の様に、配向用磁石5の外側を通る磁力線もあれば、磁力線11の様に、円筒状の配向用磁石5の内側を通ってN極から出てS極に入る磁力線もある。ボンド磁石組成物に含まれる磁性材料の配向に利用するのは、この円筒状の配向用磁石5の内側を通る磁力線11である。ボンド磁石組成物が流路8を通過する際に、磁性粉末は、磁力線11の影響を受けて、押し出し方向、すなわち円柱状ボンド磁石の長手方向に配向する。   FIG. 3 is a schematic cross-sectional view showing the distribution of lines of magnetic force emitted from the magnet for orientation according to the manufacturing method of the present invention. As shown in FIG. 3, this orienting magnet 5 has a cylindrical shape, one bottom surface of which is an N pole, and the other bottom surface is an S pole, and the magnetic force lines coming out of the N pole return to the S pole. Such a magnetic field for orientation is formed. Here, if there is a magnetic field line passing through the outside of the orientation magnet 5 like the magnetic field line 10 in FIG. 3, the magnetic field line 11 passes through the inside of the cylindrical orientation magnet 5 and exits from the N pole. Some lines of magnetic force enter the poles. What is used for the orientation of the magnetic material contained in the bonded magnet composition is a magnetic field line 11 passing through the inside of the cylindrical orientation magnet 5. When the bonded magnet composition passes through the flow path 8, the magnetic powder is oriented in the extrusion direction, that is, the longitudinal direction of the columnar bonded magnet under the influence of the magnetic force lines 11.

この円筒状の配向用磁石5の内側を通る磁力線11を強くするため、配向用磁石5の一方の底面に接して配置させたスペーサー3と、配向用磁石の外側に配置させた保持部材4と、隔壁6と、配向用磁石の他方の底面に配置させた固定蓋7は、非磁性の鋼材とすることが好ましい。押出成形機の本体部1は、通常、磁性鋼が使用されている。そのため、本体部1に配向用磁石を近づけると磁力線が押出成形機の本体部1に奪われ、その結果、磁力線11は弱くなる。そこで、スペーサー3を入れることにより、磁力線が押出成形機の本体部1に奪われることがなくなり、磁力線の喪失を回避できる。   In order to strengthen the magnetic field lines 11 passing through the inside of the cylindrical orientation magnet 5, the spacer 3 disposed in contact with one bottom surface of the orientation magnet 5, and the holding member 4 disposed outside the orientation magnet The partition 6 and the fixed lid 7 disposed on the other bottom surface of the orientation magnet are preferably made of nonmagnetic steel. For the main body 1 of the extrusion molding machine, magnetic steel is usually used. Therefore, when the orientation magnet is brought close to the main body 1, the magnetic lines of force are taken away by the main body 1 of the extruder, and as a result, the magnetic lines 11 become weak. Therefore, by inserting the spacer 3, the magnetic field lines are not lost to the main body 1 of the extruder, and loss of the magnetic field lines can be avoided.

配向用磁石の保持部材4と、隔壁6と、配向用磁石の固定蓋7とを磁性鋼にすると、同様に磁力線11が弱くなるため、これらの部材は、非磁性鋼で作製することが好ましい。図4は、押出成形後の円柱状ボンド磁石内における磁性粉末の配向方向を模式的に示す断面図である。この様にして得られた円柱状ボンド磁石成形品12の内部では、図4に符号13で示すように、軸方向に沿って磁性粉末が配向している。   If the holding member 4 for the magnet for orientation, the partition wall 6 and the fixing lid 7 for the magnet for orientation are made of magnetic steel, the magnetic lines of force 11 are similarly weakened. Therefore, these members are preferably made of nonmagnetic steel. . FIG. 4 is a cross-sectional view schematically showing the orientation direction of the magnetic powder in the cylindrical bonded magnet after extrusion molding. Inside the cylindrical bonded magnet molded article 12 obtained in this way, the magnetic powder is oriented along the axial direction as indicated by reference numeral 13 in FIG.

配向用磁石5は、希土類焼結磁石を使用することが好ましい。例えば、Sm−Co系やNd−Fe−B系焼結磁石が挙げられる。その磁力は、25MGOe以上であることが好ましい。   The orientation magnet 5 is preferably a rare earth sintered magnet. For example, Sm—Co-based and Nd—Fe—B-based sintered magnets can be used. The magnetic force is preferably 25 MGOe or more.

押出成形により得られた成形品は、ボンド磁石組成物を構成する樹脂が熱硬化樹脂やゴム材料である場合には、必要に応じて加熱して硬化させることが好ましい。その加熱温度や加熱時間は、樹脂の種類や磁性粉末の充填率によって決定される。   When the resin constituting the bonded magnet composition is a thermosetting resin or a rubber material, the molded product obtained by extrusion molding is preferably heated and cured as necessary. The heating temperature and heating time are determined by the type of resin and the filling rate of the magnetic powder.

次いで、着磁装置にて、着磁処理を行う。図5は、着磁装置を構成する空芯コイルの概略図である。図5に示されたように、一定方向にコイル14を巻いた後、それとは反対方向にコイル14´を巻き、これを一対として複数回の巻回を繰り返す。このコイル14、14´に電源を接続して着磁装置を構成した後、コイルに電流を流すと、そのコイルの内部に、図5に矢印で示すような磁力線15が形成される。なお、矢印の先をN極、その反対をS極とする。   Next, a magnetizing process is performed by a magnetizing device. FIG. 5 is a schematic view of an air-core coil constituting the magnetizing device. As shown in FIG. 5, after winding the coil 14 in a certain direction, the coil 14 ′ is wound in the opposite direction, and a plurality of turns are repeated with this as a pair. When a magnetizing device is configured by connecting a power source to the coils 14 and 14 'and then a current is passed through the coil, magnetic lines 15 as shown by arrows in FIG. 5 are formed inside the coil. The tip of the arrow is the N pole, and the opposite is the S pole.

図6は、着磁処理後の円柱状ボンド磁石の内部における磁性粉末の配向方向と磁力線を示す模式図である。着磁装置のコイルの内側に、成形された円柱状ボンド磁石を挿入した後、コイルに電流を流すと、円柱状ボンド磁石が先に説明したような磁力線の影響を受けて、図6に示されるように着磁される。ここで、図6中の矢印の先をN極、その反対をS極とすると、N極同士及びS極同士が向かい合う点ができている。そのN極が向かい合った点で、磁力線18は円柱状ボンド磁石16の径方向に放射状に放出され、S極が向かい合った点で、磁力線18は円柱状ボンド磁石16の径方向に放射状に入っていく。この磁力線を、円柱状ボンド磁石の外側に示したのが、図6の破線矢印である。図7は、図6のB−B断面における磁力線の放出される様子を示す。図7に示されるように、径方向に放射状の磁力が、略360度くまなく放出されていることがわかる。   FIG. 6 is a schematic diagram showing the orientation direction and magnetic lines of force of the magnetic powder inside the cylindrical bonded magnet after the magnetizing treatment. When a molded cylindrical bonded magnet is inserted inside the coil of the magnetizing apparatus and then a current is passed through the coil, the cylindrical bonded magnet is affected by the magnetic field lines as described above, and is shown in FIG. It is magnetized as Here, when the tip of the arrow in FIG. 6 is the N pole and the opposite is the S pole, the N poles and the S poles face each other. At the point where the north poles face each other, the magnetic lines of force 18 are emitted radially in the radial direction of the cylindrical bond magnet 16, and at the point where the south poles face each other, the magnetic lines of force enter radially in the radial direction of the cylindrical bond magnet 16. Go. The magnetic field lines are shown on the outer side of the cylindrical bond magnet in the broken line arrows in FIG. FIG. 7 shows a state in which the lines of magnetic force in the BB cross section of FIG. 6 are released. As shown in FIG. 7, it can be seen that radial magnetic force is released in a 360 ° direction.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
異方性Sm−Fe−N系磁性粉末をエチルシリケート及びシランカップリング剤で表面処理する。表面処理を行ったSm−Fe−N系磁性材料を100重量部、シリコーンゴムを20重量部、加硫剤を0.2重量部、ラボプラストミルで混練して押出成形用の原料を得る。
<Example 1>
Anisotropic Sm-Fe-N magnetic powder is surface treated with ethyl silicate and a silane coupling agent. 100 parts by weight of the surface-treated Sm—Fe—N magnetic material, 20 parts by weight of silicone rubber, 0.2 parts by weight of vulcanizing agent, and kneading with a lab plast mill are obtained as raw materials for extrusion.

本実施例に用いた配向用磁石は、寸法が外径Φ16mm×内径Φ4mm×高さ20mmで、高さ方向に配向している。材質は、市販のNdFeB焼結磁石(35MGOe)である。隔壁6は、寸法が外径Φ4mm×内径Φ3mmで、材質はSUS304(非磁性鋼)である。スペーサー3と、配向用磁石の保持部材4、配向用磁石の固定蓋7もSUS304(非磁性鋼)で作成した。   The orientation magnet used in this example has an outer diameter of Φ16 mm, an inner diameter of Φ4 mm, and a height of 20 mm, and is oriented in the height direction. The material is a commercially available NdFeB sintered magnet (35 MGOe). The partition wall 6 has an outer diameter of Φ4 mm × an inner diameter of Φ3 mm, and is made of SUS304 (nonmagnetic steel). The spacer 3, the orientation magnet holding member 4 and the orientation magnet fixing lid 7 were also made of SUS304 (nonmagnetic steel).

押出成形機のスクリュー部の温度は40℃、金型部の温度は40℃、スクリュー回転数は10rpmである。   The temperature of the screw part of the extruder is 40 ° C., the temperature of the mold part is 40 ° C., and the screw rotation speed is 10 rpm.

得られた成形品は、φ3mm、長さ10000mmの長手方向に配向した円柱状ボンド磁石である。さらに、この円柱状ボンド磁石を、150℃の電気炉に1時間入れて硬化させた。   The obtained molded product is a cylindrical bonded magnet oriented in the longitudinal direction with a diameter of 3 mm and a length of 10,000 mm. Further, the cylindrical bonded magnet was placed in an electric furnace at 150 ° C. for 1 hour to be cured.

着磁処理は、径Φ2mmの二重ガラス巻平角銅線を、ピッチ10mmで左巻きと右巻きを交互に25個配列し、全長250mm、磁石挿入孔のサイズはΦ4mmのコイルを備えた着磁装置により行った。この磁石挿入孔に、円柱状ボンド磁石を挿入した後、4kAのパルス電流を通電して着磁処理を行った。着磁処理は、250mm毎に40回にわけて行った。   The magnetizing process is a magnetizing device comprising a double glass wound rectangular copper wire with a diameter of Φ2 mm, with a left winding and a right winding arranged alternately at a pitch of 10 mm, a total length of 250 mm, and a magnet insertion hole size of Φ4 mm. It went by. After inserting a cylindrical bonded magnet into this magnet insertion hole, a 4 kA pulse current was applied to perform a magnetization process. The magnetization process was performed 40 times every 250 mm.

次いで、500mm毎にサンプルを切断し、一方の端に凸状留め具、もう一方の端に凹状留め具を取り付け、磁気ネックレスを作製した。   Next, the sample was cut every 500 mm, and a convex fastener was attached to one end and a concave fastener was attached to the other end to produce a magnetic necklace.

この円柱状ボンド磁石部分の長さ方向に250mmにわたって、表面磁束密度を測定した。その結果を図8に示す。図8に示されるように、約150mTの表面磁束密度を得た。図11は、表面磁束密度の極大である、図8中のa点に相当する円柱状ボンド磁石の表面上の点から、その円周方向に一周分の表面磁束密度を測定した結果を示す。また、図12は、表面磁束密度の極小である、図8のb点に相当する円柱状ボンド磁石の表面上の点から、その円周方向に一周分の表面磁束密度を測定した結果を示す。これらの結果より、1つの極からは径方向に放射状の磁力が、略360度くまなく出ていることが分かる。   The surface magnetic flux density was measured over 250 mm in the length direction of the cylindrical bonded magnet portion. The result is shown in FIG. As shown in FIG. 8, a surface magnetic flux density of about 150 mT was obtained. FIG. 11 shows the result of measuring the surface magnetic flux density for one round in the circumferential direction from the point on the surface of the cylindrical bond magnet corresponding to the point a in FIG. 8, which is the maximum surface magnetic flux density. FIG. 12 shows the result of measuring the surface magnetic flux density for one round in the circumferential direction from the point on the surface of the cylindrical bond magnet corresponding to the point b in FIG. . From these results, it can be seen that a radial magnetic force is emitted from one pole in almost 360 degrees.

<比較例1>
実施例1に使用した押出成形機を構成する、スペーサー3と、配向用磁石の保持部材4と、配向用磁石の固定蓋7とをSS400(磁性鋼)で作製した以外は、実施例1と同様の方法で円柱状ボンド磁石を製造した。実施例1と同様に、表面磁束密度を測定し、その測定結果を図9に示す。
<Comparative Example 1>
Example 1 except that the spacer 3, the orientation magnet holding member 4, and the orientation magnet fixing lid 7 constituting the extrusion machine used in Example 1 were made of SS400 (magnetic steel). A cylindrical bonded magnet was manufactured in the same manner. Similarly to Example 1, the surface magnetic flux density was measured, and the measurement result is shown in FIG.

<比較例2>
実施例1に使用した金型から、配向用磁石を取り外した以外は、実施例1と同様の方法で円柱状ボンド磁石を製造した。金型から配向用磁石を取り外しているため、磁性粉末は配向していない。実施例1と同様に、表面磁束密度を測定し、その測定結果を図10に示す。以下の表1に実施例1および各比較例の結果を纏める。
<Comparative example 2>
A cylindrical bonded magnet was produced in the same manner as in Example 1 except that the orientation magnet was removed from the mold used in Example 1. Since the orientation magnet is removed from the mold, the magnetic powder is not oriented. Similarly to Example 1, the surface magnetic flux density was measured, and the measurement result is shown in FIG. Table 1 below summarizes the results of Example 1 and each comparative example.

Figure 2013105964
Figure 2013105964

表1によると、配向用磁石有りの方が、配向用磁石なしよりも、表面磁束密度が高くなり、金型の材質を非磁性鋼にしたほうが、磁性鋼にしたよりも、表面磁束密度が高くなることがわかる。   According to Table 1, the surface magnetic flux density is higher with the orientation magnet than without the orientation magnet, and the surface magnetic flux density is higher when the mold material is made of non-magnetic steel than when magnetic material is used. It turns out that it becomes high.

本発明の円柱状ボンド磁石は、製品粉末の中から鉄粉等を除去する異物除去装置や、リニアモータの固定子や、磁気ネックレスに使用可能である。   The columnar bonded magnet of the present invention can be used in a foreign matter removing device that removes iron powder and the like from product powder, a linear motor stator, and a magnetic necklace.

1・・・押出成形機の本体部、2・・・金型部、3・・・スペーサー、4・・・配向用磁石保持部材、5・・・配向用磁石、6・・・隔壁、7・・・配向用磁石固定蓋、8・・・ボンド磁石組成物の流路、9・・・スクリュー、10・・・配向用磁石外側の磁力線、11・・・配向用磁石内側の磁力線、12・・・着磁前の円柱状ボンド磁石成形品、13・・・磁性粉末の配向方向、14、14´・・・コイル、15・・・着磁コイルによる磁力線、16・・・着磁後の円柱状ボンド磁石成形品、17・・・着磁方向、18・・・円柱状ボンド磁石の磁力線、20・・・従来の磁気ネックレス、21・・・被覆部、22・・・磁石部。   DESCRIPTION OF SYMBOLS 1 ... Main part of extrusion molding machine, 2 ... Mold part, 3 ... Spacer, 4 ... Magnet holding member for orientation, 5 ... Magnet for orientation, 6 ... Partition, 7・ ・ ・ Magnet fixing lid for orientation, 8 ... Flow path of bonded magnet composition, 9 ... Screw, 10 ... Magnetic field lines outside orientation magnet, 11 ... Magnetic field lines inside orientation magnet, 12 ... Cylinder-shaped bonded magnet molded product before magnetizing, 13 ... Orientation direction of magnetic powder, 14, 14 '... Coil, 15 ... Magnetic field lines by magnetizing coil, 16 ... After magnetizing Columnar bonded magnet molded product, 17 ... magnetizing direction, 18 ... magnetic field lines of cylindrical bonded magnet, 20 ... conventional magnetic necklace, 21 ... covering portion, 22 ... magnet portion.

Claims (6)

異方性の磁性粉末と樹脂とからなるボンド磁石組成物を押出成形することにより得られる円柱状ボンド磁石の製造方法において、
軸方向にアキシャル配向された円筒状磁石を、配向用磁石として押出成形用金型に配置することにより、その円筒状磁石の内側の空間に、軸方向に沿った磁力線を有する配向用磁場を形成する工程と、
前記配向用磁場内に前記ボンド磁石組成物を通過させることにより、軸方向に前記磁性粉末を配向させるとともに、前記ボンド磁石組成物を押出成形する工程と、
金属細線を正逆それぞれの方向に複数回巻回させてなる少なくとも一対の空芯コイルを備えた着磁装置を準備する工程と、
前記着磁装置にて、前記押出成形されたボンド磁石組成物を着磁処理する工程と、を有しており、これらの工程により、円柱状ボンド磁石の径方向に放射状に出入りする磁力線を形成することを特徴とする円柱状ボンド磁石の製造方法。
In the method for producing a cylindrical bonded magnet obtained by extruding a bonded magnet composition comprising an anisotropic magnetic powder and a resin,
A cylindrical magnet axially oriented in the axial direction is placed in an extrusion mold as an orientation magnet, thereby forming an orientation magnetic field having magnetic force lines along the axial direction in the space inside the cylindrical magnet. And a process of
Passing the bonded magnet composition through the magnetic field for orientation, orienting the magnetic powder in the axial direction, and extruding the bonded magnet composition;
Preparing a magnetizing device including at least a pair of air-core coils formed by winding a thin metal wire multiple times in forward and reverse directions;
And magnetizing the extruded bonded magnet composition with the magnetizing device, and these steps form magnetic lines of force that enter and exit radially in the radial direction of the cylindrical bonded magnet. A method of manufacturing a cylindrical bonded magnet.
前記配向用磁石に接する押出成形用金型が、非磁性鋼により構成されている請求項1に記載の円柱状ボンド磁石の製造方法。   The manufacturing method of the column-shaped bonded magnet of Claim 1 with which the extrusion die which contact | connects the said magnet for orientation is comprised with the nonmagnetic steel. 前記磁性粉末が、異方性Sm−Fe−N系磁性粉末である請求項1または2に記載の円柱状ボンド磁石の製造方法。   The method for producing a cylindrical bonded magnet according to claim 1, wherein the magnetic powder is an anisotropic Sm—Fe—N-based magnetic powder. 前記樹脂が、シリコーンゴムである請求項1から3のいずれか一項に記載の円柱状ボンド磁石の製造方法。   The method for producing a cylindrical bonded magnet according to any one of claims 1 to 3, wherein the resin is silicone rubber. 請求項1から4のいずれか一項の製造方法を利用した磁気ネックレスの製造方法。   The manufacturing method of the magnetic necklace using the manufacturing method as described in any one of Claim 1 to 4. 請求項1から5のいずれか一項に記載の製造方法により製造された磁気ネックレス。   The magnetic necklace manufactured by the manufacturing method as described in any one of Claim 1 to 5.
JP2011250201A 2011-11-16 2011-11-16 Method for manufacturing cylindrical bonded magnet Active JP5884425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250201A JP5884425B2 (en) 2011-11-16 2011-11-16 Method for manufacturing cylindrical bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250201A JP5884425B2 (en) 2011-11-16 2011-11-16 Method for manufacturing cylindrical bonded magnet

Publications (2)

Publication Number Publication Date
JP2013105964A true JP2013105964A (en) 2013-05-30
JP5884425B2 JP5884425B2 (en) 2016-03-15

Family

ID=48625282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250201A Active JP5884425B2 (en) 2011-11-16 2011-11-16 Method for manufacturing cylindrical bonded magnet

Country Status (1)

Country Link
JP (1) JP5884425B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207773A (en) * 2015-04-20 2016-12-08 日亜化学工業株式会社 Manufacturing method for bond magnet and bond magnet
CN109148135A (en) * 2018-08-28 2019-01-04 横店集团东磁股份有限公司 It is a kind of to improve the aligning device and its implementation for inhaling wave magnetic sheet magnetic powder
WO2021193804A1 (en) * 2020-03-26 2021-09-30 株式会社Bandel Method and apparatus for producing band made from synthetic polymer resin
JP7448266B1 (en) 2023-08-01 2024-03-12 株式会社コラントッテ String magnet and its magnetization method, magnetic treatment equipment and magnetization device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148298A (en) * 1978-05-15 1979-11-20 Tdk Corp Magnetic plate and device for manufacturing said plate
JPS55120110A (en) * 1979-03-12 1980-09-16 Hitachi Metals Ltd Magnetic tape for attraction
JP2001062873A (en) * 1999-08-24 2001-03-13 Sumitomo Metal Mining Co Ltd Method and mold for producing anisotropic magnet
JP2002043109A (en) * 2000-07-19 2002-02-08 Nichia Chem Ind Ltd Surface treatment method of rare earth-iron-nitrogen magnetic power and plastic magnet formed of the same
US20080146864A1 (en) * 2006-12-18 2008-06-19 Pip-Fujimoto Co., Ltd. Magnetic therapeutic device and method for producing magnetic therapeutic device
JP2008173405A (en) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd Magnetic therapeutic device and method for manufacturing magnetic therapeutic device
JP2010142466A (en) * 2008-12-19 2010-07-01 Komatsu Katsumi String-shaped magnet
JP2011114101A (en) * 2009-11-25 2011-06-09 Nichia Corp Columnar bond magnet, and method and device for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148298A (en) * 1978-05-15 1979-11-20 Tdk Corp Magnetic plate and device for manufacturing said plate
JPS55120110A (en) * 1979-03-12 1980-09-16 Hitachi Metals Ltd Magnetic tape for attraction
JP2001062873A (en) * 1999-08-24 2001-03-13 Sumitomo Metal Mining Co Ltd Method and mold for producing anisotropic magnet
JP2002043109A (en) * 2000-07-19 2002-02-08 Nichia Chem Ind Ltd Surface treatment method of rare earth-iron-nitrogen magnetic power and plastic magnet formed of the same
US20080146864A1 (en) * 2006-12-18 2008-06-19 Pip-Fujimoto Co., Ltd. Magnetic therapeutic device and method for producing magnetic therapeutic device
JP2008173405A (en) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd Magnetic therapeutic device and method for manufacturing magnetic therapeutic device
JP2010142466A (en) * 2008-12-19 2010-07-01 Komatsu Katsumi String-shaped magnet
JP2011114101A (en) * 2009-11-25 2011-06-09 Nichia Corp Columnar bond magnet, and method and device for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207773A (en) * 2015-04-20 2016-12-08 日亜化学工業株式会社 Manufacturing method for bond magnet and bond magnet
US10232538B2 (en) 2015-04-20 2019-03-19 Nichia Corporation Bond magnet and method for manufacturing the same
CN109148135A (en) * 2018-08-28 2019-01-04 横店集团东磁股份有限公司 It is a kind of to improve the aligning device and its implementation for inhaling wave magnetic sheet magnetic powder
WO2021193804A1 (en) * 2020-03-26 2021-09-30 株式会社Bandel Method and apparatus for producing band made from synthetic polymer resin
JP2021155880A (en) * 2020-03-26 2021-10-07 株式会社Bandel Manufacturing method and manufacturing device of synthetic polymer resin band
JP7448266B1 (en) 2023-08-01 2024-03-12 株式会社コラントッテ String magnet and its magnetization method, magnetic treatment equipment and magnetization device

Also Published As

Publication number Publication date
JP5884425B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US8647091B2 (en) Stator compacted in one piece
JP5884425B2 (en) Method for manufacturing cylindrical bonded magnet
JP2016072457A (en) Anisotropic bond magnet magnetization method
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4029679B2 (en) Bond magnet for motor and motor
JP2017507046A (en) Injection mold for manufacturing permanent magnets
JP2010161333A (en) Cylindrical bonded magnet, method of manufacturing the same, and bar-shaped magnetic body
JP5766134B2 (en) Shaft type linear motor mover, permanent magnet, linear motor
JP5530707B2 (en) Cylindrical bonded magnet, manufacturing method thereof and manufacturing apparatus
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
KR20120107691A (en) Magnetic roll and the process of manufacture
JPS6349889B2 (en)
JP2010183685A (en) Anisotropic permanent magnet piece and method of manufacturing the same
JP6056141B2 (en) Cylindrical bonded magnet manufacturing method and manufacturing apparatus thereof
JP5707831B2 (en) Powder core and method for producing the same
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JP5463773B2 (en) Method for manufacturing columnar bonded magnet
JP2012119698A (en) Manufacturing apparatus of radial anisotropic ring magnet
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JP2018170423A (en) Anisotropic magnet and manufacturing method thereof
JP2017103312A (en) Magnet manufacturing method
JP2011029215A (en) Cylindrical bond magnet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250