JP2011029215A - Cylindrical bond magnet and method of manufacturing the same - Google Patents

Cylindrical bond magnet and method of manufacturing the same Download PDF

Info

Publication number
JP2011029215A
JP2011029215A JP2009170085A JP2009170085A JP2011029215A JP 2011029215 A JP2011029215 A JP 2011029215A JP 2009170085 A JP2009170085 A JP 2009170085A JP 2009170085 A JP2009170085 A JP 2009170085A JP 2011029215 A JP2011029215 A JP 2011029215A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
bonded magnet
cylindrical bonded
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009170085A
Other languages
Japanese (ja)
Inventor
Kohei Ihara
公平 井原
Michiya Kume
道也 久米
Shuji Matsumura
周治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I & P Kk
Nichia Corp
Original Assignee
I & P Kk
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I & P Kk, Nichia Corp filed Critical I & P Kk
Priority to JP2009170085A priority Critical patent/JP2011029215A/en
Publication of JP2011029215A publication Critical patent/JP2011029215A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bond magnet for improving strength and magnetic force. <P>SOLUTION: In the cylindrical bond magnet made of magnetic powder and resin, the cylindrical bond magnet is a single forming body, at least four N and S poles are alternately subjected to multi-pole magnetization in an axial direction, and an inner diameter of the cylindrical bond magnet is within a range of 10 to 65%, thus obtaining a magnet having improved strength without inserting into a pipe and easily manufacturing the bond magnet having improved magnetic force by such a magnet. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軸方向にN極とS極とが交互に多極磁化された筒状ボンド磁石に関する。   The present invention relates to a cylindrical bonded magnet in which N poles and S poles are alternately multipolar magnetized in the axial direction.

近年、同種の磁極が対向するように複数の永久磁石を配置させた円柱状磁石や円筒状磁石は、様々な分野で使用されている。例えば、特許文献1に開示される磁石は、食品から鉄粉等を除去するための異物除去装置、又はリニアモータの固定子や可動子等に用いられている。このような円柱状、円筒状磁石は、外周面において軸方向に放射状にN極とS極とを交互に形成させている。これらから発生する磁力線は、例えばN極の場合、N極から軸方向に対して直交する方向に放射状に伸び、N極と隣接するS極へと大きな弧を描く。結果的に、円柱状、円筒状磁石の外周面に多くの磁場を効果的に形成できる。これにより、異物除去装置の場合には異物の捕集能力を高くすることができ、リニアモータや振動モータの場合には強い推進力を得ることが可能となる。以降、このような磁石を円柱状又は円筒状の交互多極磁石と呼ぶ。   In recent years, columnar magnets and cylindrical magnets in which a plurality of permanent magnets are arranged so that the same kind of magnetic poles face each other are used in various fields. For example, the magnet disclosed in Patent Document 1 is used in a foreign matter removing device for removing iron powder or the like from food, or a stator or a mover of a linear motor. Such columnar and cylindrical magnets have N and S poles alternately formed radially in the axial direction on the outer peripheral surface. For example, in the case of the N pole, the magnetic force lines generated from these extend radially from the N pole in a direction orthogonal to the axial direction, and draw a large arc to the S pole adjacent to the N pole. As a result, many magnetic fields can be effectively formed on the outer peripheral surface of the columnar or cylindrical magnet. Thereby, in the case of a foreign matter removing apparatus, the foreign matter collecting ability can be increased, and in the case of a linear motor or a vibration motor, a strong driving force can be obtained. Hereinafter, such a magnet is referred to as a columnar or cylindrical alternating multipolar magnet.

特開2003−303714号公報JP 2003-303714 A

上述のような交互多極磁石を得る場合、接着剤等を使用しながら、アキシャル方向に着磁された、円柱状及び円筒状の磁石ピースを同極が対向するように接着する必要があった。これらの方法では、磁石を組み立てる際に、同種の磁極同士を対向させなければならず、大きな反発力を受けるため非常に危険で作業性が悪く、また接着剤が固化するまでの間は冶具で磁石を固定する必要があり、生産性が低いという問題があった。その上、接着剤を用いた場合、用いる接着剤の量や、塗布のされ方等によって、接着面の寸法がばらつくという問題も生じていた。このような問題は、磁極数の多い交互多極磁石を作製する程接着箇所が増えるため、一層深刻なものとなる。このように、最終的な円柱状及び円筒状の交互多極磁石を製造する際、その全長を所望の寸法にすることが非常に困難であるという問題があった。   When obtaining the above-mentioned alternating multipole magnet, it was necessary to bond the cylindrical and cylindrical magnet pieces magnetized in the axial direction so that the same poles face each other while using an adhesive or the like. . In these methods, when assembling the magnet, the same kind of magnetic poles must be opposed to each other, and since they are subjected to a large repulsive force, they are very dangerous and workability is poor, and until the adhesive is solidified, a jig is used. There was a problem that productivity was low because it was necessary to fix the magnet. In addition, when an adhesive is used, there is a problem that the size of the adhesive surface varies depending on the amount of the adhesive used, the manner of application, and the like. Such a problem becomes more serious because the number of bonded portions increases as an alternate multipolar magnet having a larger number of magnetic poles is manufactured. Thus, when manufacturing the final columnar and cylindrical alternating multipolar magnets, there is a problem that it is very difficult to make the overall length a desired dimension.

また、従来の円柱状磁石及び円筒状磁石のピースを一つずつ接着剤等を使って組上げて得られた交互多極磁石は、例えばリニアモータの固定子、異物除去装置等の用途に用いる際に、それ自体に強度を付与するため、ステンレスのような非磁性のパイプに挿入して使用される。しかしながら、非磁性のパイプに挿入してしまうと、交互多極磁石の主たる特徴である、利用可能な側面磁力が、パイプの厚みにつれて低下するという問題があった。また、一体ものの成形体として得られる交互多極磁石は、元来一体ものであることからパイプに挿入せずに使用することも可能ではあるものの、異物除去装置やリニアモータ等の本体装置に組み込む場合は、そのままでは強度が不十分となる問題もあった。   In addition, alternating multipole magnets obtained by assembling conventional cylindrical magnets and pieces of cylindrical magnets one by one using an adhesive or the like are used for applications such as linear motor stators and foreign substance removal devices, for example. In addition, in order to give strength to itself, it is inserted into a non-magnetic pipe such as stainless steel. However, when inserted into a non-magnetic pipe, there is a problem that the available side magnetic force, which is the main feature of the alternating multipolar magnet, decreases with the thickness of the pipe. In addition, the alternating multi-pole magnet obtained as an integrated molded body is originally integrated, so it can be used without being inserted into a pipe, but it is incorporated into a main body device such as a foreign substance removing device or a linear motor. In this case, there is a problem that the strength is insufficient as it is.

本発明は、このような状況に鑑みてなされたものであり、その主な目的は、パイプに挿入することなく磁石の強度を向上させた磁石及びその製造方法を提供することにある。   This invention is made | formed in view of such a condition, The main objective is to provide the magnet which improved the intensity | strength of the magnet, without inserting in a pipe, and its manufacturing method.

以上の目的を達成するために、本発明の第一の側面に係る筒状ボンド磁石は、磁性粉末と樹脂で形成され、内部に空洞の貫通孔が開口された筒状のボンド磁石であって、前記筒状ボンド磁石は、一体に成形された成形体であり、貫通孔の軸方向に、N極とS極が少なくとも4極以上、交互に多極磁化されており、前記筒状ボンド磁石の内径の大きさを、外径の大きさの10%〜65%の範囲とすることができる。これにより、複数のピースを接合して構成されたボンド磁石と異なり、一体的に成形されたボンド磁石を得ることができ、また十分な磁力と強度とを備えさせることができる。   In order to achieve the above object, the cylindrical bonded magnet according to the first aspect of the present invention is a cylindrical bonded magnet formed of magnetic powder and resin and having a hollow through hole opened therein. The cylindrical bonded magnet is a molded body that is integrally formed, and has multiple N poles and S poles that are alternately multipolar magnetized in the axial direction of the through hole. The inner diameter can be in the range of 10% to 65% of the outer diameter. Thereby, unlike the bonded magnet formed by joining a plurality of pieces, an integrally molded bonded magnet can be obtained, and sufficient magnetic force and strength can be provided.

また第二の側面に係る筒状ボンド磁石は、さらに前記貫通孔に挿入された、内径とほぼ同じ外径を有する芯がねを備えることができる。これにより、筒状ボンド磁石をパイプ等に挿入せずとも、貫通孔に芯がねを通すことで十分な強度を備えることができる。   Further, the cylindrical bonded magnet according to the second side surface can further include a core rod inserted into the through hole and having an outer diameter substantially the same as the inner diameter. Thereby, even if it does not insert a cylindrical bond magnet in a pipe etc., sufficient intensity can be provided by letting a core go through a through-hole.

さらに第三の側面に係る筒状ボンド磁石は、筒状ボンド磁石を構成する前記磁性粉末を、異方性の希土類系合金粉末とすることができる。   Furthermore, in the cylindrical bonded magnet according to the third aspect, the magnetic powder constituting the cylindrical bonded magnet can be an anisotropic rare earth alloy powder.

さらにまた第四の側面に係る筒状ボンド磁石の製造方法は、磁性粉末と樹脂を混練し、コンパウンドを得る工程と、前記コンパウンドを、配向磁場を印加した環境下で筒状ボンド磁石に成形する工程とを含む筒状ボンド磁石の製造方法であって、前記配向磁場は、同種の磁極同士が対向するように複数の永久磁石を接合させた配向用磁石により形成され、前記配向用磁石を、前記筒状ボンド磁石を囲むように配置できる。これにより、複数のピースを接合して構成されたボンド磁石と異なり、一体的に成形されたボンド磁石を得ることができ、また十分な磁力と強度とを備えさせることができる。   Furthermore, the manufacturing method of the cylindrical bonded magnet according to the fourth aspect includes a step of kneading magnetic powder and resin to obtain a compound, and forming the compound into a cylindrical bonded magnet in an environment where an orientation magnetic field is applied. A method for producing a cylindrical bonded magnet including a step, wherein the orientation magnetic field is formed by an orientation magnet in which a plurality of permanent magnets are joined so that the same kind of magnetic poles face each other, It can arrange | position so that the said cylindrical bond magnet may be enclosed. Thereby, unlike the bonded magnet formed by joining a plurality of pieces, an integrally molded bonded magnet can be obtained, and sufficient magnetic force and strength can be provided.

本発明によれば、パイプに挿入することなく磁石の強度を向上させた磁石を得ることができ、またそのような磁石により磁力を向上させたものを容易に製造することができる。   According to the present invention, a magnet with improved magnet strength can be obtained without being inserted into a pipe, and a magnet with improved magnetic force can be easily manufactured with such a magnet.

磁石成形用の金型を示す模式断面図である。It is a schematic cross section which shows the metal mold | die for magnet molding. 図1における磁石を配向させるための配向用磁石を示す斜視図である。It is a perspective view which shows the magnet for orientation for orienting the magnet in FIG. センターピンを配置した磁石成形用の金型を示す模式断面図である。It is a schematic cross section which shows the metal mold | die for magnet formation which has arrange | positioned the center pin. 筒状ボンド磁石の斜視図である。It is a perspective view of a cylindrical bond magnet. 図4の筒状ボンド磁石に芯がねを挿入した状態を示す斜視図である。It is a perspective view which shows the state which inserted the core iron into the cylindrical bond magnet of FIG. 図3の金型において配向用の永久磁石で発生する磁力線を示す模式断面図である。It is a schematic cross section which shows the magnetic force line | wire which generate | occur | produces with the permanent magnet for orientation in the metal mold | die of FIG. ボンド磁石の側面最大表面磁束密度を示すグラフである。It is a graph which shows the side surface maximum surface magnetic flux density of a bond magnet. 着磁処理に使用する着磁コイルを示す斜視図である。It is a perspective view which shows the magnetizing coil used for a magnetization process.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための筒状ボンド磁石及びその製造方法を例示するものであって、本発明は筒状ボンド磁石及びその製造方法を以下に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the form shown below illustrates the cylindrical bonded magnet and its manufacturing method for embodying the technical idea of the present invention, and the present invention limits the cylindrical bonded magnet and its manufacturing method to the following. Not what you want.

また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

図1に、筒状ボンド磁石を製造するための金型の模式的な断面図を、また図2に、図1の金型に配置された配向用の永久磁石の模式的な斜視図を、それぞれ示す。なお、図2では、説明の簡素化のため、図1で示したエジェクタピンや金型の隔壁は図示していない。   FIG. 1 is a schematic sectional view of a mold for producing a cylindrical bonded magnet, and FIG. 2 is a schematic perspective view of a permanent magnet for orientation arranged in the mold of FIG. Each is shown. In FIG. 2, the ejector pins and the partition walls of the mold shown in FIG. 1 are not shown for simplicity of explanation.

円筒状ボンド磁石の製造方法は、従来のように磁石ピースを一つずつ組上げていく方法でなく、一度の成形で単一の成形体、しかも軸方向にN極とS極とを交互に発生させる製造方法である。この製造方法によれば、図1の金型内部断面図に示すように、異方性の磁性粉末と樹脂からなるコンパウンドを、配向用の永久磁石に囲まれたキャビティの内部で成形することで、コンパウンド中の磁性粉末は配向し、長手方向にN極とS極が交互に発生する筒状の交互多極磁石が得られる。配向用の永久磁石は、金型の内部で同種の磁極が対向するように配置されているので、キャビティの内部には、異方性磁性粉末を十分に配向させるだけの磁場が発生している。これらの磁石は、磁気特性に優れた上、一度の成形で単一の交互多極磁石を作製できるので、生産性及び寸法性に非常に優れる。   The manufacturing method of the cylindrical bonded magnet is not the method of assembling the magnet pieces one by one as in the conventional method, but a single molded body is generated by one molding, and N and S poles are generated alternately in the axial direction. This is a manufacturing method. According to this manufacturing method, as shown in the mold internal cross-sectional view of FIG. 1, a compound made of anisotropic magnetic powder and resin is molded inside a cavity surrounded by a permanent magnet for orientation. The magnetic powder in the compound is oriented to obtain a cylindrical alternating multipolar magnet in which N poles and S poles are alternately generated in the longitudinal direction. Since the permanent magnets for orientation are arranged so that the same kind of magnetic poles face each other inside the mold, a magnetic field is generated in the cavity to sufficiently orient the anisotropic magnetic powder. . Since these magnets are excellent in magnetic properties, a single alternating multipolar magnet can be produced by one molding, so that productivity and dimensionality are extremely excellent.

以下、筒状ボンド磁石の製造方法について詳細に説明する。図1において、ゲート106から射出された、溶融コンパウンド中の異方性磁性粉末は、キャビティ105の内部に充填され、円柱状に成形される。なお、金型成形されるボンド磁石の外形は円柱状に限定されず、断面が円形の他、楕円、三角、四角その他の多角形等の形状とすることもできる。   Hereinafter, the manufacturing method of a cylindrical bonded magnet is demonstrated in detail. In FIG. 1, the anisotropic magnetic powder in the molten compound injected from the gate 106 is filled into the cavity 105 and formed into a cylindrical shape. The outer shape of the bonded magnet to be molded is not limited to a cylindrical shape, and may be a shape such as an ellipse, a triangle, a square, or other polygons in addition to a circular cross section.

なお、成形方法は特に限定されるものではなく、例えば押出成形、圧縮成形又は射出成形を適用することができる。生産性、配向設備の設置の容易性から、特に射出成形によって成形することが好ましい。   The molding method is not particularly limited, and for example, extrusion molding, compression molding, or injection molding can be applied. In view of productivity and ease of installation of orientation equipment, it is particularly preferable to form by injection molding.

さらに溶融コンパウンドが、金型内部で固化するまでの間に、配向用の永久磁石によって磁化容易軸が揃えられる。成形されたボンド磁石は、金型内で十分に固化した後、エジェクタピン103によって突き出される。   Further, the axis of easy magnetization is aligned by a permanent magnet for orientation until the molten compound is solidified inside the mold. The molded bond magnet is sufficiently solidified in the mold and then ejected by the ejector pin 103.

ここで配向用の永久磁石101、102は、例えば図2に示すように断面コの字型の小磁石101a(102a)、小磁石101b(102b)の同種の磁極が対向するように配置している。さらに、配向用の永久磁石101、102は、キャビティ105を形成するように、コの字形状を向かい合わせに配置されている。このような配置の配向用の永久磁石101、102によって、金型のキャビティ105内部に得られる磁力線の様子を図6に示す。例えばN極同士の対向面の場合、その対向面で磁力線が反発して強力な磁界が発生され、キャビティ内部へ向かう。その後、磁力線は隣接するS極同士が対向する面へと続く。この磁力線に沿って、コンパウンド中の異方性磁性粉末が配向することによって、成形品の側面に磁力の強い放射状の磁極が出現する。ところで、この磁力線は、主にキャビティの外周に近いほど強く、中心に近いほど弱くなる。つまり、高い磁力が得られるのは、成形された磁石の外側の側面の部分である。   Here, the permanent magnets 101 and 102 for orientation are arranged so that the same type of magnetic poles of the small magnet 101a (102a) and the small magnet 101b (102b) having a U-shaped cross section face each other as shown in FIG. Yes. Further, the permanent magnets 101 and 102 for orientation are arranged so that the U-shapes face each other so as to form the cavity 105. FIG. 6 shows the state of magnetic lines of force obtained inside the mold cavity 105 by the orientation permanent magnets 101 and 102 having such an arrangement. For example, in the case of the facing surfaces of N poles, the lines of magnetic force are repelled on the facing surfaces to generate a strong magnetic field toward the inside of the cavity. Thereafter, the lines of magnetic force continue to the surfaces where the adjacent S poles face each other. Along the magnetic field lines, the anisotropic magnetic powder in the compound is oriented, so that a radial magnetic pole having a strong magnetic force appears on the side surface of the molded product. By the way, this magnetic field line is stronger as it is closer to the outer periphery of the cavity, and is weaker as it is closer to the center. That is, it is the outer side surface portion of the molded magnet that provides a high magnetic force.

ここで、配向用の永久磁石に用いる材料は、残留磁束密度Brが1T以上のものが好ましく、例えばNdFeB焼結磁石を用いることができる。磁力の大きい磁石を使うと、キャビティの内部に発生する磁力が強くなり、ボンド磁石の磁力も強くなる。   Here, the material used for the orientation permanent magnet is preferably one having a residual magnetic flux density Br of 1 T or more, and for example, a NdFeB sintered magnet can be used. When a magnet having a large magnetic force is used, the magnetic force generated inside the cavity is increased, and the magnetic force of the bonded magnet is also increased.

射出成形で得られる交互多極磁石は、金型内で配向磁化されているのでそのまま使用することもできるが、成形後に着磁工程を行っても良い。着磁を行うことで、ボンド磁石の磁力をより強力なものとすることができる。   The alternating multipole magnet obtained by injection molding can be used as it is because it is oriented and magnetized in the mold, but a magnetizing step may be performed after molding. By magnetizing, the magnetic force of the bond magnet can be made stronger.

一方、溶融コンパウンド中の磁性粉末としては、異方性、又は等方性の磁性粉末が適用可能である。例えば、異方性磁性粉末としては、フェライト系、SmCo系、NdFeB系、SmFeN系が挙げられる。磁力を考慮すると、特に、異方性の希土類系磁性粉末が好ましい。成形性を考慮すれば、SmFeN系がより好ましい。さらに等方性磁性粉末としては、SmCo系、NdFeB系等が挙げられる。磁力の強いボンド磁石を作製する必要がある場合には、異方性の希土類系磁性粉末を用いることが好ましい。これは、異方性磁性粉末は、配向の際に印加される磁場によって、磁化方向が非常に揃い易く、結果的にボンド磁石の磁力が強くなるためである。上記の磁性粉末は、一種単独でも、あるいは二種以上の混合物としても使用できる。また必要に応じて耐酸化処理やカップリング処理を施しても良い。   On the other hand, anisotropic or isotropic magnetic powder is applicable as the magnetic powder in the molten compound. For example, examples of anisotropic magnetic powder include ferrite, SmCo, NdFeB, and SmFeN. Considering the magnetic force, anisotropic rare earth magnetic powder is particularly preferable. In consideration of moldability, the SmFeN system is more preferable. Furthermore, examples of the isotropic magnetic powder include SmCo and NdFeB. When it is necessary to produce a bonded magnet having a strong magnetic force, it is preferable to use anisotropic rare earth magnetic powder. This is because anisotropic magnetic powder is very easily aligned in magnetization direction by a magnetic field applied during orientation, and as a result, the magnetic force of the bond magnet is increased. Said magnetic powder can be used individually by 1 type or in mixture of 2 or more types. Moreover, you may perform an oxidation-resistant process and a coupling process as needed.

またコンパウンドを構成する樹脂としては、特に制限はなく、例えばポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂等の熱可塑性樹脂や、エステル系、ポリアミド系等の熱可塑性エラストマー、エポキシ樹脂やフェノール樹脂等の熱硬化性樹脂を使用することができる。また、これらを適宜混合して使用することもできる。   Moreover, there is no restriction | limiting in particular as resin which comprises a compound, For example, thermoplastic resins, such as polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide, an acrylic resin, thermoplasticity, such as ester type and polyamide type Thermosetting resins such as elastomers, epoxy resins and phenol resins can be used. Moreover, these can also be mixed and used suitably.

さらに磁性粉末の配合比率は、樹脂の種類にもよるが、ボンド磁石全体に対する磁性粉末の割合が45〜75体積%とすることが好ましい。また、酸化防止剤、滑剤等をさらに混合することもできる。   Furthermore, although the blending ratio of the magnetic powder depends on the type of resin, the ratio of the magnetic powder to the entire bonded magnet is preferably 45 to 75% by volume. Further, an antioxidant, a lubricant and the like can be further mixed.

以上のような配向用磁石及び原材料を利用することで、例えば図1に示す金型によって、柱状のボンド磁石が成形される。   By using the magnet for orientation and raw materials as described above, a columnar bond magnet is formed by, for example, a mold shown in FIG.

さらに図1に示される金型の内部に、図3に示すようにセンターピン111を配置することで、柱状のボンド磁石でなく、ボンド磁石の軸方向に貫通孔が形成された筒状のボンド磁石が作製できる。ここでセンターピン111は、溶融コンパウンドを筒状に成形するために金型に配置させる部材である。また図3に示す金型の断面図において、金型に配置された配向用の永久磁石は、図2に示したたものと同じである。図3において、ゲート106から射出された、溶融コンパウンド中の異方性磁性粉末は、キャビティ105の内部に充填され、筒状に成形される。なお、ここでは円筒状のボンド磁石の成形品について説明するが、本発明は円筒状のボンド磁石に限定されることなく、筒状の他の形状、例えば断面が円形の他、楕円、三角、四角その他の多角形等の形状とすることもできる。   Further, by arranging the center pin 111 inside the mold shown in FIG. 1 as shown in FIG. 3, a cylindrical bond in which a through hole is formed in the axial direction of the bond magnet instead of the columnar bond magnet. A magnet can be produced. Here, the center pin 111 is a member that is arranged in a mold in order to form the molten compound into a cylindrical shape. In the cross-sectional view of the mold shown in FIG. 3, the permanent magnet for orientation arranged in the mold is the same as that shown in FIG. In FIG. 3, the anisotropic magnetic powder in the molten compound injected from the gate 106 is filled into the cavity 105 and formed into a cylindrical shape. In addition, although the molded product of a cylindrical bond magnet is demonstrated here, this invention is not limited to a cylindrical bond magnet, Other shapes of cylinders, for example, a cross section is circular, an ellipse, a triangle, It can also be a shape such as a square or other polygons.

図3の金型で製造された円筒状のボンド磁石の模式的な斜視図を、図4に示す。この図に示すように、円筒状のボンド磁石は、その側面にN極及びS極が交互に発生された交互多極磁石となっている。さらに図5に示すように、その中心軸方向に形成された空洞部に芯がねを挿入することで、芯がね入りの交互多極円筒状のボンド磁石が得られる。この芯がねは、筒状ボンド磁石の強度を向上させるためのものであり、その目的が達成されれば特に限定されることはなく、非磁性材料であっても、磁性材料であってもよい。例えば鉄あるいは鉄の合金等の金属材料が好ましい。また、鉄以外の芯がねの材料として、タングステンカーバイドをコバルトのようなバインダーで焼結させた超硬合金を利用することもできる。さらに、金属材料以外の芯がねの材料として、セラミックスを利用してもよい。   FIG. 4 shows a schematic perspective view of a cylindrical bonded magnet manufactured with the mold of FIG. As shown in this figure, the cylindrical bonded magnet is an alternating multipolar magnet in which N and S poles are alternately generated on the side surface. Further, as shown in FIG. 5, by inserting a core rod into the cavity formed in the central axis direction, an alternate multipolar cylindrical bonded magnet with a core strand is obtained. This core is for improving the strength of the cylindrical bonded magnet, and is not particularly limited as long as its purpose is achieved. It may be a non-magnetic material or a magnetic material. Good. For example, a metal material such as iron or an iron alloy is preferable. In addition, a cemented carbide obtained by sintering tungsten carbide with a binder such as cobalt can also be used as a material for cores other than iron. Furthermore, ceramics may be used as the core material other than the metal material.

芯がね入りの筒状ボンド磁石は、その中心軸方向に芯がねを貫通させているので、十分な強度を有する。しかも、従来のようにボンド磁石の外周面がパイプに覆われていないので、パイプに挿入したものと比べて、磁気特性の優れた交互多極磁石を得ることができる。   The cylindrical bonded magnet with a core core has a sufficient strength because the core core is penetrated in the central axis direction. Moreover, since the outer peripheral surface of the bonded magnet is not covered with the pipe as in the prior art, an alternating multipolar magnet having excellent magnetic properties can be obtained as compared with that inserted into the pipe.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。
[実施例]
1.コンパウンドの準備
Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.
[Example]
1. Compound preparation

異方性SmFeN磁性粉末をエチルシリケート及びシラン系のカップリング剤で表面処理をする。表面処理を施したSmFeN磁性粉末9137gと12ナイロン863gをミキサーで混合する。得られた混合粉を、混練機を用いて220℃で混練し、ストランド状のコンパウンドを押出し、冷却後、適当なサイズに切断してコンパウンドを得る。
2.円筒状及び円柱状の交互多極ボンド磁石の作製
Anisotropic SmFeN magnetic powder is surface-treated with ethyl silicate and a silane coupling agent. The surface-treated SmFeN magnetic powder 9137g and 12 nylon 863g are mixed with a mixer. The obtained mixed powder is kneaded at 220 ° C. using a kneader, the strand-like compound is extruded, cooled, and then cut into an appropriate size to obtain a compound.
2. Fabrication of cylindrical and cylindrical alternating multipolar bonded magnets

上記で作製したコンパウンドを原料とし、射出成形機で、円筒状及び円柱状の交互多極ボンド磁石を作製する。各実施例で使用した金型は、図3に示されるように、内部に配向用の永久磁石の配置しており、それぞれ表1に示した通りである。キャビティは、直径5mm、高さ30mmとする。実施例1乃至3と比較例1では、図3に示される金型を使用しており、キャビティの軸中心部にセンターピン111が配置され、中心軸方向に貫通孔が設けられた円筒状のボンド磁石を得ることができる。ここでは、センターピン111の径を変更することで、円筒状のボンド磁石の内径の異なるもの(1mm、2mm、3mm、4mm)を得る。なお比較例2乃至3として、図1の金型を使用して、中心軸方向に貫通孔が設けられていない円柱状のボンド磁石を得た。
3.着磁処理
The compound produced above is used as a raw material, and cylindrical and columnar alternating multipolar bonded magnets are produced with an injection molding machine. As shown in FIG. 3, the molds used in the respective examples have permanent magnets for orientation arranged therein, as shown in Table 1. The cavity has a diameter of 5 mm and a height of 30 mm. In Examples 1 to 3 and Comparative Example 1, the mold shown in FIG. 3 is used, and a center pin 111 is disposed at the axial center of the cavity, and a cylindrical shape is provided with a through hole in the central axis direction. A bonded magnet can be obtained. Here, by changing the diameter of the center pin 111, a cylindrical bonded magnet having different inner diameters (1 mm, 2 mm, 3 mm, 4 mm) is obtained. As Comparative Examples 2 to 3, a cylindrical bond magnet having no through hole in the central axis direction was obtained using the mold shown in FIG.
3. Magnetization treatment

図8に示す着磁コイルを用いて、上記で得た、円筒状及び円柱状のボンド磁石を着磁処理する。本実施例における着磁の条件は、静電容量が500μF、充電電圧が1500Vのパルス着磁である。本実施例における着磁コイルは、図8に示されるように、非磁性のボビン109の側面に被覆銅線110を巻回した後、一定の間隔をおいて、先に巻回した被覆銅線とは逆方向に巻回して形成させたものである。
4.評価
Using the magnetized coil shown in FIG. 8, the cylindrical and columnar bonded magnets obtained above are magnetized. The magnetizing condition in this embodiment is pulse magnetizing with a capacitance of 500 μF and a charging voltage of 1500V. As shown in FIG. 8, the magnetized coil in this embodiment is a coated copper wire that is wound first at a predetermined interval after the coated copper wire 110 is wound around the side surface of the non-magnetic bobbin 109. Is formed by winding in the opposite direction.
4). Evaluation

表1に示すように、実施例1乃至3及び比較例1は、芯がね(材質:非磁性鋼HPM75)を挿入し、比較例3は内径が5mm、肉厚0.2mm、長さが30mmのSUS304製パイプに挿入する。比較例2は、パイプに挿入させず、裸の磁石のままで評価する。各実施例及び比較例で得られた全てのボンド磁石に対して、側面の長手方向の表面磁束密度分布を測定し、このときの最大の表面磁束密度値を表1に示す。更に円筒状ボンド磁石の外径に対する内径の百分率を横軸に、側面の最大表面磁束密度を縦軸にしたグラフを、図7に示す。このグラフによれば、円筒状ボンド磁石の内径が外径の65%以下の範囲で、優れた磁気特性が得られていることが判る。一方で比較例1のように、芯がねを挿入するための内径が外径の65%よりも大きくなると、急激な表面磁束密度の低下が見られる。   As shown in Table 1, cores (material: nonmagnetic steel HPM75) are inserted in Examples 1 to 3 and Comparative Example 1, and Comparative Example 3 has an inner diameter of 5 mm, a wall thickness of 0.2 mm, and a length. Insert into 30 mm SUS304 pipe. Comparative Example 2 is evaluated with the bare magnet remaining without being inserted into the pipe. The surface magnetic flux density distribution in the longitudinal direction of the side surfaces was measured for all the bonded magnets obtained in each of the examples and comparative examples, and the maximum surface magnetic flux density value at this time is shown in Table 1. Further, FIG. 7 is a graph in which the percentage of the inner diameter with respect to the outer diameter of the cylindrical bonded magnet is plotted on the horizontal axis and the maximum surface magnetic flux density on the side surface is plotted on the vertical axis. According to this graph, it can be seen that excellent magnetic properties are obtained when the inner diameter of the cylindrical bonded magnet is 65% or less of the outer diameter. On the other hand, as in Comparative Example 1, when the inner diameter for inserting the core is larger than 65% of the outer diameter, a rapid decrease in the surface magnetic flux density is observed.

また全ての製品に対して、曲げ強度試験を行う。100MPaの応力下で作製したボンド磁石の強度を、ボンド磁石の割れ及び欠けの有無で比較し、その結果を表1に示した。表1において、割れ欠けの発生した製品には×、割れ欠けの発生しなかった製品には○を示している。この表から明らかなとおり、実施例1乃至3及び比較例1、比較例3では、中心に芯がねを挿入、又はボンド磁石をパイプに挿入しているので、比較例2と比べて優れた強度を有す。   A bending strength test is performed on all products. The strengths of the bonded magnets produced under a stress of 100 MPa were compared based on the presence or absence of cracks and chips of the bonded magnets, and the results are shown in Table 1. In Table 1, “x” is indicated for products with cracks and chipped, and “◯” is indicated for products without cracks. As is apparent from this table, Examples 1 to 3 and Comparative Examples 1 and 3 are superior to Comparative Example 2 because the core wire is inserted in the center or the bonded magnet is inserted into the pipe. Has strength.

Figure 2011029215
Figure 2011029215

以上の結果から、内径が外径の65%以内の範囲の穴を有する円筒状のボンド磁石の中心に、芯がねを挿入することで、従来にない優れた磁気特性の円筒状の交互多極ボンド磁石を実現できることが明らかとなった。また内径が外径の10%以上65%以下の範囲の穴を有する円筒状のボンド磁石とすることで、十分な強度及び優れた磁気特性を得ることができた。さらに、優れた磁気特性が得られる点で、内径が外径の10%以上50%以下の範囲の穴を有する円筒状のボンド磁石とすることが好ましい。   From the above results, it is possible to insert cylindrical core magnets into the center of a cylindrical bonded magnet having a hole whose inner diameter is within 65% of the outer diameter. It became clear that a pole bonded magnet could be realized. Moreover, sufficient strength and excellent magnetic properties could be obtained by using a cylindrical bonded magnet having a hole with an inner diameter in the range of 10% to 65% of the outer diameter. Furthermore, it is preferable to use a cylindrical bonded magnet having a hole with an inner diameter in the range of 10% to 50% of the outer diameter in terms of obtaining excellent magnetic properties.

また上記の例では、キャビティの軸中心部にセンターピンを配置し、ボンド磁石を得た後、芯がねを挿入する構成を例示した。ただ本発明はこの構成に限らず、例えば金型成型時にセンターピンを使用せず、芯がね自体をキャビティの軸中心に配置して、ボンド磁石の中心に芯がねを固定した状態に成形することも可能であることは言うまでもない。   In the above example, the center pin is disposed at the axial center of the cavity to obtain a bonded magnet, and then the core is inserted. However, the present invention is not limited to this configuration. For example, a center pin is not used at the time of molding a mold, and the core is itself placed at the center of the cavity and the core is fixed in the center of the bond magnet. It goes without saying that it is also possible to do.

本発明の筒状ボンド磁石は、異物除去装置やリニアモータ用の永久磁石材料として利用することができる。   The cylindrical bonded magnet of the present invention can be used as a permanent magnet material for a foreign substance removing device or a linear motor.

101、101a、101b、102、102a、102b…配向用磁石
103…イジェクタピン
104…成形用金型
105…キャビティ
106…ゲート
107…筒状磁石
108…芯がね
109…ボビン
110…被覆銅線
111…センターピン
101, 101a, 101b, 102, 102a, 102b ... orientation magnet 103 ... ejector pin 104 ... molding die 105 ... cavity 106 ... gate 107 ... cylindrical magnet 108 ... core 109 ... bobbin 110 ... coated copper wire 111 ... Center pin

Claims (4)

磁性粉末と樹脂で形成され、内部に空洞の貫通孔が開口された筒状のボンド磁石であって、
前記筒状ボンド磁石は、一体に成形された成形体であり、
貫通孔の軸方向に、N極とS極が少なくとも4極以上、交互に多極磁化されており、
前記筒状ボンド磁石の内径の大きさが、外径の大きさの10%〜65%の範囲にあることを特徴とする筒状ボンド磁石。
A cylindrical bond magnet formed of magnetic powder and resin, with a hollow through hole opened inside,
The cylindrical bonded magnet is a molded body that is integrally molded,
In the axial direction of the through-hole, at least four or more N poles and S poles are alternately magnetized.
The cylindrical bonded magnet is characterized in that the inner diameter of the cylindrical bonded magnet is in the range of 10% to 65% of the outer diameter.
請求項1に記載の筒状ボンド磁石であって、さらに、
前記貫通孔に挿入された、内径とほぼ同じ外径を有する芯がねを備えることを特徴とする請求項1に記載の筒状ボンド磁石。
The cylindrical bonded magnet according to claim 1, further comprising:
The cylindrical bonded magnet according to claim 1, further comprising a core rod inserted into the through hole and having an outer diameter substantially the same as an inner diameter.
請求項2に記載の筒状ボンド磁石であって、
筒状ボンド磁石を構成する前記磁性粉末は、異方性の希土類系合金粉末であることを特徴とする筒状ボンド磁石。
The cylindrical bonded magnet according to claim 2,
The cylindrical bonded magnet is characterized in that the magnetic powder constituting the cylindrical bonded magnet is an anisotropic rare earth alloy powder.
磁性粉末と樹脂を混練し、コンパウンドを得る工程と、
前記コンパウンドを、配向磁場を印加した環境下で筒状ボンド磁石に成形する工程と、
を含む筒状ボンド磁石の製造方法であって、
前記配向磁場は、同種の磁極同士が対向するように複数の永久磁石を接合させた配向用磁石により形成され、
前記配向用磁石は、前記筒状ボンド磁石を囲むように配置されてなることを特徴とする筒状ボンド磁石の製造方法。
Kneading magnetic powder and resin to obtain a compound;
Forming the compound into a cylindrical bonded magnet under an environment in which an orientation magnetic field is applied;
A method for producing a cylindrical bonded magnet including:
The orientation magnetic field is formed by an orientation magnet in which a plurality of permanent magnets are joined so that the same kind of magnetic poles face each other.
The method for producing a cylindrical bonded magnet, wherein the orientation magnet is arranged so as to surround the cylindrical bonded magnet.
JP2009170085A 2009-07-21 2009-07-21 Cylindrical bond magnet and method of manufacturing the same Pending JP2011029215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170085A JP2011029215A (en) 2009-07-21 2009-07-21 Cylindrical bond magnet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170085A JP2011029215A (en) 2009-07-21 2009-07-21 Cylindrical bond magnet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011029215A true JP2011029215A (en) 2011-02-10

Family

ID=43637674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170085A Pending JP2011029215A (en) 2009-07-21 2009-07-21 Cylindrical bond magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011029215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517887A (en) * 2014-05-20 2017-06-29 エドワーズ リミテッド Elongated permanent ring magnet having a plurality of axial magnetization bands, and a magnetic bearing including the ring magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304955A (en) * 1993-04-22 1994-11-01 Japan Steel Works Ltd:The Molding method of anisotropic resin magnet and its mold
JPH08213268A (en) * 1995-02-02 1996-08-20 Kanegafuchi Chem Ind Co Ltd Manufacture of magnetic anisotropic circular magnet
JP2001230118A (en) * 2000-02-17 2001-08-24 Dainippon Ink & Chem Inc Magnetizing device and printer
JP2001297911A (en) * 2000-04-13 2001-10-26 Dainippon Ink & Chem Inc Flexible magnet sheet
JP2004320827A (en) * 2003-04-11 2004-11-11 Toda Kogyo Corp Magnet for reciprocating apparatus, and reciprocating apparatus using the same
JP2007105992A (en) * 2005-10-13 2007-04-26 Bridgestone Corp Manufacturing method of magnet roller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304955A (en) * 1993-04-22 1994-11-01 Japan Steel Works Ltd:The Molding method of anisotropic resin magnet and its mold
JPH08213268A (en) * 1995-02-02 1996-08-20 Kanegafuchi Chem Ind Co Ltd Manufacture of magnetic anisotropic circular magnet
JP2001230118A (en) * 2000-02-17 2001-08-24 Dainippon Ink & Chem Inc Magnetizing device and printer
JP2001297911A (en) * 2000-04-13 2001-10-26 Dainippon Ink & Chem Inc Flexible magnet sheet
JP2004320827A (en) * 2003-04-11 2004-11-11 Toda Kogyo Corp Magnet for reciprocating apparatus, and reciprocating apparatus using the same
JP2007105992A (en) * 2005-10-13 2007-04-26 Bridgestone Corp Manufacturing method of magnet roller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517887A (en) * 2014-05-20 2017-06-29 エドワーズ リミテッド Elongated permanent ring magnet having a plurality of axial magnetization bands, and a magnetic bearing including the ring magnet
US10359047B2 (en) 2014-05-20 2019-07-23 Edwards Limited Elongated permanent ring management with a plurality of axially directed magnetized zones and magnetic bearing with such a ring magnet

Similar Documents

Publication Publication Date Title
US8039998B2 (en) Rotor for motor and method for producing the same
US8647091B2 (en) Stator compacted in one piece
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
EP1739811A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JP4636198B2 (en) Cylindrical bonded magnet, manufacturing method thereof, and rod-shaped magnet body
CN107967978B (en) Bonded magnet and method for producing bonded magnet
JP5530707B2 (en) Cylindrical bonded magnet, manufacturing method thereof and manufacturing apparatus
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4735716B2 (en) Permanent magnet rotor and motor using the same
JP5766134B2 (en) Shaft type linear motor mover, permanent magnet, linear motor
JP5884425B2 (en) Method for manufacturing cylindrical bonded magnet
JP2004056835A (en) Bonded magnet for motor and motor
JP2011029215A (en) Cylindrical bond magnet and method of manufacturing the same
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2005323419A (en) Process for producing anisotropic bond magnet
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JP2006180677A (en) Integrated skew magnetic rotor with core, and its manufacturing method
JP5463773B2 (en) Method for manufacturing columnar bonded magnet
JP2008109800A (en) Rotor, reluctance motor, manufacturing method for rotor, and manufacturing method for reluctance motor
JP5651944B2 (en) Method for manufacturing cylindrical bonded magnet
JP2007267487A (en) Magnet and rotor for stepping motor
JP2017103312A (en) Magnet manufacturing method
JP2017085837A (en) Electric motor element, method of manufacturing electric motor element, electric motor and device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140301

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140530