JP2013105639A - Superconducting cable - Google Patents

Superconducting cable Download PDF

Info

Publication number
JP2013105639A
JP2013105639A JP2011249086A JP2011249086A JP2013105639A JP 2013105639 A JP2013105639 A JP 2013105639A JP 2011249086 A JP2011249086 A JP 2011249086A JP 2011249086 A JP2011249086 A JP 2011249086A JP 2013105639 A JP2013105639 A JP 2013105639A
Authority
JP
Japan
Prior art keywords
former
superconducting
layer
wire
resistance film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011249086A
Other languages
Japanese (ja)
Other versions
JP5771509B2 (en
Inventor
Kazuo Watanabe
和夫 渡辺
Keido Nakamura
桂土 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011249086A priority Critical patent/JP5771509B2/en
Publication of JP2013105639A publication Critical patent/JP2013105639A/en
Application granted granted Critical
Publication of JP5771509B2 publication Critical patent/JP5771509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for providing a superconducting cable capable of suppressing eddy current loss that a former has, and reducing AC loss and suppressing a rise in temperature at eddy current time.SOLUTION: There is provided a superconducting cable having a former, a superconducting layer provided at an outer periphery of the former, and an electric insulating layer formed at an outer periphery of the superconducting layer. The superconducting layer is formed by winding a plurality of superconductor materials spirally around an outer periphery of the former. The former is applied to a superconducting cable formed by twisting a plurality of metal wires each made of a normal conducting materials coated with a resistance film, which is characterized in that a value of volume resistivity at 77K is 10times or more as large as a value of volume resistivity of the metal wires, the volume resistivity value of the resistance film is 10Ω cm or less, and the center angle θ of a contact length between adjacent strands is within a range of 5°≤θ≤30°.

Description

本発明は、交流通電時の渦電流損失の低減と過電流時の温度上昇抑制を図った撚線構造のフォーマを備えた超電導ケーブルに関する。   The present invention relates to a superconducting cable including a stranded wire former that reduces eddy current loss during AC energization and suppresses temperature rise during overcurrent.

超電導ケーブルでは、交流損失の低減を達成することが実用化のために必要とされている。従来知られている超電導ケーブルの一例構造として、各超電導導体及び超電導シールド層における超電導線材を各層内でそれぞれ同一のピッチで螺旋巻きした構造が知られている。
この種の高温超電導ケーブルの一例として、図20に示す如く、三心一括型高温超電導ケーブルであって、撚線からなるフォーマ100の外周に高温超電導線材を巻線状に複数層配置して超電導層101を形成し、その外周に絶縁層102、103と超電導シールド層105と保護層106を形成してコアケーブル107を構成し、このコアケーブル107を3本撚り合わせて断熱管108の内部に冷媒流通用の間隙をあけて収容し、全体を保護層109で覆ってなる構造の高温超電導ケーブル110が知られている。
このような超電導ケーブル導体では、各層の巻き付けピッチを同じにした場合、内層と外層とでは、外層ほどインダクタンスが小さくなり、外層ほど電流が大きくなるという偏流の問題が発生する。この偏流に伴って交流損失が増大すると考えられ、偏流の抑制が求められる。
In the superconducting cable, it is required for practical use to achieve a reduction in AC loss. As an example of a conventionally known superconducting cable structure, a structure is known in which superconducting wires in each superconducting conductor and superconducting shield layer are spirally wound at the same pitch in each layer.
As an example of this type of high-temperature superconducting cable, as shown in FIG. 20, it is a three-core batch type high-temperature superconducting cable, in which a plurality of layers of high-temperature superconducting wires are arranged in a winding shape on the outer periphery of a stranded wire. A layer 101 is formed, and insulating layers 102 and 103, a superconducting shield layer 105, and a protective layer 106 are formed on the outer periphery thereof to form a core cable 107, and three core cables 107 are twisted together inside the heat insulating tube 108. A high-temperature superconducting cable 110 having a structure in which a gap for circulating refrigerant is accommodated and the whole is covered with a protective layer 109 is known.
In such a superconducting cable conductor, when the winding pitch of each layer is made the same, the inner layer and the outer layer have a problem of current drift that the outer layer has a smaller inductance and the outer layer has a larger current. AC loss is considered to increase with this drift, and suppression of drift is required.

このような交流損失の低減に関する基本技術として、各層の螺旋巻きピッチを調節して各層のインダクタンス調整を行う技術があり、上述の偏流の問題を解消できる技術と考えられる。(特許文献1参照)
一方、超電導ケーブルに設けられているフォーマは、超電導素線を機械的に支持するために必要であり、かつ、短絡事故対策として超電導素線の臨界電流を超える電流が流れた際にフォーマが電流を分担し、過電流をバイパスさせ、超電導ケーブルの温度上昇を抑制するといった電流の分流路としての機能も果たす必要があると考えられている。そのため、従来の超電導ケーブルに設けられているフォーマは、銅や銅合金等の金属製の導体から構成され、その形状は前記金属製の導体を互いに撚り合わせて作製された円柱状が一般的であった。
As a basic technique for reducing such AC loss, there is a technique for adjusting the inductance of each layer by adjusting the helical winding pitch of each layer, which is considered to be a technique that can solve the above-mentioned problem of drift. (See Patent Document 1)
On the other hand, the former provided in the superconducting cable is necessary to mechanically support the superconducting wire, and when the current exceeding the critical current of the superconducting wire flows as a countermeasure against a short circuit accident, the former is It is considered that it is also necessary to fulfill a function as a current dividing flow path, such as by sharing over the above, bypassing the overcurrent, and suppressing the temperature rise of the superconducting cable. Therefore, the former provided in the conventional superconducting cable is composed of a metal conductor such as copper or copper alloy, and the shape thereof is generally a columnar shape made by twisting the metal conductors together. there were.

特公昭29−6685号公報Japanese Examined Patent Publication No. 29-6665

上述の超電導層及び超電導シールド層の各層の螺旋巻きピッチを調整して各層のインダクタンス調整を行う技術では、フォーマにおける軸方向の磁場成分が完全にはキャンセルされずに残るため、フォーマを金属製の導体から構成する場合は、フォーマの横断面の円周に沿って流れる渦電流損失が発生する。
また、フォーマとして金属製の導体の代わりに絶縁体を用いる場合は、渦電流損失は発生しないが、臨界電流を超える電流が流れた際にフォーマに電流を分担させることができないので、超電導ケーブルの温度が上昇してしまう問題がある。
In the technique of adjusting the inductance of each layer by adjusting the spiral winding pitch of each layer of the superconducting layer and the superconducting shield layer, the magnetic field component in the axial direction of the former remains without being completely canceled. In the case of a conductor, an eddy current loss that flows along the circumference of the cross section of the former occurs.
In addition, when an insulator is used instead of a metal conductor as a former, eddy current loss does not occur, but the current cannot be shared by the former when a current exceeding the critical current flows. There is a problem that the temperature rises.

本発明は、以上のような従来の実情に鑑みなされたものであり、フォーマに生じる渦電流損失を抑制し、交流損失の低減と過電流時の温度上昇抑制を図ることができる超電導ケーブルを提供することが可能な技術の提供を目的とする。   The present invention has been made in view of the above-described conventional situation, and provides a superconducting cable capable of suppressing eddy current loss occurring in a former, reducing AC loss and suppressing temperature rise during overcurrent. The purpose is to provide technology that can be used.

本発明の超電導ケーブルは、フォーマとその外周に設けられる超電導層と該超電導層の外周に形成される電気絶縁層とを有する超電導ケーブルであって、前記超電導層が複数本の超電導線材をフォーマの外周に螺旋状に巻き付けた構造であり、前記フォーマが抵抗皮膜で被覆された常電導材料からなる金属線を複数本撚り合わせた構造であり、前記抵抗皮膜の体積抵抗率の値が前記金属線の体積抵抗率の値の10倍以上であり、かつ、この抵抗皮膜の体積抵抗率値が10Ω・cm以下であることを特徴とする。
上述の構造のフォーマを備えた超電導ケーブルによれば、長さ方向の抵抗に比べ、隣接する金属線間の抵抗が十分に大きくなるので、撚線構造とされた金属線を電気的に独立した状態とみなすことができるようになり、分割素線の場合は、各金属線をほぼ均一なインダクタンス分を持つようにできる。このため、フォーマを構成する各金属線に均一な電流を流すことが可能となり、表皮効果の低減に寄与し、渦電流損失の削減に寄与する。
また、フォーマの径方向に隣接する金属線は抵抗皮膜で被覆されているが、電気的には接続されるので、超電導線に通電していて、過電流が生じた場合、フォーマを電流のバイパス路とすることができるので、超電導ケーブルへの通電時の安定化に寄与する。
本発明の超電導ケーブルは、前記金属線を複数本撚り合わせた構造における隣接素線の接触長の中心角θが、5゜≦θ≦30゜の範囲であることを特徴とする。
前記隣接素線の接触長の中心角が5゜未満の場合は撚線製造時に撚線間に加わる力を小さく制御する必要があり、製造が困難となり易く非現実的であり、30゜を超えると撚線間の接触部の抵抗が小さくなり、渦電流損失が増大する傾向となる。
The superconducting cable of the present invention is a superconducting cable having a former, a superconducting layer provided on the outer periphery of the former, and an electrically insulating layer formed on the outer periphery of the superconducting layer, wherein the superconducting layer includes a plurality of superconducting wires. The structure is a structure in which the outer periphery is spirally wound, the former is a structure in which a plurality of metal wires made of a normal conductive material coated with a resistance film are twisted together, and the volume resistivity value of the resistance film is the metal wire It is characterized in that it is 10 4 times or more of the volume resistivity value and the volume resistivity value of this resistance film is 10 9 Ω · cm or less.
According to the superconducting cable provided with the former having the above structure, the resistance between adjacent metal wires is sufficiently larger than the resistance in the length direction, so that the metal wire having a twisted wire structure is electrically independent. In the case of a split strand, each metal wire can have a substantially uniform inductance. For this reason, it becomes possible to flow a uniform current through each metal wire constituting the former, contributing to the reduction of the skin effect and the reduction of eddy current loss.
In addition, the metal wire adjacent to the former in the radial direction of the former is covered with a resistive film, but it is electrically connected, so if an overcurrent occurs when the superconducting wire is energized, the former is bypassed. Since it can be used as a road, it contributes to stabilization during energization of the superconducting cable.
The superconducting cable of the present invention is characterized in that the central angle θ of the contact length of adjacent strands in the structure in which a plurality of the metal wires are twisted is in the range of 5 ° ≦ θ ≦ 30 °.
When the central angle of the contact length of the adjacent strands is less than 5 °, it is necessary to control the force applied between the stranded wires at the time of manufacturing the stranded wire, which is difficult to manufacture and is impractical, and exceeds 30 °. And the resistance of the contact portion between the stranded wires is reduced, and the eddy current loss tends to increase.

本発明の超電導ケーブルは、前記抵抗皮膜の厚さが0.5μm以上、1.5μm以下であることを特徴とする。
抵抗皮膜が上述の厚さ範囲であれば、渦電流損失の削減とともに、フォーマの接続時に皮膜を除去することなく、そのままスリーブ圧縮接続が可能である。
本発明の超電導ケーブルは、前記電気絶縁層の外周に設けられる超電導シールド層と、該超電導シールド層の外周に設けられる金属製のシールド層とを更に具備してなることを特徴とする。
The superconducting cable of the present invention is characterized in that the resistance film has a thickness of 0.5 μm or more and 1.5 μm or less.
If the resistance film is in the above-mentioned thickness range, eddy current loss can be reduced, and sleeve compression connection can be performed without removing the film when connecting the former.
The superconducting cable of the present invention is characterized by further comprising a superconducting shield layer provided on the outer periphery of the electrical insulating layer and a metal shield layer provided on the outer periphery of the superconducting shield layer.

本発明のフォーマは、前記超電導ケーブルが、前記フォーマと、その外周に設けられる前記超電導層と、該超電導層の外周に形成される前記電気絶縁層に加え、該電気絶縁層の外周に設けられる超電導シールド層と、該超電導シールド層の外周に設けられる金属製のシールド層とを具備してなることを特徴とする。
超電導層の外方に超電導シールド層と金属製のシールド層を設けることで、磁界が外部に漏洩して外部に磁気的な影響を及ぼすことを防止できる。
In the former of the present invention, the superconducting cable is provided on the outer periphery of the former, the superconducting layer provided on the outer periphery thereof, and the electric insulating layer formed on the outer periphery of the superconducting layer. It is characterized by comprising a superconducting shield layer and a metallic shield layer provided on the outer periphery of the superconducting shield layer.
By providing the superconducting shield layer and the metal shield layer outside the superconducting layer, it is possible to prevent the magnetic field from leaking to the outside and having a magnetic influence on the outside.

本発明によれば、フォーマを構成する撚線構造の金属線が抵抗皮膜で被覆され、抵抗皮膜の体積抵抗率の値が金属線の体積抵抗率の値の10倍以上であり、抵抗皮膜の体積抵抗率値が10Ω・cm以下であるので、長さ方向の抵抗に比べ、隣接する金属線間の抵抗が十分に大きくなるので、撚線構造とされた金属線を電気的に独立した状態とみなすことができるようになり、分割導体の場合は、各金属線がほぼ均一なインダクタンス分を持つようにできるので、各金属線に均一な電流を流すことが可能となり、表皮効果の低減に寄与し、渦電流損失の削減に寄与する。また、フォーマの径方向に隣接する金属線は抵抗皮膜で被覆されているが、電気的には接続されるので、超電導線に通電していて、過電流が生じた場合、フォーマを電流のバイパス路とすることができるので、通電時の安定化に寄与する。 According to the present invention, metal lines of stranded wire structure constituting the former is coated with resistive film, the value of the volume resistivity of the resistive film is at least 10 4 times the value of the volume resistivity of the metal wire, resistive film Since the volume resistivity value of 10 9 Ω · cm or less is sufficiently larger than the resistance in the length direction, the resistance between adjacent metal wires is sufficiently large. It can be considered as an independent state, and in the case of a split conductor, each metal wire can have a substantially uniform inductance, so that a uniform current can flow through each metal wire, and the skin effect This contributes to the reduction of eddy current loss. In addition, the metal wire adjacent to the former in the radial direction of the former is covered with a resistive film, but it is electrically connected, so if an overcurrent occurs when the superconducting wire is energized, the former is bypassed. Since it can be a road, it contributes to stabilization during energization.

本発明の第1実施形態に係る超電導ケーブルの横断面図。1 is a cross-sectional view of a superconducting cable according to a first embodiment of the present invention. 図1に示す超電導ケーブルに組み込まれている酸化物超電導積層体の概略断面図。FIG. 2 is a schematic cross-sectional view of an oxide superconducting laminate incorporated in the superconducting cable shown in FIG. 1. 図2に示す酸化物超電導積層体の層構造を詳細に示す構成図。The block diagram which shows in detail the layer structure of the oxide superconducting laminated body shown in FIG. 図1に示す超電導ケーブルに組み込まれているフォーマの撚線構造を示す横断面図。The cross-sectional view which shows the twisted wire structure of the former | foamer built in the superconducting cable shown in FIG. 同フォーマの撚線部分の拡大断面図。The expanded sectional view of the twisted wire part of the former. 同フォーマとそれに作用する軸方向磁界の説明図。Explanatory drawing of the same former and the axial direction magnetic field which acts on it. 円柱状の導体からなるフォーマの場合の渦電流を説明するための説明図。Explanatory drawing for demonstrating the eddy current in the case of the former | foamer which consists of a cylindrical conductor. 絶縁被覆された撚線構造のフォーマの渦電流を示すための説明図であり、図8(a)はフォーマ全体の説明図、図9(b)はフォーマの撚線を構成する素線を流れる渦電流を示す説明図。FIGS. 8A and 8B are explanatory diagrams for showing an eddy current of a former having a twisted wire structure with insulation coating, FIG. 8A is an explanatory diagram of the entire former, and FIG. 9B is a flow through a strand constituting the twisted wire of the former. Explanatory drawing which shows an eddy current. 抵抗皮膜撚線構造のフォーマを示す説明図であり、図9(a)はフォーマ全体の説明図、図9(b)はフォーマを構成する撚線の層に沿って配置された個々の素線を流れる渦電流を示す説明図、図9(c)はフォーマの中心に配置された素線を流れる渦電流を示す説明図。It is explanatory drawing which shows the former | foamer of resistance film twisted wire structure, FIG.9 (a) is explanatory drawing of the whole former | foamer, FIG.9 (b) is each strand arrange | positioned along the layer of the strand wire which comprises a former. FIG. 9C is an explanatory diagram showing an eddy current flowing through a strand arranged at the center of the former. 円柱導体の場合の渦電流損計算モデルを説明するための断面図。Sectional drawing for demonstrating the eddy current loss calculation model in the case of a cylindrical conductor. 抵抗皮膜を備えた金属線の撚線構造となるフォーマの渦電流について示す説明図であり、図11(a)はフォーマ全体の説明図、図11(b)はフォーマを構成する層に沿って配置された素線を流れる渦電流を示す説明図、図11(c)はフォーマの中心に配置された素線を流れる渦電流を示す説明図。It is explanatory drawing shown about the eddy current of the former used as the twisted-wire structure of the metal wire provided with the resistance film, FIG. 11 (a) is explanatory drawing of the whole former, FIG.11 (b) is along the layer which comprises a former. Explanatory drawing which shows the eddy current which flows through the arrange | positioned strand, FIG.11 (c) is explanatory drawing which shows the eddy current which flows through the strand arrange | positioned in the center of a former | foamer. 抵抗皮膜を備えた金属線の撚線構造となるフォーマの抵抗について示すための説明図であり、図12(a)はフォーマの撚線構造を構成する素線の配列を示す横断面図、図12(b)は図12(a)に示す素線の部分拡大図、図12(c)は同フォーマを構成する素線の抵抗皮膜部分の拡大図。It is explanatory drawing for showing about the resistance of the former used as the twisted wire structure of the metal wire provided with the resistance film, and Drawing 12 (a) is a transverse cross section showing the arrangement of the strand which constitutes the twisted wire structure of the former, figure 12 (b) is a partially enlarged view of the strand shown in FIG. 12 (a), and FIG. 12 (c) is an enlarged view of the resistance film portion of the strand constituting the former. 抵抗皮膜を備えた金属線の撚線構造となるフォーマにおける等価抵抗Reの考え方を示す説明図。Explanatory drawing which shows the view of the equivalent resistance Re in the former which becomes the twisted wire structure of the metal wire provided with the resistance film. 等価体積抵抗率と撚線金属の体積抵抗率と抵抗皮膜の体積抵抗率の関係を求めるための楕円関数の等角写像における原配置を示す説明図であり、図14(a)は同楕円関数を求めるための原配置を示す説明図、図14(b)は同フォーマの径方向に隣接する金属線の接触状態を示す説明図。It is explanatory drawing which shows the original arrangement | positioning in the equiangular mapping of the elliptic function for calculating | requiring the relationship between an equivalent volume resistivity, the volume resistivity of a stranded wire metal, and the volume resistivity of a resistance film, Fig.14 (a) is the elliptic function Explanatory drawing which shows the original arrangement | positioning for calculating | requiring A, FIG.14 (b) is explanatory drawing which shows the contact state of the metal wire adjacent to the radial direction of the former | foamer. 等価体積抵抗率と撚線金属の体積抵抗率と抵抗皮膜の体積抵抗率の関係を求めるための楕円関数の等角写像を示す説明図であり、図15(a)は同楕円関数を求めるための正規化した計算上の原座標のw面を示す説明図、図15(b)はz面を示す説明図。It is explanatory drawing which shows the equiangular mapping of the elliptic function for calculating | requiring the relationship between an equivalent volume resistivity, the volume resistivity of a stranded metal, and the volume resistivity of a resistance film, and FIG. Explanatory drawing which shows the w surface of the original coordinate in calculation normalized, FIG.15 (b) is explanatory drawing which shows z surface. 等価体積抵抗率と撚線金属の体積抵抗率と抵抗皮膜の体積抵抗率の関係を求めるための楕円関数の等角写像を示す説明図であり、図16(a)はZ面を示す説明図、図16(b)はW面を示す説明図。It is explanatory drawing which shows the equiangular mapping of the elliptic function for calculating | requiring the relationship between the equivalent volume resistivity, the volume resistivity of a stranded metal, and the volume resistivity of a resistance film, FIG.16 (a) is explanatory drawing which shows Z surface FIG.16 (b) is explanatory drawing which shows a W surface. 隣接する素線の接触長の中心角が5゜の場合の絶縁被覆撚線と抵抗皮膜撚線における皮膜抵抗率の撚線金属線抵抗率に対する比率を示すグラフ。The graph which shows the ratio with respect to the stranded metal wire resistivity of the film | membrane resistivity in the insulation coating twisted wire and resistance film twisted wire in case the center angle of the contact length of an adjacent strand is 5 degrees. 隣接する素線の接触長の中心角が10゜の場合の絶縁被覆撚線と抵抗皮膜撚線における皮膜抵抗率の撚線金属線抵抗率に対する比率を示すグラフ。The graph which shows the ratio with respect to the stranded metal wire resistivity of the film | membrane resistivity in the insulation coating twisted wire and resistance film twisted wire in case the center angle of the contact length of an adjacent strand is 10 degrees. 隣接する素線の接触長の中心角が15゜の場合の絶縁被覆撚線と抵抗皮膜撚線における皮膜抵抗率の撚線金属線抵抗率に対する比率を示すグラフ。The graph which shows the ratio with respect to the strand metal wire resistivity of the film | membrane resistivity in the insulation coating twisted wire and resistance film twisted wire in case the center angle of the contact length of an adjacent strand is 15 degrees. 従来の超電導ケーブルの一例構造を示す部分断面略図。The partial cross-section schematic which shows an example structure of the conventional superconducting cable.

以下、本発明に係る超電導ケーブルの第1実施形態について図面に基づいて説明するが、本発明は以下の実施形態に制限されるものではない。
図1に示すように本実施形態の超電導ケーブルAは、中心部に配置された撚線構造のフォーマ1と、その外周側に順次被覆された高温超電導層(高温超電導線材)2と電気絶縁層3と超電導シールド層4と銅などの良導電性金属材料からなるシールド層5とを備えて構成されている。
本実施形態の超電導ケーブルAにおいて、フォーマ1は、銅などの良導電性金属材料からなる金属線6に対し抵抗皮膜として例えば酸化第二銅からなる抵抗皮膜7で被覆した構造の素線8を複数本、所定のピッチで撚線化した構造とされている。
本実施形態において適用される抵抗皮膜7は、体積抵抗率(ρf)が10Ω・cm以下、例えば10Ω・cm以上、10Ω・cm以下の半導電領域の範囲とされる。
ここで例示する酸化第二銅は、黒色を呈するので、エナメル被覆などのように銅色に近い色とは異なり、抵抗皮膜7が存在するか否かを識別しやすい特徴がある。
前記抵抗皮膜7が金属線6の酸化皮膜であるならば、エナメル被覆がその下地の金属との接着構造であるのに対し、抵抗皮膜7と金属線6との接合は金属結合となり強固で剥離し難く、素線8の曲げや膨張収縮時の機械的強度に優れる利点を有する。また、酸化第二銅は融点1148℃であり、酸化第二銅の抵抗皮膜7は耐熱性に優れており、フォーマ1の同径接続は溶接接続方式をそのまま適用できる。また、素線8の外径は0.5mm〜3.0mmの範囲を選択できる。
Hereinafter, although a 1st embodiment of a superconducting cable concerning the present invention is described based on a drawing, the present invention is not restricted to the following embodiments.
As shown in FIG. 1, a superconducting cable A according to this embodiment includes a former 1 having a twisted wire structure disposed in the center, a high-temperature superconducting layer (high-temperature superconducting wire) 2 and an electrical insulating layer sequentially coated on the outer peripheral side thereof. 3, a superconducting shield layer 4, and a shield layer 5 made of a highly conductive metal material such as copper.
In the superconducting cable A of the present embodiment, the former 1 has a wire 8 having a structure in which a metal wire 6 made of a highly conductive metal material such as copper is covered with a resistance film 7 made of, for example, cupric oxide as a resistance film. A structure in which a plurality of wires are stranded at a predetermined pitch.
The resistance film 7 applied in the present embodiment has a volume resistivity (ρf) of 10 9 Ω · cm or less, for example, 10 4 Ω · cm or more and a range of a semiconductive region of 10 6 Ω · cm or less.
Since the cupric oxide exemplified here is black, it has a characteristic that it is easy to identify whether or not the resistance film 7 exists unlike a color close to copper color such as enamel coating.
If the resistance film 7 is an oxide film of the metal wire 6, the enamel coating is an adhesive structure with the underlying metal, whereas the connection between the resistance film 7 and the metal wire 6 becomes a metal bond and is strong and peeled off. This is advantageous in that it is excellent in mechanical strength during bending and expansion / contraction of the wire 8. Moreover, cupric oxide has a melting point of 1148 ° C., the resistance film 7 of cupric oxide is excellent in heat resistance, and the welding connection method can be applied as it is for the same diameter connection of the former 1. Moreover, the outer diameter of the strand 8 can select the range of 0.5 mm-3.0 mm.

酸化第二銅の抵抗皮膜7の膜厚は、0.5μm以上、1.5μm以下の範囲とする。
抵抗皮膜7の抵抗値が半導電領域であるので、フォーマ1とその上の高温超電導層2の間にそのまま適用できる効果があり、超電導ケーブルAのフォーマ1を構成する抵抗皮膜7として望ましい。以上説明の抵抗皮膜7は絶縁皮膜ではなく、抵抗値が半導電領域の皮膜であり、かつ、薄いので、以下の特長を有する。
例えば、フォーマ1のスリーブ圧縮接続時に抵抗皮膜7を除去すること無くそのままスリーブ接続を圧縮接続できる。また、撚線構造のフォーマの抵抗皮膜7を除去することを想定した場合、フォーマの素線間を大きく広げてサンドブラスト等の手法で抵抗皮膜7を除去する必要がある。この際、口出し端部の近傍に存在する高温超電導層2を構成する高温超電導線材に機械的損傷を与えるおそれがある。高温超電導層2を構成する高温超電導線材は機械的歪に非常に敏感である。更に、接続時のフォーマ1の口出し長が長くなる欠点がある。従って、抵抗皮膜7をそのままにしてスリーブ圧着ができるならば、これらの懸念を解消できる。なお、抵抗皮膜7の体積抵抗率が10Ω・cm以下、例えば10Ω・cm以上、10Ω・cm以下の半導電領域の範囲とされているので、超電導ケーブルAと他の常電導部品との接続の面には支障がない。
The film thickness of the cupric oxide resistance film 7 is in the range of 0.5 μm to 1.5 μm.
Since the resistance value of the resistance film 7 is a semiconductive region, there is an effect that can be applied as it is between the former 1 and the high-temperature superconducting layer 2 thereon, which is desirable as the resistance film 7 constituting the former 1 of the superconducting cable A. The resistance film 7 described above is not an insulating film, but a resistance value is a film in a semiconductive region and is thin, and has the following features.
For example, the sleeve connection can be compressed and connected without removing the resistance film 7 when the former 1 is compressed. Further, when it is assumed that the resistance film 7 of the former having a stranded wire structure is to be removed, it is necessary to remove the resistance film 7 by a technique such as sandblasting with a large gap between the strands of the former. At this time, the high-temperature superconducting wire constituting the high-temperature superconducting layer 2 existing in the vicinity of the lead end may be mechanically damaged. The high-temperature superconducting wire constituting the high-temperature superconducting layer 2 is very sensitive to mechanical strain. Furthermore, there is a drawback that the length of the former 1 at the time of connection becomes longer. Therefore, if the sleeve can be pressure-bonded with the resistance film 7 as it is, these concerns can be eliminated. Since the volume resistivity of the resistance film 7 is 10 9 Ω · cm or less, for example, 10 4 Ω · cm or more and 10 6 Ω · cm or less, it is in the range of the semiconductive region. There is no problem in terms of connection with the conductive parts.

前記フォーマ1の外周に螺旋状に巻回されているテープ状の高温超電導線材10により酸化物超電導層2が形成されている。
本実施形態では、このテープ状の高温超電導線材10の一つの例として、図2に示す構造を適用することができる。図2に示す高温超電導線材10は、RE123系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)を適用した線材構造の一例であり、本実施形態ではこの例を元に以下に説明するが、高温超電導線材10の構造自体は後述する他の系の高温超電導体を用いた構造であっても良いのは勿論である。
図2に示す高温超電導線材10は、一例として、基材11の上に下地層12、配向性中間層15、キャップ層16、酸化物超電導層17、第一の安定化層18が積層され、それらの外周を絶縁被覆層20で被覆した構造とされている。なお、図2に示す高温超電導線材10は厚みを誇張して示しているが、一般的なRE123系の高温超電導線材10の縦横比として、幅10mm程度、厚さ0.5mm程度であるので、フォーマ1の周囲に必要な巻数で巻き付けることで酸化物超電導層2を形成できる。
An oxide superconducting layer 2 is formed by a tape-like high-temperature superconducting wire 10 wound spirally around the outer periphery of the former 1.
In the present embodiment, the structure shown in FIG. 2 can be applied as one example of the tape-shaped high-temperature superconducting wire 10. The high-temperature superconducting wire 10 shown in FIG. 2 is an example of a wire structure to which an RE123-based oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element including Y) is applied. However, the structure of the high-temperature superconducting wire 10 itself may of course be a structure using another type of high-temperature superconductor described later.
In the high-temperature superconducting wire 10 shown in FIG. 2, as an example, a base layer 12, an orientation intermediate layer 15, a cap layer 16, an oxide superconducting layer 17, and a first stabilization layer 18 are laminated on a base material 11. The outer periphery is covered with the insulating coating layer 20. Although the high-temperature superconducting wire 10 shown in FIG. 2 is exaggerated in thickness, the aspect ratio of a general RE123-based high-temperature superconducting wire 10 is about 10 mm in width and about 0.5 mm in thickness. The oxide superconducting layer 2 can be formed by winding the former 1 around the former 1 with a necessary number of turns.

本実施形態の高温超電導線材10に適用できる基材11は、ニッケル合金からなることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材11の厚さは、通常は、10〜500μmである。
下地層12は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。その厚さは例えば10〜200nmである。本発明において、基材11と下地層12との間に拡散防止層が介在された構造としても良い。その厚さは例えば10〜400nmである。基材11と下地層12との間に拡散防止層を介在させる場合の例としては、拡散防止層としてAl、下地層12としてYを例示できる。
The substrate 11 applicable to the high temperature superconducting wire 10 of the present embodiment is preferably made of a nickel alloy. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the base material 11 is usually 10 to 500 μm.
The underlayer 12 has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. The thickness is, for example, 10 to 200 nm. In the present invention, a structure in which a diffusion preventing layer is interposed between the base material 11 and the base layer 12 may be adopted. The thickness is, for example, 10 to 400 nm. As an example in the case of interposing a diffusion preventing layer between the base material 11 and the underlayer 12, Al 2 O 3 can be exemplified as the diffusion preventing layer, and Y 2 O 3 can be exemplified as the underlayer 12.

配向性中間層15は2軸配向する物質から選択される。配向性中間層15の好ましい材質として具体的には、GdZr、MgO等の金属酸化物を例示できる。
この配向性中間層15をイオンビームアシスト蒸着法(IBAD法)により良好な結晶配向性(例えば結晶配向度15゜以下)で成膜するならば、その上に形成するキャップ層16の結晶配向性を良好な値(例えば結晶配向度5゜前後)とすることができ、これによりキャップ層16の上に成膜する酸化物超電導層17の結晶配向性を良好なものとして優れた超電導特性を発揮できるようにすることができる。
The orientation intermediate layer 15 is selected from materials that are biaxially oriented. Specific examples of preferred materials for the orientation intermediate layer 15 include metal oxides such as Gd 2 Zr 2 O 7 and MgO.
If the orientation intermediate layer 15 is formed with a good crystal orientation (for example, a crystal orientation degree of 15 ° or less) by ion beam assisted deposition (IBAD method), the crystal orientation of the cap layer 16 formed thereon. Can be set to a good value (for example, the degree of crystal orientation is about 5 °), and the superconducting characteristics can be exhibited with good crystal orientation of the oxide superconducting layer 17 formed on the cap layer 16. Can be able to.

配向性中間層15の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.005〜2μmの範囲とすることができる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層17やキャップ層16の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、下地の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層15は、IBAD法における結晶配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできる。 The thickness of the orientation intermediate layer 15 may be appropriately adjusted according to the purpose, but can usually be in the range of 0.005 to 2 μm. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 17 and the cap layer 16 is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to an underlying vapor deposition surface during vapor deposition. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 15 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) reduces the value of ΔΦ (FWHM: full width at half maximum), which is an index representing the degree of crystal orientation in the IBAD method. it can.

キャップ層16は、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層16は、前記金属酸化物層からなる配向性中間層15よりも高い面内配向度が得られる。キャップ層16の一例としてCeOを選択できる。一例として、PLD法によりキャップ層16としてCeO層を成膜するには、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
キャップ層16の膜厚は、50nm以上であればよいが、500〜1000nmとすることが好ましい。
The cap layer 16 is preferably formed through a process in which crystal grains are selectively grown in the in-plane direction. Such a cap layer 16 has a higher in-plane orientation degree than the orientation intermediate layer 15 made of the metal oxide layer. As an example of the cap layer 16, CeO 2 can be selected. As an example, the formation of the CeO 2 layer as the cap layer 16 by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
Although the film thickness of the cap layer 16 should just be 50 nm or more, it is preferable to set it as 500-1000 nm.

酸化物超電導層17は公知のもので良く、具体的には、REBaCu7−x(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層17として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示できる。酸化物超電導層17の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。なお、酸化物超電導層17については後述する他の組成系の高温超電導層を用いても良い。 The oxide superconducting layer 17 may be a known material, and specifically, a material of REBa 2 Cu 3 O 7-x (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd). Can be illustrated. Examples of the oxide superconducting layer 17 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ). The oxide superconducting layer 17 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness. The oxide superconducting layer 17 may be a high-temperature superconducting layer of another composition system described later.

キャップ層16上に酸化物超電導層17を形成すると、酸化物超電導層17を構成する結晶粒の1つ1つにおいては、基材11の厚さ方向に電気を流しにくいc軸が配向し、基材11の長さ方向にa軸どうしあるいはb軸どうしが配向する。従って得られた酸化物超電導層17は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、基材11の長さ方向に電気を流し易くなり、十分に高い臨界電流密度が得られる。   When the oxide superconducting layer 17 is formed on the cap layer 16, in each of the crystal grains constituting the oxide superconducting layer 17, the c-axis that hardly allows electricity to flow in the thickness direction of the base material 11 is oriented, The a-axes or the b-axes are oriented in the length direction of the substrate 11. Therefore, the obtained oxide superconducting layer 17 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary. High critical current density can be obtained.

酸化物超電導層17の上に積層されている第一の安定化層18はAgあるいは貴金属などの良電導性かつ酸化物超電導層17と接触抵抗が低くなじみの良い金属材料からなる層として形成される。Agの安定化層18の厚さを1〜30μm程度に形成できる。第一の安定化層17の上には必要に応じて第二の安定化層19を図3に示すように設けてもよい。図3は図2に示す酸化物超電導線材に対し、第二の安定化層19を設けた場合の積層構造の一例を示す図である。
この第二の安定化層19は、良導電性の金属材料からなることが好ましく、酸化物超電導層17が超電導状態から常電導状態に遷移しようとした時に、第一の安定化層18とともに、酸化物超電導層17の電流が転流するバイパスとして機能する。第二の安定化層19は、銅、黄銅(Cu−Zn合金)等の銅合金等の比較的安価なものを用いるのが好ましい。第二の安定化層19の厚さは10〜300μmとすることができる。
The first stabilizing layer 18 laminated on the oxide superconducting layer 17 is formed as a layer made of a metal material having good conductivity, such as Ag or a noble metal, having a low contact resistance with the oxide superconducting layer 17 and a familiar property. The The thickness of the Ag stabilizing layer 18 can be formed to about 1 to 30 μm. If necessary, a second stabilization layer 19 may be provided on the first stabilization layer 17 as shown in FIG. FIG. 3 is a diagram showing an example of a laminated structure in the case where the second stabilization layer 19 is provided for the oxide superconducting wire shown in FIG.
The second stabilization layer 19 is preferably made of a highly conductive metal material, and when the oxide superconducting layer 17 is about to transition from the superconducting state to the normal conducting state, together with the first stabilizing layer 18, It functions as a bypass through which the current of the oxide superconducting layer 17 commutates. As the second stabilization layer 19, it is preferable to use a relatively inexpensive material such as a copper alloy such as copper or brass (Cu—Zn alloy). The thickness of the second stabilization layer 19 can be 10 to 300 μm.

以上構成のテープ状の高温超電導線材10の外周面は、一例として、エポキシ系樹脂などのプレプリグ層あるいはポリイミドテープやFRP(繊維強化プラスチック)テープなどからなる絶縁被覆層20で覆われている。   As an example, the outer peripheral surface of the tape-shaped high-temperature superconducting wire 10 having the above-described configuration is covered with an insulating coating layer 20 made of a prepreg layer such as an epoxy resin or a polyimide tape or FRP (fiber reinforced plastic) tape.

ところで、これまで説明した構造においては、基材11の上方に配向性中間層15を介しREBaCu7−xなる組成系の酸化物超電導層17を設けた構造の高温超電導線材10を用いた例について説明したが、本発明をビスマス系超電導線材(BiSrCaCu8+δ:Bi2212、BiSrCaCu10+δ:Bi2223)について適用できるのは勿論である。
ビスマス系超電導線材の構造はAgなどのテープ状の安定化材からなるシースの内部にビスマス系酸化物超電導層を内包した酸化物超電導線材が主体であるので、このテープ状のビスマス系の酸化物超電導線材を先の高温超電導線材10の代わりに用いることでビスマス系の酸化物超電導線材を用いた高温超電導ケーブルに本発明を適用することができる。
また、本発明で用いる高温超電導線材に適用される超電導層は、RE123系やビスマス系に限らず、他の高温超電導材料からなるものでも良い。例えば、タリウム系(TlBaCaCu)酸化物超電導体あるいはMgB超電導体などを層構造として安定化層や基材に積層した構造であっても良い。
However, so far in the structure described, the REBa 2 Cu 3 O 7-x having a composition based oxide high-temperature superconducting wire 10 of the provided structure superconducting layer 17 of the via orientation intermediate layer 15 above the substrate 11 Although the example used was explained, it is needless to say that the present invention can be applied to a bismuth-based superconducting wire (Bi 2 Sr 2 CaCu 2 O 8 + δ : Bi2212, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ : Bi2223).
The structure of the bismuth-based superconducting wire is mainly an oxide superconducting wire in which a bismuth-based oxide superconducting layer is encapsulated in a sheath made of a tape-shaped stabilizing material such as Ag. By using a superconducting wire instead of the high temperature superconducting wire 10, the present invention can be applied to a high temperature superconducting cable using a bismuth-based oxide superconducting wire.
Further, the superconducting layer applied to the high-temperature superconducting wire used in the present invention is not limited to RE123 or bismuth, but may be made of other high-temperature superconducting materials. For example, a structure in which a thallium (Tl 2 Ba 2 Ca 2 Cu 3 O x ) oxide superconductor or MgB 2 superconductor is laminated on a stabilization layer or a base material as a layer structure may be used.

次に本実施形態に係る抵抗皮膜7を備えた素線8の集合体であるフォーマ1の構造について検討する。
図4はフォーマ20の横断面モデル図であり、このフォーマ20においては1本の素線21を中心にその周囲に6本の素線21を等間隔で配置し、更にそれらの周囲に12本の素線21を等間隔で配置し、更にそれらの周囲に18本の素線21を配置した例として示している。図4に示すフォーマ20においては、フォーマ20を構成する同一層位置にある素線21の隣接する素線21どうしの接触角度ψを図5のように仮定することができ、以下にフォーマの構造を種々考慮しつつ説明する。
Next, the structure of the former 1 that is an assembly of the wires 8 provided with the resistance film 7 according to the present embodiment will be examined.
FIG. 4 is a cross-sectional model diagram of the former 20. In this former 20, six strands 21 are arranged at equal intervals around a single strand 21, and 12 strands are arranged around them. In this example, 18 strands 21 are arranged at equal intervals and 18 strands 21 are arranged around them. In the former 20 shown in FIG. 4, the contact angle ψ k between the adjacent strands 21 of the strands 21 in the same layer position constituting the former 20 can be assumed as shown in FIG. The description will be given while considering various structures.

図6に示すように撚線構造のフォーマ22を想定した場合フォーマ22には軸方向(長さ方向)磁界がかかることになる。この磁界は、その上に螺旋状に巻き付けた超電導線材と超電導シールド層に流れる電流により発生する。この磁界はフォーマ22の半径方向に均一である(コイルの内部磁界と同様)。まず、図7に示すようにフォーマ23が円柱導体と仮定すると、渦電流は図7に示すように導体断面円周方向に流れる。また、図8に示すようにフォーマ24が個々に絶縁被覆された素線25の集合体であると仮定すると、渦電流は各素線25の横断面円周方向に流れる。なお、図7以降の各図に示す渦電流の流れを示す矢印は、説明の簡易化のために示した電流線のイメージである。
これらに対し、絶縁被覆された素線ではなく、図9に示すように抵抗皮膜26により抵抗被覆された素線27の集合体であるフォーマ28の場合、中心の素線27に生じる渦電流とその他の各層の円周方向より線間を流れる電流とに分けて考えられる。
As shown in FIG. 6, when a former 22 having a stranded wire structure is assumed, an axial (length direction) magnetic field is applied to the former 22. This magnetic field is generated by a superconducting wire wound spirally thereon and a current flowing in the superconducting shield layer. This magnetic field is uniform in the radial direction of the former 22 (similar to the internal magnetic field of the coil). First, assuming that the former 23 is a cylindrical conductor as shown in FIG. 7, the eddy current flows in the circumferential direction of the conductor cross section as shown in FIG. Assuming that the former 24 is an aggregate of strands 25 that are individually covered with insulation as shown in FIG. 8, eddy currents flow in the circumferential direction of each strand 25. In addition, the arrow which shows the flow of the eddy current shown in each figure after FIG. 7 is the image of the current line shown for simplification of description.
On the other hand, in the case of the former 28 which is not an insulation-coated wire but an assembly of the wires 27 resistance-coated with the resistance film 26 as shown in FIG. It can be divided into the current flowing between the lines from the circumferential direction of the other layers.

「1」円柱導体の場合の渦電流損の計算
まず、基本となる円柱導体の渦電流損を計算する。図10に円柱導体からなるフォーマ30の場合を考える。図10のフォーマ30において単位長あたりの損失を考える。
図10において斜線部30aの円環領域の円周方向の抵抗dRは以下の(1)式で示される。
[1] Calculation of Eddy Current Loss in Case of Cylindrical Conductor First, the eddy current loss of a basic cylindrical conductor is calculated. Consider the case of a former 30 made of a cylindrical conductor in FIG. Consider the loss per unit length in the former 30 of FIG.
In FIG. 10, the resistance dR in the circumferential direction of the annular region of the hatched portion 30a is expressed by the following equation (1).

Figure 2013105639
Figure 2013105639

円環領域のジュール損dWは以下の(2)式となる。   The Joule loss dW in the annular region is expressed by the following equation (2).

Figure 2013105639
Figure 2013105639

円環領域に鎖交する磁束Φは以下の(3)式となる。   The magnetic flux Φ interlinking with the annular region is expressed by the following equation (3).

Figure 2013105639
Figure 2013105639

軸方向磁界は以下の(4)式で示される。(4)式において、Hejωtは大きさHの交番磁界、μは真空の透磁率を示す。 The axial magnetic field is expressed by the following equation (4). In the equation (4), He jωt represents an alternating magnetic field having a magnitude H, and μ 0 represents a magnetic permeability in a vacuum.

Figure 2013105639
Figure 2013105639

よって、両者の微分の絶対値、|dΦ/dt|は以下の(5)式となる。(5)式において、rは円環領域30aの内径、ωは電場の振動数、μは真空の透磁率を示し、Hは交番磁界の大きさを示す。 Therefore, the absolute value of the differentiation between them, | dΦ / dt |, is expressed by the following equation (5). In equation (5), r is the inner diameter of the annular region 30a, ω is the frequency of the electric field, μ 0 is the vacuum permeability, and H is the magnitude of the alternating magnetic field.

Figure 2013105639
Figure 2013105639

(5)式から上述の(2)式は以下の(6)式となり、この(6)式から(7)式の関係を導出できる。Dは円柱導体としてのフォーマ30の直径を示す。   From the equation (5), the above equation (2) becomes the following equation (6), and the relationship of the equation (7) can be derived from the equation (6). D indicates the diameter of the former 30 as a cylindrical conductor.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

「2」絶縁被覆撚線からなるフォーマの渦電流損計算
図8にモデル構造を示す絶縁被覆した素線25からなるフォーマ24の場合、絶縁被覆撚線を構成する素線25の1本当たりの渦電流損は、(7)式で直径D→d(素線1本の直径)に置き換えれば良い。撚線の総本数をn本とすれば、総渦電流損Wは、以下の(8)式から求められる。また、(9)式の関係がある。
“2” Calculation of Eddy Current Loss of Former Formed with Insulated Coated Strand In the case of the former 24 composed of the insulated coated strand 25 whose model structure is shown in FIG. The eddy current loss may be replaced by the diameter D → d (the diameter of one strand) in the equation (7). If the total number of stranded wire and the n, the total eddy current loss W 1 is determined from the following equation (8). Further, there is a relationship of the expression (9).

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

「3」抵抗皮膜撚線構造のフォーマの渦電流損
図11に示すように抵抗皮膜を備えた素線33が撚線構造とされたフォーマ35の渦電流損については、中心の素線33と各層を構成する素線33のフォーマ円周方向の素線33間を流れる電流とに分けて考える。
フォーマ35の中心に配置されている素線33の1本(k=1層とする)の素線内渦電流損wは前述の(8)式、(9)式から、以下の(10)式の関係となる。
“3” Eddy Current Loss of Former with Resistance Film Twisted Wire Structure As shown in FIG. Consider the current flowing between the wires 33 in the former circumferential direction of the wires 33 constituting each layer.
One of the strands 33 (k = 1 layer) arranged in the center of the former 35 is an eddy current loss w 1 in the strand, from the above-mentioned formulas (8) and (9), the following (10 ).

Figure 2013105639
Figure 2013105639

図11に示すフォーマ35における各層の円周方向電流は、電流通路が隣接撚線(隣接素線)の接触部で制限され、かつ、抵抗皮膜による抵抗増加があるので、先の(7)式において、円柱導体の体積抵抗率ρcに代わって等価体積抵抗率ρekを考えると、各層(第k層)の渦電流損wは以下の(11)式で示される。 The current in the circumferential direction of each layer in the former 35 shown in FIG. 11 is limited by the contact portion of the adjacent stranded wire (adjacent strand), and there is an increase in resistance due to the resistance film. In this case, when the equivalent volume resistivity ρ ek is considered instead of the volume resistivity ρc of the cylindrical conductor, the eddy current loss w k of each layer (kth layer) is expressed by the following equation (11).

Figure 2013105639
Figure 2013105639

(10)式と(11)式より、フォーマ35全体の総渦電流損失Wは、以下の(12)式で示される。(12)式において、素線33の径が各層全てdψのとき、即ち、
(13)式、(14)式、(15)式の時、以下の(16)式が成立する。
From (10) and (11), the total eddy current loss W 2 of the entire former 35 is expressed by the following equation (12). In the equation (12), when the diameter of the strand 33 is dψ in all layers, that is,
The following equation (16) holds when the equations (13), (14), and (15) are satisfied.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

次に、上述の(12)式、(16)式において最も重要なパラメータである各層の等価体積抵抗ρekを求める。
図12(a)は図4、図5と同様に撚線を構成する素線21間の接触角度を想定するための図であり、この図を拡大して抵抗皮膜21aを描いて隣接する素線21間の電流の流れを模式化したものが図12(b)であり、更に左右に隣接する素線21とその間の接触領域に介在する抵抗皮膜21a、21a間の抵抗の関係を図12(c)に示す。図12は素線21の集合体であるフォーマ20において、中心の素線21を除いてその外周に存在する周回りの素線21について接触抵抗等を想定する場合の模式図に相当する。
また、図13に図12(b)と同様にフォーマ20において中心の素線21を除いてその周回りに存在する素線21間の等価抵抗Rの考え方を示す。
図12に示す関係において、(17)式、(18)式、(19)式、(20)式が成立する。
Next, the equivalent volume resistance ρ ek of each layer, which is the most important parameter in the above equations (12) and (16), is obtained.
FIG. 12 (a) is a view for assuming a contact angle between the strands 21 constituting the stranded wire as in FIG. 4 and FIG. FIG. 12B schematically shows the current flow between the wires 21. FIG. 12 shows the relationship between the resistance wires 21a and 21a interposed between the adjacent wires 21 on the left and right sides and the contact region therebetween. Shown in (c). FIG. 12 corresponds to a schematic diagram in the case of assuming the contact resistance and the like for the surrounding strands 21 existing on the outer periphery of the former 20 which is an aggregate of the strands 21 except for the central strand 21.
Also shows the concept of the equivalent resistance R e between the wires 21 present except the center of the strand 21 in FIG. 12 (b) similarly to the former 20 in the circumferential around 13.
In the relationship shown in FIG. 12, Equations (17), (18), (19), and (20) are established.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

ただし、各式において、R:抵抗皮膜21aを備えた素線21の単位長当たりの等価抵抗、R:素線21を構成する金属の単位長当たりの集中抵抗、R:素線21同士の接触部抵抗皮膜の単位長当たりの抵抗、R:抵抗皮膜同士の接触抵抗(この計算では略す)、ρ:素線21を構成する金属の体積抵抗率、ρ:抵抗皮膜の体積抵抗率、ρ:抵抗皮膜を備えた素線21の等価体積抵抗率、d:素線21の直径、t:抵抗皮膜の厚さ、l:素線の接触長(円周方向)(d/2×θπ/180)、θ:接触長の中心角、ψ:隣接素線の接触角度とする。 However, in each formula, R e : equivalent resistance per unit length of the strand 21 provided with the resistance film 21 a, R c : concentrated resistance per unit length of the metal constituting the strand 21, R f : strand 21 Resistance per unit length of the resistance film between the contact parts, R s : contact resistance between the resistance films (omitted in this calculation), ρ c : volume resistivity of the metal constituting the strand 21, ρ f : resistance film Volume resistivity, ρ e : Equivalent volume resistivity of the wire 21 provided with a resistance film, d: Diameter of the wire 21, t f : Thickness of the resistance film, l f : Contact length of the wire (circumferential direction) ) (D / 2 × θπ / 180), θ: center angle of contact length, ψ k : contact angle of adjacent strands.

次に、等価体積抵抗率ρと素線を構成する金属の体積抵抗率ρ、抵抗皮膜の体積抵抗率ρの関係式を求める。
抵抗皮膜同士の接触抵抗Rは一律には決められないこと、および、R=0とした場合の方が渦電流損を真値より大きく見積もり、設計上は安全側であるから、この計算では無視した。素線21を構成する金属の単位長当たりの集中抵抗Rについては、以下のように楕円関数(第1種完全楕円積分)を用いた等角写像により求めることができる。
これは、図14(a)に示すモデルの下で理論的に正確に導出される。
その導出過程を図14(a)〜(b)、図15(a)〜(b)、図16(a)〜(b)に示す。
図14(a)、(b)は正規化した電極と計算上の原座標設定を示し、図15(a)はw−面(正規化した計算上の原座標)を示し、図15(b)はz面を示す。図14(a)は図14(b)に示すように隣接した複数の素線21において、そのうちの1本の素線21を拡大した断面図に相当し、図14(a)の左右下側に他の素線21との接触部21bを想定した場合、これら接触部21bを通して流れると想定される電流線21cを複数描いた図である。
図15(a)〜(b)は上半平面への写像、写像関数として、z={(1−w)/(1+w)}i、x=tan(θ/2)を採用する。これらの写像関数に図15(a)の各点の座標を代入すると、図15(b)の関係となる。この関係は電磁気学における等角写像による電界解析から導出できる一般式として知られている。
Next, a relational expression between the equivalent volume resistivity ρ e , the volume resistivity ρ c of the metal constituting the element wire, and the volume resistivity ρ f of the resistance film is obtained.
Since the contact resistance R s between the resistance films cannot be uniformly determined, and when R s = 0, the eddy current loss is estimated to be larger than the true value, and this is a safe side in design. I ignored it. The constriction resistance R c per unit length of the metal constituting the wire 21 can be obtained by conformal mapping with elliptic function (complete elliptic integral of the first kind) as follows.
This is theoretically accurately derived under the model shown in FIG.
The derivation process is shown in FIGS. 14 (a) to 14 (b), FIGS. 15 (a) to 15 (b), and FIGS. 16 (a) to 16 (b).
FIGS. 14A and 14B show normalized electrodes and calculation original coordinate settings, FIG. 15A shows the w-plane (normalized calculation original coordinates), and FIG. 15B shows the z plane. Indicates. 14A corresponds to an enlarged cross-sectional view of one of the adjacent strands 21 as shown in FIG. 14B, and the lower left and right sides of FIG. 14A. When the contact part 21b with other strands 21 is assumed, it is the figure which drew a plurality of current lines 21c assumed to flow through these contact parts 21b.
15A to 15B employ z = {(1−w) / (1 + w)} i and x = tan (θ / 2) as the mapping to the upper half plane and the mapping function. If the coordinates of each point in FIG. 15A are substituted into these mapping functions, the relationship shown in FIG. 15B is obtained. This relationship is known as a general formula that can be derived from electric field analysis by conformal mapping in electromagnetics.

図15(b)〜図16(a)は写像関数は1次関数として、Z=(αz+β)/(γz+δ)を用いた。ただし、α、β、γ、δは定数である。
図16(a)はZ面を示し、図16(b)はW面を示す。 図16(a)において、(21)式の関係が成立する。上述の写像関数に図15(b)の座標と図16(a)の座標を代入して、図16(a)に示すA点の座標1/k を求めると(21)式となる。(21)式において、a、p、q、γは図15(b)のA、P、Q、R点の座標を示す。
In FIGS. 15B to 16A, Z = (αz + β) / (γz + δ) is used as a linear function as the mapping function. However, α, β, γ, and δ are constants.
FIG. 16A shows the Z plane, and FIG. 16B shows the W plane. In FIG. 16A, the relationship of equation (21) is established. When the coordinates of FIG. 15B and the coordinates of FIG. 16A are substituted into the above mapping function, the coordinates 1 / k 1 2 of point A shown in FIG. . In the equation (21), a, p, q, and γ indicate the coordinates of points A, P, Q, and R in FIG.

Figure 2013105639
Figure 2013105639

図16(a)〜図16(b)に示すように、(22)式と(23)式が成立する。
この関係において、写像関数:Legendre-Jacobiの第一種楕円積分として、(24)式を利用できる。なお、図14〜図16に示す関係の導出過程は、等角写像による二次元抵抗値計算の基本過程に準拠したものとなる。なお、等角写像による二次元抵抗値計算の基本過程は、一例として、電気学会論文誌B(2008年11月号:電力・エネルギー部門誌vol.128,No.11,2008:電子ジャーナル版論文誌公開中、http://www.2.iee.or.jp/ver2/honbu/11-magazine/index050.html参照)に、「楕円関数の電力分野への応用の現状と展望」と題してP1296の図4に示されている等角写像による二次元抵抗値計算の基本過程を参照できる。
As shown in FIGS. 16A to 16B, the formulas (22) and (23) are established.
In this relation, the equation (24) can be used as the first-type elliptic integral of the mapping function: Legendre-Jacobi. The derivation process of the relationships shown in FIGS. 14 to 16 is based on the basic process of calculating the two-dimensional resistance value by conformal mapping. As an example, the basic process of calculating the two-dimensional resistance value by conformal mapping is, for example, IEEJ Transactions B (November 2008 issue: Journal of Electric Power and Energy Vol.128, No.11, 2008: Electronic Journal Paper (Http://www.2.iee.or.jp/ver2/honbu/11-magazine/index050.html), entitled “Current Status and Prospects of Application of Elliptic Functions to the Power Field” Reference can be made to the basic process of calculating a two-dimensional resistance value by conformal mapping shown in FIG. 4 of P1296.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

第一種完全楕円積分は以下の(25)式、(26)式で示され、これらの式において、k :母数、k’:補母数として(27)式が成立する。なお、(22)式において、Rcは図16(b)の長方形の2辺の長さの比を示し、(26)式は補母数k’に対する値、(27)式においてk:母数、k’は補母数を示す。 The first type complete elliptic integral is represented by the following formulas (25) and (26). In these formulas, formula (27) is established as k 1 2 : parameter and k 1 ′: complement. In the equation (22), Rc represents the ratio of the lengths of the two sides of the rectangle in FIG. 16B, the equation (26) is a value for the complement k 1 ′, and the k 1 in the equation (27): The parameter, k 1 ′, indicates a complement number.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

先の(18)式及び(19)式と(23)式より、以下の(28)式と(29)式とが成立する。これらの式において、(30)式と(31)式とする。   From the above equations (18), (19), and (23), the following equations (28) and (29) are established. In these formulas, formulas (30) and (31) are used.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

前述の(10)式と(16)式と(28)式より、導出結果をまとめると以下のように(32)式が成立する。(32)式において、K(k1k)、K’(k1k)は第一種完全楕円積分であり、以下の(33)式と(34)式の関係が成立する。 From the above formulas (10), (16), and (28), the derivation results are summarized as follows, and formula (32) is established as follows. In the equation (32), K (k 1k ) and K ′ (k 1k ) are first-type complete elliptic integrals, and the relationship between the following equations (33) and (34) is established.

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

また、k、k’は、それぞれ母数、補母数であるので、以下の(35)式と(36)式と(37)式と(38)式の関係がある。 Since k 1 and k ′ 1 are a parameter and a complement, respectively, there is a relationship of the following expressions (35), (36), (37), and (38).

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

Figure 2013105639
Figure 2013105639

ただし、(35)式〜(38)式において、W>Wの範囲で意味を持つ。
ここで、皮膜を施さない撚線からなるフォーマの場合、渦電流損(W:裸素線の場合)における絶縁皮膜を施した場合の渦電流損(W:素線絶縁)に対する比率(W/W)は、先の(32)式において、t=0あるいはρ=0とおいて、以下の(39)式となる。
However, in the formulas (35) to (38), it is significant in the range of W 2 > W 1 .
Here, in the case of a former made of a stranded wire without a coating, the ratio of the eddy current loss (W 0 : bare wire) to the eddy current loss (W 1 : wire insulation) when an insulating coating is applied ( W 0 / W 1 ) is given by the following equation (39) when t f = 0 or ρ f = 0 in the previous equation (32).

Figure 2013105639
Figure 2013105639

ここで、以下の絶縁皮膜(エナメル絶縁皮膜)を施した撚線構造のフォーマに対して(32)式から(W/W)の値を計算する。
フォーマの外径:D=19mm、撚線を構成する1本の素線の直径:d=2.8mm、撚線本数(素線本数):37本、n=1本、n=6本、n=12本、n=18本とする。また、t:抵抗皮膜の厚さ(1μm、2μm、5μm)、接触長の中心角(5゜、10゜、15゜)とする。正味の導体断面積は227mmであり、占積率は約80%となっている。
第k層 線径d(mm) 撚り本数(n
1層目(中心k=1) 2.8 1(n
2層目(中心k=2) 2.8 6(n
3層目(中心k=3) 2.8 12(n
4層目(中心k=4) 2.8 18(n) 合計37本
以上の条件において計算した渦電流損と皮膜抵抗率の関係を図17、図18、図19に示す。
Here, the value of (W 2 / W 1 ) is calculated from the equation (32) for a former having a stranded wire structure provided with the following insulating film (enamel insulating film).
Former outer diameter: D = 19 mm, diameter of one strand constituting the stranded wire: d = 2.8 mm, number of stranded wires (number of strands): 37, n 1 = 1, n 2 = 6 It is assumed that n 3 = 12 and n 4 = 18. Further, t f is the thickness of the resistance film (1 μm, 2 μm, 5 μm) and the center angle of the contact length (5 °, 10 °, 15 °). The net conductor cross-sectional area is 227 mm 2 and the space factor is about 80%.
K-th layer Wire diameter d (mm) Number of twists (n k )
1st layer (center k = 1) 2.8 1 (n 1 )
Second layer (center k = 2) 2.8 6 (n 2 )
3rd layer (center k = 3) 2.8 12 (n 3 )
Fourth layer (center k = 4) 2.8 18 (n 4 ) 37 in total FIG. 17, FIG. 18, and FIG. 19 show the relationship between eddy current loss and film resistivity calculated under the above conditions.

図17〜図19において、縦軸は、絶縁皮膜を備えた素線からなる撚線の渦電流損(W)に対する抵抗皮膜を備えた素線からなる撚線の渦電流損(W)の比率で表し、横軸は、皮膜抵抗率(ρ)の撚線金属抵抗率(ρ)に対する比率で表している。図17は素線間の接触長の中心角θが5゜の場合、図18は素線間の接触長の中心角θが10゜の場合、図19は素線間の接触長の中心角θが15゜の場合をそれぞれ示している。また、図17〜図19に皮膜の厚さ1μm、2μm、5μmのそれぞれの計算結果を示す。 17 to 19, the vertical axis represents the eddy current loss (W 2 ) of the stranded wire including the resistance film with respect to the eddy current loss (W 1 ) of the stranded wire including the insulating film. The horizontal axis represents the ratio of the film resistivity (ρ f ) to the stranded metal resistivity (ρ c ). 17 shows a case where the center angle θ of the contact length between the strands is 5 °, FIG. 18 shows a case where the center angle θ of the contact length between the strands is 10 °, and FIG. 19 shows a center angle of the contact length between the strands. The case where θ is 15 ° is shown. In addition, FIGS. 17 to 19 show calculation results of the film thicknesses of 1 μm, 2 μm, and 5 μm, respectively.

一例として、ψ=2(90゜−(180゜/n))、θ=10゜の場合の計算は以下のようになる。
=6、ψ=120゜、k12 =0.01013、K’(k12)/K(k12)=2.35、n=12、ψ=150゜、k13 =0.008142、K’(k13)/K(k13)=2.42、n=18、ψ=160゜、k14 =0.007832、K’(k14)/K(k14)=2.42となる。
As an example, the calculation in the case of ψ k = 2 (90 ° − (180 ° / n k )) and θ = 10 ° is as follows.
n 2 = 6, ψ 2 = 120 °, k 12 2 = 0.01013, K ′ (k 12 ) / K (k 12 ) = 2.35, n 3 = 12, ψ 2 = 150 °, k 13 2 = 0.008142, K ′ (k 13 ) / K (k 13 ) = 2.42, n 4 = 18, ψ 2 = 160 °, k 14 2 = 0.007832, K ′ (k 14 ) / K ( k 14 ) = 2.42.

図17〜図19における計算結果から、ρ/ρの値が10以上であり、ρfが10Ω・cm以下の抵抗皮膜であっても、絶縁皮膜と同等の渦電流損の低減効果があることが分かる。
なお、素線を銅から構成し、素線外周に酸化第二銅の抵抗皮膜を形成した撚線構造のフォーマを用いる場合、ρ:0.2×10−6Ω・cm(−196℃)、ρ:1×10Ω・cm(−196℃)とすると、ρ/ρ≧10に入ることがわかる。
From the calculation results in FIGS. 17 to 19, even if the resistance film has a value of ρ f / ρ c of 10 4 or more and ρ f of 10 9 Ω · cm or less, reduction of eddy current loss equivalent to that of the insulating film is achieved. It turns out that there is an effect.
In addition, in the case of using a former having a twisted wire structure in which the element wire is made of copper and a cupric oxide resistance film is formed on the outer periphery of the element wire, ρ c : 0.2 × 10 −6 Ω · cm (−196 ° C. ), Ρ f : 1 × 10 6 Ω · cm (−196 ° C.), it can be seen that ρ f / ρ c ≧ 10 4 is satisfied.

図17〜図19に示す結果から、ρf/ρcが10以上で素線絶縁を施した場合のW/W=1に近い値となる。酸化第二銅の抵抗皮膜を用いた素線の撚線の場合は、この範囲に入ることが分かる。
なお、接触長の中心角θが5゜未満の場合、素線間の接触部の抵抗値は、接触長の中心角θ≧5゜の場合に比べて大きくなるので、渦電流損失の低減の面から見て有利と考えられる。しかし、実際にフォーマを撚線から構成する場合に撚線を製造する面から見て素線間に加わる力を小さく制御することが難しいため、接触長の中心角θを5゜未満とすることは非現実的である。一方、接触長の中心角θが30゜を超える範囲では、接触長の中心角θ≦30゜の範囲と比較して撚線間の接触部の抵抗値は小さくなるので、渦電流損は増大することになり不利となる。これらのことを考慮すると、接触長の中心角θは5゜以上、30゜以下の範囲とする必要がある。
なお、接触長の中心角については、フォーマを切断してその横断面を拡大観察することで計測することができる。
From the results shown in FIGS. 17 to 19, the value is close to W 2 / W 1 = 1 when ρf / ρc is 10 4 or more and the wire insulation is performed. In the case of strands of strands using a cupric oxide resistance film, it can be seen that it falls within this range.
When the contact angle center angle θ is less than 5 °, the resistance value of the contact portion between the strands is larger than that when the contact length center angle θ ≧ 5 °, which reduces eddy current loss. It is considered advantageous from the aspect. However, when the former is actually composed of stranded wires, it is difficult to control the force applied between the strands as viewed from the surface where the stranded wires are manufactured, so the center angle θ of the contact length should be less than 5 °. Is unrealistic. On the other hand, in the range where the central angle θ of the contact length exceeds 30 °, the resistance value of the contact portion between the stranded wires is smaller than that in the range of the central angle θ ≦ 30 ° of the contact length, so the eddy current loss increases. Will be disadvantageous. Considering these, the central angle θ of the contact length needs to be in the range of 5 ° to 30 °.
The central angle of the contact length can be measured by cutting the former and magnifying the cross section.

本発明は、例えば超電導送電線、超電導モーター、超電導電力貯蔵装置などの各種の超電導機器に用いられる酸化物超電導線材に適用することができる。   The present invention can be applied to oxide superconducting wires used in various superconducting equipment such as superconducting power transmission lines, superconducting motors, and superconducting power storage devices.

A…超電導ケーブル、1…フォーマ、2…高温超電導層、3…電気絶縁層、4…超電導シールド層、5…シールド層、6…抵抗皮膜、7…金属線、8…素線、10…高温超電導線材、11…基材、12…下地層、15…配向性中間層、16…キャップ層、17…酸化物超電導層、18…第一の安定化層、19…第二の安定化層、20…絶縁被覆層、21、25、…素線、22、23、24、28、30、35、…フォーマ。   A ... Superconducting cable, 1 ... Former, 2 ... High-temperature superconducting layer, 3 ... Electrical insulation layer, 4 ... Superconducting shield layer, 5 ... Shield layer, 6 ... Resistive film, 7 ... Metal wire, 8 ... Elementary wire, 10 ... High temperature Superconducting wire, 11 ... base material, 12 ... underlayer, 15 ... orientation intermediate layer, 16 ... cap layer, 17 ... oxide superconducting layer, 18 ... first stabilizing layer, 19 ... second stabilizing layer, 20 ... Insulating coating layer, 21, 25, ... Wire, 22, 23, 24, 28, 30, 35, ... Former.

Claims (4)

フォーマとその外周に設けられる超電導層と該超電導層の外周に形成される電気絶縁層とを有する超電導ケーブルであって、前記超電導層が複数本の超電導線材をフォーマの外周に螺旋状に巻き付けた構造であり、前記フォーマが抵抗皮膜で被覆された常電導材料からなる金属線を複数本撚り合わせた構造であり、前記抵抗皮膜の体積抵抗率の値が前記金属線の体積抵抗率の値の10倍以上であり、かつ、この抵抗皮膜の体積抵抗率値が10Ω・cm以下であることを特徴とする超電導ケーブル。 A superconducting cable having a former and a superconducting layer provided on an outer periphery of the former, and an electric insulating layer formed on the outer periphery of the superconducting layer, wherein the superconducting layer spirally wraps a plurality of superconducting wires around the outer periphery of the former The structure is a structure in which a plurality of metal wires made of a normal conductive material coated with a resistance film is twisted together, and the volume resistivity value of the resistance film is equal to the volume resistivity value of the metal wire. A superconducting cable characterized by being 10 4 times or more and having a volume resistivity value of 10 9 Ω · cm or less. 前記金属線を複数本撚り合わせた構造における隣接素線の接触長の中心角θが、5゜≦θ≦30゜の範囲であることを特徴とする請求項1に記載の超電導ケーブル。   2. The superconducting cable according to claim 1, wherein a central angle θ of a contact length of adjacent strands in a structure in which a plurality of the metal wires are twisted is in a range of 5 ° ≦ θ ≦ 30 °. 前記抵抗皮膜の厚さが0.5μm以上、1.5μm以下であることを特徴とする請求項1または2に記載の超電導ケーブル。   The superconducting cable according to claim 1 or 2, wherein the resistance film has a thickness of 0.5 µm or more and 1.5 µm or less. 前記電気絶縁層の外周に設けられる超電導シールド層と、該超電導シールド層の外周に設けられる金属製のシールド層とを更に具備してなる請求項1〜3のいずれか一項に記載の超電導ケーブル。   The superconducting cable according to any one of claims 1 to 3, further comprising a superconducting shield layer provided on an outer periphery of the electrical insulating layer and a metal shield layer provided on an outer periphery of the superconducting shield layer. .
JP2011249086A 2011-11-14 2011-11-14 Superconducting cable Expired - Fee Related JP5771509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249086A JP5771509B2 (en) 2011-11-14 2011-11-14 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249086A JP5771509B2 (en) 2011-11-14 2011-11-14 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2013105639A true JP2013105639A (en) 2013-05-30
JP5771509B2 JP5771509B2 (en) 2015-09-02

Family

ID=48625037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249086A Expired - Fee Related JP5771509B2 (en) 2011-11-14 2011-11-14 Superconducting cable

Country Status (1)

Country Link
JP (1) JP5771509B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325837A (en) * 2000-05-16 2001-11-22 Sumitomo Electric Ind Ltd Superconducting cable
JP2006331894A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Superconductive cable
US20090118126A1 (en) * 2007-11-02 2009-05-07 Ajax Tocco Magnethermic Corporation Superconductor induction coil
JP2009522743A (en) * 2006-01-20 2009-06-11 エルエス ケーブル リミテッド Superconducting cable
JP2009193949A (en) * 2007-08-09 2009-08-27 Sumitomo Electric Ind Ltd Foma for superconducting cable, its manufacturing method and superconducting cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325837A (en) * 2000-05-16 2001-11-22 Sumitomo Electric Ind Ltd Superconducting cable
JP2006331894A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Superconductive cable
JP2009522743A (en) * 2006-01-20 2009-06-11 エルエス ケーブル リミテッド Superconducting cable
JP2009193949A (en) * 2007-08-09 2009-08-27 Sumitomo Electric Ind Ltd Foma for superconducting cable, its manufacturing method and superconducting cable
US20090118126A1 (en) * 2007-11-02 2009-05-07 Ajax Tocco Magnethermic Corporation Superconductor induction coil

Also Published As

Publication number Publication date
JP5771509B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5431932B2 (en) High current small flexible conductor containing high temperature superconducting tape
US7633014B2 (en) Superconductor cable
JP6155195B2 (en) Superconducting cable connection structure
JP6270175B2 (en) Superconducting cable
KR101156972B1 (en) A system for transmitting current including magnetically decoupled superconducting conductors
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP3474602B2 (en) Superconducting conductor
US9042951B2 (en) Intermediate connection unit of superconducting cables
JP6853267B2 (en) 2nd generation superconducting filaments and cables
JP4201331B2 (en) Phase branching structure of multiphase superconducting cable
WO2003038840A1 (en) Superconducting cable and superconducting cable line
KR20160034795A (en) Superconducting cable
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP2004319093A (en) Superconductive cable
WO2021262319A2 (en) Cabling method of superconducting flat wires
WO2007080794A1 (en) Superconducting cable
JP5240008B2 (en) DC superconducting cable
WO2007122670A1 (en) Superconducting cable
JP2008243699A (en) Connecting structure of superconducting cable, and connection method for the superconducting cable
JP5604213B2 (en) Superconducting equipment
JP5771509B2 (en) Superconducting cable
JP2011076750A (en) Oxide superconducting cable and method of manufacturing the same
JP6729303B2 (en) Superconducting wire and superconducting coil
JP2018186037A (en) Superconductive cable line
JP2015035308A (en) Connection structure of oxide superconductive wire and superconductive apparatus provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5771509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees