JP2013104862A - Three-dimensional displacement measuring device - Google Patents

Three-dimensional displacement measuring device Download PDF

Info

Publication number
JP2013104862A
JP2013104862A JP2011251224A JP2011251224A JP2013104862A JP 2013104862 A JP2013104862 A JP 2013104862A JP 2011251224 A JP2011251224 A JP 2011251224A JP 2011251224 A JP2011251224 A JP 2011251224A JP 2013104862 A JP2013104862 A JP 2013104862A
Authority
JP
Japan
Prior art keywords
dimensional
displacement
axis
point
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011251224A
Other languages
Japanese (ja)
Inventor
Toshiaki Sumi
俊明 角
Tsutomu Ogawa
努 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011251224A priority Critical patent/JP2013104862A/en
Publication of JP2013104862A publication Critical patent/JP2013104862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional displacement measuring device capable of measuring displacement with accuracy using a three-dimensional displacement measuring unit having a simple structure.SOLUTION: The three-dimensional displacement measuring device uses a three-dimensional displacement sensor 1 in which wire potentiometers 2 having pulleys wound with wires 3 therearound to detect the lengths of the wires 3 drawn on the basis of rotation angles of the pulleys rotated by drawing the wires 3 are mounted at peripheral direction angle 120° intervals at three portions on a base plate 11, and an output signal from each of the three wire potentiometers 2 of the three-dimensional displacement sensor 1. Only if the drawn lengths of the wires 3 of the three wire potentiometers 2 are measured, a three-dimensional position at a displacement measuring end 5 at a vertex of a triangular pyramid comprising the three wires 3 can be uniquely specified, and the three-dimensional position can be easily converted into a right-angle three-dimensional coordinate of XYZ using a conversion formula.

Description

本発明は、三次元変位測定装置に関し、特に、ワイヤを巻回しているプーリと、ワイヤが引き出されることによって回転するプーリの回転角に基づいて引き出されたワイヤの長さを検出するポテンショメータを用いた三次元変位測定装置に関する。   The present invention relates to a three-dimensional displacement measuring apparatus, and more particularly, to a pulley around which a wire is wound and a potentiometer that detects the length of the drawn wire based on the rotation angle of the pulley that rotates when the wire is drawn. The present invention relates to a three-dimensional displacement measuring apparatus.

従来から2点間の相対変位を三次元座標で動的に測定するシステムとしては、超音波、光、レーザ光等を使用した非接触式のものが存在する。しかしながら、これらの計測システムは、高い精度が得られる一方、一般に高価であり、測定装置そのものの寸法も大きいものが多いという難点がある。
一方、従来から存在する接触型の変位計を組み合わせて変位を計測することも可能であったが、動的変位の検出が困難であったり、外形寸法上の制約で狭い場所には取り付けられなかったり、測定結果を三次元座標で得るために、取り付けの際の位置決めが難しい等の問題があった。
Conventionally, there is a non-contact type system that uses ultrasonic waves, light, laser light, or the like as a system for dynamically measuring the relative displacement between two points using three-dimensional coordinates. However, while these measurement systems can obtain high accuracy, they are generally expensive and have a drawback that many of the measurement apparatuses themselves have large dimensions.
On the other hand, it was also possible to measure displacement by combining existing contact displacement gauges, but it was difficult to detect dynamic displacement or it could not be installed in a narrow place due to restrictions on external dimensions. In addition, since the measurement result is obtained in three-dimensional coordinates, there is a problem that positioning at the time of attachment is difficult.

この問題を解決するための三次元変位計測システムとして、特許文献1に記載の技術が開示されている。この三次元変位計測システムを構成する三次元変位検出ユニットは、そのセンサ本体を不動部に取り付け、被測定対象物の変位する測定点に測定子を取り付ける。この状態で測定子が測定点からからの振動や変位を受けると、測定子に自在継ぎ手を介して連結された連結ロッドが垂直軸を中心として第1の回転部材が回転するとともに、連結ロッドが水平軸を中心として第2の回転部材が回転する。また、連結ロッドも測定子の移動に伴って伸縮可能な構成となっている。第1の回転部材及び第2の回転部材のそれぞれの回転角は、個別に設けられた第1及び第2の角度検出器により検出される。連結ロッドの伸縮はワイヤの引き出される長さを回転角で検出する変位検出器によって検出される。   As a three-dimensional displacement measurement system for solving this problem, a technique described in Patent Document 1 is disclosed. In the three-dimensional displacement detection unit constituting the three-dimensional displacement measurement system, the sensor main body is attached to the stationary part, and the measuring element is attached to the measurement point where the measurement object is displaced. When the probe receives vibration or displacement from the measurement point in this state, the connecting rod connected to the probe via the universal joint rotates the first rotating member around the vertical axis, and the connecting rod The second rotating member rotates about the horizontal axis. The connecting rod is also configured to be able to expand and contract with the movement of the probe. The respective rotation angles of the first rotation member and the second rotation member are detected by first and second angle detectors provided individually. Expansion and contraction of the connecting rod is detected by a displacement detector that detects the length of the wire drawn out by the rotation angle.

そして、特許文献1には、前記した三次元変位検出ユニットを3台用い、3台の三次元変位検出ユニットから得られるそれぞれの第1、第2の角度検出器及び変位検出器からの信号をパーソナルコンピュータで解析して、XYZの三次元直交座標における変位、及びX軸、Y軸、Z軸周りの回転の6自由度三次元変位を計測する技術が記載されている。   In Patent Document 1, three three-dimensional displacement detection units described above are used, and signals from the first and second angle detectors and displacement detectors obtained from the three three-dimensional displacement detection units are used. A technique is described in which a displacement in three-dimensional orthogonal coordinates of XYZ and a six-degree-of-freedom three-dimensional displacement of rotation about the X, Y, and Z axes are measured by analysis with a personal computer.

特開2007−315815号公報(図1〜図8参照)JP 2007-315815 A (see FIGS. 1 to 8)

しかしながら、特許文献1に記載された三次元変位検出ユニットの連結ロッドは、伸縮自在の剛性の高い部材で構成され、連結ロッドの測定子が設けられた側と反対側の基部側は、不動部に垂直軸、水平軸の周りに回転可能な構成で連結された構成となっている。
従って、被測定対象物の高速な振動による変位を高速で測定するには慣性が大きく、被測定対象物の変位に外乱を逆に与えたりすることになり、精度の良い変位の測定上問題があった。
However, the connecting rod of the three-dimensional displacement detection unit described in Patent Document 1 is composed of a stretchable and highly rigid member, and the base side opposite to the side on which the probe of the connecting rod is provided is the stationary part. Are connected in a rotatable manner around a vertical axis and a horizontal axis.
Therefore, inertia is large to measure the displacement due to the high-speed vibration of the object to be measured at high speed, and disturbance is given to the displacement of the object to be measured, which causes a problem in measuring the displacement with high accuracy. there were.

本発明は、前記した従来の課題を解決するものであり、簡単な構造の三次元変位測定ユニットを用いて、精度の良い変位の計測を可能とする三次元変位測定装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a three-dimensional displacement measuring apparatus that enables accurate displacement measurement using a three-dimensional displacement measuring unit having a simple structure. And

前記課題を解決するために、請求項1に記載の三次元変位測定装置は、ワイヤを巻回しているプーリを有し、ワイヤが引き出されることによって回転するプーリの回転角に基づいて引き出されたワイヤの長さを検出するポテンショメータが、3個所定の周方向角度の間隔を取って一つの支持基板の上に取り付けられた三次元変位測定ユニットと、三次元変位測定ユニットの3個のポテンショメータからのそれぞれの出力信号を取得するポテンショメータ信号取得手段と、を備えたものであって、
測定者が入力可能な入力手段と、三次元変位測定ユニットの3個のポテンショメータのそれぞれワイヤの引き出し部分の先端部を1点で接合して変位測定端とし、3本のワイヤで三角錐を形成するようにし、変位測定端が、被測定対象物の所定の測定点に固定され、測定者による入力手段からの入力に従って、被測定対象物の所定の測定点の初期位置に対し、XYZの直角三次元座標系の各座標軸の向きを設定する座標軸設定手段と、測定者による入力手段からの入力に従って、3個のポテンショメータからの出力信号に基づいて被測定対象物の所定の測定点の初期位置からの設定された直角三次元座標系のX方向、Y方向、Z方向へのそれぞれの変位量に換算する換算式を設定する換算式設定手段と、換算式設定手段により設定された換算式を用いて、3個のポテンショメータからの出力信号に基づいて、初期位置からの被測定対象物の所定の測定点の直角三次元座標系のX方向、Y方向、Z方向への変位量を算出する測定点変位量算出手段と、を備えることを特徴とする。
In order to solve the above-mentioned problem, the three-dimensional displacement measuring device according to claim 1 has a pulley around which a wire is wound, and is pulled out based on a rotation angle of a pulley that rotates when the wire is pulled out. Three potentiometers for detecting the length of the wire are composed of a three-dimensional displacement measuring unit mounted on one support substrate with a predetermined circumferential angle interval, and three potentiometers of the three-dimensional displacement measuring unit. Potentiometer signal acquisition means for acquiring the respective output signals of
The input means that can be input by the measurer and the three wire potentiometers of the three-dimensional displacement measuring unit are joined at one point to the tip of the wire lead-out portion to form a displacement measuring end, and a triangular pyramid is formed with three wires. The displacement measurement end is fixed to a predetermined measurement point of the measurement object, and according to the input from the input means by the measurer, the right angle of XYZ with respect to the initial position of the predetermined measurement point of the measurement object Coordinate axis setting means for setting the direction of each coordinate axis of the three-dimensional coordinate system, and an initial position of a predetermined measurement point of the object to be measured based on the output signals from the three potentiometers according to the input from the input means by the measurer Conversion formula setting means for setting a conversion formula for converting each displacement amount in the X direction, Y direction, and Z direction of the set right angle three-dimensional coordinate system from, and the conversion set by the conversion formula setting means Based on the output signals from the three potentiometers, the amount of displacement in the X, Y, and Z directions of the right-angle three-dimensional coordinate system of the predetermined measurement point of the object to be measured from the initial position is calculated. Measuring point displacement amount calculating means.

請求項1に記載の発明によれば、特許文献1に記載のような伸縮変位を検出する変位検出器を備えた伸縮自在な連結ロッドや、その基部側が垂直軸及び水平軸の周りに回転可能な構成として、第1及び第2の角度検出器を設けて垂直軸及び水平軸の周りの角度変位を検出するという複雑な構成とすることなく、単に、3個のポテンショメータのワイヤの引き出し長さを計測するだけで、3本のワイヤで構成する三角錐の頂点の変位測定端の三次元位置が一意に特定でき、それを容易に換算式でXYZの直角三次元座標に変換できる。
従って、3本のワイヤの慣性は極めて小さく、被測定対象物の高速な振動変位を特許文献1のような技術よりも正確に測定できる。また、3個のポテンショメータを用いたものであり、本発明の三次元変位測定装置は、超音波、光、レーザ光等を使用した非接触式の従来のものより極めて安価に製造できる。
According to the first aspect of the present invention, the telescopic connecting rod provided with the displacement detector for detecting the telescopic displacement as described in Patent Document 1, and the base side thereof can rotate around the vertical axis and the horizontal axis. As a simple configuration, the first and second angle detectors are provided to detect the angular displacement around the vertical axis and the horizontal axis, and the drawing length of the three potentiometer wires is simply eliminated. By simply measuring the three-dimensional position of the displacement measurement end of the apex of the triangular pyramid composed of three wires, it can be easily converted into XYZ right-angle three-dimensional coordinates using a conversion formula.
Therefore, the inertia of the three wires is extremely small, and the high-speed vibration displacement of the object to be measured can be measured more accurately than the technique disclosed in Patent Document 1. Also, using three potentiometers, the three-dimensional displacement measuring apparatus of the present invention can be manufactured at a much lower cost than a conventional non-contact type using ultrasonic waves, light, laser light, or the like.

請求項2に係わる発明の三次元変位測定装置は、請求項1に記載の発明の構成に加え、更に、三次元の立体の剛体と仮定できる被測定対象物に対して、少なくとも3箇所以上の被測定対象物の所定の測定点の初期位置に係わる設定された直角三次元座標系のX座標、Y座標、Z座標を、測定者による入力手段からの入力に従って設定する測定点座標設定手段と、設定された直角三次元座標系のX方向、Y方向、Z方向へのそれぞれの変位量を求めたい被測定対象物の所定の着目点の初期位置に係わる設定された直角三次元座標系のX座標、Y座標、Z座標を、測定者による入力手段からの入力に従って設定する着目点座標設定手段と、設定された被測定対象物の所定の着目点のうちの、設定された少なくとも3箇所以上の被測定対象物の所定の測定点と異なるものに対して、設定された少なくとも3箇所以上の被測定対象物の所定の測定点との設定された直角三次元座標系のX座標、Y座標、Z座標の相対位置に基づいて、当該の着目点の初期位置からの設定された直角三次元座標系のX方向、Y方向、Z方向への変位量を算出する着目点変位量算出手段と、を備えることを特徴とする。   The three-dimensional displacement measuring device of the invention according to claim 2 has at least three or more locations for the measurement object that can be assumed to be a three-dimensional solid body in addition to the configuration of the invention of claim 1. Measurement point coordinate setting means for setting the X coordinate, Y coordinate, and Z coordinate of the set right angle three-dimensional coordinate system related to the initial position of the predetermined measurement point of the measurement object according to the input from the input means by the measurer; In the set right-angle three-dimensional coordinate system relating to the initial position of the predetermined target point of the measurement target object for which the respective displacement amounts in the X-direction, Y-direction, and Z-direction are to be obtained. Attention point coordinate setting means for setting the X coordinate, Y coordinate, and Z coordinate in accordance with an input from the input means by the measurer, and at least three predetermined points of interest set in the set object to be measured Predetermined object to be measured Based on the relative positions of the X coordinate, Y coordinate, and Z coordinate of a set right angle three-dimensional coordinate system with predetermined measurement points of at least three or more measurement target objects that are different from the measurement points. And a point-of-interest displacement amount calculating means for calculating a displacement amount in the X direction, Y direction, and Z direction of the set right-angle three-dimensional coordinate system from the initial position of the point of interest. .

請求項2に記載の発明によれば、被測定対象物に対して、少なくとも3箇所以上の被測定対象物の所定の測定点を設けて、それぞれ三次元変位測定ユニットで変位量を測定しているので、設定された直角三次元座標系のX方向、Y方向、Z方向の測定点における変位量が算出できる。また、少なくとも3箇所以上の被測定対象物の所定の測定点の直角三次元座標系のX座標、Y座標、Z座標を入力し、着目点の直角三次元座標系のX座標、Y座標、Z座標をも入力しているので、着目点変位量算出手段によって測定点と異なる着目点の直角三次元座標系のX方向、Y方向、Z方向の変位量が、測定点と着目点との間の直角三次元座標系の相対位置関係と、少なくとも3箇所以上の測定点における直角三次元座標系のX方向、Y方向、Z方向の変位量から、算出することができる。
従って、被測定対象物の外形形状の関係で被測定対象物と干渉したり、被測定対象物に取り付けられて外部搭載品等と干渉したりして、測定点として選ぶことができない着目点の直角三次元座標系のX方向、Y方向、Z方向の変位量を間接的に計算によって得ることが容易にできる。
According to the second aspect of the present invention, the measurement object is provided with predetermined measurement points of at least three or more measurement objects, and the displacement amount is measured by the three-dimensional displacement measurement unit. Therefore, the displacement amount at the measurement point in the X direction, Y direction, and Z direction of the set right-angle three-dimensional coordinate system can be calculated. Further, the X coordinate, Y coordinate, and Z coordinate of the right-angle three-dimensional coordinate system of the predetermined measurement points of at least three or more objects to be measured are input, and the X-coordinate, Y-coordinate of the right-angle three-dimensional coordinate system of the target point, Since the Z coordinate is also input, the amount of displacement in the X direction, Y direction, and Z direction of the right-angle three-dimensional coordinate system of the point of interest different from the measurement point by the point of interest displacement calculation means is the difference between the measurement point and the point of interest. It can be calculated from the relative positional relationship of the right-angle three-dimensional coordinate system between them and the amount of displacement in the X-direction, Y-direction, and Z-direction of the right-angle three-dimensional coordinate system at at least three measurement points.
Therefore, the point of interest that cannot be selected as a measurement point because it interferes with the object to be measured due to the external shape of the object to be measured, or interferes with externally mounted products attached to the object to be measured. It is possible to easily obtain the amount of displacement in the X direction, the Y direction, and the Z direction of the orthogonal three-dimensional coordinate system indirectly.

請求項3に係わる発明の三次元変位測定装置は、請求項2に記載の発明の構成に加え、被測定対象物は、車両のエンジン及び変速機が一体に結合されたものであって、設定された直角三次元座標系のX軸は、エンジンの停止時のクランク軸の回転中心軸とし、Z軸は、X軸に垂直な垂直平面内に含まれたX軸に直交する垂直軸であり、Y軸は、垂直平面内に含まれたX軸及びZ軸に直交する水平軸であり、被測定対象物の所定の着目点とは、エンジン及び変速機が車体に支持される部位であり、着目点変位量算出手段は、少なくともエンジンの回転によるX軸周りのロール振動を考慮して、当該の着目点の初期位置からの設定された直角三次元座標系のX方向、Y方向、Z方向への変位量を算出することを特徴とする。   A three-dimensional displacement measuring apparatus according to a third aspect of the present invention has the configuration of the invention according to the second aspect, wherein the object to be measured is an object in which a vehicle engine and a transmission are integrally coupled. The X-axis of the right-angled three-dimensional coordinate system is the rotation center axis of the crankshaft when the engine is stopped, and the Z-axis is a vertical axis perpendicular to the X-axis included in a vertical plane perpendicular to the X-axis. The Y axis is a horizontal axis orthogonal to the X axis and the Z axis included in the vertical plane, and the predetermined target point of the object to be measured is a part where the engine and the transmission are supported by the vehicle body. The point-of-interest displacement calculation means takes into account at least the roll vibration around the X axis due to the rotation of the engine, and the X-direction, Y-direction and Z-direction of the set three-dimensional rectangular coordinate system from the initial position of the point of interest. The amount of displacement in the direction is calculated.

請求項3に記載の発明によれば、被測定対象物は、車両のエンジン及び変速機が一体に結合されたものであって、設定された直角三次元座標系のX軸は、エンジンの停止時のクランク軸の回転中心軸であり、Z軸は、X軸に垂直な垂直平面内に含まれたX軸に直交する垂直軸であり、Y軸は、X軸及び垂直平面内に含まれたZ軸に直交する水平軸である。そして、直角三次元座標系のX軸、Y軸、Z軸の設定に基づいて、少なくとも3箇所以上の測定点における直角三次元座標系のX方向、Y方向、Z方向の変位量から、着目点変位量算出手段は、着目点の直角三次元座標系のX方向、Y方向、Z方向の変位量と、少なくともX軸周り、つまり、クランク軸回りのエンジン及び変速機のロール振動による変位成分とを算出することができる。   According to the third aspect of the present invention, the object to be measured is a vehicle engine and a transmission that are integrally coupled, and the set X-axis of the three-dimensional coordinate system indicates that the engine is stopped. Is the rotation center axis of the crankshaft at the time, the Z axis is a vertical axis perpendicular to the X axis included in the vertical plane perpendicular to the X axis, and the Y axis is included in the X axis and the vertical plane It is a horizontal axis orthogonal to the Z axis. Then, based on the setting of the X-axis, Y-axis, and Z-axis of the right-angle three-dimensional coordinate system, attention is paid from the displacement amounts in the X-direction, Y-direction, and Z-direction of the right-angle three-dimensional coordinate system at at least three measurement points. The point displacement amount calculation means includes a displacement amount in the X direction, Y direction, and Z direction of the right-angle three-dimensional coordinate system of the point of interest and a displacement component due to roll vibrations of the engine and the transmission at least around the X axis, that is, around the crankshaft. And can be calculated.

請求項4に係わる発明の三次元変位測定装置は、請求項3に記載の発明の構成に加え、設定された直角三次元座標系のY軸とZ軸とは、X軸に垂直であって、かつ、エンジン及び変速機が一体に結合されたものの重心点をその中に含む垂直平面内に設定され、着目点変位量算出手段は、被測定対象物の所定の着目点に対して、設定された直角三次元座標系の原点のX方向、Y方向、Z方向の並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分を算出することを特徴とする。   In addition to the configuration of the invention according to claim 3, the three-dimensional displacement measuring device of the invention according to claim 4 is such that the Y-axis and Z-axis of the set right-angle three-dimensional coordinate system are perpendicular to the X-axis. In addition, the center of gravity of the engine and transmission united together is set in a vertical plane including the center of gravity, and the point-of-interest displacement calculation means is set for a predetermined point of interest of the object to be measured. The translational displacement components in the X, Y, and Z directions of the origin of the right angle three-dimensional coordinate system and the displacement components of the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis It is characterized by calculating.

請求項4に記載の発明によれば、設定された直角三次元座標系の原点が、エンジンのクランク軸の回転中心軸であるX軸と、エンジン及び変速機が一体に結合されたものの重心を含むX軸と垂直な垂直平面に含まれるX軸と直交する垂直軸がZ軸であり、X軸及び前記垂直平面に含まれるZ軸と直交する水平軸がY軸とで、定義されている。従って、着目点変位量算出手段において、少なくとも3箇所以上の測定点における直角三次元座標系のX方向、Y方向、Z方向の変位量から、原点のX方向、Y方向、Z方向の並進変位量の成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分を算出することができる。   According to the fourth aspect of the present invention, the origin of the set right-angle three-dimensional coordinate system is the center of gravity of the X-axis which is the rotation center axis of the crankshaft of the engine and the engine and the transmission which are integrally coupled. The vertical axis orthogonal to the X axis included in the vertical plane perpendicular to the X axis included is the Z axis, and the horizontal axis orthogonal to the Z axis included in the X axis and the vertical plane is defined as the Y axis. . Accordingly, in the point-of-interest displacement calculation means, the translational displacement of the origin in the X, Y, and Z directions from the displacement in the X, Y, and Z directions of the orthogonal three-dimensional coordinate system at at least three measurement points. It is possible to calculate an amount component and displacement amount components of roll vibration around the X axis, pitch vibration around the Y axis, and yaw vibration around the Z axis.

例えば、エンジン及び変速機が一体に結合されたものを、エンジンマウントを介して弾性的に振動吸収して車体により支持される支持受け部のエンジン運転状態における変位量を測定したい場合に、エンジン及び変速機の周辺に配置された機器、配管、計装線等によってその変位量を直接測定できないことがある。そのようなときは、当該の支持受け部を着目点とし、着目点変位量算出手段においてエンジンの運転状態における支持受け部の三次元の変位量が算出できる。そのとき、着目点変位量算出手段は、エンジンマウントに加わる、並進的な変位量成分だけでなく、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分をも算出することができ、エンジンマウントの耐久性試験の分析において、各エンジンマウントに加わる変位成分を考慮した改良方向の示唆を得ることができる。   For example, when it is desired to measure the amount of displacement in an engine operating state of a support receiving portion supported by a vehicle body by elastically absorbing vibrations through an engine mount when an engine and a transmission are integrally coupled, The amount of displacement may not be directly measured by equipment, piping, instrumentation lines, etc. arranged around the transmission. In such a case, using the support receiving portion as a point of interest, the point-of-interest displacement calculation means can calculate the three-dimensional displacement amount of the support receiving portion in the engine operating state. At this time, the point-of-interest displacement calculation means calculates not only the translational displacement component applied to the engine mount, but also the displacements of the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis. The component can also be calculated, and in the analysis of the durability test of the engine mount, an improvement direction in consideration of the displacement component applied to each engine mount can be obtained.

本発明によれば、簡単な構造の三次元変位測定ユニットを用いて、精度の良い変位の計測を可能とする三次元変位測定装置を提供することができる。   According to the present invention, it is possible to provide a three-dimensional displacement measuring apparatus that enables accurate displacement measurement using a three-dimensional displacement measuring unit having a simple structure.

三次元変位センサの構成説明図であり、(a)は三次元変位センサのセンサカバーを外して、ベースプレート上への3個のワイヤポテンショメータの取り付け方を示した斜視図、(b)は、3個のワイヤポテンショメータをベースプレート上における周方向への取り付け方法を説明する上面図である。FIG. 4 is a configuration explanatory view of a three-dimensional displacement sensor, (a) is a perspective view showing how to attach three wire potentiometers on a base plate with the sensor cover of the three-dimensional displacement sensor removed, and (b) It is a top view explaining the attachment method of the wire potentiometer to the circumferential direction on a baseplate. 三次元変位センサにおける3本のワイヤの先端を結合した変位測定端のXYZ方向の動きに対するワイヤの引き出し量の変化の説明図であり、(a)は、変位測定端のZ方向への移動の場合の説明図、(b)は、変位測定端のX方向への移動の場合の説明図、(c)は、変位測定端のY方向への移動の場合の説明図である。It is explanatory drawing of the change of the pull-out amount of the wire with respect to the movement of the displacement measuring end which combined the tip of three wires in a three-dimensional displacement sensor to XYZ direction, (a) is a movement of the displacement measuring end to the Z direction. FIG. 4B is an explanatory diagram when the displacement measurement end is moved in the X direction, and FIG. 4C is an explanatory diagram when the displacement measurement end is moved in the Y direction. エンジン及びトランスミッションの結合体の振動変位を三次元変位センサ3個で測定する場合の三次元変位センサの設置例の説明図である。It is explanatory drawing of the example of installation of a three-dimensional displacement sensor in the case of measuring the vibration displacement of the coupling body of an engine and a transmission with three three-dimensional displacement sensors. 三次元変位測定装置の機能ブロック構成図である。It is a functional block block diagram of a three-dimensional displacement measuring device.

以下に、本発明の実施形態に係る三次元変位測定装置について図を参照しながら詳細に説明する。   Hereinafter, a three-dimensional displacement measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.

《三次元変位センサ》
図1を参照して本実施形態における三次元変位センサについて説明する。図1は、三次元変位センサの構成説明図であり、(a)は、三次元変位センサのセンサカバーを外して示した3個のワイヤポテンショメータのベースプレート上への取り付け方を示した斜視図、(b)は、3個のワイヤポテンショメータのベースプレート上における周方向への取り付け方法を説明する上面図である。
三次元変位センサ(三次元変位測定ユニット)1は、図1の(a),(b)に示すようにワイヤポテンショメータ(ポテンショメータ)2が金属板材で構成された垂直板12に固定されており、更に垂直板12の図1の下面側の図示しない固定用雌ねじ孔に、ベースプレート11の図示しないねじ孔を下面側から挿通させたねじでねじ嵌合して固定されている。このため、ベースプレート11の垂直板12取り付け用の図示しないねじ孔の下面側は、ねじ頭が下面側に突出しないで沈み込むように座ぐり孔を設けてある。
<< 3D displacement sensor >>
A three-dimensional displacement sensor according to this embodiment will be described with reference to FIG. FIG. 1 is a configuration explanatory view of a three-dimensional displacement sensor, (a) is a perspective view showing how to attach three wire potentiometers on a base plate shown with a sensor cover of the three-dimensional displacement sensor removed; (B) is a top view for explaining a method of attaching three wire potentiometers on the base plate in the circumferential direction.
A three-dimensional displacement sensor (three-dimensional displacement measuring unit) 1 is fixed to a vertical plate 12 in which a wire potentiometer (potentiometer) 2 is made of a metal plate material as shown in FIGS. Further, the vertical plate 12 is fixed by being screwed into a fixing female screw hole (not shown) on the lower surface side of FIG. 1 with a screw through which a screw hole (not shown) of the base plate 11 is inserted from the lower surface side. For this reason, a counterbore hole is provided on the lower surface side of the screw hole (not shown) for attaching the vertical plate 12 of the base plate 11 so that the screw head sinks without protruding to the lower surface side.

ワイヤポテンショメータ2は、ワイヤポテンショメータ2のケース内に配置された図示しないプーリがワイヤ3を巻き取る構成になっており、このプーリに常にワイヤを巻き込む方向の復元力を付与する図示しない渦巻ばねが内蔵されている。そして、例えば、前記プーリと一体に回転する回転円盤に所定の周方向配列で永久磁石が配置され、その近傍にホール素子が配置され、ホール素子の信号がプーリの回転角を、つまり、ワイヤの引き出された長さを示すように構成されている。   The wire potentiometer 2 has a configuration in which a pulley (not shown) disposed in the case of the wire potentiometer 2 winds up the wire 3, and a spiral spring (not shown) that always gives a restoring force in the direction of winding the wire to the pulley. Has been. For example, a permanent magnet is arranged in a predetermined circumferential arrangement on a rotating disk that rotates integrally with the pulley, and a Hall element is arranged in the vicinity thereof, and the signal of the Hall element indicates the rotation angle of the pulley, that is, the wire It is comprised so that the drawn-out length may be shown.

ワイヤポテンショメータ2は、図1の(b)に示すようにケースのワイヤ引き出し孔2aがベースプレート11の平面中心Oに対し、周方向に120度の間隔となるように垂直板12を介してねじ固定されている。そして、例えば、3個のワイヤポテンショメータ2の内の1つのワイヤポテンショメータ2のワイヤ引き出し孔2aが、図1の(b)に示すように平面中心Oからベースプレート11の特定の一辺11cに垂直に引いた線(図1の(a)では、Y+の矢印で示す)の方向に対応するように設定される。ここで、この特定の一辺11cを、以下では「基準辺11c」と称する。ちなみに、「基準辺11c」と称するのは、基準辺11cの示す方向が、後記するXYZの直角三次元座標系におけるX軸の方向を示すように設定すると、それを前提としたXYZの直角三次元座標系の各座標軸方向の設定の入力方法を前以って準備しておくことができ、XYZの直角三次元座標系の各座標軸方向の設定を簡単化できるからである。
また、後記するが、三次元変位センサ1が不動点である試験架台32(図3参照)の天井面にベースプレート11が固定され、ワイヤ3が下方側に引き出されたとき、XYZの直角座標系のX軸、Y軸は、例えば、図1の(b)に示すように設定され、Z軸は、紙面に向く方向がZ軸(+)方向とする。
As shown in FIG. 1B, the wire potentiometer 2 is screwed through a vertical plate 12 so that the wire drawing hole 2a of the case is spaced 120 degrees in the circumferential direction with respect to the plane center O of the base plate 11. Has been. Then, for example, the wire lead-out hole 2a of one of the three wire potentiometers 2 is pulled perpendicularly from the plane center O to a specific side 11c of the base plate 11 as shown in FIG. It is set so as to correspond to the direction of the line (indicated by the arrow Y + in FIG. 1A). Here, the specific one side 11c is hereinafter referred to as “reference side 11c”. Incidentally, the “reference side 11c” is referred to as an XYZ orthogonal cubic based on the assumption that the direction indicated by the reference side 11c is set to indicate the X-axis direction in an XYZ orthogonal three-dimensional coordinate system to be described later. This is because an input method for setting each coordinate axis direction of the original coordinate system can be prepared in advance, and the setting of each coordinate axis direction of the XYZ right-angle three-dimensional coordinate system can be simplified.
As will be described later, when the base plate 11 is fixed to the ceiling surface of the test stand 32 (see FIG. 3) where the three-dimensional displacement sensor 1 is a fixed point and the wire 3 is drawn downward, an XYZ rectangular coordinate system. The X-axis and Y-axis are set, for example, as shown in FIG. 1B, and the Z-axis is defined as the Z-axis (+) direction facing the paper surface.

ベースプレート11は、例えば、長方形の板状であり、その四隅近傍に雌ねじを切られた取り付けねじ孔11aを有している。ベースプレート11は、図1の(b)に示すようにその板厚面にセンサカバー13を固定するための雌ねじ孔11bを複数有している。   The base plate 11 has, for example, a rectangular plate shape, and has mounting screw holes 11a in which female threads are cut in the vicinity of the four corners. As shown in FIG. 1B, the base plate 11 has a plurality of female screw holes 11b for fixing the sensor cover 13 to the plate thickness surface.

センサカバー13を、図1の(a)に示すようにベースプレート11の上側から被せ、ベースプレート11の雌ねじ孔11bに対応した位置に設けてあるセンサカバー13の下端側のねじ孔13eにセンサカバー13を固定するためのねじを挿通させ、雌ねじ孔11bにねじ嵌合させて、ベースプレート11にセンサカバー13が固定されている。
センサカバー13には、複数のねじ孔13bが3枚の垂直板12の上端面に2個設けられた固定用雌ねじ孔12aの位置に対応させて設けられており、センサカバー13の上側から垂直板12を固定するためのねじ(図示省略)が挿通されて、固定用雌ねじ孔12aにねじ嵌合すようになっている。
As shown in FIG. 1A, the sensor cover 13 is covered from the upper side of the base plate 11, and the sensor cover 13 is inserted into the screw hole 13e on the lower end side of the sensor cover 13 provided at a position corresponding to the female screw hole 11b of the base plate 11. The sensor cover 13 is fixed to the base plate 11 by inserting a screw for fixing the screw into the female screw hole 11b.
The sensor cover 13 is provided with a plurality of screw holes 13 b corresponding to the positions of two fixing female screw holes 12 a provided on the upper end surface of the three vertical plates 12. A screw (not shown) for fixing the plate 12 is inserted and fitted into the fixing female screw hole 12a.

ワイヤポテンショメータ2のワイヤ引き出し孔2aから引き出された3本のワイヤ3はそれぞれセンサカバー13に径方向外方側に長く延びた長孔のワイヤ引き出し孔13aを挿通させて、引き出されその先端が変位測定端5として一点で結合されている。ワイヤ引き出し孔13aの幅は、変位測定端5の変位に対してワイヤ引き出し孔13aの縁に摺動すること無いような大きさとすることが望ましい。
これは、被測定対象物に変位測定端5が取り付けられたときに、変位測定端5の変位に対し、3本のワイヤ3がワイヤ引き出し孔2aから変位測定端5までの間で直線となり、変位測定端5がワイヤ引き出し孔2aから直線的に延びて構成する三角錐の頂点となることが変位測定端5の変位測定の上で仮定されて後記する相関式が設定されるためである。
The three wires 3 pulled out from the wire pull-out hole 2a of the wire potentiometer 2 are each pulled out by inserting a long wire lead-out hole 13a extending long radially outward into the sensor cover 13, and the tip thereof is displaced. The measuring end 5 is connected at one point. The width of the wire lead-out hole 13a is desirably set to a size that does not slide on the edge of the wire lead-out hole 13a with respect to the displacement of the displacement measuring end 5.
This is because, when the displacement measuring end 5 is attached to the object to be measured, the three wires 3 are linear from the wire drawing hole 2a to the displacement measuring end 5 with respect to the displacement of the displacement measuring end 5, This is because the displacement measurement end 5 is assumed to be the apex of a triangular pyramid formed by linearly extending from the wire lead-out hole 2a, and the correlation equation described later is set on the assumption of the displacement measurement of the displacement measurement end 5.

なお、センサカバー13は基本的に図1の(a)に示すように上面側(天井側)が有底の四角筒形状であり、その側面の一つが、ベースプレート11の基準辺11cに対向する辺11dに対応した側面になっており、固定用側面13cを構成している。固定用側面13cの周縁部には、ベースプレート11とセンサカバー13とを固定するための前記したねじ孔13eと干渉しないように雌ねじを切られた取り付けねじ孔13dが設けられ、この取り付けねじ孔13dにねじ嵌合させて三次元変位センサ1を固定することが可能になっている。   As shown in FIG. 1A, the sensor cover 13 is basically a rectangular tube shape having a bottom on the upper surface (ceiling side), and one of its side faces the reference side 11c of the base plate 11. It is a side surface corresponding to the side 11d, and constitutes a fixing side surface 13c. At the peripheral edge of the fixing side surface 13c, there is provided a mounting screw hole 13d having a female screw cut so as not to interfere with the above-described screw hole 13e for fixing the base plate 11 and the sensor cover 13, and this mounting screw hole 13d. It is possible to fix the three-dimensional displacement sensor 1 by screw-fitting to the screw.

図2は、三次元変位センサにおける3本のワイヤの先端を結合した変位測定端のXYZ方向の動きに対するワイヤの引き出し量の変化の説明図であり、(a)は、変位測定端のZ方向への移動の場合の説明図、(b)は、変位測定端のX方向への移動の場合の説明図、(c)は、変位測定端のY方向への移動の場合の説明図である。
このように変位測定端5が初期位置から符号5’で示した位置に、それぞれZ方向、X方向、Y方向に移動しても、3箇所のワイヤ引き出し孔2aを頂点とする正三角形の底面とし、ワイヤ引き出し孔2aから直線的に変位測定端5に延びる3本のワイヤ3を稜線とした三角錐により、三角錐の稜線の長さ、つまり、ワイヤ引き出し孔2aからワイヤ3が引き出された量が分かれば、三角錐の頂点である変位測定端5の三角錐の底面の中心点からの三次元空間中の位置を一意に算出して決定できる。そして、三次元変位センサ1のベースプレート11の3箇所のワイヤ引き出し孔2aを頂点とする正三角形の底面の中心と平面中心O(図1の(b)参照)との相対位置関係は既知であるので、容易に平面中心Oからの変位測定端5の相対位置を三次元的に一意に計算で求めることができる。
FIG. 2 is an explanatory diagram of a change in the amount of wire drawn with respect to the movement in the XYZ directions of the displacement measurement end in which the tips of three wires are combined in the three-dimensional displacement sensor, and (a) is the Z direction of the displacement measurement end. FIG. 4B is an explanatory diagram when the displacement measurement end is moved in the X direction, and FIG. 4C is an explanatory diagram when the displacement measurement end is moved in the Y direction. .
Thus, even if the displacement measuring end 5 moves from the initial position to the position indicated by 5 'in the Z direction, the X direction, and the Y direction, respectively, the bottom surface of an equilateral triangle having the three wire lead holes 2a as apexes. The length of the ridge line of the triangular pyramid, that is, the wire 3 was pulled out from the wire pull-out hole 2a by a triangular pyramid having three wires 3 extending linearly from the wire pull-out hole 2a to the displacement measuring end 5 as ridge lines. If the amount is known, the position in the three-dimensional space from the center point of the bottom surface of the triangular pyramid of the displacement measuring end 5 which is the apex of the triangular pyramid can be uniquely calculated and determined. The relative positional relationship between the center of the bottom surface of the equilateral triangle whose apexes are the three wire drawing holes 2a of the base plate 11 of the three-dimensional displacement sensor 1 and the plane center O (see FIG. 1B) is known. Therefore, the relative position of the displacement measuring end 5 from the plane center O can be easily calculated three-dimensionally and uniquely.

《三次元変位測定装置の全体構成》
次に、図3,4を参照しながら、三次元変位測定装置50について説明する。
図3は、エンジン及びトランスミッションの結合体の振動変位を三次元変位センサ3個で測定する場合の三次元変位センサの設置例の説明図である。
この例では、車両Vは、エンジン21を横置きする前輪駆動車両である。ここでは、エンジン21とトランスミッション(変速機)23とが一体に結合されたものを被測定対象物とし、エンジン21及びトランスミッション23は、車体の前部側面の左右のフレーム31L,31R上に設けたエンジンマウント26L,26Rで車両Vの左右で支持されるとともに、図示省略のサブフレーム上に設けたエンジンマウント28F,28Rでエンジン21の前後が支持される。
エンジン21は、エンジンマウント26R,28F,28Rで支持される支持受け部25R,27F,27Rを有し、トランスミッション23は、エンジンマウント26Lで支持される支持受け部25Lを有している。
<< Overall configuration of three-dimensional displacement measuring device >>
Next, the three-dimensional displacement measuring device 50 will be described with reference to FIGS.
FIG. 3 is an explanatory diagram of an installation example of a three-dimensional displacement sensor when the vibration displacement of the combined engine and transmission is measured by three three-dimensional displacement sensors.
In this example, the vehicle V is a front wheel drive vehicle in which the engine 21 is placed horizontally. Here, an object in which the engine 21 and the transmission (transmission) 23 are integrally coupled is an object to be measured, and the engine 21 and the transmission 23 are provided on the left and right frames 31L and 31R on the front side surface of the vehicle body. The engine mounts 26L and 26R are supported on the left and right of the vehicle V, and the engine mounts 28F and 28R provided on a subframe (not shown) support the front and rear of the engine 21.
The engine 21 has support receiving portions 25R, 27F, 27R supported by engine mounts 26R, 28F, 28R, and the transmission 23 has a support receiving portion 25L supported by the engine mount 26L.

そして、各エンジンマウント26L,26R,28F,28Rにおけるエンジン21又はトランスミッション23の三次元変位量を測定し、そのエンジンマウント26L,26R,28F,28Rの耐久性試験等の解析に利用することが、この三次元変位測定装置50(図4参照)を用いてこの被測定対象物の三次元変位量を測定する目的である。そのために、左右のフレーム31L,31R上に、例えば、仮想線で示したほぼコの字形の枠体である試験架台32を溶接等で固定し、その天板の下面に3個の三次元変位センサ(三次元変位測定ユニット)1A,1B,1Cがねじ止め固定されている。ここで、三次元変位センサ1A,1B,1Cは、図1の三次元変位センサ1と同じものであるが、それを区別するため符号を1A,1B,1Cと変えてある。変位測定端5A,5B,5Cも、図1の三次元変位センサ1の変位測定端5と同じものであるが、それを区別するため符号を5A,5B,5Cと変えてある。   Then, the three-dimensional displacement amount of the engine 21 or the transmission 23 in each engine mount 26L, 26R, 28F, 28R is measured and used for analysis such as a durability test of the engine mount 26L, 26R, 28F, 28R. The purpose is to measure the three-dimensional displacement amount of the measurement object using the three-dimensional displacement measuring device 50 (see FIG. 4). For this purpose, for example, a test base 32 which is a substantially U-shaped frame indicated by an imaginary line is fixed on the left and right frames 31L and 31R by welding or the like, and three three-dimensional displacements are provided on the lower surface of the top plate. Sensors (three-dimensional displacement measuring units) 1A, 1B, 1C are fixed with screws. Here, the three-dimensional displacement sensors 1A, 1B, and 1C are the same as the three-dimensional displacement sensor 1 of FIG. 1, but the reference numerals are changed to 1A, 1B, and 1C to distinguish them. The displacement measurement ends 5A, 5B, and 5C are also the same as the displacement measurement end 5 of the three-dimensional displacement sensor 1 of FIG. 1, but the reference numerals are changed to 5A, 5B, and 5C to distinguish them.

三次元変位センサ1A,1Bは、試験架台32の天板に変位測定端5A,5Bがベースプレート11の平面中心O(図1参照)のほぼ垂直下になるようにベースプレート11(図1参照)の取り付けねじ孔11aを用いてねじ固定されている。変位測定端5Aは、支持受け部25Rの上面に固定されている。具体的には、例えば、変位測定端5Aを金属製の小片である取り付け部材(測定点)29Aに溶接又は接着固定し、更にその取り付け部材29Aを支持受け部25Rに溶接固定する。同様に変位測定端5Bは、トランスミッション23の支持受け部25Lの上面に取り付け部材(測定点)29Bを介して固定されている。   The three-dimensional displacement sensors 1A, 1B are arranged on the base plate 11 (see FIG. 1) so that the displacement measurement ends 5A, 5B are substantially perpendicular to the plane center O (see FIG. 1) of the base plate 11 on the top plate of the test stand 32. Screws are fixed using the attachment screw holes 11a. The displacement measuring end 5A is fixed to the upper surface of the support receiving portion 25R. Specifically, for example, the displacement measuring end 5A is welded or adhered and fixed to an attachment member (measurement point) 29A that is a small metal piece, and the attachment member 29A is welded and fixed to the support receiving portion 25R. Similarly, the displacement measurement end 5B is fixed to the upper surface of the support receiving portion 25L of the transmission 23 via an attachment member (measurement point) 29B.

エンジンマウント28F,28Rにおけるエンジン21の三次元変位量を測定しようとしてもエンジン21の上部の外形の出っ張りや、エンジン21に隣接する機器や配線等が邪魔になり直接測定できない。そこで、三次元変位センサ1Cの変位測定端5Cが、エンジン21の上部に取り付け部材(測定点)29Cを介して変位測定端5Aと同様の方法で固定される。このとき、三次元変位センサ1Cは、センサカバー13(図1参照)の固定用側面13cに設けられた取り付けねじ孔13dを用いて、試験架台32の天板に固定されている。つまり、三次元変位センサ1Cのベースプレート11の平面中心O(図1参照)の斜め下方(車両Vで見ると前方側の三次元変位センサ1Cの平面中心Oから手前下方)に変位測定端5Cが位置している。
ここで、取り付け部材29A,29B,29Cを取り付けられた部位が、特許請求の範囲に記載の「測定点」に対応する。その意味でエンジン21又はトランスミッション23に固定された取り付け部材29A,29B,29Cそのものを特許請求の範囲に記載の「測定点」としても良い。
Even if an attempt is made to measure the three-dimensional displacement amount of the engine 21 in the engine mounts 28F and 28R, the protrusion of the outer shape of the upper part of the engine 21 and the equipment and wiring adjacent to the engine 21 become obstructive and cannot be measured directly. Therefore, the displacement measurement end 5C of the three-dimensional displacement sensor 1C is fixed to the upper portion of the engine 21 through a mounting member (measurement point) 29C in the same manner as the displacement measurement end 5A. At this time, the three-dimensional displacement sensor 1C is fixed to the top plate of the test gantry 32 using the mounting screw holes 13d provided in the fixing side surface 13c of the sensor cover 13 (see FIG. 1). That is, the displacement measuring end 5C is obliquely below the plane center O (see FIG. 1) of the base plate 11 of the three-dimensional displacement sensor 1C (when viewed from the vehicle V, the front side is below the plane center O of the three-dimensional displacement sensor 1C on the front side). positioned.
Here, the parts to which the attachment members 29A, 29B, and 29C are attached correspond to “measurement points” described in the claims. In that sense, the attachment members 29A, 29B, 29C themselves fixed to the engine 21 or the transmission 23 may be used as “measurement points” described in the claims.

エンジン21及びトランスミッション23の結合体は、ほぼ剛体とみなすことができ、三次元変位センサ1A,1B,1Cにより変位測定端5A,5B,5Cの三次元変位量が測定できれば、エンジン21及びトランスミッション23の結合体の三次元変位量が分かるので、変位測定端5が取り付けられていない支持受け部27F,27Rの三次元変位量を計算によって求めることができる。   The combined body of the engine 21 and the transmission 23 can be regarded as a substantially rigid body. If the three-dimensional displacement amounts of the displacement measuring ends 5A, 5B, and 5C can be measured by the three-dimensional displacement sensors 1A, 1B, and 1C, the engine 21 and the transmission 23 are combined. Therefore, the three-dimensional displacement amount of the support receiving portions 27F and 27R to which the displacement measuring end 5 is not attached can be obtained by calculation.

ここで、エンジン21及びトランスミッション23の結合体の三次元変位量を算出するための直角座標系のXYZの座標軸の設定方法について説明する。例えば、X軸はエンジン21のクランク軸の回転中心軸35と一致させるようにし、エンジン21及びトランスミッション23の結合体の重心Gを含む垂直面がX軸と垂直に交わる点を直角座標系の座標原点(直角三次元座標系の原点)36とし、座標原点36から垂直にZ軸を、座標原点36からX軸及びZ軸に共に直角となるY軸を車両Vの前方水平方向に設定する。
そして、X軸周りの角度変位をロール振動と称し、Y軸周りの角度変位をピッチ振動と称し、Z軸周りの角度変位をヨー振動と称する。そして、三次元変位センサ1A,1B,1Cにより測定された変位測定端5A,5B,5Cの三次元変位量に基づいて、座標原点36の三次元並進振動、ロール振動、ピッチ振動及びヨー振動の成分を算出し、三次元変位量を直接測定することができない支持受け部27F,27Rの三次元変位量を算出する。
ここで支持受け部25L,25R,27F,27Rが特許請求の範囲に記載の「着目点」に対応する。従って、本実施形態では、支持受け部25L,25Rは、特許請求の範囲に記載の「測定点」でもあり、「着目点」でもある。
Here, a method of setting the XYZ coordinate axes of the rectangular coordinate system for calculating the three-dimensional displacement amount of the combined body of the engine 21 and the transmission 23 will be described. For example, the X axis is made to coincide with the rotation center axis 35 of the crankshaft of the engine 21, and the point where the vertical plane including the center of gravity G of the combined body of the engine 21 and the transmission 23 intersects with the X axis is a coordinate in the rectangular coordinate system. The origin (the origin of a right-angle three-dimensional coordinate system) 36 is set, and the Z axis is set perpendicularly from the coordinate origin 36 and the Y axis perpendicular to the X axis and the Z axis from the coordinate origin 36 is set in the horizontal direction in front of the vehicle V.
The angular displacement around the X axis is called roll vibration, the angular displacement around the Y axis is called pitch vibration, and the angular displacement around the Z axis is called yaw vibration. Based on the three-dimensional displacement amounts of the displacement measuring ends 5A, 5B, and 5C measured by the three-dimensional displacement sensors 1A, 1B, and 1C, three-dimensional translational vibration, roll vibration, pitch vibration, and yaw vibration of the coordinate origin 36 are obtained. The components are calculated, and the three-dimensional displacement amounts of the support receiving portions 27F and 27R that cannot directly measure the three-dimensional displacement amount are calculated.
Here, the support receiving portions 25L, 25R, 27F, and 27R correspond to “target points” recited in the claims. Therefore, in the present embodiment, the support receiving portions 25L and 25R are both “measurement points” and “target points” described in the claims.

図4は、三次元変位測定装置の機能ブロック構成図である。図4に示すように三次元変位測定装置50は、三次元変位センサ1A,1B,1C、信号前処理装置53、計測用コンピュータ51から構成される。計測用コンピュータ51としては、普通の市販のノート型パーソナルコンピュータでも良い。計測用コンピュータ51は、コンピュータ本体51a、液晶表示装置等から構成された表示部51b、キーボード、マウス等の入力装置51c、ハードディスク装置等で構成された記憶部51d、CPU51e等を含んでおり、他に図示しないROM,RAMや、CPU51e,ROM,RAM、入出力インタフェース間を接続するバス等を含んでいる。
図1に示したように三次元変位センサ1A,1B,1Cは、それぞれ3個のワイヤポテンショメータ2を有しており、その中に内蔵されたホール素子からの出力信号が信号前処理装置53の個別の信号前処理回路54で、増幅及びA/D変換され、計測用コンピュータ51の入力インタフェースに入力される。
FIG. 4 is a functional block configuration diagram of the three-dimensional displacement measuring apparatus. As shown in FIG. 4, the three-dimensional displacement measuring device 50 includes three-dimensional displacement sensors 1 </ b> A, 1 </ b> B, 1 </ b> C, a signal preprocessing device 53, and a measurement computer 51. The measurement computer 51 may be an ordinary commercially available notebook personal computer. The measurement computer 51 includes a computer main unit 51a, a display unit 51b composed of a liquid crystal display device, an input device 51c such as a keyboard and a mouse, a storage unit 51d composed of a hard disk device, a CPU 51e, etc. 1 includes a ROM and RAM (not shown), a CPU 51e, ROM, RAM, a bus for connecting the input / output interfaces, and the like.
As shown in FIG. 1, each of the three-dimensional displacement sensors 1A, 1B, and 1C has three wire potentiometers 2, and an output signal from a hall element incorporated therein is a signal preprocessing device 53. The signal is amplified and A / D converted by an individual signal preprocessing circuit 54 and input to the input interface of the measurement computer 51.

そして、記憶部51dに予め格納された三次元変位測定プログラムをCPU51eが読み出して、実行する機能部として、制御部61、三次元変位センサ1A,1B,1Cに対応して1組のセットとして3つのワイヤ引き出し長さ演算部(ポテンショメータ信号取得手段)62、座標軸設定部(座標軸設定手段)64、換算式設定部(換算式設定手段)65及び三次元変位量演算部(測定点変位量算出手段)66、被測定対象物三次元座標設定部67、並びに被測定対象物三次元変位解析部70を含んでいる。その他にCPU51eが実行する機能部として、車両情報取得部63を含んでいる。
前記した1組のセットとしての3つのワイヤ引き出し長さ演算部62、座標軸設定部64、換算式設定部65及び三次元変位量演算部66は、図4に示すように三次元変位センサ1A,1B,1Cに対応してA系、B系、C系の3組用意されている。
Then, the CPU 51e reads out and executes the three-dimensional displacement measurement program stored in advance in the storage unit 51d, and functions as a set of three sets corresponding to the control unit 61 and the three-dimensional displacement sensors 1A, 1B, and 1C. One wire drawing length calculation unit (potentiometer signal acquisition unit) 62, coordinate axis setting unit (coordinate axis setting unit) 64, conversion formula setting unit (conversion formula setting unit) 65, and three-dimensional displacement amount calculation unit (measurement point displacement amount calculation unit) ) 66, a measurement target object three-dimensional coordinate setting unit 67, and a measurement target object three-dimensional displacement analysis unit 70. In addition, the vehicle information acquisition part 63 is included as a function part which CPU51e performs.
As shown in FIG. 4, the three wire drawing length calculation unit 62, the coordinate axis setting unit 64, the conversion formula setting unit 65, and the three-dimensional displacement amount calculation unit 66 as a set of the above-described sets are arranged as shown in FIG. Three sets of A, B, and C systems are prepared corresponding to 1B and 1C.

被測定対象物三次元座標設定部67は、座標原点設定部(測定点座標設定手段、着目点座標設定手段)67a、測定点座標設定部(測定点座標設定手段)67b、着目点座標設定部(着目点座標設定手段)67cを含んでいる。
被測定対象物三次元変位解析部70は、測定点三次元座標換算部(着目点変位量算出手段)71、着目点三次元座標変位演算部(着目点変位量算出手段)72を含んでいる。そして、着目点三次元座標変位演算部72は、被測定対象物三次元運動解析部72aと着目点三次元座標換算部72bから構成されている。ちなみに、測定点三次元座標換算部71は、前記したA〜C系に対応してA系測定点三次元座標換算部71a、B系測定点三次元座標換算部71b、C系測定点三次元座標換算部71cを含んでいる。
The measurement object three-dimensional coordinate setting unit 67 includes a coordinate origin setting unit (measurement point coordinate setting unit, target point coordinate setting unit) 67a, a measurement point coordinate setting unit (measurement point coordinate setting unit) 67b, and a target point coordinate setting unit. (Focus point coordinate setting means) 67c is included.
The to-be-measured object three-dimensional displacement analysis unit 70 includes a measurement point three-dimensional coordinate conversion unit (target point displacement amount calculation means) 71 and a target point three-dimensional coordinate displacement calculation unit (target point displacement amount calculation means) 72. . The point-of-interest three-dimensional coordinate displacement calculation unit 72 includes a measurement target object three-dimensional motion analysis unit 72a and a point-of-interest three-dimensional coordinate conversion unit 72b. Incidentally, the measurement point three-dimensional coordinate conversion unit 71 corresponds to the above-described A to C systems, the A-system measurement point three-dimensional coordinate conversion unit 71a, the B-system measurement point three-dimensional coordinate conversion unit 71b, the C-system measurement point three-dimensional. A coordinate conversion unit 71c is included.

(制御部と初期設定の機能)
制御部61は、初期設定の機能の一つ目として、三次元変位センサ1A,1B,1Cの設置条件に対応した各A〜C系の三次元変位量演算部66における直角三次元座標系におけるX,Y,Zの各座標軸方向(XYZ方向)の成分の三次元変位量を算出するために、A〜C系のそれぞれの座標軸設定部64においてX,Y,Zの各座標軸方向をそれぞれの座標軸方向に対する+−方向も含めて、測定者による表示部51bと入力装置51cを用いた設定入力を可能とする座標軸方向設定入力機能を有している。
(Control unit and initial setting function)
As a first initial setting function, the control unit 61 uses a three-dimensional displacement amount calculation unit 66 of each of the AC systems corresponding to the installation conditions of the three-dimensional displacement sensors 1A, 1B, 1C in a right-angle three-dimensional coordinate system. In order to calculate the three-dimensional displacement amounts of the components in the X, Y, and Z coordinate axis directions (XYZ directions), the respective coordinate axis setting units 64 of the A to C systems respectively change the X, Y, and Z coordinate axis directions. It has a coordinate axis direction setting input function that allows a measurement person to perform setting input using the display unit 51b and the input device 51c, including the + -direction with respect to the coordinate axis direction.

また、制御部61は、初期設定の機能の二つ目として、前記した座標軸方向設定入力機能の作業の終了後に、前記した座標軸方向設定入力機能の結果を用いてA〜C系の換算式設定部65に、それぞれの系に含まれる3つのワイヤ引き出し長さ演算部62の算出したワイヤポテンショメータ2の回転角を示す出力信号に基づくワイヤ引き出し長さにより、初期状態におけるワイヤ引き出し長さからのワイヤ引き出し長さの変化量をX,Y,Zの各座標軸方向の成分の三次元変位量として三次元変位量演算部66にて換算算出する際に用いる換算式の係数を、A〜C系のそれぞれの換算式設定部65において、測定者による表示部51bと入力装置51cを用いた設定入力を可能とする機能を有している。   In addition, as a second initial setting function, the control unit 61 sets the conversion formulas for the A to C systems using the result of the coordinate axis direction setting input function after completion of the operation of the coordinate axis direction setting input function. In the unit 65, the wire drawing length based on the output signal indicating the rotation angle of the wire potentiometer 2 calculated by the three wire drawing length calculation units 62 included in each system is used to determine the wire from the wire drawing length in the initial state. The coefficient of the conversion formula used when the three-dimensional displacement amount calculation unit 66 calculates the change amount of the drawer length as the three-dimensional displacement amount of the component in the X, Y, and Z coordinate axes, Each conversion formula setting unit 65 has a function that enables the measurement input by the measurer using the display unit 51b and the input device 51c.

そのため、制御部61は、A〜C系のそれぞれの座標軸設定部64、換算式設定部65と接続している。座標軸設定部64で設定されたX,Y,Z方向は、それぞれの方向に対する+−方向も含めて換算式設定部65に入力される。
ちなみに、X,Y,Z方向のそれぞれの方向に対する+−方向は、後記する座標原点設定部67aにおけるそれぞれの方向に対する+−方向と整合したものである。
A〜C系のそれぞれの換算式設定部65で設定された換算式の係数は、それぞれの系の三次元変位量演算部66に入力される。
なお、変位測定端5A,5B,5Cそれぞれに対して、換算式は個別に用意され、個々の三次元変位センサ1の3本のワイヤ3で構成する三角錐の稜線の長さから三角錐の頂点である変位測定端5A,5B,5Cのそれぞれの三次元位置が一意に特定でき、それを容易に換算式でXYZの直角三次元座標に変換できる。しかし、変位測定端5A,5B,5Cのそれぞれの初期状態における三角錐の形状は異なるし、また、三次元変位センサ1の取り付け方向も異なる可能性があることからこの座標軸方向設定入力機能が必要になる。
For this reason, the control unit 61 is connected to the coordinate axis setting unit 64 and the conversion formula setting unit 65 of the A to C systems. The X, Y, and Z directions set by the coordinate axis setting unit 64 are input to the conversion formula setting unit 65 including the + − direction with respect to each direction.
Incidentally, the + − direction with respect to each of the X, Y, and Z directions is consistent with the + − direction with respect to each direction in the coordinate origin setting unit 67a described later.
The coefficient of the conversion formula set by the conversion formula setting unit 65 of each of the A to C systems is input to the three-dimensional displacement amount calculation unit 66 of each system.
For each of the displacement measuring ends 5A, 5B, and 5C, a conversion formula is individually prepared. From the length of the ridge line of the triangular pyramid formed by the three wires 3 of each three-dimensional displacement sensor 1, the conversion formula is calculated. The three-dimensional positions of the vertexes of the displacement measuring ends 5A, 5B, and 5C can be uniquely identified, and can be easily converted into XYZ right-angle three-dimensional coordinates using a conversion formula. However, the shape of the triangular pyramid in the initial state of each of the displacement measuring ends 5A, 5B and 5C is different, and the mounting direction of the three-dimensional displacement sensor 1 may be different, so this coordinate axis direction setting input function is necessary. become.

制御部61は、初期設定の機能の三つ目として、被測定対象物、ここでは、エンジン21及びトランスミッション23の結合体のXYZの直角三次元座標系における座標原点36と、X,Y,Z座標軸をその正負の方向も含めて設定するために、被測定対象物三次元座標設定部67の座標原点設定部67aにおいて、測定者による表示部51bと入力装置51cを用いた設定入力を可能とする機能を有している。そのため、制御部61は、座標原点設定部67aと接続しており、座標原点設定部67aにおいて設定された座標原点36及び、その正負の方向も含んだX,Y,Z座標軸の方向は、測定点座標設定部67b、着目点座標設定部67c、測定点三次元座標換算部71、着目点三次元座標変位演算部72に入力される(図3参照)。   As a third function of the initial setting, the control unit 61 performs the coordinate origin 36 in the XYZ right-angle three-dimensional coordinate system of the object to be measured, here, the combination of the engine 21 and the transmission 23, and the X, Y, Z In order to set the coordinate axis including the positive and negative directions, it is possible to perform setting input by the measurer using the display unit 51b and the input device 51c in the coordinate origin setting unit 67a of the measurement object three-dimensional coordinate setting unit 67. It has a function to do. Therefore, the control unit 61 is connected to the coordinate origin setting unit 67a. The coordinate origin 36 set in the coordinate origin setting unit 67a and the directions of the X, Y, and Z coordinate axes including the positive and negative directions are measured. The point coordinate setting unit 67b, the point of interest coordinate setting unit 67c, the measurement point three-dimensional coordinate conversion unit 71, and the point of interest three-dimensional coordinate displacement calculation unit 72 are input (see FIG. 3).

これは、例えば、CADシステムで被測定対象物であるエンジン21及びトランスミッション23の結合体の重心Gを求めて、車載状態でのクランク軸の回転中心軸35をX軸と定め、重心Gを含む垂直面がX軸と垂直に交わる点を直角三次元座標の座標原点36とすることによって設定することとする。ここで、座標原点36から車体左方向をX方向(+)方向とし、座標原点36から車体右方向をX方向(−)方向とする。
そして、重心Gを含む垂直面内の座標原点36から水平方向に前後に延びるY座標軸を設定し、例えば、前方方向をY方向(+)とし、後方方向をY方向(−)方向とする。重心Gを含む垂直面内の座標原点36から鉛直方向に上下に延びるZ座標軸を設定し、例えば、上方方向をZ方向(+)とし、下方方向をZ方向(−)方向とする。
For example, the center of gravity G of the combined body of the engine 21 and the transmission 23, which is the object to be measured, is obtained by the CAD system, the rotation center axis 35 of the crankshaft in the vehicle-mounted state is defined as the X axis, and the center of gravity G is included. The point where the vertical plane intersects perpendicularly with the X axis is set as the coordinate origin 36 of right-angle three-dimensional coordinates. Here, the left direction of the vehicle body from the coordinate origin 36 is defined as the X direction (+) direction, and the right direction of the vehicle body from the coordinate origin 36 is defined as the X direction (−) direction.
Then, a Y coordinate axis extending back and forth in the horizontal direction from the coordinate origin 36 in the vertical plane including the center of gravity G is set. For example, the front direction is the Y direction (+) and the rear direction is the Y direction (−) direction. A Z coordinate axis extending vertically from the coordinate origin 36 in the vertical plane including the center of gravity G is set. For example, the upward direction is the Z direction (+) and the downward direction is the Z direction (−) direction.

制御部61は、初期設定の機能の四つ目として、被測定対象物の測定点(図3の取り付け部材29A,29B,29Cが対応)の初期位置の三次元座標を、測定点座標設定部67bにおいて、測定者による表示部51bと入力装置51cを用いた設定入力を可能とする機能を有している。そのため、制御部61は、測定点座標設定部67bと接続しており、測定点座標設定部67bにおいて設定された取り付け部材29A(図3参照)の初期位置の三次元座標は、A系測定点三次元座標換算部71aに入力され、取り付け部材29B(図3参照)の初期位置の三次元座標は、B系測定点三次元座標換算部71bに入力され、取り付け部材29Cの初期位置の三次元座標は、C系測定点三次元座標換算部71cに入力されるとともに、測定点である取り付け部材29A,29B,29Cの初期位置の三次元座標が着目点三次元座標変位演算部72に入力される。
取り付け部材29A,29B,29Cの三次元座標の入力設定は、CADシステムで前記した原点と、座標軸を設定することによって容易に算出され、測定者はそのデータを入力することで簡単に行える。
As the fourth function of the initial setting, the control unit 61 uses the three-dimensional coordinates of the initial position of the measurement point of the measurement target object (corresponding to the attachment members 29A, 29B, and 29C in FIG. 3) as the measurement point coordinate setting unit. 67b has a function that enables the measurement input by the measurer using the display unit 51b and the input device 51c. Therefore, the control unit 61 is connected to the measurement point coordinate setting unit 67b, and the three-dimensional coordinates of the initial position of the attachment member 29A (see FIG. 3) set in the measurement point coordinate setting unit 67b are A-system measurement points. The three-dimensional coordinates of the initial position of the attachment member 29B (see FIG. 3) input to the three-dimensional coordinate conversion unit 71a are input to the B-system measurement point three-dimensional coordinate conversion unit 71b and the three-dimensional of the initial position of the attachment member 29C. The coordinates are input to the C-system measurement point three-dimensional coordinate conversion unit 71c, and the three-dimensional coordinates of the initial positions of the attachment members 29A, 29B, and 29C that are measurement points are input to the target point three-dimensional coordinate displacement calculation unit 72. The
The input setting of the three-dimensional coordinates of the attachment members 29A, 29B, and 29C is easily calculated by setting the origin and the coordinate axis as described above in the CAD system, and the measurer can easily perform the input by inputting the data.

制御部61は、初期設定の機能の五つ目として、被測定対象物の着目点(本実施形態では、支持受け部27F,27R)の初期位置の三次元座標を、測定点座標設定部67bにおいて、測定者による表示部51bと入力装置51cを用いた設定入力を可能とする機能を有している。そのため、制御部61は、着目点座標設定部67cと接続している。
なお、測定点座標設定部67bから測定点である取り付け部材29A,29B,29Cの初期位置の三次元座標が、着目点座標設定部67cに入力されているので、測定者による着目点の入力は、測定点と着目点が同じ部位であるものについては、その三次元座標を表示部51bの画面表示を見ながら入力装置51cでコピーして貼り付けることができる。
着目点座標設定部67cにおいて設定された着目点の初期位置の三次元座標は、着目点三次元座標変位演算部72に入力される。
着目点の三次元座標の入力設定は、CADシステムで前記した原点と、座標軸を設定することによって容易に算出され、測定者はそのデータを入力することで簡単に行える。
As a fifth initial setting function, the control unit 61 sets the three-dimensional coordinates of the initial position of the point of interest of the measurement target object (in the present embodiment, the support receiving portions 27F and 27R) as the measurement point coordinate setting unit 67b. 1 has a function that enables a measurement person to perform setting input using the display unit 51b and the input device 51c. Therefore, the control unit 61 is connected to the point-of-interest coordinate setting unit 67c.
In addition, since the three-dimensional coordinates of the initial positions of the attachment members 29A, 29B, and 29C, which are measurement points, are input from the measurement point coordinate setting unit 67b to the target point coordinate setting unit 67c, the measurement point input by the measurer is as follows. In the case where the measurement point and the point of interest are the same part, the three-dimensional coordinates can be copied and pasted by the input device 51c while viewing the screen display of the display unit 51b.
The three-dimensional coordinates of the initial position of the target point set in the target point coordinate setting unit 67c are input to the target point three-dimensional coordinate displacement calculation unit 72.
The input setting of the three-dimensional coordinates of the point of interest is easily calculated by setting the above-described origin and coordinate axes in the CAD system, and the measurer can easily perform the input by inputting the data.

制御部61による三次元変位センサ1A,1B,1CのX,Y,Zの各座標軸の方向(XYZ方向)をそれぞれの座標軸の方向に対する+−方向も含めた設定、三次元変位センサ1A,1B,1Cの出力信号に基づくXYZ方向の各成分の初期位置からの変位量算出用の換算式の設定、被測定対象物の直角座標系の座標原点36及び+−方向を含めたX,Y,Z方向の設定、測定点である取り付け部材29A,29B,29Cの三次元座標の設定、被測定対象物の着目点の三次元座標の設定が終了すると、初期設定の作業は終了する。その後、制御部61は、測定者によって表示部51bと入力装置51cを用いて、初期位置の記憶指令信号と測定開始の信号が入力されると、A〜C系の各ワイヤ引き出し長さ演算部62、三次元変位量演算部66、被測定対象物三次元変位解析部70に初期位置の記憶指令信号に続いて計測開始の指令信号を入力する。各ワイヤ引き出し長さ演算部62、三次元変位量演算部66、被測定対象物三次元変位解析部70は、初期位置の記憶指令信号を受けて、必要に応じて初期値をそれぞれ記憶し、計測開始の指令信号で、後記する演算を開始する。   The three-dimensional displacement sensors 1A, 1B are set by the control unit 61 including the directions of the X, Y, and Z coordinate axes (XYZ directions) of the three-dimensional displacement sensors 1A, 1B, and 1C with respect to the directions of the respective coordinate axes. , 1C based on the output signal, setting of a conversion formula for calculating the amount of displacement from the initial position of each component in the XYZ directions, the coordinate origin 36 of the rectangular coordinate system of the object to be measured, and the X, Y, including the + − direction, When the setting of the Z direction, the setting of the three-dimensional coordinates of the attachment members 29A, 29B, and 29C, which are measurement points, and the setting of the three-dimensional coordinates of the point of interest of the object to be measured are completed, the initial setting operation ends. After that, the control unit 61 uses the display unit 51b and the input device 51c by the measurer to input the storage command signal for the initial position and the measurement start signal. 62, a measurement start command signal is input to the three-dimensional displacement calculation unit 66 and the measurement target object three-dimensional displacement analysis unit 70 following the storage command signal of the initial position. Each wire drawing length calculator 62, three-dimensional displacement calculator 66, and three-dimensional displacement analyzer 70 to be measured receive an initial position storage command signal and store initial values as necessary. The calculation to be described later is started in response to the measurement start command signal.

(ワイヤ引き出し長さ演算部)
ワイヤ引き出し長さ演算部62は、個々のワイヤポテンショメータ2からの出力信号が信号前処理回路54で増幅されデジタル信号に変換されたものを入力として、ワイヤポテンショメータ2の角度変位量を示す出力信号を、ワイヤ引き出し孔2aからのワイヤ引き出し量に換算し、三次元変位量演算部66に出力する。この演算は、公知のものであり省略する。ちなみに、本実施形態におけるワイヤポテンショメータ2のプーリは初期位置から伸び方向又は縮み方向にそれぞれほぼ90度回転する程度の変位量に対応するものであり、大きな変位量を想定したものではない。
(Wire drawing length calculator)
The wire drawing length calculation unit 62 receives an output signal from each wire potentiometer 2 that has been amplified by the signal preprocessing circuit 54 and converted into a digital signal, and outputs an output signal indicating the amount of angular displacement of the wire potentiometer 2. Then, it is converted into a wire drawing amount from the wire drawing hole 2a and output to the three-dimensional displacement amount calculation unit 66. This calculation is well known and will be omitted. Incidentally, the pulley of the wire potentiometer 2 in the present embodiment corresponds to a displacement amount of approximately 90 degrees in the extension direction or the contraction direction from the initial position, and does not assume a large displacement amount.

(三次元変位量演算部)
A〜Cの各系の三次元変位量演算部66は、制御部61からの初期位置の記憶指令信号を受信したときの3つのワイヤ引き出し長さ演算部62からのワイヤ引き出し量を初期位置とし、計測開始後の3つのワイヤ引き出し長さ演算部62からのワイヤ引き出し量に対するX,Y,Z方向それぞれの初期位置からの三次元変位量を、換算式設定部65から入力された換算式の係数を用いて、所定の周期で算出する。A〜Cの各系の三次元変位量演算部66で算出された三次元変位量は、測定点三次元座標換算部71の当該の系の測定点三次元座標換算部71a,71b,71cに入力される。
(Three-dimensional displacement calculator)
The three-dimensional displacement amount calculation unit 66 of each of the systems A to C uses the wire drawing amounts from the three wire drawing length calculation units 62 when receiving the initial position storage command signal from the control unit 61 as the initial position. The three-dimensional displacement amounts from the initial positions in the X, Y, and Z directions with respect to the wire drawing amounts from the three wire drawing length calculation units 62 after the start of measurement are calculated using the conversion formula input from the conversion formula setting unit 65. Calculation is performed at a predetermined cycle using the coefficient. The three-dimensional displacement amount calculated by the three-dimensional displacement amount calculation unit 66 of each of the systems A to C is transferred to the measurement point three-dimensional coordinate conversion units 71a, 71b, 71c of the system of the measurement point three-dimensional coordinate conversion unit 71. Entered.

(測定点三次元座標換算部)
測定点三次元座標換算部71のA〜C系の測定点三次元座標換算部71a,71b,71cは、初期位置の測定点の三次元座標に、A〜C系の各系の三次元変位量演算部66から入力された三次元変位量を加算して、測定点三次元座標の変化推移のデータとして、着目点三次元座標変位演算部72に入力する。
また、A〜C系の測定点三次元座標換算部71a,71b,71cで算出された測定点三次元座標の変化推移のデータは、時刻データとともに記憶部51dに出力され、時系列で記憶格納される。
(Measurement point 3D coordinate conversion unit)
The measurement point three-dimensional coordinate conversion units 71a, 71b, 71c of the measurement point three-dimensional coordinate conversion unit 71 have three-dimensional displacements of the respective systems of A to C as the three-dimensional coordinates of the measurement points at the initial position. The three-dimensional displacement amount input from the amount calculation unit 66 is added and input to the point-of-interest three-dimensional coordinate displacement calculation unit 72 as change transition data of the measurement point three-dimensional coordinate.
The change transition data of the measurement point three-dimensional coordinates calculated by the measurement point three-dimensional coordinate conversion units 71a, 71b, 71c of the A to C systems is output to the storage unit 51d together with the time data, and stored in time series. Is done.

(着目点三次元座標変位演算部)
着目点三次元座標変位演算部72は、A〜C系の測定点三次元座標換算部71a,71b,71cで算出された測定点三次元座標の変化推移のデータと、測定点座標設定部67bから入力された測定点である取り付け部材29A,29B,29Cの初期位置の三次元座標と、に基づいて、被測定対象物三次元運動解析部72aにおいて、座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分を算出する。被測定対象物三次元運動解析部72aにおいて算出された座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分は、着目点三次元座標換算部72bに入力される。また、被測定対象物三次元運動解析部72aにおいて算出された座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分は、時刻データとともに記憶部51dに出力され、時系列で記憶格納される。
(Point of interest 3D coordinate displacement calculator)
The point-of-interest three-dimensional coordinate displacement calculation unit 72 includes change transition data of the measurement point three-dimensional coordinates calculated by the measurement point three-dimensional coordinate conversion units 71a, 71b, 71c of the A to C systems, and a measurement point coordinate setting unit 67b. Based on the three-dimensional coordinates of the initial positions of the attachment members 29A, 29B, and 29C, which are measurement points input from the X-, Y-, and Z-directions of the coordinate origin 36 in the three-dimensional motion analysis unit 72a to be measured. The displacement component of each of the translational displacement component, the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis is calculated. A translational displacement component in the X, Y, and Z directions of the coordinate origin 36 calculated by the three-dimensional motion analysis unit 72a to be measured, roll vibration around the X axis, pitch vibration around the Y axis, and yaw around the Z axis. The displacement component of each vibration is input to the target point three-dimensional coordinate conversion unit 72b. Further, the translational displacement component in the X, Y, and Z directions of the coordinate origin 36 calculated by the three-dimensional motion analysis unit 72a to be measured, roll vibration around the X axis, pitch vibration around the Y axis, and around the Z axis. The displacement component of each yaw oscillation is output to the storage unit 51d together with the time data, and is stored and stored in time series.

この被測定対象物三次元運動解析部72aにおける座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分は、A〜C系の測定点三次元座標換算部71a,71b,71cで算出された測定点三次元座標の変化推移のデータに基づき容易に算出できる。   The translational displacement component of the coordinate origin 36 in the X, Y, and Z directions, the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis in the measured object three-dimensional motion analysis unit 72a. Can be easily calculated based on the change transition data of the measurement point three-dimensional coordinates calculated by the measurement point three-dimensional coordinate conversion units 71a, 71b, 71c of the A to C systems.

着目点三次元座標換算部72bは、被測定対象物三次元運動解析部72aにおいて算出された座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分と、取り付け部材29A,29B,29Cと異なる着目点(ここでは、図3の支持受け部27F,27Rが対応)の初期位置の三次元座標に基づいて、着目点である支持受け部27F,27RのX,Y,Z方向の三次元変位量を算出する。測定点ではない着目点である支持受け部27F,27Rの着目点三次元座標換算部72bで算出された三次元変位量は、時刻データとともに記憶部51dに出力され、時系列で記憶格納される。
この着目点である支持受け部27F,27RのX,Y,Z方向の三次元変位量は、支持受け部27F,27Rの初期位置の三次元座標と、座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分とから容易に算出できる。
着目点であるとともに測定点でもある取り付け部材29A,29Bが取り付けられた支持受け部25L,25Rの三次元変位量は、A,B系の三次元変位量演算部66から被測定対象物三次元変位解析部70に入力されたものがそのまま用いられる。
The point-of-interest three-dimensional coordinate conversion unit 72b includes a translational displacement component in the X, Y, and Z directions of the coordinate origin 36 calculated by the three-dimensional motion analysis unit 72a to be measured, roll vibration around the X axis, and Y axis. Displacement component of each of the pitch vibration around the Z-axis and the yaw vibration around the Z-axis, and the tertiary of the initial position of the points of interest different from the attachment members 29A, 29B, and 29C (here, the support receiving portions 27F and 27R in FIG. 3 correspond) Based on the original coordinates, the three-dimensional displacement amounts in the X, Y, and Z directions of the support receiving portions 27F and 27R that are the points of interest are calculated. The three-dimensional displacement amount calculated by the point-of-interest three-dimensional coordinate conversion unit 72b of the support receiving portions 27F and 27R that are the point of interest that is not the measurement point is output to the storage unit 51d together with the time data, and is stored and stored in time series. .
The three-dimensional displacement amounts in the X, Y, and Z directions of the support receiving portions 27F and 27R that are the points of interest are the three-dimensional coordinates of the initial positions of the support receiving portions 27F and 27R and the X, Y, and Z directions of the coordinate origin 36. Can be easily calculated from the displacement components of the translational displacement component and the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis.
The three-dimensional displacement amount of the support receiving portions 25L and 25R to which the attachment members 29A and 29B that are the focus points and the measurement points are attached is obtained from the three-dimensional displacement amount calculation unit 66 of the A and B systems. What is input to the displacement analysis unit 70 is used as it is.

なお、本実施形態では、車両Vを車両試験装置であるロードシミュレータの上に載せて、例えば、駆動輪である前輪に対し各種の走行状態を与え、車両Vでは、エンジン21の回転速度や出力トルクを変えたり、トランスミッション23の変速段を変えたり、ブレーキ操作をして、車両走行状況を変化させて耐久試験を行い、三次元変位測定装置50は、車両走行状況に応じた被測定対象物であるエンジン21及びトランスミッション23の結合体の支持受け部25L,25R,27F,27Rの三次元変位量を測定する。そのために、計測用コンピュータ51は、入力インタフェース装置55に、例えば、車両Vのエンジン回転速度信号Ne、アクセル開度信号SAc、トランスミッション23のギアシフト位置信号SSft、駆動輪の車輪速信号SV、ブレーキの踏み込み量を示すブレーキ操作信号SB、ロードシミュレータ側で検出される駆動輪の駆動トルクを示す駆動トルク信号STD等の車両情報が入力され、それぞれの入力信号に応じた前処理回路56A,56B,56C,56D,56E,56Fを介して計測用コンピュータ51の入力インタフェースに入力され、車両情報取得部63で取得され、時刻データとともに記憶部51dに記憶格納される。 In the present embodiment, the vehicle V is placed on a road simulator that is a vehicle test device, and various traveling states are given to the front wheels that are driving wheels, for example. The torque is changed, the gear position of the transmission 23 is changed, the brake operation is performed, and the vehicle running situation is changed to perform an endurance test. The three-dimensional displacement measuring device 50 is an object to be measured according to the running situation of the vehicle. The three-dimensional displacement amounts of the support receiving portions 25L, 25R, 27F, and 27R of the combined body of the engine 21 and the transmission 23 are measured. For this purpose, the measurement computer 51 sends to the input interface device 55, for example, an engine speed signal Ne of the vehicle V, an accelerator opening signal S Ac , a gear shift position signal S Sft of the transmission 23, and a wheel speed signal S V of the drive wheels. Vehicle information such as a brake operation signal S B indicating the amount of depression of the brake and a drive torque signal S TD indicating the drive torque of the drive wheels detected on the road simulator side is input, and a preprocessing circuit corresponding to each input signal 56A, 56B, 56C, 56D, 56E, and 56F are input to the input interface of the measurement computer 51, acquired by the vehicle information acquisition unit 63, and stored in the storage unit 51d together with the time data.

測定が終了すると、測定者が表示部51b、入力装置51cを用いて計測の終了を制御部61に入力し、制御部61が、ワイヤ引き出し長さ演算部62、三次元変位量演算部66、測定点三次元座標換算部71、着目点三次元座標変位演算部72に測定終了の指令を出し、各演算機能や記憶部51dへのデータ格納を停止する。   When the measurement is completed, the measurer inputs the measurement end to the control unit 61 using the display unit 51b and the input device 51c, and the control unit 61 includes a wire drawing length calculation unit 62, a three-dimensional displacement amount calculation unit 66, A measurement end command is issued to the measurement point three-dimensional coordinate conversion unit 71 and the point-of-interest three-dimensional coordinate displacement calculation unit 72, and data storage in each calculation function and the storage unit 51d is stopped.

なお、耐久試験中に、制御部61は、表示部51bに、各測定点(取り付け部材29A,29B,29C)の三次元変位量の時系列変化、測定点に含まれない着目点(支持受け部27F,27R)の三次元変位量の時系列変化、座標原点36のX,Y,Z方向への並進変位成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分の時系列変化のグラフを車両情報取得部63で取得された車両情報とともに表示するようにしても良い。   During the endurance test, the control unit 61 causes the display unit 51b to display a time-series change in the three-dimensional displacement amount of each measurement point (attachment members 29A, 29B, and 29C), and a point of interest that is not included in the measurement point (support receiver 27F, 27R), the time-series change of the three-dimensional displacement amount, the translational displacement component of the coordinate origin 36 in the X, Y, and Z directions, the roll vibration around the X axis, the pitch vibration around the Y axis, and the Z axis around You may make it display the graph of the time series change of the displacement amount component of each yaw vibration with the vehicle information acquired in the vehicle information acquisition part 63. FIG.

本実施形態によれば、特許文献1に記載のような伸縮変位を検出する変位検出器を備えた伸縮自在な連結ロッドや、その基部側が垂直軸及び水平軸の周りに回転可能な構成として、第1及び第2の角度検出器を設けて垂直軸及び水平軸の周りの角度変位を検出するという複雑な構成とすることなく、単に、1箇所の測定点の三次元変位量の測定に対して、3個のワイヤポテンショメータ2のワイヤ3の引き出し長さを計測するだけで、3本のワイヤ3で構成する三角錐の頂点の変位測定端5の三次元位置が一意に特定でき、それを容易に換算式でXYZの直角三次元座標に変換できる。
従って、3本のワイヤ3(図1参照)の慣性は極めて小さく、被測定対象物の高速な振動変位を特許文献1のような技術よりも正確に測定できる。また、3個のワイヤポテンショメータ2(図1参照)を用いたものであり、三次元変位測定装置50は、超音波、光、レーザ光等を使用した非接触式の従来のものより極めて安価に製造できる。
According to the present embodiment, as a configuration in which a telescopic connecting rod provided with a displacement detector for detecting expansion / contraction displacement as described in Patent Document 1, and a configuration in which its base side is rotatable around a vertical axis and a horizontal axis, Without the complicated configuration of providing the first and second angle detectors to detect the angular displacement around the vertical axis and the horizontal axis, it is possible to simply measure the three-dimensional displacement amount at one measurement point. By simply measuring the length of the wire 3 pulled out of the three wire potentiometers 2, the three-dimensional position of the displacement measuring end 5 of the apex of the triangular pyramid constituted by the three wires 3 can be uniquely identified. It can be easily converted into XYZ right-angle three-dimensional coordinates using a conversion formula.
Accordingly, the inertia of the three wires 3 (see FIG. 1) is extremely small, and the high-speed vibration displacement of the object to be measured can be measured more accurately than the technique of Patent Document 1. Also, using three wire potentiometers 2 (see FIG. 1), the three-dimensional displacement measuring device 50 is much cheaper than the conventional non-contact type using ultrasonic waves, light, laser light, etc. Can be manufactured.

また、図3に例示するように被測定対象物に対して、少なくとも3箇所以上の被測定対象物の所定の測定点(本実施形態では、取り付け部材29A,29B,29C)を設けて、それぞれ三次元変位センサ1(1A,1B,1C)で変位量を測定しているので、設定された直角三次元座標系のX方向、Y方向、Z方向の測定点における変位量が算出できる。また、少なくとも3箇所以上の被測定対象物の所定の測定点の初期位置の直角三次元座標系のX座標、Y座標、Z座標を入力し、着目点の初期位置の直角三次元座標系のX座標、Y座標、Z座標をも入力しているので、着目点三次元座標変位演算部72によって測定点と異なる着目点の直角三次元座標系のX方向、Y方向、Z方向の変位量が、測定点と着目点との間の直角三次元座標系の相対位置関係と、少なくとも3箇所以上の測定点における直角三次元座標系のX方向、Y方向、Z方向の変位量から、算出することができる。
従って、被測定対象物の外形形状の関係で被測定対象物と干渉したり、被測定対象物に取り付けられた外部搭載品等(エンジン21及びトランスミッション23の周辺に配置された機器、配管、計装線等)と干渉したりして、測定点として選ぶことができない着目点(支持受け部27F,27R)の直角三次元座標系のX方向、Y方向、Z方向の変位量を間接的に計算によって得ることが容易にできる。
Further, as illustrated in FIG. 3, at least three or more predetermined measurement points (in this embodiment, attachment members 29 </ b> A, 29 </ b> B, 29 </ b> C) of the measurement target object are provided for the measurement target object. Since the displacement amount is measured by the three-dimensional displacement sensor 1 (1A, 1B, 1C), the displacement amount at the measurement points in the X direction, the Y direction, and the Z direction of the set right-angle three-dimensional coordinate system can be calculated. Further, the X coordinate, Y coordinate, and Z coordinate of the initial three-dimensional coordinate system at the initial position of the predetermined measurement point of at least three or more objects to be measured are input, and the initial three-dimensional coordinate system of the initial position of the point of interest is input. Since the X coordinate, the Y coordinate, and the Z coordinate are also input, the amount of displacement in the X direction, Y direction, and Z direction of the orthogonal three-dimensional coordinate system of the target point different from the measurement point by the target point three-dimensional coordinate displacement calculation unit 72 Is calculated from the relative positional relationship of the right-angle three-dimensional coordinate system between the measurement point and the point of interest and the amount of displacement in the X-direction, Y-direction, and Z-direction of the right-angle three-dimensional coordinate system at at least three measurement points. can do.
Accordingly, it interferes with the object to be measured due to the external shape of the object to be measured, or is externally mounted on the object to be measured, etc. (equipment, pipes, meters arranged around the engine 21 and the transmission 23) The amount of displacement in the X, Y, and Z directions of the right-angle three-dimensional coordinate system of the point of interest (support receiving portions 27F, 27R) that cannot be selected as a measurement point due to interference with the wire, etc. Can be easily obtained by calculation.

本実施形態では被測定対象物は、図3に示すように車両Vのエンジン21及びトランスミッション23が一体に結合されたものである。そして、直角三次元座標系のX軸は、エンジン21の停止時のクランク軸の回転中心軸35とし、座標原点36は、X軸に垂直であって、かつ、エンジン21及びトランスミッション23が一体に結合されたものの重心点Gをその中に含む垂直平面とX軸との交点に設定されている。直角三次元座標系のZ軸は、X軸と座標原点36で直交する垂直軸であり、Y軸、X軸及びZ軸と座標原点36で直交する水平軸である。
従って、着目点三次元座標変位演算部72において、少なくとも3箇所以上の測定点における直角三次元座標系のX方向、Y方向、Z方向の変位量から、座標原点36のX方向、Y方向、Z方向の並進変位量の成分と、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動それぞれの変位量成分を算出することができる。
In the present embodiment, the object to be measured is an object in which the engine 21 and the transmission 23 of the vehicle V are integrally coupled as shown in FIG. The X axis of the right-angle three-dimensional coordinate system is the rotation center axis 35 of the crankshaft when the engine 21 is stopped, the coordinate origin 36 is perpendicular to the X axis, and the engine 21 and the transmission 23 are integrated. The barycentric point G of the coupled objects is set at the intersection of the vertical plane and the X axis. The Z axis of the right-angle three-dimensional coordinate system is a vertical axis that is orthogonal to the X axis and the coordinate origin 36, and a horizontal axis that is orthogonal to the Y axis, X axis, and Z axis and the coordinate origin 36.
Therefore, in the point-of-interest three-dimensional coordinate displacement calculation unit 72, the X-direction, Y-direction, and Y-direction of the coordinate origin 36 are calculated from the displacement amounts in the X-direction, Y-direction, and Z-direction of the right-angle three-dimensional coordinate system at at least three measurement points. It is possible to calculate the translational displacement amount component in the Z direction and the displacement amount components of the roll vibration around the X axis, the pitch vibration around the Y axis, and the yaw vibration around the Z axis.

例えば、着目点をエンジン21及びトランスミッション23が一体に結合されたものを、エンジンマウント26L,26R,28F,28Rを介して弾性的に振動吸収して車体により支持される支持受け部25L,25R,27F,27Rのエンジン運転状態における変位量を測定したい場合に、エンジン21及びトランスミッション23の周辺に配置された機器、配管、計装線等によって支持受け部27F,27Rの変位量を直接測定できない。そのようなときは、その支持受け部27F,27Rを着目点とし、着目点三次元座標変位演算部72で、エンジンの運転状態における支持受け部27F,27Rの三次元の変位量が算出できる。そして、エンジンマウント28F,28Rに加わる三次元の変位量が算出できる。そのとき、並進的な変位量成分だけでなく、X軸周りのロール振動、Y軸周りのピッチ振動、Z軸周りのヨー振動、それぞれの変位量成分をも算出することができ、エンジンマウント26L,26R,28F,28Rの耐久性試験の分析において、各エンジンマウント26L,26R,28F,28Rに加わる変位成分を考慮した改良方向の示唆を得ることができる。   For example, the support receiving portions 25L, 25R, which are supported by the vehicle body by elastically absorbing vibrations through the engine mounts 26L, 26R, 28F, and 28R, in which the engine 21 and the transmission 23 are integrally coupled. When it is desired to measure the amount of displacement of the 27F and 27R in the engine operating state, the amount of displacement of the support receiving portions 27F and 27R cannot be directly measured by equipment, piping, instrumentation lines, and the like arranged around the engine 21 and the transmission 23. In such a case, the support receiving portions 27F and 27R are used as the target points, and the three-dimensional displacement amounts of the support receiving portions 27F and 27R in the engine operating state can be calculated by the target point three-dimensional coordinate displacement calculation unit 72. Then, the three-dimensional displacement amount applied to the engine mounts 28F and 28R can be calculated. At this time, not only the translational displacement amount component but also the roll vibration around the X axis, the pitch vibration around the Y axis, the yaw vibration around the Z axis, and the respective displacement amount components can be calculated. , 26R, 28F, and 28R in the durability test analysis, an improvement direction can be obtained in consideration of the displacement component applied to each engine mount 26L, 26R, 28F, and 28R.

なお、本実施形態の三次元直角座標系のXYZ軸は、図3で示したように設定したが、それに限定されるものではなく、重心Gを直角三次元座標系の座標原点36とし、重心Gを通るクランク軸の回転中心軸に平行な軸をX軸とし、X軸に垂直な重心Gを含む平面内において車両の重心Gから水平に前方方向にY軸を取り、重心Gから鉛直上方にZ軸を設定するようにしても良い。
また、本実施形態の被測定対象物の例としてとして、車両Vのエンジン21及びトランスミッション23の結合体を横置き、前輪駆動方式としたが、それに限定されるものではない。
Note that the XYZ axes of the three-dimensional rectangular coordinate system of the present embodiment are set as shown in FIG. 3, but are not limited thereto, and the center of gravity G is the coordinate origin 36 of the rectangular three-dimensional coordinate system, and the center of gravity The axis parallel to the rotation center axis of the crankshaft passing through G is the X axis, and the Y axis is taken in the forward direction horizontally from the center of gravity G of the vehicle in a plane including the center of gravity G perpendicular to the X axis. Alternatively, the Z axis may be set.
Further, as an example of the object to be measured according to the present embodiment, the combined body of the engine 21 and the transmission 23 of the vehicle V is set horizontally and the front wheel drive system is used. However, the present invention is not limited to this.

1,1A,1B,1C 三次元変位センサ(三次元変位測定ユニット)
2 ワイヤポテンショメータ(ポテンショメータ)
2a ワイヤ引き出し孔
3 ワイヤ
5,5’,5A,5B,5C 変位測定端
11 ベースプレート
11a 取り付けねじ孔
11c 基準辺
13 センサカバー
13a ワイヤ引き出し孔
13c 固定用側面
13d 取り付けねじ孔
21 エンジン
23 トランスミッション(変速機)
25L,25R 支持受け部(測定点、着目点)
27F,27R 支持受け部(着目点)
26L,26R,28F,28R エンジンマウント
29A,29B,29C 取り付け部材(測定点)
31L,31R フレーム
32 試験架台
35 クランク軸の回転中心軸
36 座標原点(直角三次元座標系の原点)
50 三次元変位測定装置
51 計測用コンピュータ
51a コンピュータ本体
51b 表示部(入力手段)
51c 入力装置(入力手段)
51d 記憶部
62 ワイヤ引き出し長さ演算部(ポテンショメータ信号取得手段)
63 車両情報取得部
64 座標軸設定部(座標軸設定手段)
65 換算式設定部(換算式設定手段)
66 三次元変位量演算部(測定点変位量算出手段)
67 被測定対象物三次元座標設定部
67a 座標原点設定部(測定点座標設定手段、着目点座標設定手段)
67b 測定点座標設定部(測定点座標設定手段)
67c 着目点座標設定部(着目点座標設定手段)
70 被測定対象物三次元変位解析部
71 測定点三次元座標換算部(着目点変位量算出手段)
71a A系測定点三次元座標換算部
71b B系測定点三次元座標換算部
71a C系測定点三次元座標換算部
72 着目点三次元座標変位演算部(着目点変位量算出手段)
72a 被測定対象物三次元運動解析部
72b 着目点三次元座標換算部
G 重心
O 平面中心
V 車両
1,1A, 1B, 1C 3D displacement sensor (3D displacement measurement unit)
2 Wire potentiometer (potentiometer)
2a Wire drawing hole 3 Wire 5, 5 ', 5A, 5B, 5C Displacement measurement end 11 Base plate 11a Mounting screw hole 11c Reference side 13 Sensor cover 13a Wire drawing hole 13c Fixing side surface 13d Mounting screw hole 21 Engine 23 Transmission (Transmission) )
25L, 25R support receiving part (measurement point, point of interest)
27F, 27R Support receiving part (point of interest)
26L, 26R, 28F, 28R Engine mount 29A, 29B, 29C Mounting member (measurement point)
31L, 31R Frame 32 Test stand 35 Crankshaft rotation center axis 36 Coordinate origin (origin of right-angle 3D coordinate system)
50 Three-dimensional Displacement Measuring Device 51 Measuring Computer 51a Computer Body 51b Display Unit (Input Means)
51c Input device (input means)
51d storage unit 62 wire drawing length calculation unit (potentiometer signal acquisition means)
63 Vehicle information acquisition unit 64 Coordinate axis setting unit (coordinate axis setting means)
65 Conversion formula setting section (Conversion formula setting means)
66 Three-dimensional displacement calculator (measurement point displacement calculator)
67 object to be measured three-dimensional coordinate setting unit 67a coordinate origin setting unit (measuring point coordinate setting means, point of interest coordinate setting means)
67b Measurement point coordinate setting unit (measurement point coordinate setting means)
67c Point of Interest Coordinate Setting Unit (Point of Interest Coordinate Setting Unit)
70 Measurement Object 3D Displacement Analysis Unit 71 Measurement Point 3D Coordinate Conversion Unit (Point of Interest Displacement Calculation Unit)
71a A-system measurement point three-dimensional coordinate conversion unit 71b B-system measurement point three-dimensional coordinate conversion unit 71a C-system measurement point three-dimensional coordinate conversion unit 72 Focus point three-dimensional coordinate displacement calculation unit (focus point displacement amount calculation means)
72a Object to be measured 3D motion analysis unit 72b Point of interest 3D coordinate conversion unit G Center of gravity O Plane center V Vehicle

Claims (4)

ワイヤを巻回しているプーリを有し、前記ワイヤが引き出されることによって回転する前記プーリの回転角に基づいて引き出された前記ワイヤの長さを検出するポテンショメータが、3個所定の周方向角度の間隔を取って一つの支持基板の上に取り付けられた三次元変位測定ユニットと、前記三次元変位測定ユニットの前記3個のポテンショメータからのそれぞれの出力信号を取得するポテンショメータ信号取得手段と、を備えた三次元変位測定装置であって、
測定者が入力可能な入力手段と、
前記三次元変位測定ユニットの3個の前記ポテンショメータのそれぞれ前記ワイヤの引き出し部分の先端部を1点で接合して変位測定端とし、前記3本のワイヤで三角錐を形成するようにし、前記変位測定端が、被測定対象物の所定の測定点に固定され、
前記測定者による前記入力手段からの入力に従って、前記被測定対象物の所定の測定点の初期位置に対し、XYZの直角三次元座標系の各座標軸の向きを設定する座標軸設定手段と、
前記測定者による前記入力手段からの入力に従って、前記3個のポテンショメータからの出力信号に基づいて前記被測定対象物の所定の測定点の前記初期位置からの前記設定された直角三次元座標系のX方向、Y方向、Z方向へのそれぞれの変位量に換算する換算式を設定する換算式設定手段と、
前記換算式設定手段により設定された前記換算式を用いて、3個の前記ポテンショメータからの前記出力信号に基づいて、前記初期位置からの前記被測定対象物の所定の測定点の前記直角三次元座標系のX方向、Y方向、Z方向への変位量を算出する測定点変位量算出手段と、
を備えることを特徴とする三次元変位測定装置。
Three potentiometers having a pulley around which a wire is wound and detecting the length of the wire drawn out based on the rotation angle of the pulley that rotates when the wire is drawn out have a predetermined circumferential angle. A three-dimensional displacement measuring unit mounted on a single support substrate at an interval; and potentiometer signal acquiring means for acquiring respective output signals from the three potentiometers of the three-dimensional displacement measuring unit. A three-dimensional displacement measuring device,
An input means that can be input by the measurer,
Each of the three potentiometers of the three-dimensional displacement measuring unit is joined at one point to the leading end of the wire drawing portion to form a displacement measuring end, and the three wires form a triangular pyramid, and the displacement The measurement end is fixed to a predetermined measurement point of the object to be measured,
Coordinate axis setting means for setting the orientation of each coordinate axis of the XYZ right-angle three-dimensional coordinate system with respect to the initial position of the predetermined measurement point of the measurement object according to the input from the input means by the measurer;
In accordance with the input from the input means by the measurer, based on the output signals from the three potentiometers, the set orthogonal three-dimensional coordinate system from the initial position of the predetermined measurement point of the object to be measured. A conversion formula setting means for setting a conversion formula to be converted into each displacement amount in the X direction, the Y direction, and the Z direction;
Using the conversion formula set by the conversion formula setting means, based on the output signals from three potentiometers, the right-angle three-dimensional of a predetermined measurement point of the object to be measured from the initial position A measuring point displacement amount calculating means for calculating a displacement amount in the X direction, the Y direction, and the Z direction of the coordinate system;
A three-dimensional displacement measuring device comprising:
更に、三次元の立体の剛体と仮定できる前記被測定対象物に対して、前記少なくとも3箇所以上の前記被測定対象物の所定の測定点の初期位置に係わる前記設定された直角三次元座標系のX座標、Y座標、Z座標を、前記測定者による前記入力手段からの入力に従って設定する測定点座標設定手段と、
前記設定された直角三次元座標系のX方向、Y方向、Z方向へのそれぞれの変位量を求めたい前記被測定対象物の所定の着目点の初期位置に係わる前記設定された直角三次元座標系のX座標、Y座標、Z座標を、前記測定者による前記入力手段からの入力に従って設定する着目点座標設定手段と、
前記設定された前記被測定対象物の所定の着目点のうちの、前記設定された前記少なくとも3箇所以上の前記被測定対象物の所定の測定点と異なるものに対して、前記設定された前記少なくとも3箇所以上の前記被測定対象物の所定の測定点との前記設定された直角三次元座標系のX座標、Y座標、Z座標の相対位置に基づいて、当該の着目点の初期位置からの前記設定された直角三次元座標系のX方向、Y方向、Z方向への変位量を算出する着目点変位量算出手段と、
を備えることを特徴とする請求項1に記載の三次元変位測定装置。
Furthermore, with respect to the object to be measured that can be assumed to be a three-dimensional solid body, the set right-angle three-dimensional coordinate system relating to the initial positions of predetermined measurement points of the at least three or more objects to be measured. Measuring point coordinate setting means for setting the X coordinate, the Y coordinate, and the Z coordinate according to the input from the input means by the measurer,
The set right-angle three-dimensional coordinates relating to the initial position of a predetermined point of interest of the measurement target object for which respective displacement amounts in the X-direction, Y-direction, and Z-direction of the set right-angle three-dimensional coordinate system are to be obtained. Point-of-interest coordinate setting means for setting the X coordinate, Y coordinate, and Z coordinate of the system according to the input from the input means by the measurer;
Of the predetermined points of interest of the set object to be measured, the set points that are different from the set predetermined measurement points of the object to be measured at least three or more. Based on the relative position of the set X-, Y-, and Z-coordinates of the set three-dimensional right-angle coordinate system with at least three predetermined measurement points of the measurement object, from the initial position of the target point A point-of-interest displacement amount calculating means for calculating a displacement amount in the X direction, Y direction, and Z direction of the set right-angle three-dimensional coordinate system;
The three-dimensional displacement measuring apparatus according to claim 1, comprising:
前記被測定対象物は、車両のエンジン及び変速機が一体に結合されたものであって、
前記設定された直角三次元座標系のX軸は、前記エンジンの停止時のクランク軸の回転中心軸であり、前記Z軸は、前記X軸に垂直な垂直平面内に含まれた前記X軸に直交する垂直軸であり、前記Y軸は、前記X軸及び前記垂直平面内に含まれた前記Z軸に直交する水平軸であり、
前記被測定対象物の所定の着目点とは、前記エンジン及び変速機が車体に支持される部位であり、
前記着目点変位量算出手段は、少なくとも前記エンジンの回転による前記X軸周りのロール振動を考慮して、当該の着目点の初期位置からの前記設定された直角三次元座標系のX方向、Y方向、Z方向への変位量を算出することを特徴とする請求項2に記載の三次元変位測定装置。
The object to be measured is one in which a vehicle engine and a transmission are integrally coupled,
The X axis of the set right-angle three-dimensional coordinate system is a rotation center axis of the crankshaft when the engine is stopped, and the Z axis is the X axis included in a vertical plane perpendicular to the X axis. The Y axis is a horizontal axis perpendicular to the X axis and the Z axis included in the vertical plane,
The predetermined target point of the object to be measured is a part where the engine and the transmission are supported by a vehicle body,
The point-of-interest displacement calculation means considers at least the roll vibration around the X axis due to the rotation of the engine, and the X direction of the set right-angle three-dimensional coordinate system from the initial position of the point of interest, Y The three-dimensional displacement measuring apparatus according to claim 2, wherein a displacement amount in the direction and the Z direction is calculated.
前記設定された直角三次元座標系の前記Y軸と前記Z軸とは、前記X軸に垂直であって、かつ、前記エンジン及び変速機が一体に結合されたものの重心点をその中に含む前記垂直平面内に設定され、
前記着目点変位量算出手段は、前記被測定対象物の所定の着目点に対して、前記設定された直角三次元座標系の原点の前記X方向、Y方向、Z方向の並進変位成分と、前記X軸周りのロール振動、前記Y軸周りのピッチ振動、前記Z軸周りのヨー振動それぞれの変位量成分を算出することを特徴とする請求項3に記載の三次元変位測定装置。
The Y-axis and the Z-axis of the set right-angle three-dimensional coordinate system are perpendicular to the X-axis, and include the center of gravity of the engine and the transmission integrally coupled therein. Set in the vertical plane,
The point-of-interest displacement calculation means is a translational displacement component in the X, Y, and Z directions of the origin of the set right-angle three-dimensional coordinate system with respect to a predetermined point of interest of the measurement object; 4. The three-dimensional displacement measuring apparatus according to claim 3, wherein displacement amount components of roll vibration around the X axis, pitch vibration around the Y axis, and yaw vibration around the Z axis are calculated.
JP2011251224A 2011-11-17 2011-11-17 Three-dimensional displacement measuring device Pending JP2013104862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251224A JP2013104862A (en) 2011-11-17 2011-11-17 Three-dimensional displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251224A JP2013104862A (en) 2011-11-17 2011-11-17 Three-dimensional displacement measuring device

Publications (1)

Publication Number Publication Date
JP2013104862A true JP2013104862A (en) 2013-05-30

Family

ID=48624474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251224A Pending JP2013104862A (en) 2011-11-17 2011-11-17 Three-dimensional displacement measuring device

Country Status (1)

Country Link
JP (1) JP2013104862A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486989A (en) * 2013-09-16 2014-01-01 南京航空航天大学 Guy cable type spatial position measurement mechanism and method
JP2017500543A (en) * 2013-11-04 2017-01-05 メジャメント スペシャリティーズ, インコーポレイテッド Deformation sensor package and method
KR20170035179A (en) * 2015-09-22 2017-03-30 한국전력공사 Apparatus for measuring displacement of pipe
KR20170091515A (en) * 2016-01-29 2017-08-09 성균관대학교산학협력단 Apparatus for measuring displacement of 6-axis
CN108161660A (en) * 2018-01-24 2018-06-15 重庆华数机器人有限公司 A kind of generation method of polish work station and its machining locus
KR20190033247A (en) * 2017-09-21 2019-03-29 르노삼성자동차 주식회사 Apparatus for measuring a pitching angle of powertrain
CN112833838A (en) * 2020-09-30 2021-05-25 昆明理工大学 Polymorphic space three-dimensional displacement monitoring device and displacement calculation method
CN112902901A (en) * 2021-03-05 2021-06-04 燕云科技河北有限公司 Bridge box girder relative displacement monitoring system and method
CN113566757A (en) * 2021-08-19 2021-10-29 中铁工程装备集团有限公司 Stay-supported three-dimensional space positioning device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486989A (en) * 2013-09-16 2014-01-01 南京航空航天大学 Guy cable type spatial position measurement mechanism and method
JP2017500543A (en) * 2013-11-04 2017-01-05 メジャメント スペシャリティーズ, インコーポレイテッド Deformation sensor package and method
KR101837324B1 (en) 2013-11-04 2018-03-09 메저먼트 스페셜티스, 인크. Deformation sensor package and method
KR20170035179A (en) * 2015-09-22 2017-03-30 한국전력공사 Apparatus for measuring displacement of pipe
KR102437394B1 (en) * 2015-09-22 2022-08-30 한국전력공사 Apparatus for measuring displacement of pipe
KR101898375B1 (en) 2016-01-29 2018-09-13 성균관대학교산학협력단 Apparatus for measuring displacement of 6-axis
KR20170091515A (en) * 2016-01-29 2017-08-09 성균관대학교산학협력단 Apparatus for measuring displacement of 6-axis
KR20190033247A (en) * 2017-09-21 2019-03-29 르노삼성자동차 주식회사 Apparatus for measuring a pitching angle of powertrain
KR102471103B1 (en) * 2017-09-21 2022-11-24 르노코리아자동차 주식회사 Apparatus for measuring a pitching angle of powertrain
CN108161660A (en) * 2018-01-24 2018-06-15 重庆华数机器人有限公司 A kind of generation method of polish work station and its machining locus
CN108161660B (en) * 2018-01-24 2020-05-01 重庆华数机器人有限公司 Grinding workstation and method for generating machining track of grinding workstation
CN112833838A (en) * 2020-09-30 2021-05-25 昆明理工大学 Polymorphic space three-dimensional displacement monitoring device and displacement calculation method
CN112902901A (en) * 2021-03-05 2021-06-04 燕云科技河北有限公司 Bridge box girder relative displacement monitoring system and method
CN113566757A (en) * 2021-08-19 2021-10-29 中铁工程装备集团有限公司 Stay-supported three-dimensional space positioning device

Similar Documents

Publication Publication Date Title
JP2013104862A (en) Three-dimensional displacement measuring device
CN102712091A (en) Embedded arm strain sensors
WO1994011700A1 (en) Computerized three dimensional data acquisition apparatus and method
CN103575470A (en) Gravity center measurement instrument based on moment balance principle
CN103808256A (en) Non-contact type object planar motion measuring device and implementation method thereof
CN103162645B (en) A kind of rolling measurement method and apparatus measured based on the ellipse degree of bias
Leifer et al. Three-dimensional acceleration measurement using videogrammetry tracking data
CN105571488A (en) Hole group location degree image detection device and detection method
CN202869645U (en) Portable vibration measuring instrument based on Android platform mobile phone
CN103162632B (en) Three-dimensional (3D) optical displacement measuring system for centrifugal model
CN102914414A (en) Vibration measuring instrument based on Android platform mobile phone and detection method thereof
CN108204789A (en) For detecting the device and detection method of the shape splicing of heavy-calibre planar optical elements face
CN101469975A (en) Optical detecting instrument and method thereof
CN104236523A (en) Angle detection device and inclined angle sensor with angle detection device
CN102384744A (en) Method for long distance measurement of engineering machines based on machine vision and equipment thereof
Brecher et al. Measurement of structure dynamics using a tracking-interferometer
JP2006118911A (en) Surface roughness/contour measuring instrument
CN109596295B (en) Laser absolute calibration device for linear vibration of multi-axial vibration table
JP4333055B2 (en) Deformation measurement system and method
JP2018017569A (en) Discharge generation place detector
Sinha et al. Measuring vertical displacement using laser lines and cameras
CN205079773U (en) Object movement track&#39;s measuring device and calibration device
JP6709316B1 (en) measuring device
CN107339937B (en) A kind of mechanism kinematic parameter test device of Multi-sensor Fusion
CN207424259U (en) Digitize three direction displacement measuring device