JP2013104004A - Filler and manufacturing method of the same - Google Patents

Filler and manufacturing method of the same Download PDF

Info

Publication number
JP2013104004A
JP2013104004A JP2011249401A JP2011249401A JP2013104004A JP 2013104004 A JP2013104004 A JP 2013104004A JP 2011249401 A JP2011249401 A JP 2011249401A JP 2011249401 A JP2011249401 A JP 2011249401A JP 2013104004 A JP2013104004 A JP 2013104004A
Authority
JP
Japan
Prior art keywords
group
filler
organic
inorganic particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011249401A
Other languages
Japanese (ja)
Inventor
Hidehiro Kudo
英弘 工藤
Ryosuke Gomi
良介 五味
Takashi Yoshida
貴司 吉田
Katsuaki Tanaka
勝章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011249401A priority Critical patent/JP2013104004A/en
Publication of JP2013104004A publication Critical patent/JP2013104004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filler that excels in the kneading properties with a resin, and is excellent in thermal conductivity, and a manufacturing method of the same.SOLUTION: The filler includes: an inorganic particle that has a hydroxyl group on the surface in the existence of water; and an organic modifying group that bonds to an atom that composes the inorganic particle of the surface of the inorganic particle shown by formula (1), and the manufacturing method of the same is disclosed. In the formula, Rdenotes a(n) (un)saturated hydrocarbon in which an optional hydrogen atom may be replaced with a carboxyl group.

Description

本発明は、フィラーおよびその製造方法に関する。   The present invention relates to a filler and a method for producing the filler.

Al、TiO等の無機粒子の表面に有機化合物を結合させて、無機粒子の表面改質を行った有機修飾無機粒子が知られている。例えば、特許文献1には、光学材料の用途に用いるために、有機化合物によって表面改質されたナノスケール固体粒子が記載されている。また、特許文献2および特許文献3には、樹脂と混合して用いるフィラーとして、有機化合物によって表面改質された無機酸化物粒子が記載されている。また、無機粒子の表面に有機化合物を結合させる方法としては、特許文献4に、水と、TiO等の無機粒子と、ヘキサナール等の有機化合物とをオートクレーブに仕込み、水が超臨界または亜臨界状態となる高温高圧下で無機粒子の有機修飾を行う方法が記載されている。 Organic modified inorganic particles are known in which an organic compound is bonded to the surface of inorganic particles such as Al 2 O 3 and TiO 2 to modify the surface of the inorganic particles. For example, Patent Document 1 describes nanoscale solid particles whose surface has been modified with an organic compound for use in optical materials. Patent Document 2 and Patent Document 3 describe inorganic oxide particles whose surface is modified with an organic compound as a filler to be used by mixing with a resin. In addition, as a method for bonding an organic compound to the surface of inorganic particles, Patent Document 4 discloses that water, inorganic particles such as TiO 2 , and an organic compound such as hexanal are charged into an autoclave, and water is supercritical or subcritical. A method for performing organic modification of inorganic particles under high temperature and high pressure is described.

特表2006−527293号公報JP-T-2006-527293 特開2007−126633号公報JP 2007-126633 A 特開平06−24730号公報Japanese Patent Laid-Open No. 06-24730 特開2005−193237号公報JP 2005-193237 A

本発明者らは、エポキシ樹脂等の樹脂またはその前駆体と混合して用いるフィラーとしての有機修飾無機粒子について鋭意研究を行い、ある種の有機化合物を結合させた有機修飾無機粒子は、樹脂との混練性および熱伝導性に優れ、フィラーとして有用であることを見出した。   The present inventors have conducted intensive research on organic modified inorganic particles as fillers used by mixing with a resin such as an epoxy resin or a precursor thereof, and organic modified inorganic particles bonded with certain organic compounds are obtained by They were found to be excellent in kneadability and thermal conductivity and useful as fillers.

本明細書は、水の存在下で表面に水酸基を有する無機粒子と、この無機粒子の表面の前記無機粒子を構成する原子に結合する下記式(1)によって示される有機修飾基とを含む、フィラーを開示する。

Figure 2013104004
The present specification includes inorganic particles having a hydroxyl group on the surface in the presence of water, and an organic modifying group represented by the following formula (1) bonded to atoms constituting the inorganic particles on the surface of the inorganic particles. A filler is disclosed.
Figure 2013104004

上記式(1)中において、Rは、任意の水素原子がカルボキシル基で置き換えられてもよい、飽和または不飽和の炭化水素基を表す。 In the above formula (1), R 1 represents a saturated or unsaturated hydrocarbon group in which any hydrogen atom may be replaced with a carboxyl group.

本明細書が開示するフィラーは、上記の無機粒子を構成する原子と上記式(1)の有機修飾基がエステル結合によって比較的安定に結合している。さらに、有機修飾基はカルボキシル基を有しており、樹脂との親和性が高い。このため、上記のフィラーは、樹脂との混練性に優れるとともに、樹脂との熱伝導性に優れている。   In the filler disclosed in this specification, the atoms constituting the inorganic particles and the organic modifying group of the formula (1) are relatively stably bonded by an ester bond. Furthermore, the organic modifying group has a carboxyl group and has high affinity with the resin. For this reason, said filler is excellent in kneadability with resin, and is excellent in thermal conductivity with resin.

本明細書は、上記の無機粒子および有機修飾基を含むフィラーを製造する方法も開示する。このフィラーの製造方法は、水の存在下で表面に水酸基を有する無機粒子と、下記式(2)によって示される有機修飾材とを、超臨界または亜臨界状態の水である高温高圧水の存在下で混合する混合工程を含む。

Figure 2013104004
The present specification also discloses a method for producing a filler containing the above-described inorganic particles and an organic modifying group. This filler production method comprises the presence of high-temperature and high-pressure water, which is supercritical or subcritical water, comprising inorganic particles having a hydroxyl group on the surface in the presence of water and an organic modifier represented by the following formula (2): A mixing step of mixing below.
Figure 2013104004

上記式(2)中、Rは、任意の水素原子がカルボキシル基、水酸基、アルデヒド基、アシル基で置き換えられてもよい、飽和または不飽和の炭化水素基を表し、Rは、水素原子、水酸基または炭化水素基を表す。 In the above formula (2), R 2 represents a saturated or unsaturated hydrocarbon group in which any hydrogen atom may be replaced by a carboxyl group, a hydroxyl group, an aldehyde group, or an acyl group, and R 3 represents a hydrogen atom Represents a hydroxyl group or a hydrocarbon group.

上記の製造方法によれば、超臨界または亜臨界状態の水である高温高圧水の存在下において、無機粒子の表面に水酸基が多くなっている状態で、無機粒子の表面の水酸基と、有機修飾材のカルボキシル基とのエステル化反応を進行させることができる。このため、無機粒子の表面に十分に多くの有機修飾基を結合させることができ、フィラーと樹脂との親和性がより向上する。上記の製造方法によれば、樹脂との混練性および熱伝導性が高いフィラーを安定的に製造することができる。   According to the above production method, in the presence of high-temperature high-pressure water that is supercritical or subcritical water, hydroxyl groups on the surface of the inorganic particles and organic modification in a state where the number of hydroxyl groups is increased on the surface of the inorganic particles. The esterification reaction with the carboxyl group of the material can be advanced. For this reason, a sufficiently large number of organic modifying groups can be bonded to the surface of the inorganic particles, and the affinity between the filler and the resin is further improved. According to said manufacturing method, a filler with high kneadability with resin and high heat conductivity can be manufactured stably.

は、水素原子または炭化水素基であり、無機粒子と有機修飾材とを混合する混合工程の後に、さらに、Rを水酸基に変換してもよい。 R 3 is a hydrogen atom or a hydrocarbon group, and R 3 may be further converted to a hydroxyl group after the mixing step of mixing the inorganic particles and the organic modifier.

本発明によれば、樹脂との混練性に優れ、熱伝導性に優れたフィラーおよびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the kneadability with resin and can provide the filler excellent in heat conductivity, and its manufacturing method.

赤外拡散スペクトル分析結果を示す図である。It is a figure which shows an infrared diffusion spectrum analysis result. 赤外拡散スペクトル分析結果を示す図である。It is a figure which shows an infrared diffusion spectrum analysis result. 昇温脱ガス分析測定の結果を示す図である。It is a figure which shows the result of temperature rising degassing analysis measurement. 昇温脱ガス分析測定の結果を示す図である。It is a figure which shows the result of temperature rising degassing analysis measurement.

本明細書が開示するフィラーは、水の存在下で表面に水酸基を有する無機粒子(以下、単に「無機粒子」という場合がある)と、前記無機粒子の表面の、無機粒子を構成する原子に結合する上記式(1)によって示される有機修飾基とを含む。   The filler disclosed in this specification includes inorganic particles having a hydroxyl group on the surface in the presence of water (hereinafter, simply referred to as “inorganic particles”) and atoms constituting the inorganic particles on the surface of the inorganic particles. And an organic modifying group represented by the above formula (1).

無機粒子は、水の存在下で表面に水酸基が配位するものであってもよく、その構造の一部に水酸基を有するものであってもよい。例えば、無機粒子がAl(アルミナ)を主成分とする場合には、Alの結晶構造に水酸基が配位したものであってもよく、Alの酸素原子の一部が水酸基に置き換わったオキシ水酸化物(例えばベーマイト:AlOOH)であってもよい。有機修飾基と無機粒子との結合をより強固にするという観点からは、水の超臨界または亜臨界条件下において、オキシ水酸化物のように、無機粒子の構造の一部に水酸基が含まれていることが好ましい。 Inorganic particles may have a hydroxyl group coordinated on the surface in the presence of water, or may have a hydroxyl group in a part of its structure. For example, when the inorganic particles are mainly composed of Al 2 O 3 (alumina) may be those in which a hydroxyl group is coordinated to the crystal structure of Al 2 O 3, oxygen atoms of Al 2 O 3 one It may be an oxyhydroxide (for example, boehmite: AlOOH) in which a part is replaced with a hydroxyl group. From the viewpoint of strengthening the bond between the organic modifying group and the inorganic particle, a hydroxyl group is included in a part of the structure of the inorganic particle like oxyhydroxide under supercritical or subcritical conditions of water. It is preferable.

無機粒子は、セラミックであることが好ましく、Al、TiO、MgO、NiO、CeO、SnO、SiO、Fe、Co、BN、AlNからなる群から選ばれる少なくとも1種以上を主成分とすることがより好ましく、Al、BN、AlNが特に好ましい。 The inorganic particles are preferably ceramic, and are selected from the group consisting of Al 2 O 3 , TiO 2 , MgO, NiO, CeO, SnO 2 , SiO 2 , Fe 2 O 3 , Co 2 O 3 , BN, and AlN. It is more preferable to use at least one kind as a main component, and Al 2 O 3 , BN, and AlN are particularly preferable.

上記式(1)に示すように、有機修飾基は、エステル結合(−O−(C=O)−)によって無機粒子の表面の、無機粒子を構成する原子に結合されている。例えば、無機粒子がアルミナである場合には、上記式(1)の有機修飾基は、アルミニウム原子もしくは酸素原子に結合している。また、有機修飾基は、その一部にカルボキシル基(−(C=O)−OH)を有している。Rは、有機修飾基のエステル結合とカルボキシル基とを接続する炭化水素基またはこれらの基の水素原子がカルボキシル基によって置換された基であればよく、限定されないが、例えば、環状または鎖状(直鎖状、分岐状のものを含む)のアルキレン基またはアリーレン基等の炭化水素基、およびこれらの炭化水素基の水素原子がカルボキシル基によって置換されたものを例示することができる。なお、本明細書が開示するフィラーには、Rの組成が同一の有機修飾基のみが含まれていてもよいし、Rの組成が異なる有機修飾基が複数含まれていてもよい。有機修飾基の熱安定性等の耐久性およびフィラーと樹脂との混練性を考慮すると、Rは大きい方が好ましく、Rは、エステル結合部分の炭素原子と、カルボキシル基の炭素原子との間に2つ以上の炭素原子が含まれる構造を有していることが好ましい。フィラーと樹脂との熱伝導性を考慮すると、Rは炭素数が少ないことが好ましく、直鎖の炭化水素であることがより好ましい。有機修飾材の耐久性、フィラーと樹脂との混練性および熱伝導性を考慮すれば、Rは、エステル結合部分の炭素原子と、カルボキシル基の炭素原子との間に4〜15個の炭素原子が含まれる構造を有していることが好ましく、アリーレン基であることがより好ましい。 As shown in the above formula (1), the organic modifying group is bonded to an atom constituting the inorganic particle on the surface of the inorganic particle by an ester bond (—O— (C═O) —). For example, when the inorganic particles are alumina, the organic modifying group of the above formula (1) is bonded to an aluminum atom or an oxygen atom. Moreover, the organic modification group has a carboxyl group (-(C = O) -OH) in a part thereof. R 1 is not limited as long as it is a hydrocarbon group connecting an ester bond of an organic modification group and a carboxyl group, or a group in which a hydrogen atom of these groups is substituted by a carboxyl group. Examples include hydrocarbon groups such as alkylene groups or arylene groups (including linear and branched ones), and those in which hydrogen atoms of these hydrocarbon groups are substituted with carboxyl groups. Note that the filler disclosed in this specification may contain only organic modifying groups having the same composition of R 1 , or may contain a plurality of organic modifying groups having different compositions of R 1 . In view of durability such as thermal stability of the organic modifying group and kneadability between the filler and the resin, R 1 is preferably large, and R 1 is defined by the carbon atom of the ester bond portion and the carbon atom of the carboxyl group. It preferably has a structure containing two or more carbon atoms in between. Considering the thermal conductivity between the filler and the resin, R 1 preferably has a small number of carbon atoms, and more preferably a linear hydrocarbon. In consideration of the durability of the organic modifier, the kneadability between the filler and the resin, and the thermal conductivity, R 1 is 4 to 15 carbon atoms between the carbon atom of the ester bond portion and the carbon atom of the carboxyl group. It preferably has a structure containing atoms, and more preferably an arylene group.

より具体的に例示すると、有機修飾基としては、コハク酸、グルタル酸、アジピン酸、テレフタル酸、イソフタル酸、ポリアクリル酸等のポリカルボン酸のカルボキシル基のうちの少なくとも1つが無機粒子の表面の水酸基とエステル結合し、少なくとも1つがカルボキシル基として残存している構造を有するものを挙げることができる。   More specifically, as the organic modifying group, at least one of carboxyl groups of polycarboxylic acids such as succinic acid, glutaric acid, adipic acid, terephthalic acid, isophthalic acid, and polyacrylic acid is the surface of the inorganic particles. Examples thereof include those having an ester bond with a hydroxyl group and a structure in which at least one remains as a carboxyl group.

がアリーレン基の場合には、パラフェニレン基であることが好ましい。すなわち、有機修飾基は、下記式(3)に示すように、テレフタル酸の2つのカルボキシル基のうちの一方が無機粒子の表面とエステル結合した構造を有する有機修飾基であることが好ましい。有機修飾基を下記式(3)にすれば、樹脂との混練性に特に優れ、かつ耐久性に優れたフィラーを得ることができる。

Figure 2013104004
When R 1 is an arylene group, it is preferably a paraphenylene group. That is, as shown in the following formula (3), the organic modifying group is preferably an organic modifying group having a structure in which one of two carboxyl groups of terephthalic acid is ester-bonded to the surface of the inorganic particles. When the organic modifying group is represented by the following formula (3), a filler having particularly excellent kneadability with a resin and excellent durability can be obtained.
Figure 2013104004

または、上記式(1)において、Rが直鎖の炭化水素基の場合には、−(CH−基であることが好ましい。すなわち、有機修飾基は、下記式(4)に示すように、コハク酸の2つのカルボキシル基のうちの一方が無機粒子の表面とエステル結合した構造を有する有機修飾基であることが好ましい。有機修飾基を下記式(4)にすれば、樹脂との熱伝導性に優れ、かつ耐久性が確保されたフィラーを得ることができる。

Figure 2013104004
Or In the above formula (1), when R 1 is a hydrocarbon radical straight chain, - (CH 2) 2 - it is preferably a group. That is, as shown in the following formula (4), the organic modifying group is preferably an organic modifying group having a structure in which one of two carboxyl groups of succinic acid is ester-bonded to the surface of the inorganic particles. When the organic modifying group is represented by the following formula (4), a filler having excellent thermal conductivity with the resin and ensuring durability can be obtained.
Figure 2013104004

本明細書が開示する有機修飾無機粒子を製造する方法では、水の存在下で表面に水酸基を有する無機粒子と、上記式(2)によって示される有機修飾材とを、超臨界または亜臨界状態の水である高温高圧水の存在下で混合する混合工程を含む。   In the method for producing organic modified inorganic particles disclosed in the present specification, an inorganic particle having a hydroxyl group on the surface in the presence of water and an organic modifier represented by the above formula (2) are supercritical or subcritical. A mixing step of mixing in the presence of high-temperature high-pressure water that is water of

なお、超臨界状態の高温高圧水とは、水の臨界圧力(22.1MPa)以上かつ臨界温度(374℃)以上の状態の水を意味する。また、本明細書では、亜臨界状態の高温高圧水とは、温度が300℃以上374℃未満であり、かつ、圧力がその温度における水の飽和蒸気圧以上の状態の水を意味する。   The supercritical high-temperature and high-pressure water means water in a state of not less than the critical pressure of water (22.1 MPa) and not less than the critical temperature (374 ° C.). In the present specification, the subcritical high-temperature high-pressure water means water in a state where the temperature is 300 ° C. or higher and lower than 374 ° C. and the pressure is equal to or higher than the saturated vapor pressure of water at that temperature.

上記式(2)に示すように、有機修飾材は、その一部にカルボキシル基を有しており、無機粒子の表面の水酸基と、有機修飾材のカルボキシル基とのエステル化によって、エステル結合が形成される。また、有機修飾材は、−(C=O)−R基を有している。ここで、Rは、水素原子、水酸基または炭化水素基を表す。すなわち、−(C=O)−R基は、アルデヒド基、カルボキシル基またはアシル基を表している。Rは、有機修飾材のカルボキシル基と−(C=O)−R基とを接続する炭化水素基またはこれらの基の水素原子がカルボキシル基、水酸基、アルデヒド基またはアシル基によって置換された基であればよく、限定されないが、例えば、環状または鎖状(直鎖状、分岐状のものを含む)のアルキレン基およびアリーレン基等の炭化水素基、またはその水素原子がカルボキシル基、水酸基、アルデヒド基またはアシル基によって置換されたものを例示することができる。より具体的に例示すると、有機修飾材としては、コハク酸、グルタル酸、アジピン酸、テレフタル酸、イソフタル酸、ポリアクリル酸等のポリカルボン酸、および上記化合物の誘導体または前駆体であって、カルボキシル基を少なくとも1つ有する化合物を挙げることができる。Rは、Rと同じ構造であってもよいし、Rと異なる構造であって、製造工程においてRに変換されるものであってもよい。 As shown in the above formula (2), the organic modifier has a carboxyl group in a part thereof, and ester bonds are formed by esterification of the hydroxyl group on the surface of the inorganic particles and the carboxyl group of the organic modifier. It is formed. In addition, the organic modifier has a — (C═O) —R 3 group. Here, R 3 represents a hydrogen atom, a hydroxyl group or a hydrocarbon group. That is, the — (C═O) —R 3 group represents an aldehyde group, a carboxyl group, or an acyl group. R 2 is a hydrocarbon group connecting the carboxyl group of the organic modifier and the — (C═O) —R 3 group, or a hydrogen atom of these groups is substituted by a carboxyl group, a hydroxyl group, an aldehyde group or an acyl group. The group is not limited, and for example, a hydrocarbon group such as a cyclic or chain (including linear or branched) alkylene group and an arylene group, or a hydrogen atom thereof is a carboxyl group, a hydroxyl group, The thing substituted by the aldehyde group or the acyl group can be illustrated. More specifically, examples of the organic modifier include polycarboxylic acids such as succinic acid, glutaric acid, adipic acid, terephthalic acid, isophthalic acid, and polyacrylic acid, and derivatives or precursors of the above compounds, Mention may be made of compounds having at least one group. R 2 may be the same structure as R 1, a structure different from that of R 1, or may be converted in the manufacturing process to R 1.

が水素原子または炭化水素基である場合には、Rを水酸基に変換することによって、−(C=O)−R基をカルボキシル基に変換することができる。無機粒子と有機修飾材とを混合する混合工程の前または後にRを水酸基に変換してもよいし、混合工程と同一の工程でRを水酸基に変換してもよい。また、RがRと異なる構造である場合に、Rを水酸基に変換するのと同時に、RをRに変換してもよい。 When R 3 is a hydrogen atom or a hydrocarbon group, by converting a R 3 to hydroxyl groups, - a (C = O) -R 3 group can be converted to a carboxyl group. It before or after the mixing step of mixing the inorganic particles and organic-modified material may be converted to R 3 to hydroxyl groups, in the mixing step and the same process may be converted R 3 to hydroxyl groups. Further, when R 2 has a structure different from R 1 , R 2 may be converted to R 1 at the same time as R 3 is converted to a hydroxyl group.

無機粒子と有機修飾材とを混合する混合工程の後に、Rを水酸基に変換する場合、Rを、有機修飾材のカルボキシル基が無機粒子と反応することを防ぐ保護基として利用することができる。例えば、有機修飾材が2つのカルボキシル基を有している場合(すなわち、Rが水酸基である場合)、2つのカルボキシル基の双方が無機粒子とエステル結合を形成する場合がある。Rが水酸基ではない有機修飾材を用いて、無機粒子と有機修飾材とを混合する混合工程の後に、Rを水酸基に変換すると、無機粒子と有機修飾材とをエステル結合させた後に、有機修飾基のカルボキシル基を生成することができる。このため、有機修飾材の2つのカルボキシル基の双方が無機粒子とエステル結合を形成することを防ぐことができる。 After the mixing step of mixing the inorganic particles and organic-modified material, to convert the R 3 to hydroxyl and R 3, the carboxyl group of the organic modified material be used as a protecting group to prevent reacting with inorganic particles it can. For example, when the organic modifier has two carboxyl groups (that is, when R 3 is a hydroxyl group), both of the two carboxyl groups may form ester bonds with inorganic particles. With an organic modified material R 3 is not a hydroxyl group, after the mixing step of mixing the inorganic particles and organic-modified material, converting R 3 to a hydroxyl group and an inorganic particle and an organic modified material After ester bond, The carboxyl group of the organic modifying group can be generated. For this reason, it can prevent that both two carboxyl groups of an organic modifier form an inorganic particle and an ester bond.

フィラーに含まれる無機粒子の内部に水酸基が生成し過ぎることが好ましくない場合には、高温高圧水が亜臨界状態となる条件下で、無機粒子と有機修飾材とを混合することが好ましい。例えば、無機粒子がAl等である場合には、Alの内部がオキシ水酸化物に変化すると、無機粒子の熱伝導性が低下してしまうことがある。この場合、フィラーに含まれる無機粒子の熱伝導性を確保するために、高温高圧水が亜臨界状態となる条件下で、高温高圧水、無機粒子および有機修飾材を合流させることが好ましい。 In the case where it is not preferable that hydroxyl groups are excessively generated in the inorganic particles contained in the filler, it is preferable to mix the inorganic particles and the organic modifier under conditions where the high-temperature and high-pressure water is in a subcritical state. For example, when the inorganic particles are Al 2 O 3 or the like, if the inside of Al 2 O 3 is changed to oxyhydroxide, the thermal conductivity of the inorganic particles may be lowered. In this case, in order to ensure the thermal conductivity of the inorganic particles contained in the filler, it is preferable to combine the high-temperature and high-pressure water, the inorganic particles, and the organic modifier under conditions where the high-temperature and high-pressure water is in a subcritical state.

本明細書が開示するフィラーの製造方法は、従来公知の高温高圧水等の加熱・加圧処理方法、高温高圧水およびフィラーの冷却方法、洗浄方法等を含んでいてもよい。なお、本明細書が開示するフィラーは、本明細書が開示する、高温高圧水を用いたフィラーの製造方法によって製造されたものに限られない。すなわち、無機粒子と有機修飾材とを超臨界または亜臨界状態の水である高温高圧水の存在下で混合する混合工程を含まない製造方法で製造されたフィラーであってもよい。   The filler production method disclosed in the present specification may include a conventionally known heating / pressurizing treatment method such as high-temperature and high-pressure water, a cooling method for high-temperature and high-pressure water and filler, a cleaning method, and the like. In addition, the filler which this specification discloses is not restricted to what was manufactured by the manufacturing method of the filler using high temperature / high pressure water which this specification discloses. That is, the filler may be manufactured by a manufacturing method that does not include a mixing step of mixing inorganic particles and an organic modifier in the presence of high-temperature high-pressure water that is supercritical or subcritical water.

(試料1)
無機粒子として、株式会社フジミ製アルミナ(Al)粒子WA#10000(中心粒径700nm)を用い、水を溶媒としてアルミナスラリーを調整した。亜臨界状態(温度:350℃、圧力:30MPa)の高温高圧水と、アルミナスラリーとを混合し、この混合スラリーの温度を350℃で30〜900秒間保持した。その後、テレフタル酸をさらに加えた後、エタノールで洗浄し、遠心分離する処理を3〜5回繰り返して実施例1に係る試料1を製造した。なお、アルミナとテレフタル酸の重量比は、アルミナ:テレフタル酸=3.35:1であった。
(Sample 1)
As inorganic particles, alumina (Al 2 O 3 ) particles WA # 10000 (center particle size 700 nm) manufactured by Fujimi Co., Ltd. were used, and alumina slurry was prepared using water as a solvent. High temperature and high pressure water in a subcritical state (temperature: 350 ° C., pressure: 30 MPa) and alumina slurry were mixed, and the temperature of the mixed slurry was maintained at 350 ° C. for 30 to 900 seconds. Then, after further adding terephthalic acid, the process of washing with ethanol and centrifuging was repeated 3 to 5 times to produce Sample 1 according to Example 1. The weight ratio of alumina to terephthalic acid was alumina: terephthalic acid = 3.35: 1.

(試料2)
テレフタル酸に代えて、コハク酸を用いた場合以外は、試料1と同じ方法を行って、実施例2に係る試料2を製造した。なお、アルミナとコハク酸の重量比は、アルミナ:コハク酸=4.71:1であった。
(Sample 2)
Sample 2 according to Example 2 was manufactured in the same manner as Sample 1 except that succinic acid was used instead of terephthalic acid. The weight ratio of alumina to succinic acid was alumina: succinic acid = 4.71: 1.

(比較例)
(試料3)
テレフタル酸に代えて、オレイン酸を用いた場合以外は、試料1と同じ方法を行って、比較例に係る試料3を製造した。なお、アルミナとオレイン酸の重量比は、アルミナ:オレイン酸=2:1であった。
(Comparative example)
(Sample 3)
A sample 3 according to a comparative example was manufactured in the same manner as the sample 1 except that oleic acid was used instead of terephthalic acid. The weight ratio of alumina to oleic acid was alumina: oleic acid = 2: 1.

(試料0)
無機粒子として用いた、株式会社フジミ製アルミナ(Al)粒子WA#10000を試料0とした。
(Sample 0)
Sample 0 was alumina (Al 2 O 3 ) particles WA # 10000 manufactured by Fujimi Co., Ltd. used as inorganic particles.

(拡散反射スペクトル分析)
試料0〜3について、Bio Rad Digilab社製のFTS−55Aおよびバーンズコレクターを用いて赤外拡散反射スペクトル分析を行った。図1に、試料1から試料0のスペクトルを差し引いた差分スペクトルを示す。図2に、試料2から試料0のスペクトルを差し引いた差分スペクトルを示す。
(Diffuse reflection spectrum analysis)
Samples 0 to 3 were subjected to infrared diffuse reflectance spectrum analysis using FTS-55A manufactured by Bio Rad Digilab and a Burns collector. FIG. 1 shows a difference spectrum obtained by subtracting the spectrum of sample 0 from sample 1. FIG. 2 shows a difference spectrum obtained by subtracting the spectrum of sample 0 from sample 2.

図1に示すように、試料1において、波数が1700cm−1においてカルボキシル基に由来する吸収ピークが観察された。また、波数が1405、1555cm−1において、エステル結合に由来する吸収ピークが観察された。この結果によって、試料1において、アルミナの表面のOH基とテレフタル酸のカルボキシル基がエステル化によって結合されていること、および、テレフタル酸のカルボキシル基が残存していることが実証された。 As shown in FIG. 1, in sample 1, an absorption peak derived from a carboxyl group was observed at a wave number of 1700 cm −1 . Moreover, absorption peaks derived from ester bonds were observed at wave numbers of 1405 and 1555 cm −1 . From this result, it was demonstrated in Sample 1 that the OH group on the surface of alumina and the carboxyl group of terephthalic acid were bonded by esterification, and that the carboxyl group of terephthalic acid remained.

同様に、試料2においては、波数が1695cm−1においてカルボキシル基に由来する吸収ピークが観察された。また、波数が1425、1575cm−1において、エステル結合に由来する吸収ピークが観察された。この結果によって、試料2において、アルミナの表面のOH基とコハク酸のカルボキシル基がエステル化によって結合されていること、および、コハク酸のカルボキシル基が残存していることが実証された。なお、図示していないが、試料3では、カルボキシル基およびエステル結合に由来するピークは観察されなかった。 Similarly, in sample 2, an absorption peak derived from a carboxyl group was observed at a wave number of 1695 cm −1 . Further, absorption peaks derived from ester bonds were observed at wave numbers of 1425 and 1575 cm −1 . From this result, it was demonstrated in Sample 2 that the OH group on the surface of alumina and the carboxyl group of succinic acid were bonded by esterification, and that the carboxyl group of succinic acid remained. Although not shown, in sample 3, peaks derived from carboxyl groups and ester bonds were not observed.

(昇温脱ガス分析)
試料1および2について、昇温脱ガス分析を行った。脱ガスの分析にはION−TOF社製の飛行時間質量分析計 TOF.SIMS5を用いた。なお、1次イオンにはBi ++を用い、2次イオン極性は正および負とした。図3,4に試料1,2の分析結果をそれぞれ示す。
(Temperature degassing analysis)
Samples 1 and 2 were subjected to thermal degassing analysis. For degassing analysis, the time-of-flight mass spectrometer TOF. SIMS5 was used. Bi 3 ++ was used as the primary ion, and the secondary ion polarity was positive and negative. 3 and 4 show the analysis results of Samples 1 and 2, respectively.

図3において、350℃以上の緩やかなピークに示される脱ガスを分析した結果、ベンゼン由来のマススペクトルが検出された。これは、テレフタル酸が分解して発生したものであると推定される。この結果から、試料1の表面に、テレフタル酸が結合していることがわかった。また、図4において、400℃以上の緩やかなピークに示される脱ガスを分析した結果、コハク酸由来のマススペクトルが検出された。この結果から、試料2の表面に、コハク酸が結合していることがわかった。   In FIG. 3, as a result of analyzing degassing indicated by a gentle peak at 350 ° C. or higher, a mass spectrum derived from benzene was detected. This is presumed to be caused by decomposition of terephthalic acid. From this result, it was found that terephthalic acid was bonded to the surface of Sample 1. Moreover, in FIG. 4, as a result of analyzing the degassing indicated by a gentle peak at 400 ° C. or higher, a mass spectrum derived from succinic acid was detected. From this result, it was found that succinic acid was bonded to the surface of Sample 2.

(樹脂との混練性評価)
樹脂とフィラーとを、フィラーの体積充填率:Vf=(フィラー体積)/(フィラー体積+樹脂体積)を変えて混合し、試料1および試料3をVf=0.3および0.6の条件でそれぞれビスフェノールFと混合して樹脂との混練性を評価した。その結果、試料1を含む樹脂は、試料3を含む樹脂よりも混練性が優れていた。試料1は、アルミナとテレフタル酸がエステル結合によって比較的安定に化学結合しており、かつ、カルボキシル基を有しているために、樹脂との親和性が高くなっているためであると考えられる。
(Evaluation of kneadability with resin)
Resin and filler are mixed while changing the filler volume filling ratio: Vf = (filler volume) / (filler volume + resin volume), and Sample 1 and Sample 3 are mixed under the conditions of Vf = 0.3 and 0.6. Each was mixed with bisphenol F and the kneadability with the resin was evaluated. As a result, the resin containing Sample 1 was superior in kneadability than the resin containing Sample 3. Sample 1 is considered to be due to the fact that alumina and terephthalic acid are chemically bonded relatively stably by an ester bond and have a carboxyl group, so that the affinity for the resin is high. .

上記のとおり、実施例1に係るフィラーは、樹脂と混合して用いる場合にVfを高くすることができ、樹脂との混練性に優れていた。これは、上記のアルミナと上記式(3)に示す有機修飾基がエステル結合によって比較的安定に化学結合しているとともに、有機修飾基のカルボキシル基によって、樹脂との親和性が向上したためであると考えられる。   As described above, the filler according to Example 1 was able to increase Vf when used by mixing with a resin, and was excellent in kneadability with the resin. This is because the above-described alumina and the organic modifying group represented by the above formula (3) are chemically bonded relatively stably by an ester bond, and the affinity with the resin is improved by the carboxyl group of the organic modifying group. it is conceivable that.

また、本明細書が開示する製造方法によって製造した、実施例に係るフィラーは、カルボキシル基を有していることが上記の分析結果によって実証された。すなわち、本明細書が開示する製造方法によって、本明細書に係るフィラーを製造することができることが実証された。   Moreover, it was demonstrated by the above analysis results that the filler according to the example manufactured by the manufacturing method disclosed in the present specification has a carboxyl group. That is, it was demonstrated that the filler according to the present specification can be manufactured by the manufacturing method disclosed in the present specification.

以上、本発明の実施形態および実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although embodiment and the Example of this invention were described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (3)

水の存在下で表面に水酸基を有する無機粒子と、前記無機粒子の表面の前記無機粒子を構成する原子に結合する下記式(1)によって示される有機修飾基とを含む、フィラー。
Figure 2013104004
(式中、Rは、任意の水素原子がカルボキシル基で置き換えられてもよい、飽和または不飽和の炭化水素基を表す。)
The filler containing the inorganic particle which has a hydroxyl group on the surface in presence of water, and the organic modification group shown by following formula (1) couple | bonded with the atom which comprises the said inorganic particle of the surface of the said inorganic particle.
Figure 2013104004
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group in which any hydrogen atom may be replaced with a carboxyl group.)
上記式(1)に記載のフィラーを製造する方法であって、
水の存在下で表面に水酸基を有する無機粒子と、下記式(2)によって示される有機修飾材とを、超臨界または亜臨界状態の水である高温高圧水の存在下で混合する混合工程を含むフィラーの製造方法。
Figure 2013104004
(式中、Rは、任意の水素原子がカルボキシル基、水酸基、アルデヒド基、アシル基で置き換えられてもよい、飽和または不飽和の炭化水素基を表し、Rは、水素原子、水酸基または炭化水素基を表す。)
A method for producing the filler according to the above formula (1),
A mixing step in which inorganic particles having a hydroxyl group on the surface in the presence of water and an organic modifier represented by the following formula (2) are mixed in the presence of high-temperature high-pressure water that is supercritical or subcritical water. The manufacturing method of the filler containing.
Figure 2013104004
(In the formula, R 2 represents a saturated or unsaturated hydrocarbon group in which any hydrogen atom may be replaced by a carboxyl group, a hydroxyl group, an aldehyde group, or an acyl group, and R 3 represents a hydrogen atom, a hydroxyl group, or Represents a hydrocarbon group.)
は、水素原子または炭化水素基であり、
前記混合工程の後に、Rを水酸基に変換する、請求項2に記載のフィラーの製造方法。
R 3 is a hydrogen atom or a hydrocarbon group,
The method for producing a filler according to claim 2, wherein R 3 is converted into a hydroxyl group after the mixing step.
JP2011249401A 2011-11-15 2011-11-15 Filler and manufacturing method of the same Pending JP2013104004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249401A JP2013104004A (en) 2011-11-15 2011-11-15 Filler and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249401A JP2013104004A (en) 2011-11-15 2011-11-15 Filler and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013104004A true JP2013104004A (en) 2013-05-30

Family

ID=48623805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249401A Pending JP2013104004A (en) 2011-11-15 2011-11-15 Filler and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013104004A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101896A (en) * 1996-06-12 1998-01-06 Nippon Poriorefuin Kk Support for printing and its production
WO2004087577A1 (en) * 2003-03-31 2004-10-14 Toto Ltd. Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
JP2005193237A (en) * 2005-01-17 2005-07-21 Tohoku Techno Arch Co Ltd Organomodified fine particle
JP2009091345A (en) * 2007-02-08 2009-04-30 Toto Ltd Titanium oxide functional molecule composite particle
WO2009078129A1 (en) * 2007-12-17 2009-06-25 Mitsui Chemicals, Inc. Resin composition, transparent member obtained from the resin composition, and use of the same
JP2009191167A (en) * 2008-02-14 2009-08-27 Sumitomo Osaka Cement Co Ltd Transparent liquid dispersion of metal oxide having high refractive index, transparent resin complex, and optical lens
JP2011122030A (en) * 2009-12-09 2011-06-23 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using this epoxy resin composition, organically modified inorganic filler, and process for producing epoxy resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101896A (en) * 1996-06-12 1998-01-06 Nippon Poriorefuin Kk Support for printing and its production
WO2004087577A1 (en) * 2003-03-31 2004-10-14 Toto Ltd. Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
JP2005193237A (en) * 2005-01-17 2005-07-21 Tohoku Techno Arch Co Ltd Organomodified fine particle
JP2009091345A (en) * 2007-02-08 2009-04-30 Toto Ltd Titanium oxide functional molecule composite particle
WO2009078129A1 (en) * 2007-12-17 2009-06-25 Mitsui Chemicals, Inc. Resin composition, transparent member obtained from the resin composition, and use of the same
JP2009191167A (en) * 2008-02-14 2009-08-27 Sumitomo Osaka Cement Co Ltd Transparent liquid dispersion of metal oxide having high refractive index, transparent resin complex, and optical lens
JP2011122030A (en) * 2009-12-09 2011-06-23 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using this epoxy resin composition, organically modified inorganic filler, and process for producing epoxy resin composition

Similar Documents

Publication Publication Date Title
Wang et al. Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites
TWI469824B (en) Resin composition for light semiconductor sealing material
JP5012230B2 (en) Zirconia-containing silicone resin composition
Song et al. Directed assembly of quantum dots using brush block copolymers for well-ordered nonlinear optical nanocomposites
Garskaite et al. Surface hardness and flammability of Na 2 SiO 3 and nano-TiO 2 reinforced wood composites
KR102279923B1 (en) Organic solvent dispersion of titanium oxide solid solution, method for making the same, and coating composition
TW200944489A (en) Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
TW201619259A (en) Surface-modified metal oxide particle dispersion liquid, method for producing same, surface-modified metal oxide particle-silicone resin composite composition and the body, optical member and light emitting device
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
Vahabi et al. Investigation of thermal stability and flammability of poly (methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMT
Gong et al. Construction of interface-engineered two-dimensional nanohybrids towards superb fire resistance of epoxy composites
JP2012255086A (en) Composite material with high thermal conductivity
Fan et al. TiO2/SiO2/kaolinite hybrid filler to improve the flame retardancy, smoke suppression and anti-aging characteristics of epoxy resin
JP2015214639A (en) Composite particle, method for producing the same and resin composition
Naeem et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving
BR112015014563B1 (en) 2K COATING COMPOSITION, COATING COMPOSITION PREPARATION METHOD, 2K COMPOSITION KIT, AND COATING COMPOSITION USE
CN101870844A (en) Preparation method of nano particle/polyester composite coating and composite coating prepared by same
JP2013104004A (en) Filler and manufacturing method of the same
Leng et al. Structural analysis of α-zirconium phosphate/cerium phosphate/graphene oxide nanocomposites with flame-retardant properties in polyvinyl alcohol
JP6037263B2 (en) Inorganic organic composite composition
JP2010535897A5 (en)
Nguyen et al. Effects of hybrid graphene oxide with multiwalled carbon nanotubes and nanoclay on the mechanical properties and fire resistance of epoxy nanocomposite
Bakir et al. Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites
JP2013034952A (en) Organomodified inorganic particle, method for manufacturing the same, and device for manufacturing the same
JP5823778B2 (en) Medium heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203