JP2012255086A - Composite material with high thermal conductivity - Google Patents

Composite material with high thermal conductivity Download PDF

Info

Publication number
JP2012255086A
JP2012255086A JP2011128867A JP2011128867A JP2012255086A JP 2012255086 A JP2012255086 A JP 2012255086A JP 2011128867 A JP2011128867 A JP 2011128867A JP 2011128867 A JP2011128867 A JP 2011128867A JP 2012255086 A JP2012255086 A JP 2012255086A
Authority
JP
Japan
Prior art keywords
composite material
high thermal
inorganic material
resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011128867A
Other languages
Japanese (ja)
Inventor
Kimiyasu Sato
佐藤  公泰
Atsuko Ijuin
敦子 伊集院
Yuji Hotta
裕司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011128867A priority Critical patent/JP2012255086A/en
Publication of JP2012255086A publication Critical patent/JP2012255086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material that can exhibit high thermal conductivity even if the volume content of inorganic material particles is made large.SOLUTION: The composite material with high thermal conductivity is provided which comprises a resin material 1 and the inorganic material particles 2 dispersed in the resin material 1, wherein the interface of the resin material 1 and the inorganic material particles 2 includes an organic polymer layer 3 inside which the molecular sequence thereof is ordered.

Description

本発明は、主に無機材料粒子と樹脂材料からなる、高熱伝導性の複合材料に関する。   The present invention relates to a composite material having high thermal conductivity mainly composed of inorganic material particles and a resin material.

電子機器の高機能化が進み、電子部品が高密度に配置されるのに伴って、電子機器からの発熱量は増大の一途を辿っており、放熱が重要な問題となっている。特に、小型、軽量が望まれ、必然的に電子部品の高密度化が進むノート型パーソナルコンピュータや携帯型端末機器においては、喫緊の問題といえる。   As electronic devices become more sophisticated and electronic components are arranged at a high density, the amount of heat generated from the electronic devices continues to increase, and heat dissipation is an important issue. In particular, it is an urgent problem in notebook personal computers and portable terminal devices in which small size and light weight are desired and the density of electronic components is inevitably increasing.

放熱の手法としては、発熱源に放熱部材を接合させて、その放熱部材を通じて放熱することが有効である。そして、電子機器においては、放熱部材に電気的絶縁性が要求される場合が多い。このような事情から、一般的に、放熱部材として、マトリックスとしての樹脂材料中に、フィラーとして無機材料粒子を分散させた、複合材料が採用されている(例えば、非特許文献1を参照)。そして、この複合材料において、高い熱伝導率を発現させるためには、無機材料粒子の体積含有率を大きく(高く)することが望ましい(例えば、特許文献1を参照)。   As a heat dissipation technique, it is effective to join a heat dissipation member to a heat source and dissipate heat through the heat dissipation member. In electronic devices, electrical insulation is often required for the heat dissipation member. Under such circumstances, generally, a composite material in which inorganic material particles are dispersed as a filler in a resin material as a matrix is employed as a heat dissipation member (see, for example, Non-Patent Document 1). And in this composite material, in order to express high heat conductivity, it is desirable to make the volume content rate of inorganic material particle large (high) (for example, refer to patent documents 1).

特開2010−24406号公報JP 2010-24406 A

高熱伝導性コンポジット材料、シーエムシー出版、2011年、p.111〜124High thermal conductive composite material, CMC Publishing, 2011, p. 111-124 高分子の難燃・放熱制御技術、株式会社エヌ・ティー・エス、2002年、p.49〜64Polymer flame retardant / heat dissipation control technology, NTS Corporation, 2002, p. 49-64

しかしながら、無機材料粒子の体積含有率が大きい(高い)複合材料を得るべく、原料に、無機材料粒子を過剰に添加すると、(原料の)流動性が低下し、成形性が悪化して、製造過程上、好ましくない。又、高価な無機材料粒子(フィラー)を大量に使用すれば、コストが上昇してしまう。更には、無機材料粒子の添加量が多いと、得られる複合材料の強度が低下し、脆く、破壊され易くなるとともに、重量増にもつながり、実用上、望ましくない。   However, if excessive inorganic material particles are added to the raw material in order to obtain a composite material having a large (high) volume content of the inorganic material particles, the fluidity (of the raw material) decreases and the moldability deteriorates. It is not preferable in the process. Further, if a large amount of expensive inorganic material particles (filler) is used, the cost increases. Furthermore, if the amount of the inorganic material particles added is large, the strength of the resulting composite material decreases, it becomes brittle and easily broken, and also increases in weight, which is undesirable in practice.

本発明は、このような事情に鑑みてなされたものであり、本発明の課題は、無機材料粒子の体積含有率を大きくしなくても、高い熱伝導率を発現する複合材料を、提供することである。研究が重ねられた結果、マトリックスとしての樹脂材料中にフィラーとして無機材料粒子を分散させた複合材料において、無機材料粒子と樹脂材料間の界面に、分子配列を制御して秩序化させた有機高分子層を導入することによって、複合材料全体の熱伝導率を向上させ得ることが見出され、本発明の完成に至った。   This invention is made | formed in view of such a situation, The subject of this invention provides the composite material which expresses high thermal conductivity, without enlarging the volume content rate of an inorganic material particle. That is. As a result of repeated research, in a composite material in which inorganic material particles are dispersed as a filler in a resin material as a matrix, an organic high-order material is formed by controlling the molecular arrangement at the interface between the inorganic material particles and the resin material. It has been found that by introducing a molecular layer, the thermal conductivity of the entire composite material can be improved, and the present invention has been completed.

即ち、本発明によれば、樹脂材料と、その樹脂材料中に分散した無機材料粒子と、を有するとともに、それら樹脂材料と無機材料粒子との界面に、内部の分子配列が秩序化された有機高分子層を備える、高熱伝導性複合材料が提供される。   That is, according to the present invention, an organic material having a resin material and inorganic material particles dispersed in the resin material, and having an ordered molecular arrangement at the interface between the resin material and the inorganic material particles. A highly thermally conductive composite material comprising a polymer layer is provided.

本発明に係る高熱伝導性複合材料では、有機高分子層は、その内部の分子配列が秩序化されたものである。ここで、分子配列が秩序化された、とは、分子の配列が、ランダムではなく、規則的になっていることを指す。例えば、分子鎖が一定の方向を向いているような有機高分子層が、分子配列が秩序化された有機高分子層に、該当する。   In the high thermal conductive composite material according to the present invention, the organic polymer layer has an ordered molecular arrangement inside. Here, “ordered molecular arrangement” means that the arrangement of molecules is regular, not random. For example, an organic polymer layer in which molecular chains are oriented in a certain direction corresponds to an organic polymer layer in which molecular arrangement is ordered.

本発明に係る高熱伝導性複合材料においては、上記有機高分子層が、その分子構造中に、オキシエチレン(−CO−)構造を含むものであることが好ましい。 In the high thermal conductive composite material according to the present invention, the organic polymer layer preferably contains an oxyethylene (—C 2 H 4 O—) structure in the molecular structure.

本発明に係る高熱伝導性複合材料においては、上記有機高分子層が、無機材料粒子の表面に、共有結合によって結合していることが好ましい。   In the high thermal conductive composite material according to the present invention, the organic polymer layer is preferably bonded to the surface of the inorganic material particle by a covalent bond.

本発明に係る高熱伝導性複合材料においては、上記樹脂材料が、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、テフロン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、及びポリイミドの物質群から選択される少なくとも一種の有機物質を含むものであることが好ましい。   In the high thermal conductive composite material according to the present invention, the resin material is polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, Teflon, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polycarbonate, modified polyphenylene. It is preferable to contain at least one organic substance selected from the group of substances of ether, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polytetrafluoroethylene, polysulfone, polyether sulfone, polyether ether ketone, and polyimide. .

本発明に係る高熱伝導性複合材料においては、上記無機材料粒子が、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、及び炭化ケイ素の物質群から選択される少なくとも一種の無機物質を含むものであることが好ましい。   In the high thermal conductivity composite material according to the present invention, the inorganic material particles include aluminum oxide, silicon oxide, zinc oxide, titanium oxide, zirconium oxide, magnesium oxide, beryllium oxide, aluminum nitride, boron nitride, silicon nitride, and carbonized. It is preferable to include at least one inorganic substance selected from the group of silicon substances.

本発明に係る高熱伝導性複合材料においては、上記無機材料粒子の平均粒径が、10nm以上、100μm未満であることが好ましい。無機材料粒子の平均粒径は、100nm以上、100μm未満であることが、より好ましく、100nm以上、10μm以下であることが、特に好ましい。   In the high thermal conductivity composite material according to the present invention, the inorganic material particles preferably have an average particle size of 10 nm or more and less than 100 μm. The average particle diameter of the inorganic material particles is more preferably 100 nm or more and less than 100 μm, and particularly preferably 100 nm or more and 10 μm or less.

本発明に係る高熱伝導性複合材料においては、上記無機材料粒子の含有量が、3体積%以上、40体積%以下である(3〜40体積%である)ことが好ましい。無機材料粒子の含有量は、5〜30体積%であることが、より好ましい。   In the high thermal conductive composite material according to the present invention, the content of the inorganic material particles is preferably 3% by volume to 40% by volume (3 to 40% by volume). The content of the inorganic material particles is more preferably 5 to 30% by volume.

本発明に係る高熱伝導性複合材料は、樹脂材料と無機材料粒子との界面に、内部の分子配列が秩序化された有機高分子層を備えるので、そうでない従来の複合材料に比して、同じ無機材料粒子の体積含有率であっても、熱伝導率が、より大きくなる(高くなる(その理由は後述する))。従って、大きな(高い)熱伝導率の複合材料を得ようとしたときに、高価な無機材料粒子を過剰に使用する必要はないので、原料の流動性は低下せず、成形性は良好である。又、コストを抑制することが可能である。更に、複合材料の強度低下、重量増を防止することが出来る。   Since the high thermal conductive composite material according to the present invention includes an organic polymer layer in which the internal molecular arrangement is ordered at the interface between the resin material and the inorganic material particles, as compared with a conventional composite material that does not, Even if it is the volume content of the same inorganic material particle, thermal conductivity becomes larger (it becomes high (the reason is mentioned later)). Therefore, when trying to obtain a composite material having a large (high) thermal conductivity, it is not necessary to use excessively expensive inorganic material particles, so the fluidity of the raw material does not decrease and the moldability is good. . In addition, the cost can be suppressed. Furthermore, the strength reduction and weight increase of the composite material can be prevented.

本発明に係る高熱伝導性複合材料は、その好ましい態様において、有機高分子層が、その分子構造中に、オキシエチレン(−CO−)構造を含むものであるので、製造が容易である。これは、本発明に係る高熱伝導性複合材料では、有機高分子層は、分子配列が秩序化されている必要があるところ、オキシエチレン(−CO−)構造を含むものは、水中で60℃程度以上の高温にすることだけで、秩序構造を持つ状態にすることが出来るからである。 In a preferred embodiment, the high thermal conductive composite material according to the present invention is easy to manufacture because the organic polymer layer includes an oxyethylene (—C 2 H 4 O—) structure in the molecular structure. . This is because in the high thermal conductive composite material according to the present invention, the organic polymer layer needs to have an ordered molecular arrangement, and the one containing an oxyethylene (—C 2 H 4 O—) structure is This is because an ordered structure can be obtained only by raising the temperature to about 60 ° C. or higher in water.

本発明に係る高熱伝導性複合材料は、その好ましい態様において、有機高分子層が、無機材料粒子の表面に、共有結合によって結合しているので、有機高分子層が、マトリックスである樹脂材料中に拡散することがない。有機高分子層は、安定して、継続して、無機材料粒子と樹脂材料との間(界面)に存在するので、複合材料全体の熱伝導率が向上するという上記効果を、安定して、継続して、得ることが出来る。即ち、本発明に係る高熱伝導性複合材料のこの好ましい態様は、長期にわたる信頼性が高い。   In a preferred embodiment of the high thermal conductivity composite material according to the present invention, the organic polymer layer is bonded to the surface of the inorganic material particle by a covalent bond, so that the organic polymer layer is a matrix in the resin material. Does not spread. Since the organic polymer layer is stably and continuously present between the inorganic material particles and the resin material (interface), the above-described effect of improving the thermal conductivity of the entire composite material is stably achieved. It can be obtained continuously. That is, this preferred embodiment of the high thermal conductivity composite material according to the present invention is highly reliable over a long period of time.

高熱伝導性複合材料では、樹脂材料は、マトリックスとして(フィラーである)無機材料粒子を包含するものであるところ、本発明に係る高熱伝導性複合材料は、その好ましい態様において、樹脂材料が、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、テフロン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、及びポリイミドの物質群から選択される少なくとも一種の有機物質を含むものであるので、この要求に合致する。   In the high thermal conductive composite material, the resin material includes inorganic material particles (which are fillers) as a matrix. In the preferred embodiment of the high thermal conductive composite material according to the present invention, the resin material is polyethylene. , Polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, Teflon, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polytetrafluoroethylene, This requirement is met because it contains at least one organic material selected from the group of materials of polysulfone, polyethersulfone, polyetheretherketone, and polyimide.

高熱伝導性複合材料では、無機材料粒子として、樹脂材料よりも、熱伝導率の高い物質を用いる必要があるところ、本発明に係る高熱伝導性複合材料は、その好ましい態様において、無機材料粒子が、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、及び炭化ケイ素の物質群から選択される少なくとも一種の無機物質を含むものであるので、この要求に合致する。   In the high thermal conductive composite material, it is necessary to use a substance having a higher thermal conductivity than the resin material as the inorganic material particle. In the preferred embodiment, the high thermal conductive composite material according to the present invention has an inorganic material particle And at least one inorganic substance selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, titanium oxide, zirconium oxide, magnesium oxide, beryllium oxide, aluminum nitride, boron nitride, silicon nitride, and silicon carbide. Meet this requirement.

本発明に係る高熱伝導性複合材料は、その好ましい態様において、無機材料粒子の平均粒径が、10nm以上、100μm未満であるので、複合材料全体の熱伝導率が向上するという上記効果を、確実に得ることが出来る。無機材料粒子の平均粒径が、10nm未満であると、無機材料粒子の結晶性を保つことが困難となり、高い熱伝導率を維持出来ないおそれが生じる。又、無機材料粒子の平均粒径が、100μm以上であると、複合材料中に占める無機材料粒子と樹脂材料との間の界面の面積が小さくなり、フォノンの静的散乱による熱伝導率の低下が顕著でなくなるため、本発明に係る高熱伝導性複合材料を利用する意義は小さい。   In a preferred embodiment of the high thermal conductivity composite material according to the present invention, since the average particle size of the inorganic material particles is 10 nm or more and less than 100 μm, the above-described effect of improving the thermal conductivity of the entire composite material is ensured. Can be obtained. If the average particle diameter of the inorganic material particles is less than 10 nm, it becomes difficult to maintain the crystallinity of the inorganic material particles, and high thermal conductivity may not be maintained. In addition, when the average particle size of the inorganic material particles is 100 μm or more, the area of the interface between the inorganic material particles and the resin material in the composite material is reduced, and the thermal conductivity is reduced due to static phonon scattering. Therefore, the significance of using the high thermal conductive composite material according to the present invention is small.

本発明に係る高熱伝導性複合材料は、その好ましい態様において、無機材料粒子の含有量が、3体積%以上、40体積%以下であるので、複合材料全体の熱伝導率が向上するという上記効果を、確実に得ることが出来る。無機材料粒子の含有量が、3体積%未満であると、無機材料粒子の添加による複合材料の熱伝導率向上が期待出来ない。一方、無機材料粒子の含有量が、40体積%超であると、無機材料粒子どうしが複合材料中で接触し、パーコレーション効果による熱伝導が支配的となって、本発明技術を利用する必要性は小さくなる。そもそも、無機材料粒子の過剰な添加は、流動性が低下して成形性が悪くなるという製造過程上の問題、高価な無機材料粒子(フィラー)を大量に使用しなくてはならないというコスト上の問題、複合材料が脆くなり強度が低下して破壊され易くなることや重量増につながること等の実用上の問題、を引き起こすため、好ましくない。   In a preferred embodiment of the high thermal conductivity composite material according to the present invention, the content of the inorganic material particles is 3% by volume or more and 40% by volume or less, so that the thermal conductivity of the entire composite material is improved. Can be definitely obtained. When the content of the inorganic material particles is less than 3% by volume, the improvement of the thermal conductivity of the composite material due to the addition of the inorganic material particles cannot be expected. On the other hand, if the content of the inorganic material particles is more than 40% by volume, the inorganic material particles come into contact with each other in the composite material, and heat conduction due to the percolation effect becomes dominant, and it is necessary to use the technology of the present invention. Becomes smaller. In the first place, excessive addition of inorganic material particles is a problem in the manufacturing process that the flowability is lowered and the moldability is deteriorated, and the cost that a large amount of expensive inorganic material particles (fillers) must be used. This is not preferable because it causes problems such as a problem that the composite material becomes brittle, the strength is reduced, and the composite material is easily broken or increases in weight.

本発明に係る高熱伝導性複合材料の構造を、模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the high heat conductive composite material which concerns on this invention. 本発明に係る高熱伝導性複合材料の構造を示す図であり、樹脂材料と無機材料粒子との界面に、分子配列を制御し秩序化させた有機高分子層が備わる態様において、熱が伝わる様子を拡大して、模式的に示した説明図である。FIG. 5 is a diagram showing the structure of a high thermal conductive composite material according to the present invention, in which heat is transferred in an embodiment in which an organic polymer layer in which molecular arrangement is controlled and ordered is provided at the interface between a resin material and inorganic material particles. It is explanatory drawing which expanded and was shown typically. 実施例の結果を示す図であり、酸化アルミニウム粒子(無機材料粒子)の含有量と、(得られた)複合材料の熱伝導率と、の関係を示すグラフである。It is a figure which shows the result of an Example, and is a graph which shows the relationship between content of aluminum oxide particle | grains (inorganic material particle | grains), and the thermal conductivity of the (obtained) composite material.

以下、本発明の実施の形態について、適宜、図面を参酌しながら説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。例えば、図面は、好適な本発明の実施の形態を表すものであるが、本発明は図面に表される態様や図面に示される情報により制限されない。本発明を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手段が適用され得るが、好適な手段は以下に記述される手段である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention should not be construed as being limited to these, and those skilled in the art will be able to do so without departing from the scope of the present invention. Various changes, modifications and improvements can be made based on the knowledge. For example, the drawings show preferred embodiments of the present invention, but the present invention is not limited by the modes shown in the drawings or the information shown in the drawings. In practicing or verifying the present invention, means similar to or equivalent to those described in the present specification can be applied, but preferred means are those described below.

先ず、本発明に係る高熱伝導性複合材料の構造について、説明する。図1及び図2に示される(本発明に係る)高熱伝導性複合材料においては、無機材料粒子2が、樹脂材料1中に、分散している。即ち、(本発明に係る)高熱伝導性複合材料は、マトリックスとしての樹脂材料1と、フィラーとしての無機材料粒子2と、を構成要素として備えるものである。そして、樹脂材料1(樹脂材料相)と無機材料粒子2(無機材料相)との界面に、内部の分子配列が秩序化された有機高分子層3が備わる。(本発明に係る)高熱伝導性複合材料は、無機材料粒子2と樹脂材料1とを有する複合材料において、分子配列を制御し秩序化させた有機高分子層3を導入することにより、複合材料の熱伝導性を高めるという技術的思想に基づく複合材料を、広く包含するものである。   First, the structure of the high thermal conductive composite material according to the present invention will be described. In the high thermal conductive composite material shown in FIGS. 1 and 2 (according to the present invention), the inorganic material particles 2 are dispersed in the resin material 1. That is, the high thermal conductive composite material (in accordance with the present invention) includes the resin material 1 as a matrix and the inorganic material particles 2 as a filler as constituent elements. An organic polymer layer 3 in which the internal molecular arrangement is ordered is provided at the interface between the resin material 1 (resin material phase) and the inorganic material particles 2 (inorganic material phase). A highly thermal conductive composite material (in accordance with the present invention) is obtained by introducing an organic polymer layer 3 in which a molecular arrangement is controlled and ordered in a composite material having inorganic material particles 2 and a resin material 1. It widely encompasses composite materials based on the technical idea of increasing the thermal conductivity.

この(本発明に係る)高熱伝導性複合材料では、既述の通り、樹脂材料と無機材料粒子との界面に、内部の分子配列が秩序化された有機高分子層を備えるので、そうでない従来の複合材料に比して、同じ無機材料粒子の体積含有率であっても、熱伝導率が、より大きくなる(高くなる)。この理由は、以下の通りである。即ち、物質中の熱伝導を担う媒体は、自由電子、格子振動(フォノン)、分子運動の何れかである。無機材料及び樹脂材料の熱伝導は、フォノンによるものである。物質中のフォノンの平均自由行程が長い方が、熱伝導率は高い。そして、フォノンの平均自由行程は、フォノン散乱の程度によって決まる。フォノン散乱は、フォノンどうしの衝突による散乱(動的散乱)と、幾何学的な散乱(静的散乱)に、大別される。動的散乱は、物質の温度や、分子運動及び格子振動の非調和性に起因し、静的散乱は、非晶質構造、結晶性物質と非晶質物質との境界面、不純物、格子欠陥等に、起因する。ここで、熱伝導率の高い無機材料は、結晶性であるが、樹脂材料は、一般に非晶質である。このため、複合材料中のフィラー(無機材料)とマトリックス(樹脂材料)の界面は、結晶性物質と非晶質物質との境界面となり、フォノンの静的散乱を引き起こし、複合材料の熱伝導率低下の原因となる(例えば、非特許文献2を参照)。然るに、(本発明に係る)高熱伝導性複合材料は、無機材料粒子と樹脂材料との間(界面)に、分子配列を制御して秩序化させた有機高分子層を導入しており、結晶性物質と非晶質物質との境界面におけるフォノンの静的散乱が抑制されるので、複合材料全体の熱伝導率が向上するのである。   In this high thermal conductivity composite material (according to the present invention), as described above, an organic polymer layer in which the internal molecular arrangement is ordered is provided at the interface between the resin material and the inorganic material particles. As compared with the composite material, the thermal conductivity becomes larger (higher) even if the volume content of the same inorganic material particles is the same. The reason for this is as follows. That is, the medium responsible for heat conduction in the substance is one of free electrons, lattice vibration (phonon), and molecular motion. Thermal conduction of inorganic materials and resin materials is due to phonons. The longer the mean free path of phonons in the material, the higher the thermal conductivity. The mean free path of phonons is determined by the degree of phonon scattering. Phonon scattering is broadly divided into scattering by phonon collision (dynamic scattering) and geometrical scattering (static scattering). Dynamic scattering is due to material temperature, molecular motion and lattice vibration anharmonicity, and static scattering is amorphous structure, interface between crystalline material and amorphous material, impurities, lattice defects. Due to, etc. Here, the inorganic material having high thermal conductivity is crystalline, but the resin material is generally amorphous. For this reason, the interface between the filler (inorganic material) and the matrix (resin material) in the composite material becomes the interface between the crystalline material and the amorphous material, causing static phonon scattering, and the thermal conductivity of the composite material. This causes a decrease (see, for example, Non-Patent Document 2). However, the high thermal conductivity composite material (according to the present invention) introduces an organic polymer layer ordered by controlling the molecular arrangement between the inorganic material particles and the resin material (interface), Since the static scattering of phonons at the interface between the active substance and the amorphous substance is suppressed, the thermal conductivity of the entire composite material is improved.

次に、本発明に係る高熱伝導性複合材料の製造方法について、説明する。本発明に係る高熱伝導性複合材料は、例えば、有機高分子層を無機材料粒子の表面に化学結合させ、その有機高分子層が化学結合した無機材料粒子を、樹脂材料中へ分散させて、得ることが出来る。   Next, the manufacturing method of the high thermal conductive composite material according to the present invention will be described. In the high thermal conductive composite material according to the present invention, for example, the organic polymer layer is chemically bonded to the surface of the inorganic material particles, and the inorganic material particles chemically bonded to the organic polymer layer are dispersed in the resin material, Can be obtained.

有機高分子層を無機材料粒子の表面に化学結合させる方法は、特に限定されず、従来公知の化学修飾法を利用することが出来る。例えば、カップリング剤により有機分子を固定する方法、オートクレーブ法により有機分子を固定する方法、コロナ放電による表面改質を利用する方法、オゾンによる表面改質を利用する方法、超臨界水中での反応による方法等が、挙げられる。中でも、カップリング剤により有機分子を固定する方法を用いることが好ましい。簡便に強固な結合を形成することが可能だからである。   The method for chemically bonding the organic polymer layer to the surface of the inorganic material particles is not particularly limited, and a conventionally known chemical modification method can be used. For example, a method of fixing organic molecules by a coupling agent, a method of fixing organic molecules by an autoclave method, a method using surface modification by corona discharge, a method using surface modification by ozone, a reaction in supercritical water And the like. Among them, it is preferable to use a method of fixing organic molecules with a coupling agent. This is because it is possible to easily form a strong bond.

無機材料粒子を樹脂材料中へ分散させるための方法は、特に制限はなく、化学結合させた有機高分子層の効果が損なわれない限り、従来公知の分散方法の中から、任意に選択し、採用することが出来る。例えば、撹拌による方法、超音波バスによる方法、ホモジナイザーによる方法、ボールミルによる方法等を、好適に用いることが可能である。   The method for dispersing the inorganic material particles in the resin material is not particularly limited, and may be arbitrarily selected from conventionally known dispersion methods as long as the effect of the chemically bonded organic polymer layer is not impaired. It can be adopted. For example, a method using stirring, a method using an ultrasonic bath, a method using a homogenizer, a method using a ball mill, and the like can be suitably used.

有機高分子層は、分子配列が秩序化されている必要がある。そのような分子配列を制御することが可能な物質として、構造中に、オキシエチレン(−CO−)構造を含むものが、挙げられる。オキシエチレンは常温では親水性であるため、固体表面に固定されたポリオキシエチレンは、水中ではランダムな構造となるが、温度を60℃以上に上昇させることによって、その親水性を失い、固体表面近傍に秩序化された状態で、凝縮する。例えば、構造中にポリオキシエチレンを含む物質を表面に固定した無機材料粒子を、常温で水中に分散させ、温度を60℃以上に上昇させれば、分子配列が秩序化された有機高分子層を、得ることが出来る。 The organic polymer layer needs to have an ordered molecular arrangement. Examples of the substance capable of controlling such a molecular arrangement include those having an oxyethylene (—C 2 H 4 O—) structure in the structure. Since oxyethylene is hydrophilic at room temperature, the polyoxyethylene fixed on the solid surface has a random structure in water, but by raising the temperature to 60 ° C. or higher, it loses its hydrophilicity, and the solid surface It condenses in an ordered state in the vicinity. For example, if inorganic material particles having a structure containing polyoxyethylene fixed on the surface are dispersed in water at room temperature and the temperature is raised to 60 ° C. or higher, the organic polymer layer in which the molecular arrangement is ordered Can be obtained.

有機高分子層において、分子配列が秩序化されていることは、例えば、高分解能透過型電子顕微鏡を用いた観察、又は、透過型電子顕微鏡を用いた電子線回折による構造解析、によって、確認することが出来る。上記の通り、構造中にポリオキシエチレンを含む物質を表面に固定した無機材料粒子を、常温で水中に分散させ、温度を60℃以上に上昇させて得られた、オキシエチレン(−CO−)構造を含む有機高分子層を、例えば、高分解能透過型電子顕微鏡を用いて観察すると、分子配列が秩序化されている態様(分子鎖が一定の方向を向いている様子)を、確認することが出来る。通常、分子配列を秩序化する処理を行えば、殆どの分子配列は秩序化する(大部分の分子鎖は一定の方向を向く)。 The order of the molecular arrangement in the organic polymer layer is confirmed by, for example, observation using a high-resolution transmission electron microscope or structural analysis by electron beam diffraction using a transmission electron microscope. I can do it. As described above, oxyethylene (—C 2 H) obtained by dispersing inorganic material particles having a structure containing polyoxyethylene on the surface thereof in water at room temperature and raising the temperature to 60 ° C. or higher. When an organic polymer layer containing a 4 O-) structure is observed using, for example, a high-resolution transmission electron microscope, an aspect in which molecular arrangement is ordered (a state in which molecular chains are directed in a certain direction) Can be confirmed. Usually, when a process for ordering a molecular arrangement is performed, most of the molecular arrangements are ordered (most molecular chains are oriented in a certain direction).

例えば、無機材料粒子として酸化アルミニウム粒子を用い、その酸化アルミニウム粒子表面に対してカップリング剤を化学結合させ、更に、オキシエチレン構造を有する有機分子を化学結合させて、ポリオキシエチレンを有する有機分子が表面に化学結合した酸化アルミニウム粒子を得て、マトリックスである樹脂材料として、ポリアミドの1種である6−ナイロンを用い、ポリオキシエチレンを有する有機分子が表面に化学結合した酸化アルミニウム粒子を、その6−ナイロン中に分散させれば、本発明に係る高熱伝導性複合材料を得ることが出来る(後述する実施例を参照)。   For example, aluminum oxide particles are used as inorganic material particles, a coupling agent is chemically bonded to the surface of the aluminum oxide particles, and an organic molecule having an oxyethylene structure is further chemically bonded to form an organic molecule having polyoxyethylene. Is obtained by using 6-nylon, which is a kind of polyamide, as a resin material as a matrix, and aluminum oxide particles in which organic molecules having polyoxyethylene are chemically bonded to the surface. If it is dispersed in the 6-nylon, the highly heat-conductive composite material according to the present invention can be obtained (see Examples described later).

尚、分子配列を制御可能であって、分子配列が秩序化された有機高分子層を得られる物質としては、他に、ポリエチレン、液晶アクリレート、エポキシ樹脂等を、挙げることが出来る。   In addition, examples of the substance capable of controlling the molecular arrangement and obtaining the organic polymer layer in which the molecular arrangement is ordered include polyethylene, liquid crystal acrylate, epoxy resin, and the like.

以下、実施例に基づいて本発明を説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited at all by these Examples.

(実施例1)[工程1]下記式(化1)に示すように、酸化アルミニウム粒子(I)に対して、シラン系カップリング剤である3−アミノプロピルトリエトキシシラン(II:NHSi(OC)を作用させ、表面にアミノ基を有する酸化アルミニウム粒子(III)を得た。具体的には、先ず、3−アミノプロピルトリエトキシシラン4gを、純水500mlに溶解させて、シラン系カップリング剤の水溶液を調製する。次いで、その水溶液中に、平均粒径570nmの酸化アルミニウム粒子25gを分散させ、1時間、撹拌することにより、酸化アルミニウム粒子の表面に、3−アミノプロピルトリエトキシシランを吸着させる。そして、遠心洗浄により遊離の3−アミノプロピルトリエトキシシランを除去した後、105℃で加熱乾燥し、酸化アルミニウム粒子と3−アミノプロピルトリエトキシシランとの間で縮合反応を起こさせることによって、酸化アルミニウム粒子表面に共有結合によってカップリング剤が固定された構造を有する、酸化アルミニウム粒子(III)を得た。 (Example 1) [Step 1] As shown in the following formula (Chemical Formula 1), 3-aminopropyltriethoxysilane (II: NH 2 C) which is a silane coupling agent with respect to the aluminum oxide particles (I). 3 H 6 Si (OC 2 H 5 ) 3 ) was allowed to act to obtain aluminum oxide particles (III) having amino groups on the surface. Specifically, first, 4 g of 3-aminopropyltriethoxysilane is dissolved in 500 ml of pure water to prepare an aqueous solution of a silane coupling agent. Next, 25 g of aluminum oxide particles having an average particle diameter of 570 nm are dispersed in the aqueous solution and stirred for 1 hour to adsorb 3-aminopropyltriethoxysilane to the surface of the aluminum oxide particles. Then, free 3-aminopropyltriethoxysilane is removed by centrifugal washing, and then heated and dried at 105 ° C. to cause a condensation reaction between the aluminum oxide particles and 3-aminopropyltriethoxysilane. Aluminum oxide particles (III) having a structure in which a coupling agent was fixed by covalent bonding to the surfaces of the aluminum particles were obtained.

[工程2]次いで、オキシエチレン構造とカルボジイミド基(−N=C=N−)が10:1の比で連なった構造を有する分子量約2000の有機化合物(水溶性ポリカルボジイミド)を用い、下記式(化2)に示すように、その構造中のカルボジイミド基と、上記酸化アルミニウム粒子(III)表面のアミノ基を、結合させた。具体的には、先ず、純水150mlに、上記酸化アルミニウム粒子(III)15g及び水溶性ポリカルボジイミド0.6gを加え、55℃まで加熱した状態で、2時間、撹拌する(オキシエチレンが秩序化しない60℃より低い温度で反応を進め、水溶性ポリカルボジイミドを酸化アルミニウム粒子の表面に結合させる)。その後、純水で粒子を洗浄して、未反応の水溶性ポリカルボジイミドを除去し、更に、凍結乾燥して、オキシエチレン結合性酸化アルミニウム粒子を得た。   [Step 2] Next, an organic compound having a molecular weight of about 2000 (water-soluble polycarbodiimide) having a structure in which an oxyethylene structure and a carbodiimide group (—N═C═N—) are linked at a ratio of 10: 1 is used. As shown in (Chemical Formula 2), the carbodiimide group in the structure was bonded to the amino group on the surface of the aluminum oxide particle (III). Specifically, first, 15 g of the above aluminum oxide particles (III) and 0.6 g of water-soluble polycarbodiimide are added to 150 ml of pure water, and the mixture is stirred for 2 hours while being heated to 55 ° C. (oxyethylene is ordered). The reaction proceeds at a temperature lower than 60 ° C., and water-soluble polycarbodiimide is bound to the surface of the aluminum oxide particles). Thereafter, the particles were washed with pure water to remove unreacted water-soluble polycarbodiimide and further freeze-dried to obtain oxyethylene-bonded aluminum oxide particles.

[工程3]そして、上記オキシエチレン結合性酸化アルミニウム粒子を、6−ナイロン中に分散させて、(本発明に係る高熱伝導性)複合材料を得た。具体的には、純水5mlに、ε−カプロラクタム5g、6−アミノヘキサン酸0.4g、アジピン酸0.03gを加えて、撹拌し、溶解させ、上記オキシエチレン結合性酸化アルミニウム粒子8.1gを添加して、120℃で、2時間、プレ重合させた後(60℃以上となり、オキシエチレンが秩序化される)、230℃で、3時間、重合させ、(本発明に係る高熱伝導性)複合材料を得た。得られた複合材料中の酸化アルミニウム粒子含有量は、40体積%程度となった。   [Step 3] The oxyethylene-bonded aluminum oxide particles were dispersed in 6-nylon to obtain a composite material (high thermal conductivity according to the present invention). Specifically, 5 g of ε-caprolactam, 0.4 g of 6-aminohexanoic acid and 0.03 g of adipic acid are added to 5 ml of pure water, stirred and dissolved, and 8.1 g of the above oxyethylene-bonded aluminum oxide particles. And then prepolymerized at 120 ° C. for 2 hours (over 60 ° C. and oxyethylene is ordered), and then polymerized at 230 ° C. for 3 hours (high thermal conductivity according to the present invention). ) A composite material was obtained. The content of aluminum oxide particles in the obtained composite material was about 40% by volume.

(実施例2)工程3において、上記オキシエチレン結合性酸化アルミニウム粒子4.7gを添加した。それ以外は、実施例1と同様にして、(本発明に係る高熱伝導性)複合材料を得た。得られた複合材料中の酸化アルミニウム粒子含有量は、20〜25体積%程度であった(試料の数は2)。   (Example 2) In Step 3, 4.7 g of the above oxyethylene-bonded aluminum oxide particles were added. Other than that was carried out similarly to Example 1, and obtained the (high thermal conductivity which concerns on this invention) composite material. The content of aluminum oxide particles in the obtained composite material was about 20 to 25% by volume (the number of samples was 2).

(参考例)工程3において、上記オキシエチレン結合性酸化アルミニウム粒子0gを添加した(添加しなかった)。それ以外は、実施例1と同様にして、(本発明に係る高熱伝導性)複合材料を得た。得られた複合材料中の酸化アルミニウム粒子含有量は、0体積%となった。   (Reference Example) In Step 3, 0 g of the above oxyethylene-bonded aluminum oxide particles was added (not added). Other than that was carried out similarly to Example 1, and obtained the (high thermal conductivity which concerns on this invention) composite material. The aluminum oxide particle content in the obtained composite material was 0% by volume.

(比較例1)オキシエチレン結合性酸化アルミニウム粒子を用いずに、(未処理)酸化アルミニウム粒子を用いた。それ以外は、実施例1と同様にして、複合材料を得た。得られた複合材料中の酸化アルミニウム粒子含有量は、40体積%程度となった。   Comparative Example 1 (Untreated) aluminum oxide particles were used without using oxyethylene-bonded aluminum oxide particles. Other than that was carried out similarly to Example 1, and obtained the composite material. The content of aluminum oxide particles in the obtained composite material was about 40% by volume.

(比較例2)オキシエチレン結合性酸化アルミニウム粒子を用いずに、(未処理)酸化アルミニウム粒子を用いた。それ以外は、実施例2と同様にして、複合材料を得た。得られた複合材料中の酸化アルミニウム粒子含有量は、20〜25体積%程度であった(試料の数は2)。   Comparative Example 2 (Untreated) aluminum oxide particles were used without using oxyethylene-bonded aluminum oxide particles. Other than that was carried out similarly to Example 2, and obtained the composite material. The content of aluminum oxide particles in the obtained composite material was about 20 to 25% by volume (the number of samples was 2).

[熱伝導率の測定]実施例1,2において作製したオキシエチレン結合性酸化アルミニウム粒子を含む複合材料、比較例1,2において作製した(未処理)酸化アルミニウム粒子を含む複合材料、及び参考例において作製した複合材料について、それぞれ熱伝導率を測定した。尚、実施例2及び比較例2においては、それぞれ試料(複合材料)は2つである。熱伝導率の測定は、レーザーフラッシュ法(使用機器:アルバック理工株式会社製TC−7000H)によって、行った。酸化アルミニウム粒子含有量と、(得られた)複合材料の熱伝導率と、の関係を、図3に示す。   [Measurement of Thermal Conductivity] Composite Material Containing Oxyethylene-Binding Aluminum Oxide Particles Produced in Examples 1 and 2, Composite Material Containing (Untreated) Aluminum Oxide Particles Produced in Comparative Examples 1 and 2, and Reference Example The thermal conductivity was measured for each of the composite materials produced in (1). In Example 2 and Comparative Example 2, there are two samples (composite materials). The measurement of thermal conductivity was performed by a laser flash method (device used: TC-7000H manufactured by ULVAC-RIKO Inc.). The relationship between the aluminum oxide particle content and the thermal conductivity of the (obtained) composite material is shown in FIG.

(考察)図3に示されるように、参考例に基づけば、酸化アルミニウム含有量が0体積%(即ち、6−ナイロン単体)では、熱伝導率は0.3W/mK程度であった。実施例1及び比較例1に基づき、酸化アルミニウム粒子の含有量が40体積%程度では、複合材料の熱伝導率は、何れも1.4W/mK程度であり、オキシエチレン結合性酸化アルミニウム粒子を含む複合材料と(未処理)酸化アルミニウム粒子を含む複合材料との間に、差異は生じなかった。これは、酸化アルミニウム粒子どうしが、複合材料中で接触し、パーコレーション効果による熱伝導が支配的となっていることによるものと推定される。実施例2及び比較例2に基づき、酸化アルミニウム粒子の含有量が20〜25体積%では、実施例2の複合材料(オキシエチレン結合性酸化アルミニウム粒子を含む複合材料)の熱伝導率は、比較例2の複合材料((未処理)酸化アルミニウム粒子を含む複合材料)の熱伝導率に比して、20%程度、向上していた。   (Consideration) As shown in FIG. 3, based on the reference example, when the aluminum oxide content was 0% by volume (that is, 6-nylon alone), the thermal conductivity was about 0.3 W / mK. Based on Example 1 and Comparative Example 1, when the content of aluminum oxide particles is about 40% by volume, the thermal conductivity of the composite material is about 1.4 W / mK, and the oxyethylene-bonded aluminum oxide particles are There was no difference between the composite material containing and the composite material containing (untreated) aluminum oxide particles. This is presumably because the aluminum oxide particles are in contact with each other in the composite material, and the heat conduction due to the percolation effect is dominant. Based on Example 2 and Comparative Example 2, when the content of aluminum oxide particles is 20 to 25% by volume, the thermal conductivity of the composite material of Example 2 (composite material including oxyethylene-bonded aluminum oxide particles) is comparative. Compared to the thermal conductivity of the composite material of Example 2 (composite material containing (untreated) aluminum oxide particles), it was improved by about 20%.

本発明に係る高熱伝導性複合材料は、ノート型パーソナルコンピュータや携帯型端末機器等の電子機器に搭載される電子部品のパッケージング、LED照明の絶縁放熱基板や封止材、車載用電子基板やケース、ハイブリッドカーや電気自動車のモーターに用いるコイル封入材等、様々な用途に、例えば放熱部材として、好適に用いられる。   High thermal conductivity composite materials according to the present invention include packaging of electronic components mounted on electronic devices such as notebook personal computers and portable terminal devices, insulating heat dissipation substrates and sealing materials for LED lighting, in-vehicle electronic substrates, For example, as a heat radiating member, it is suitably used for various applications such as a case, a coil encapsulant used for a motor of a hybrid car or an electric car.

1:樹脂材料
2:無機材料粒子
3:有機高分子層
1: Resin material 2: Inorganic material particle 3: Organic polymer layer

Claims (7)

樹脂材料と、その樹脂材料中に分散した無機材料粒子と、を有するとともに、
それら樹脂材料と無機材料粒子との界面に、内部の分子配列が秩序化された有機高分子層を備える、高熱伝導性複合材料。
Having a resin material and inorganic material particles dispersed in the resin material,
A highly thermally conductive composite material comprising an organic polymer layer in which the internal molecular arrangement is ordered at the interface between the resin material and the inorganic material particles.
前記有機高分子層が、その分子構造中に、オキシエチレン(−CO−)構造を含む請求項1に記載の高熱伝導性複合材料。 The high thermal conductive composite material according to claim 1, wherein the organic polymer layer includes an oxyethylene (—C 2 H 4 O—) structure in a molecular structure thereof. 前記有機高分子層が、前記無機材料粒子の表面に、共有結合によって結合している請求項1又は2に記載の高熱伝導性複合材料。   The high thermal conductive composite material according to claim 1 or 2, wherein the organic polymer layer is bonded to the surface of the inorganic material particle by a covalent bond. 前記樹脂材料が、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、テフロン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、及びポリイミドの物質群から選択される少なくとも一種の有機物質を含む請求項1〜3の何れか一項に記載の高熱伝導性複合材料。   The resin material is polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, Teflon, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide. The high thermal conductivity according to any one of claims 1 to 3, comprising at least one organic material selected from the group consisting of: polytetrafluoroethylene, polysulfone, polyethersulfone, polyetheretherketone, and polyimide. Composite material. 前記無機材料粒子が、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、及び炭化ケイ素の物質群から選択される少なくとも一種の無機物質を含む請求項1〜4の何れか一項に記載の高熱伝導性複合材料。   The inorganic material particles are at least one inorganic selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, titanium oxide, zirconium oxide, magnesium oxide, beryllium oxide, aluminum nitride, boron nitride, silicon nitride, and silicon carbide. The high thermal conductivity composite material according to any one of claims 1 to 4, comprising a substance. 前記無機材料粒子の平均粒径が、10nm以上、100μm未満である請求項1〜5の何れか一項に記載の高熱伝導性複合材料。   The average particle diameter of the said inorganic material particle is 10 nm or more and less than 100 micrometers, The high heat conductive composite material as described in any one of Claims 1-5. 前記無機材料粒子の含有量が、3体積%以上、40体積%以下である請求項1〜6の何れか一項に記載の高熱伝導性複合材料。   7. The highly thermally conductive composite material according to claim 1, wherein the content of the inorganic material particles is 3% by volume to 40% by volume.
JP2011128867A 2011-06-09 2011-06-09 Composite material with high thermal conductivity Pending JP2012255086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128867A JP2012255086A (en) 2011-06-09 2011-06-09 Composite material with high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128867A JP2012255086A (en) 2011-06-09 2011-06-09 Composite material with high thermal conductivity

Publications (1)

Publication Number Publication Date
JP2012255086A true JP2012255086A (en) 2012-12-27

Family

ID=47526948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128867A Pending JP2012255086A (en) 2011-06-09 2011-06-09 Composite material with high thermal conductivity

Country Status (1)

Country Link
JP (1) JP2012255086A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709684A (en) * 2013-12-26 2014-04-09 青岛友铭辰生物技术有限公司 High impact thermoplastic alloy for electronic and electric components and preparation method thereof
JP2015195359A (en) * 2014-03-28 2015-11-05 トヨタ自動車株式会社 Phonon scattering material, nanocomposite thermoelectric material, and method of producing the same
WO2015174023A1 (en) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 Insulating thermally conductive resin composition
JP2016017086A (en) * 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
CN105820534A (en) * 2016-04-19 2016-08-03 安徽路明光电科技有限公司 LED lamp insulating shell material and production technology thereof
JP2018172541A (en) * 2017-03-31 2018-11-08 太平洋セメント株式会社 Magnesium oxide powder and composite material
US10913879B2 (en) 2014-02-24 2021-02-09 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
CN113150528A (en) * 2021-01-18 2021-07-23 浙江华电器材检测研究所有限公司 High-thermal-conductivity composite material for insulating puncture wire clamp shell and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298708A (en) * 2004-04-14 2005-10-27 Nissan Motor Co Ltd Foamable resin composition and method for reinforcing automobile body
JP2008502779A (en) * 2004-06-15 2008-01-31 シーメンス パワー ジェネレーション インコーポレイテッド High thermal conductivity material with grafted surface functional groups
JP2008189814A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Thermally conductive filler, method for producing the same, and method for producing resin molded article
JP2008255186A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Heat-conductive resin sheet and power module
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298708A (en) * 2004-04-14 2005-10-27 Nissan Motor Co Ltd Foamable resin composition and method for reinforcing automobile body
JP2008502779A (en) * 2004-06-15 2008-01-31 シーメンス パワー ジェネレーション インコーポレイテッド High thermal conductivity material with grafted surface functional groups
JP2008189814A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Thermally conductive filler, method for producing the same, and method for producing resin molded article
JP2008255186A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Heat-conductive resin sheet and power module
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709684A (en) * 2013-12-26 2014-04-09 青岛友铭辰生物技术有限公司 High impact thermoplastic alloy for electronic and electric components and preparation method thereof
US10913879B2 (en) 2014-02-24 2021-02-09 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
JP2015195359A (en) * 2014-03-28 2015-11-05 トヨタ自動車株式会社 Phonon scattering material, nanocomposite thermoelectric material, and method of producing the same
US9997274B2 (en) 2014-05-15 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
WO2015174023A1 (en) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 Insulating thermally conductive resin composition
CN106459594B (en) * 2014-05-15 2019-04-09 松下知识产权经营株式会社 Insulating heat-conductive resin combination
CN106459594A (en) * 2014-05-15 2017-02-22 松下知识产权经营株式会社 Insulating thermally conductive resin composition
JP2016017086A (en) * 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
US10202530B2 (en) 2014-08-27 2019-02-12 Jnc Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and method of producing heat dissipating member
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
CN105820534A (en) * 2016-04-19 2016-08-03 安徽路明光电科技有限公司 LED lamp insulating shell material and production technology thereof
JP2018172541A (en) * 2017-03-31 2018-11-08 太平洋セメント株式会社 Magnesium oxide powder and composite material
CN113150528A (en) * 2021-01-18 2021-07-23 浙江华电器材检测研究所有限公司 High-thermal-conductivity composite material for insulating puncture wire clamp shell and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2012255086A (en) Composite material with high thermal conductivity
Su et al. Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes
Jung et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube
Yao et al. Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity
Yuan et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation
Lee et al. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging
Zhao et al. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres
Huang et al. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites
Wang et al. Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes
Wang et al. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
Meng et al. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity
JP4973569B2 (en) Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator
Li et al. Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance
Tang et al. Thermal conductivity of nanostructured boron nitride materials
TW201927689A (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
Liu et al. Silver nanoparticle-enhanced three-dimensional boron nitride/reduced graphene oxide skeletons for improving thermal conductivity of polymer composites
Hamidinejad et al. Insight into the directional thermal transport of hexagonal boron nitride composites
Kumar et al. Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
Ma et al. Preparation of modified hexagonal boron nitride by ball-milling and enhanced thermal conductivity of epoxy resin
JP6786047B2 (en) Method of manufacturing heat conductive sheet
Liu et al. Pea-pod-like carbon microspheres encapsulated by graphene-like carbon nitride for enhanced thermal conductivity in polyimide films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331