JP2013103716A - 航空機の空調システムの動作方法および航空機の空調システム - Google Patents

航空機の空調システムの動作方法および航空機の空調システム Download PDF

Info

Publication number
JP2013103716A
JP2013103716A JP2012246922A JP2012246922A JP2013103716A JP 2013103716 A JP2013103716 A JP 2013103716A JP 2012246922 A JP2012246922 A JP 2012246922A JP 2012246922 A JP2012246922 A JP 2012246922A JP 2013103716 A JP2013103716 A JP 2013103716A
Authority
JP
Japan
Prior art keywords
air
aircraft
pressurized air
source
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012246922A
Other languages
English (en)
Inventor
Louis J Bruno
ジェイ.ブルーノ ルイス
Thomas M Zywiak
エム.ジウィアク トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of JP2013103716A publication Critical patent/JP2013103716A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/02Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/064Environmental Control Systems comprising more than one system, e.g. dual systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】航空機に必要とされるエネルギを減少させるように航空機空調システムを構成する。
【解決手段】航空機空調システム10は、圧縮機14、モータ16およびタービン18を有してなる第1の加圧空気供給源12と、第2の加圧空気供給源とを備える。圧縮機14は、外気15を受け、この外気15を加圧し、そして、この加圧した外気を航空機キャビン20へと送る。第1の動作モードにおいては、航空機で利用可能な電力が閾値よりも低いときには、航空機キャビン20に供給される空気は、第1の加圧空気供給源12のみから提供される。第2の動作モードにおいては、航空機で利用可能な電力が閾値よりも高いときには、航空機キャビン20に供給される空気は、第1の加圧空気供給源12および第2の加圧空気供給源22の双方から提供される。
【選択図】図1

Description

本発明は、航空機の空調・加圧システムに関し、特に、航空機の空調・加圧システムの動作に関する。
航空機の空調システムが、一般に、外気で動作される圧縮機を備えている。この空調システムは、航空機の外部から外気を受け、コンプレッサを用いてこの外気の圧力を調整してから、この外気を航空機のキャビンへと送る。外気圧力や他の条件は、飛行の高度に大いに基づいて変化する。この変化は、圧縮機の性能および効率に影響を及ぼし得る。1つの圧縮機を用いた効率的な方法によっては、動作条件の変化により生じる大きな要求動作範囲を完全に保護することができない。
したがって、2つ以上の圧縮機を用いた航空機空調システムが開発されてきた。多段圧縮機式航空機空調システムは、種々の圧縮機の様々な組み合わせが利用される種々の動作モードを備えている。多段圧縮機式航空機空調システムの1つの欠点としては、この航空機空調システムによって航空機の電力要求が増加してしまうことが挙げられる。さらに、現在利用可能な多段圧縮機式航空機空調システムは、航空機空調システムの動作モードを決定するために、外部条件、例えば、外気圧力に依存している。
一実施例においては、航空機の空調システムの動作方法が、航空機の制御システムから利用可能な電力レベルを受けるステップと、第1の加圧空気供給源から航空機キャビンに空気を送るステップと、利用可能な電力レベルが閾値よりも高いときに、第2の加圧空気供給源から航空機キャビンに空気を送るステップとを含む。
他の実施例においては、航空機の空調システムが、出口を航空機キャビンに直接的または間接的に接続してなる第1の加圧空気供給源と、出口を航空機キャビンに直接的または間接的に接続することができる第2の加圧空気供給源とを備えている。また、この空調システムはコントローラを備えており、該コントローラは、航空機の制御システムから利用可能な電力レベルを受け、この利用可能な電力レベルに応じて第1の加圧空気供給源および第2の加圧空気供給源を制御する。利用可能な電力レベルが閾値よりも低いときに、第1の加圧空気供給源のみが航空機キャビンに接続され、利用可能な電力レベルが閾値よりも高いときに、第1の加圧空気供給源および第2の加圧空気供給源の双方が航空機キャビンに接続される。
別の実施例においては、出口を航空機キャビンに直接的または間接的に接続することができる第1の加圧空気供給源と、出口を航空機キャビンに直接的または間接的に接続することができる少なくとも1つの第2の加圧空気供給源22とを備えてなる航空機において、空調システムを動作する方法が提供される。この方法は、第1の加圧空気供給源のみが航空機キャビンに接続される第1の動作モードで動作するステップと、第1の加圧空気供給源および第2の加圧空気供給源の双方が航空機キャビンに接続される第2の動作モードで動作するステップとを含む。第1の動作モードが、低い利用可能な電力レベルで選択され、第2の動作モードが、低い利用可能な電力レベルよりも高い電力レベルで選択されるように、動作モードが、航空機で利用可能な電力レベルに基づいて選択される。
本発明の一実施例における航空機空調システムのブロック図である。 本発明の他の実施例における航空機空調システムの概略図である。 本発明の実施例の圧力回収装置を有した航空機の空調システムのブロック図である。
図1には、航空機の空調システム10のブロック図が示されている。航空機空調システム10は、航空機のキャビン20に直接的または間接的に接続することができる第1の加圧空気供給源12を備えている。第1の加圧空気供給源12は、圧縮機14、モータ16およびタービン18を備えている。圧縮機14、モータ16およびタービン18は、シャフト28によって互いに接続されている。シャフト28は、一体的に形成されるか、または複数の部品から形成され得る。圧縮機14は、外気15を受け、モータ16およびタービン18の一方または双方から供給される動力を用いて外気を加圧し、そして、この加圧した外気を航空機キャビン20へと送る。また、航空機空調システム10は、1つまたは複数のモータおよび圧縮機を備え得る二次加圧空気供給源22を備えており、該二次加圧空気供給源22は、直接的または間接的に航空機キャビン20に接続され得る。航空機空調システム10で用いられる圧縮機は、例えば、単段圧縮機または多段圧縮機とすることができる。第1の加圧空気供給源12および第2の加圧空気供給源22によって用いられる圧縮機は、動作するのにかなりの電力が必要となる。
一実施例においては、航空機空調システム10は、航空機で利用可能な電力に基づいて種々のモードで動作するように設計されている。航空機空調システム10は、コントローラ24を有することができ、コントローラ24は、航空機制御システム(図示せず)から、航空機で利用可能な電力を示す信号25を受ける。コントローラ24は、信号25によって示される航空機で利用可能な電力に基づいて第1の加圧空気供給源12および第2の加圧空気供給源22の作動を制御する。
第1の動作モードにおいては、航空機で利用可能な電力が閾値よりも低いときには、航空機キャビン20に供給される空気は、第1の加圧空気供給源12のみから提供される。第1の加圧空気供給源12は、航空機の地上作動中に、必要な加圧や温度を制御し、キャビンに新しい空気を供給することができるように設計されている。また、第2の動作モードにおいては、航空機で利用可能な電力が閾値よりも高いときには、航空機キャビン20に供給される空気は、第1の加圧空気供給源12および第2の加圧空気供給源22の双方から提供される。一実施例においては、2つの加圧空気供給源からの加圧空気を混合し、この混合空気を冷却、加湿または除湿などによりさらに処理し、そして、航空機キャビンに送ることができる。他の実施例においては、航空機で利用可能な電力が第2の閾値よりも高いときに、3つ以上の加圧空気供給源を用いることができ、第1の加圧空気供給源、第2の加圧空気供給源および第3の加圧空気供給源から、航空機キャビン20に供給される空気を提供することができる。
一実施例においては、加圧空気は、航空機キャビン20へと流入する前に冷却される。冷却は、航空機のラム空気ダクトに配置されたラム空気熱交換器(図示せず)やタービン18によって実施され得る。第1の動作モードにおいて、冷却は、冷却プロセスに組み込まれたラム空気熱交換器およびタービン18によって実施され得る。ここで、タービン18は、シャフト上で圧縮機14およびモータ16に連結されている。1つまたは複数のタービン18が、圧縮機14と共にシャフト28上に配置され得る。
図2には、本発明の実施例の航空機空調システム100の概略図が示されている。航空機空調システム100は、第1の加圧空気供給源101を備えており、該第1の加圧空気供給源101は、外気で充填される圧縮機102を備えている。圧縮機102は、シャフト108上でモータ104およびタービン106に接続されている。また、航空機空調システム100は、第2の加圧空気供給源103も備えており、該第2の加圧空気供給源103は、システムが動作される動作モードに基づいて切り替え可能である。一実施例においては、第2の加圧空気供給源103は、調節弁110によって切り替えられるか、または部分的に切り替え可能である。他の実施例においては、調節弁110の代わりに、逆止弁を配置することもできる。第2の加圧空気供給源は、例えば、外気や、航空機の制御システムからのブリード空気で充填される第2の電動式圧縮機128とすることができる。圧縮機102の出口ラインは、逆止弁112を備えており、該逆止弁112は、この出口ラインを通る流れが圧縮機102へと導かれないことを確実にする。
図2のシステムは、航空機で利用可能な電力に基づいて少なくとも2つの動作モードで動作され得る。第1の動作モードにおいては、キャビンに供給される空気の全てが圧縮機102によって提供される。タービン106からの動力は、モータ104からの電力および圧縮機102の駆動と組み合わされる。圧縮機102は、加圧、温度調節および新しい空気の供給に関するキャビンの空気供給の要求を満たすことができるように設計されている。圧縮機102から出た空気は、混合チャンバ116を通過した後に、ラム空気ダクト熱交換器114において冷却される。そして、この空気は、水抽出回路を通流してから、タービン106による第2の冷却を受ける。水抽出回路は、水抽出装置118、再熱器138および凝縮器120を備えることができる。水抽出装置118において分離された水は、水噴射装置WIによってラム空気ダクトに供給される。
第2の動作モードにおいては、調節弁110または逆止弁が開かれ、キャビンに供給される空気は、圧縮機102の出口空気および圧縮機128の出口空気によって形成される。第2の動作モードにおいては、混合された空気流は、第1の動作モードの圧縮機102の出口空気と同様の構成要素を通流する。
単一の段の圧縮を基礎として個別の圧縮段に要求される圧力比が高いので、上記圧縮段は、修正質量流量の制限された動作範囲を達成するのみである。修正質量流量を供給することができるためには、付加的な圧縮段または加圧空気供給源が、同時に切り替えられ得る。用いられる外気圧縮機の数は、この接続においては一定ではなく、使用領域の全てを保護するために、1つの空調システムにつき少なくとも2つの加圧空気供給源が並列に接続される。
図2に示したように、第2の加圧空気供給源103は、ジェットポンプ124を作動させるために、開いた弁122と共に用いられる。これにより、第1の動作モードにおいて、1つまたは複数のラム空気熱交換器によって、冷却された空気流を確実に得ることができる。また、圧縮機102の圧縮機出口空気を、弁126によってジェットポンプ124に供給することもできる。このような方法により、圧縮機102の安全な動作や安定した動作が確実なものとされ得る。したがって、付加的な質量流量は、ジェットポンプ124によってラム空気ダクトに案内されるか、または他の需要部(consumer)に供給される。ラム空気ダクトの入口弁は、ラム空気ダクトの入口側に配置され得るものであり、ラム空気入口アクチュエータ(RAIA)によって制御可能である。
一実施例では、第2の加圧空気供給源103は、モータ130によって駆動される圧縮機128によって形成される。当業者は、システム100に1つまたは複数の上記ユニットを設けることもできることを理解するであろう。一実施例においては、非サージ弁(anti−surge valves)132,134によって閉じることができる再循環ラインが、圧縮機102,128の各々へと引き出されている。さらに、付加的な圧縮機負荷弁136は、混合チャンバ116からラム空気ダクト熱交換器114へと延びるラインに設けられる。非サージ弁132,134を開くことにより、圧縮機102,128を介して再循環空気を増加させることができ、これにより、圧縮機102,128の安定した動作が可能となる。上述したように、ジェットポンプの調節弁122,126によっても、圧縮機の質量流量を増加させることができる。圧縮機負荷弁136は、圧縮機102,128を制限するように用いられ、圧縮機102,128の出口温度を増加させることができる。
図3には、航空機空調システム10のブロック図が示されている。航空機空調システム10は、航空機キャビン20に直接的または間接的に接続することができる第1の加圧空気供給源12を備えている。第1の加圧空気供給源12は、圧縮機14、モータ16およびタービン18を備えている。圧縮機14、モータ16およびタービン18は、シャフト28によって互いに接続されている。圧縮機14は、外気を受け、モータ16およびタービン18から供給される動力を用いて外気を加圧し、そして、この加圧した外気を航空機キャビン20へと送る。また、航空機空調システム10は、1つまたは複数のモータまたは圧縮機を備え得る二次加圧空気供給源22を備えており、該二次加圧空気供給源22は、直接的または間接的に航空機キャビン20に接続され得る。コントローラ24が、航空機制御システムから、航空機で利用可能な電力を示す信号を受け、この信号に応答して、航空機で利用可能な電力に基づいて第1の加圧空気供給源12および第2の加圧空気供給源22の作動を制御する。
現在の航空機空調システムにおいては、加圧空気は、キャビンを通して循環した後に、キャビンから取り除かれて排気される(つまり、「機外」に送られる)。航空機の高度に応じて、航空機外の空気圧力は、排気される空気よりも非常に低いものとなり得る。一実施例においては、キャビン20から排気される加圧空気はタービン18へと送られ、タービン18は、この加圧空気が外気圧力へと減圧されたときに生じるエネルギを取り込む。キャビンからの減圧された空気は、タービン18を通過した後に、機外へと送られる。一実施例においては、タービン18は、キャビンから排気された空気の減圧により取り込まれるエネルギを、モータ16および圧縮機14に連結されたシャフト28へと供給することができる。このエネルギは、航空機空調システム10を動作するために航空機に必要とされるエネルギを減少させるように用いられ得る。
一実施例においては、航空機空調システム10は、航空機キャビン20に配置され得る排出装置26も備えている。排出装置26は、コントローラ24によって制御可能であり、コントローラ24は、航空機キャビン20からの循環空気をタービン18または航空機外へと送るように排出装置26に指示することができる。一実施例においては、コントローラ24は、外気圧力がキャビン空気圧力よりも低いときに、航空機キャビン20からの循環空気をタービン18に送るように排出装置26に指示することができ、また、外気圧力がキャビン空気圧力と等しいまたはほぼ等しいときに、航空機キャビン20からの循環空気を航空機外に送るように排出装置26に指示することができる。他の実施例においては、コントローラ24は、外気とキャビン空気との間の圧力差が閾値よりも高いときに、航空機キャビン20からの循環空気をタービン18に送るように排出装置26に指示することができ、また、外気とキャビン空気との間の圧力差が閾値よりも低いときに、航空機キャビン20からの循環空気を航空機外に送るように排出装置26に指示することができる。
1つの動作モードでは航空機は約3Psi、または約20.6kPaの外気圧力の環境にあり、約12Psi、または約82.7kPaのキャビン圧力を有する。航空機空調装置10は、外気を3Psiから12Psiに加圧するのに約100kWの電力を必要とする。現在利用可能な航空機空調装置では、外気の加圧に必要な全ての電力はモータ16から供給される。一実施例では、タービン18は、キャビンから排気した空気の減圧によって生じたエネルギを取り込み、動力を発生し、そして、この動力をモータ16および圧縮機14に供給する。約3Psiの外気圧、および約12Psiのキャビン圧力の動作モードでは、タービン18は、約20kWの電力を発生する。したがって、航空機の動作条件に基づいて、キャビンから排気した空気の減圧によって生じたエネルギを取り込むことにより、結果的に航空機空調装置の消費電力を20%まで低下させることができる。
本明細書で用いた用語は特定の実施例のみの説明を目的とするものであり、本発明の限定を意図するものではない。本明細書で用いられるように、単数形の形態「a」、「an」および「the」は、文脈において特に指示がない限り、同様に複数のものも含むことを意図するものである。さらに留意すべきは、本明細書で用いられる場合の語句「備える」は、記載した特徴部、整数値、ステップ、動作、要素やコンポーネントの存在を明らかにするものであり、一つ以上のその他の特徴部、整数値、ステップ、動作、要素、コンポーネントやそれらの群の存在または追加を妨げるものではない。
全ての手段またはステップの対応する構造、材料、行為、およびそれらと同等のものに加えて以下の請求項の機能要素は、特に請求の範囲に記載のその他の請求項に記載された要素と組み合わされて機能を実施するためのあらゆる構造、材料、または行為を含むことを意図するものである。例示および説明を目的として本発明の明細書を開示するが、本明細書を開示の形態に包括的に限定することを意図するものではない。本発明の範囲および真意を逸脱することなく種々の修正および変更が当業者にとって明らかとなるであろう。この実施例は、本明細書の本質、および実際の応用例を最もよく説明するために、そして当業者以外の人が、種々の修正を有する種々の実施例の開示を、検討された特定の用途に適したものとして認識できるようにするために、選択され、記載されたものである。
本発明の好適な実施形態を記載したが、現在および将来の当業者が以下の特許請求の範囲に含まれる種々の改良および強化を行うことが理解されるであろう。これらの請求の範囲は先に述べた本明細書の適切な保護を維持するように解釈されるべきである。

Claims (18)

  1. 航空機の制御システムから利用可能な電力レベルを受けるステップと、
    第1の加圧空気供給源から航空機キャビンに空気を送るステップと、
    前記利用可能な電力レベルが閾値よりも高いときに、第2の加圧空気供給源から前記航空機キャビンに空気を送るステップと、
    を含む航空機の空調システムの動作方法。
  2. 前記第1の加圧空気供給源および前記第2の加圧空気供給源によって加圧された空気が、前記航空機キャビンに流入する前に冷却されることを特徴とする請求項1に記載の動作方法。
  3. 前記第1の加圧空気供給源からの空気と、前記第2の加圧空気供給源からの空気とが、前記航空機キャビンに流入する前に混合されることを特徴とする請求項1に記載の動作方法。
  4. 前記第1の加圧空気供給源からの空気は、圧縮機によって形成され、該圧縮機は、外気、ラム空気や予圧空気で充填されるとともに、モータやタービンによって駆動されることを特徴とする請求項1に記載の動作方法。
  5. 前記第2の加圧空気供給源からの空気は、第2の圧縮機によって形成され、該第2の圧縮機は、外気、ラム空気や予圧空気で充填されるとともに、モータやタービンによって駆動されることを特徴とする請求項1に記載の動作方法。
  6. 前記利用可能な電力レベルが第2の閾値よりも高いときに、第3の加圧空気供給源から前記航空機キャビンに空気を送るステップをさらに含むことを特徴とする請求項1に記載の動作方法。
  7. 前記第2の加圧空気供給源から前記航空機キャビンに送られる空気の一部が、前記利用可能な電力レベルに基づいていることを特徴とする請求項1に記載の動作方法。
  8. 出口を航空機キャビンに直接的または間接的に接続してなる第1の加圧空気供給源と、
    出口を前記航空機キャビンに直接的または間接的に接続することができる第2の加圧空気供給源と、
    航空機の制御システムから利用可能な電力レベルを受け、この利用可能な電力レベルに応じて前記第1の加圧空気供給源および前記第2の加圧空気供給源を制御する、コントローラと、
    を備え、
    前記利用可能な電力レベルが閾値よりも低いときに、前記第1の加圧空気供給源のみが前記航空機キャビンに接続され、
    前記利用可能な電力レベルが閾値よりも高いときに、前記第1の加圧空気供給源および前記第2の加圧空気供給源の双方が前記航空機キャビンに接続されることを特徴とする航空機の空調システム。
  9. 前記第1の加圧空気供給源および前記第2の加圧空気供給源に加えて、出口を前記航空機キャビンに直接的または間接的に接続することができる付加的な加圧空気供給源をさらに備えることを特徴とする請求項8に記載の航空機の空調システム。
  10. 前記第1の加圧空気供給源および前記第2の加圧空気供給源は、並列に接続されることを特徴とする請求項8に記載の航空機の空調システム。
  11. 前記第1の加圧空気供給源の出口空気と、前記第2の加圧空気供給源の出口空気とが、チャンバによって形成された混合点において結合されることを特徴とする請求項8に記載の航空機の空調システム。
  12. 前記第2の加圧空気供給源から前記航空機キャビンに送られる空気の一部は、前記利用可能な電力レベルに基づいていることを特徴とする請求項8に記載の航空機の空調システム。
  13. 出口を航空機キャビンに直接的または間接的に接続することができる第1の加圧空気供給源と、出口を前記航空機キャビンに直接的または間接的に接続することができる少なくとも1つの第2の加圧空気供給源とを備えてなる航空機において、空調システムを動作する方法であって、
    前記第1の加圧空気供給源のみが前記航空機キャビンに接続される第1の動作モードで動作するステップと、
    前記第1の加圧空気供給源および前記第2の加圧空気供給源の双方が前記航空機キャビンに接続される第2の動作モードで動作するステップと、
    を含み、
    前記第1の動作モードが、低い利用可能な電力レベルで選択され、前記第2の動作モードが、前記低い利用可能な電力レベルよりも高い電力レベルで選択されるように、動作モードの選択が、前記航空機で利用可能な電力レベルに基づいて選択されることを特徴とする方法。
  14. 前記第1の加圧空気供給源および前記第2の加圧空気供給源によって加圧された空気は、前記航空機キャビンに流入する前に冷却されることを特徴とする請求項13に記載の方法。
  15. 前記第1の加圧空気供給源からの空気と、前記第2の加圧空気供給源からの空気とが、前記航空機キャビンに流入する前に混合されることを特徴とする請求項13に記載の方法。
  16. 前記第2の加圧空気供給源から前記航空機キャビンに送られる空気の一部が、前記利用可能な電力レベルに基づいていることを特徴とする請求項13に記載の方法。
  17. 前記第1の加圧空気供給源からの空気は、圧縮機によって形成され、該圧縮機は、外気、ラム空気や予圧空気で充填されるとともに、モータやタービンによって駆動されることを特徴とする請求項13に記載の方法。
  18. 前記第2の加圧空気供給源からの空気は、第2の圧縮機によって形成され、該第2の圧縮機は、外気、ラム空気や予圧空気で充填されるとともに、モータやタービンによって駆動されることを特徴とする請求項13に記載の方法。
JP2012246922A 2011-11-11 2012-11-09 航空機の空調システムの動作方法および航空機の空調システム Pending JP2013103716A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/294,906 2011-11-11
US13/294,906 US9205925B2 (en) 2011-11-11 2011-11-11 Turbo air compressor

Publications (1)

Publication Number Publication Date
JP2013103716A true JP2013103716A (ja) 2013-05-30

Family

ID=47226021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246922A Pending JP2013103716A (ja) 2011-11-11 2012-11-09 航空機の空調システムの動作方法および航空機の空調システム

Country Status (4)

Country Link
US (1) US9205925B2 (ja)
EP (1) EP2591999A3 (ja)
JP (1) JP2013103716A (ja)
IL (1) IL222972A (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040545A1 (en) * 2011-08-11 2013-02-14 Hamilton Sundstrand Corporation Low pressure compressor bleed exit for an aircraft pressurization system
US10745136B2 (en) 2013-08-29 2020-08-18 Hamilton Sunstrand Corporation Environmental control system including a compressing device
EP2947012B1 (en) 2014-05-19 2017-07-05 Airbus Operations GmbH Aircraft air conditioning system and method of its operation
GB201410180D0 (en) 2014-06-09 2014-07-23 Rolls Royce Plc Method and apparatus for controlling a compressor of a gas turbine engine
US11466904B2 (en) 2014-11-25 2022-10-11 Hamilton Sundstrand Corporation Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine and utilizing multiple mix points for recirculation air in accordance with pressure mode
US10549860B2 (en) 2014-11-25 2020-02-04 Hamilton Sundstrand Corporation Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine
GB201506398D0 (en) 2014-12-11 2015-05-27 Rolls Royce Plc Cabin blower system
US9988973B2 (en) 2015-01-06 2018-06-05 Hamilton Sundstrand Corporation Water injector for aviation cooling system
US9783307B2 (en) 2015-04-24 2017-10-10 Hamilton Sundstrand Corporation Environmental control system utilizing cabin discharge air to power a cycle
GB201508545D0 (en) 2015-05-19 2015-07-01 Rolls Royce Plc Compressor tip injector
WO2016200915A1 (en) * 2015-06-08 2016-12-15 Hamilton Sundstrand Corporation No primary heat exchanger and bleed air (cabin discharge air) assist
US10940951B2 (en) 2016-04-22 2021-03-09 Hamilton Sunstrand Corporation Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode and motor assist
US10543924B2 (en) 2016-04-22 2020-01-28 Hamilton Sundstrand Corporation Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode
US10731501B2 (en) 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
US11506121B2 (en) * 2016-05-26 2022-11-22 Hamilton Sundstrand Corporation Multiple nozzle configurations for a turbine of an environmental control system
EP3248879B1 (en) 2016-05-26 2021-06-30 Hamilton Sundstrand Corporation Mixing bleed and ram air using an air cycle machine with two turbines
US11047237B2 (en) 2016-05-26 2021-06-29 Hamilton Sunstrand Corporation Mixing ram and bleed air in a dual entry turbine system
US10604263B2 (en) 2016-05-26 2020-03-31 Hamilton Sundstrand Corporation Mixing bleed and ram air using a dual use turbine system
EP3249195B1 (en) * 2016-05-26 2023-07-05 Hamilton Sundstrand Corporation An energy flow of an advanced environmental control system
EP3825531B1 (en) 2016-05-26 2023-05-03 Hamilton Sundstrand Corporation An energy flow of an advanced environmental control system
EP3248880B1 (en) 2016-05-26 2022-03-16 Hamilton Sundstrand Corporation Mixing ram and bleed air in a dual entry turbine system
EP3248877B1 (en) 2016-05-26 2023-05-10 Hamilton Sundstrand Corporation Mixing bleed and ram air at a turbine inlet
US10967704B2 (en) 2016-05-30 2021-04-06 Volvo Construction Equipment Ab Climate system for providing air to a cab of a vehicle
FR3063042B1 (fr) * 2017-02-23 2019-07-05 Liebherr-Aerospace Toulouse Sas Procede de ventilation d'un canal d'air dynamique et dispositif de controle environnemental et vehicule mettant en œuvre ce procede
US10526092B2 (en) * 2017-04-03 2020-01-07 Hamilton Sundstrand Corporation Turbine-assisted cabin air compressor
WO2020095477A1 (ja) * 2018-11-06 2020-05-14 株式会社Ihi 航空機用空調装置
US11524789B2 (en) 2018-12-12 2022-12-13 Hamilton Sundstrand Corporation Alternate fresh air compressor intake for environmental control system
EP3835207B1 (en) * 2019-12-10 2023-08-23 Collins Aerospace Ireland, Limited Aircraft environmental control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919055A (ja) * 1995-06-30 1997-01-17 Hino Motors Ltd バス車両用負荷制御装置
JP2001515825A (ja) * 1997-09-08 2001-09-25 ハミルトン・サンドストランド・コーポレイション 与圧航空機キャビン用の多モード環境制御システム
JP2004142662A (ja) * 2002-10-25 2004-05-20 Denso Corp 車両用負荷駆動制御装置
JP2007045398A (ja) * 2005-08-08 2007-02-22 Liebherr-Aerospace Lindenberg Gmbh 航空機システムの動作方法
JP2010521375A (ja) * 2007-03-20 2010-06-24 エアバス・オペレーションズ・ゲーエムベーハー 航空機用の電源調整装置
JP2011505292A (ja) * 2007-11-30 2011-02-24 キャタピラー インコーポレイテッド 統合電力制御のための装置と方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285329A (en) * 1978-12-26 1981-08-25 Moline George A Friction heat generator
DE2930956C2 (de) * 1979-07-31 1985-07-18 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Regelungsverfahren für eine flächenverstellbare Schubdüse eines Mantelstrom-Gasturbinenstrahltriebwerks mit Nachbrenner
US4419926A (en) 1980-09-02 1983-12-13 Lockheed Corporation ESC energy recovery system for fuel-efficient aircraft
US5709103A (en) * 1996-08-15 1998-01-20 Mcdonnell Douglas Coporation Electrically powered differential air-cycle air conditioning machine
US5951260A (en) * 1997-05-01 1999-09-14 Cummins Engine Company, Inc. System and method for electronic air compressor control
US6153943A (en) * 1999-03-03 2000-11-28 Mistr, Jr.; Alfred F. Power conditioning apparatus with energy conversion and storage
US6427471B1 (en) * 2000-02-29 2002-08-06 Shimadzu Corporation Air cycle machine and air conditioning system using the same
US6666039B2 (en) * 2001-07-05 2003-12-23 Shimadzu Corporation Aircraft air conditioner
FR2829464A1 (fr) 2001-09-10 2003-03-14 Liebherr Aerospace Toulouse Sa Procede et dispositif de conditionnement d'air de cabine d'aeronef
US6526775B1 (en) * 2001-09-14 2003-03-04 The Boeing Company Electric air conditioning system for an aircraft
US6913636B2 (en) * 2002-12-17 2005-07-05 Hamilton Sundstrand Corporation Low power nitrogen enriched air generation system
GB0314757D0 (en) * 2003-06-25 2003-07-30 Honeywell Normalair Garrett Air conditioning system
GB0414341D0 (en) * 2004-06-26 2004-07-28 Honeywell Normalair Garrett Closed loop air conditioning system
US7578136B2 (en) 2004-08-23 2009-08-25 Honeywell International Inc. Integrated power and pressurization system
US20060127224A1 (en) * 2004-12-13 2006-06-15 Bendix Commercial Vehicle Systems Llc Air compressor control
US7607318B2 (en) * 2006-05-25 2009-10-27 Honeywell International Inc. Integrated environmental control and auxiliary power system for an aircraft
US7970497B2 (en) * 2007-03-02 2011-06-28 Honeywell International Inc. Smart hybrid electric and bleed architecture
FR2913402B1 (fr) * 2007-03-07 2009-11-27 Airbus France Aeronef comportant un systeme de conditionnement d'air.
FR2918402B1 (fr) 2007-07-05 2009-10-02 Peugeot Citroen Automobiles Sa Dispositif de prepositionnement des elements de fermeture d'un ouvrant de vehicule automobile et vehicule automobile comportant au moins un tel dispositif
US8237308B2 (en) 2007-12-12 2012-08-07 The Boeing Company Dynamic electrical load management
US8360744B2 (en) * 2008-03-13 2013-01-29 Compressor Controls Corporation Compressor-expander set critical speed avoidance
US20090241546A1 (en) * 2008-03-27 2009-10-01 Ahmed Sabry Hegazy Increasing power of steam plant with refrigerant cooled condenser at peak loads by using cooling thermal storage
US7828874B2 (en) * 2008-09-12 2010-11-09 Hamilton Sundstrand Corporation On-board inert gas generation system with air separation module temperature control
FR2937341B1 (fr) * 2008-10-16 2010-11-12 Ecl Machine de service utilisee pour intervenir sur les cellules d'electrolyse de production d'aluminium par electrolyse ignee
US8109092B2 (en) * 2009-05-28 2012-02-07 Ford Global Technologies, Llc Methods and systems for engine control
US20110036098A1 (en) * 2009-08-17 2011-02-17 General Electric Company Self-regulating cooling water system for intercooled gas turbine engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919055A (ja) * 1995-06-30 1997-01-17 Hino Motors Ltd バス車両用負荷制御装置
JP2001515825A (ja) * 1997-09-08 2001-09-25 ハミルトン・サンドストランド・コーポレイション 与圧航空機キャビン用の多モード環境制御システム
JP2004142662A (ja) * 2002-10-25 2004-05-20 Denso Corp 車両用負荷駆動制御装置
JP2007045398A (ja) * 2005-08-08 2007-02-22 Liebherr-Aerospace Lindenberg Gmbh 航空機システムの動作方法
JP2010521375A (ja) * 2007-03-20 2010-06-24 エアバス・オペレーションズ・ゲーエムベーハー 航空機用の電源調整装置
JP2011505292A (ja) * 2007-11-30 2011-02-24 キャタピラー インコーポレイテッド 統合電力制御のための装置と方法

Also Published As

Publication number Publication date
US9205925B2 (en) 2015-12-08
US20130118190A1 (en) 2013-05-16
EP2591999A2 (en) 2013-05-15
IL222972A (en) 2016-06-30
EP2591999A3 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP2013103716A (ja) 航空機の空調システムの動作方法および航空機の空調システム
JP5727990B2 (ja) 航空機用の空調装置およびその運転方法
US20210047044A1 (en) Energy flow of an advanced environmental control system
CN105129095B (zh) 利用小循环来最大化效率的环境控制系统
CN107444657B (zh) 在压缩装置的涡轮机进口处混合排气和冲压空气
CN107444658B (zh) 使用双用涡轮机系统来混合排气和冲压空气
CN106240827B (zh) 用于平行冲压热交换器的再循环系统
US10035602B2 (en) No primary heat exchanger and bleed air (cabin discharge air) assist
CN108688818A (zh) 涡轮辅助式机舱空气压缩机
US20190225343A1 (en) Aircraft environmental control system
US11174031B2 (en) Environmental control system of an aircraft
RU2010124290A (ru) Система кондиционирования воздуха с гибридным управлением на основе использования энергии отбираемого воздуха
JP2015500761A (ja) 機内不活性ガス発生システム
CN106064671B (zh) 在循环期间将机舱排放空气与放出空气混合的环境控制系统
JP2015500162A (ja) 機内不活性ガス発生システム
US20180148179A1 (en) Environmental control system with optimized moisture removal
JP2006231974A (ja) 航空機の空気調和装置
US20190112052A1 (en) Supplemental pack driven by bleed air and cabin air
EP3235729A1 (en) Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode and motor assist
CN107303955B (zh) 根据压力模式针对再循环空气利用多个混合点的环境控制系统
EP3750808A1 (en) Using bleed air to supply outside air to a cabin
EP3750809A1 (en) Using bleed air to supply outside air to a cabin
US20210354832A1 (en) Shoestring environmental control system for an aircraft
CN105936338B (zh) 向惰化系统提供替换空气的替换系统
JP2004314654A (ja) 航空機用空調システム

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415