JP2013102655A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2013102655A
JP2013102655A JP2011246038A JP2011246038A JP2013102655A JP 2013102655 A JP2013102655 A JP 2013102655A JP 2011246038 A JP2011246038 A JP 2011246038A JP 2011246038 A JP2011246038 A JP 2011246038A JP 2013102655 A JP2013102655 A JP 2013102655A
Authority
JP
Japan
Prior art keywords
vehicle
tensile force
electric motors
loss
motors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011246038A
Other languages
Japanese (ja)
Inventor
Hideaki Nameki
英明 行木
Michitaka Kanayama
道王 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011246038A priority Critical patent/JP2013102655A/en
Publication of JP2013102655A publication Critical patent/JP2013102655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device that can prevent the life of a specific electric motor from being shortened while driving the electric motor in a condition of high efficiency and can improve maintainability.SOLUTION: The vehicle control device includes: an operating number model storage part 30 that stores the relation of vehicle speed or rotation speed of electric motors, necessary vehicle tensile force necessary for a vehicle, and the number of a plurality of operating electric motors to be operated; an operation number decision part 20 that calculates the operating number of a plurality of electric motors to be operated corresponding to the vehicle speed of the vehicle or the rotation speed of the electric motors, and the necessary vehicle tensile force by referring to the operating number model storage part; an index management part 50 that calculates and manages the temperature rise evaluation indexes corresponding to the temperature rise factors of a plurality of electric motors respectively; and a tensile force command part 40 that generates a tensile force command information that shows the tensile force which the electric motor to be operated out of a plurality of electric motors should generate based on the number of a plurality of electric motors to be operated, and the necessary vehicle tensile force calculated by the operation number decision part, and a plurality of electric motors and the respective temperature rise evaluation indexes which the index management part manages.

Description

本発明は、複数の電動機で駆動される車両の速度を制御する車両制御装置に関する。   The present invention relates to a vehicle control device that controls the speed of a vehicle driven by a plurality of electric motors.

車両の速度を所定の目標速度に保つ定速走行制御を行う場合に必要な引張力は、一般に、車両を加速しようとする場合に比べて小さい。したがって、定速走行制御時に、車両に備えられた全電動機を常に稼動させると、個々の電動機は、負荷が比較的小さい状態で運転されることになる。負荷状態に対する電動機の効率は、一般に、負荷が小さい領域において低いことが多いため、従来の定速走行制御では、電動機を効率の低い条件で運転する場合があった。   In general, the tensile force required when performing constant-speed traveling control that maintains the vehicle speed at a predetermined target speed is smaller than that required when accelerating the vehicle. Therefore, when all the electric motors provided in the vehicle are always operated during the constant speed traveling control, the individual electric motors are operated with a relatively small load. In general, the efficiency of the electric motor with respect to the load state is often low in a region where the load is small. Therefore, in the conventional constant speed traveling control, the electric motor may be operated under a low efficiency condition.

このような課題を解決するため、車両重量や必要加速度等に基づいて必要引張力を算出し、求めた必要引張力に応じて、個々の電動機の負荷が小さくならないように稼働台数や個々の電動機出力を決定する方法が開示されている(特許文献1)。しかし、特許文献1では、定速走行制御のように必要加速度が路線状況等に応じて時々刻々変化するような場合、どのように稼働台数を変化させて速度制御を行うかについては言及していない。   In order to solve such problems, the required tensile force is calculated based on the vehicle weight, the required acceleration, etc., and the number of operating units and individual motors are set so that the load on each individual motor is not reduced according to the required required tensile force. A method for determining an output is disclosed (Patent Document 1). However, Patent Document 1 mentions how to perform speed control by changing the number of operating units when the required acceleration changes from moment to moment according to the route conditions, etc., as in constant speed traveling control. Absent.

また、定速走行制御時の電動機の稼働台数を変更する方法として、実際の車両速度と目標速度の偏差および現在加速度に応じて稼働台数を増減させる方法が開示されている(特許文献2)。特許文献2では、稼働台数を決定した後、具体的に稼働させる電動機を決定する際は、各電動機に設定された優先順位を所定時間毎に、あるいはノッチ指令変更毎に変更することにより、特定の電動機のみに負荷がかかって寿命が短くなるのを防ぐ方法が記載されている。   Further, as a method for changing the number of operating motors during constant speed traveling control, a method of increasing or decreasing the number of operating motors according to the deviation between the actual vehicle speed and the target speed and the current acceleration is disclosed (Patent Document 2). In Patent Document 2, after determining the number of operating units, when determining the motors to be specifically operated, the priority order set for each motor is specified by changing the priority order every predetermined time or notch command change. The method of preventing only the electric motor of this from being loaded and shortening the lifetime is described.

特開平7−308004号公報JP 7-308004 A 特開2007−325338号公報JP 2007-325338 A

電動機の寿命は、内部での発熱に起因する温度上昇の影響を受ける。個々の電動機の寿命を均等化するためには、発熱量を均等にする必要があり、特許文献2では、個々の電動機の稼働時間を均等化することにより、発熱量の均等化を図っている。しかしながら、単位時間当たりの発熱量は、実際は電動機の運転状況によって異なり、例えば、電動機の出力が大きく、損失が大きい条件では発熱量が大きくなる。従って、稼働時間の均等化だけでは発熱量の均等化が図れない場合がある。   The life of an electric motor is affected by temperature rise caused by internal heat generation. In order to equalize the life of individual motors, it is necessary to equalize the amount of heat generated. In Patent Document 2, the amount of heat generated is equalized by equalizing the operating time of individual motors. . However, the amount of heat generated per unit time actually differs depending on the operating condition of the motor, and for example, the amount of heat generated is large under conditions where the output of the motor is large and the loss is large. Therefore, there is a case where the heat generation amount cannot be equalized only by equalizing the operation time.

本発明の実施形態はかかる問題を解決するためになされたもので、電動機を効率の高い条件で運転しつつ特定の電動機の寿命が短縮されるのを防ぎ、保守性を高めることのできる車両制御装置を提供することを目的としている。   Embodiments of the present invention have been made to solve such a problem, and are capable of preventing vehicle life from being shortened while operating the motor under high-efficiency conditions, and improving vehicle maintainability. The object is to provide a device.

実施形態の車両制御装置は、複数の電動機を備えた車両を制御する制御装置であって、車両速度または電動機の回転速度、車両に必要な必要車両引張力、および稼働すべき複数の電動機の稼働台数の関係を示す稼働台数モデルを記憶した稼働台数モデル記憶部と、稼働台数モデル記憶部の稼働台数モデルを参照して車両の車両速度または電動機の回転速度と必要車両引張力とに対応した稼働すべき複数の電動機の稼働台数を算出する稼働台数決定部とを備えている。そして、この車両制御装置は、複数の電動機それぞれの温度上昇要因に対応する温度上昇評価指標を算出して管理する指標管理部と、稼働台数決定部が算出した稼働すべき複数の電動機の稼働台数、必要車両引張力および指標管理部が管理する複数の電動機それぞれの温度上昇評価指標に基づき、複数の電動機のうち稼働すべき電動機および該電動機が発生すべき引張力を示す引張力指令情報を生成する引張力指令部とを備えている。 The vehicle control device of the embodiment is a control device that controls a vehicle including a plurality of electric motors, and is a vehicle speed or a rotation speed of the electric motor, a necessary vehicle tensile force required for the vehicle, and an operation of the plurality of electric motors to be operated. An operation number model storage unit that stores an operation number model indicating the relationship between the numbers, and an operation corresponding to the vehicle speed of the vehicle or the rotation speed of the motor and the required vehicle tensile force with reference to the operation number model of the operation number model storage unit And an operating unit determining unit that calculates the operating units of a plurality of electric motors to be operated. The vehicle control device includes an index management unit that calculates and manages a temperature increase evaluation index corresponding to a temperature increase factor of each of the plurality of electric motors, and an operating number of the plurality of electric motors to be operated that is calculated by the operating number determination unit. Based on the required vehicle tensile force and the temperature rise evaluation index of each of the plurality of electric motors managed by the index management unit, the electric motor to be operated among the plural electric motors and the tensile force command information indicating the tensile force to be generated by the electric motor are generated. And a tensile force command unit.

実施形態の車両制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle control apparatus of embodiment. 複数の電動機を備えた車両における、ある速度領域の車両引張力と効率の関係を電動機稼働台数ごとに示す図である。It is a figure which shows the relationship between the vehicle tension | tensile_strength of a certain speed area | region in a vehicle provided with the several electric motor, and efficiency for every motor operation number. 電動機損失推定モデルを説明する概念図である。It is a conceptual diagram explaining an electric motor loss estimation model. 車両編成と稼働する電動機の配置について説明する図である。It is a figure explaining arrangement | positioning of the electric motor which operates a vehicle organization. 車両編成と稼働する電動機の配置について説明する図である。It is a figure explaining arrangement | positioning of the electric motor which operates a vehicle organization.

(実施形態の構成)
以下、図面を参照して実施形態の車両制御装置について詳細に説明する。図1は、実施形態の車両制御装置の構成を示すブロック図である。図1に示すように、実施形態の車両制御装置1は、編成引張力決定部10と、稼働台数決定部20と、稼働台数モデル記憶部30と、引張力指令部40と、指標管理部50と、損失推定モデル記憶部60と、電動機制御部70と、車両全体の車重情報などを保持する列車情報記憶部80とを備えている。
(Configuration of the embodiment)
Hereinafter, a vehicle control apparatus according to an embodiment will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of the vehicle control device of the embodiment. As shown in FIG. 1, the vehicle control apparatus 1 according to the embodiment includes a knitting tensile force determination unit 10, an operating unit determination unit 20, an operating unit model storage unit 30, a tensile force command unit 40, and an index management unit 50. A loss estimation model storage unit 60, an electric motor control unit 70, and a train information storage unit 80 that holds vehicle weight information of the entire vehicle.

編成引張力決定部10は、速度検出センサ14により取得した車両速度と、目標速度設定部12により設定した定速走行制御の目標速度とを比較し、車両速度が目標速度の近傍となるのに必要な車両全体の引張力を決定する演算部である。ここで、目標速度設定部12は、予め設定された目標速度を保持するメモリを有しており、編成引張力決定部10は、随時当該目標速度を参照することができる。速度検出センサ14は、例えば車両の車軸の回転数などから算出された列車の速度情報を出力する。すなわち、編成引張力決定部10は、目標速度と現在速度とを比較し列車情報記憶部80の列車情報を用いることで、増やすべきまたは減らすべき車両全体の引張力を算出することができる。   The knitting tensile force determination unit 10 compares the vehicle speed acquired by the speed detection sensor 14 with the target speed of the constant speed traveling control set by the target speed setting unit 12, and the vehicle speed becomes close to the target speed. It is a calculation part which determines the required tensile force of the whole vehicle. Here, the target speed setting unit 12 has a memory that holds a preset target speed, and the knitting tensile force determination unit 10 can refer to the target speed at any time. The speed detection sensor 14 outputs train speed information calculated from, for example, the rotational speed of the axle of the vehicle. That is, the knitting tensile force determination unit 10 can calculate the tensile force of the entire vehicle to be increased or decreased by comparing the target speed with the current speed and using the train information in the train information storage unit 80.

例えば、編成引張力決定部10は、現時点での全車両に対する引張力指令を維持した場合における所定時間経過後の車両速度を、車両前方の勾配状況等を加味して予測する。そして、予測された車両速度が目標速度の近傍であれば現時点での引張力を維持させ、予測された車両速度が許容範囲を超えて目標速度を下まわる場合は、引張力を増加させ、予測された車両速度が許容範囲を超えて目標速度を上まわる場合は、引張力を減少させる必要引張力情報を生成する。   For example, the knitting tensile force determination unit 10 predicts the vehicle speed after the elapse of a predetermined time when the tensile force command for all the vehicles at the current time is maintained, taking into account the gradient condition in front of the vehicle. If the predicted vehicle speed is close to the target speed, the current tensile force is maintained.If the predicted vehicle speed exceeds the allowable range and falls below the target speed, the tensile force is increased and predicted. If the measured vehicle speed exceeds the target speed beyond the allowable range, necessary tensile force information for reducing the tensile force is generated.

稼動台数決定部20は、編成引張力決定部10が生成した必要引張力情報と速度検出センサ14が出力する現在の車両速度とに基づいて、電動機の稼働台数を算出する演算部である。一編成の列車に複数の電動機を備える場合、小さい引張力しか要しない条件下で全ての電動機を稼働させると、個々の電動機が負荷の小さい状態で運転されるので全体の効率が低下してしまう。稼働台数決定部20は、車両速度と編成引張力決定部10が生成した必要引張力情報とに基づいて、効率が最大となる電動機の稼働台数を算出する。   The operating number determination unit 20 is a calculation unit that calculates the number of operating motors based on the necessary tensile force information generated by the knitting tensile force determination unit 10 and the current vehicle speed output by the speed detection sensor 14. When a train of trains is equipped with a plurality of electric motors, if all the electric motors are operated under conditions that require only a small tensile force, the individual motors are operated in a state with a small load, so the overall efficiency is reduced. . Based on the vehicle speed and the necessary tensile force information generated by the knitting tensile force determining unit 10, the operating number determining unit 20 calculates the number of operating motors with the maximum efficiency.

ここで、図2を参照して、ある速度領域における電動機の数と効率との関係について説明する。図2は、全ての電動機を稼働させた場合の効率特性a、全体の7割の電動機を稼働させた場合の効率特性b、および全体の4割の電動機を稼働させた場合の効率特性cの例を示している。   Here, with reference to FIG. 2, the relationship between the number of motors and efficiency in a certain speed region will be described. FIG. 2 shows the efficiency characteristic a when all motors are operated, the efficiency characteristic b when 70% of the motors are operated, and the efficiency characteristic c when 40% of the motors are operated. An example is shown.

図2に示すように、編成全体で必要な引張力がFb以上の領域Aでは、全ての電動機を稼動させた場合が最も効率が高いことがわかる。また、編成全体で必要な引張力がFaからFbまでの領域Bでは、全電動機の7割の電動機を稼働させた場合が最も効率が高い。同様に、編成全体で必要な引張力がFa以下の領域Cでは、全電動機の4割を稼動させる場合が最も効率が高い。   As shown in FIG. 2, in the region A where the tensile force required for the entire knitting is Fb or more, it can be seen that the efficiency is highest when all the motors are operated. In the region B where the tensile force required for the entire knitting is from Fa to Fb, the efficiency is highest when 70% of all the motors are operated. Similarly, in the region C where the tensile force required for the entire knitting is Fa or less, the efficiency is highest when 40% of all the motors are operated.

実施形態の車両制御装置1では、稼働台数モデル記憶部30に例えば効率特性a〜cのようなデータや数式、または、引張力範囲の境界値(図2のFa、Fb等)と当該引張力範囲で選択する稼働台数の組合せ情報を電動機稼動台数決定モデルとして格納している。稼働台数決定部20は、編成引張力決定部10が生成した必要引張力情報と速度情報とを用いて稼働台数モデル記憶部30を参照し、最も効率の高くなる電動機の稼働台数を決定する。   In the vehicle control apparatus 1 of the embodiment, the operating unit model storage unit 30 stores data and formulas such as efficiency characteristics a to c, or boundary values of the tensile force range (Fa, Fb, etc. in FIG. 2) and the tensile force. The combination information of the number of operating units selected in the range is stored as a model for determining the number of operating motors. The operating number determining unit 20 refers to the operating number model storage unit 30 by using the necessary tensile force information and the speed information generated by the knitting tensile force determining unit 10 and determines the operating number of the electric motor having the highest efficiency.

指標管理部50は、各電動機が負担した引張力と車両速度または電動機の回転速度に基づいて、各電動機の損失を推定し、損失を時間で積算することにより温度上昇評価指標を算出する。電動機の損失に応じた発熱により温度上昇が生じるため、損失を基準として温度上昇の度合いを評価する。実施形態の車両制御装置1では、必要な車両引張力に応じて稼働させる電動機の数を変更する。全台数を常時稼働する場合とは異なり、稼働している電動機と停止している電動機で稼働時間や発熱量に差異が生じるため、メンテナンス時期がばらついてしまう可能性がある。そこで、指標管理部50は、各電動機にかかる負担として、温度上昇評価指標を算出し、各電動機の損失量を管理する。   The index management unit 50 estimates the loss of each motor based on the tensile force borne by each motor and the vehicle speed or the rotation speed of the motor, and calculates the temperature rise evaluation index by integrating the loss over time. Since the temperature rises due to heat generation according to the loss of the electric motor, the degree of temperature rise is evaluated based on the loss. In the vehicle control apparatus 1 of the embodiment, the number of electric motors to be operated is changed according to a required vehicle tensile force. Unlike the case where all the units are always operated, there is a possibility that the maintenance time varies because the operating time and the heat generation amount are different between the operating motor and the stopped motor. Therefore, the index management unit 50 calculates a temperature rise evaluation index as a burden on each motor, and manages the loss amount of each motor.

ここで、図3を参照して、指標管理部50が推定する損失について説明する。図3は、電動機が発生した引張力および速度をパラメータとして当該電動機で発生する損失を示す損失特性(電動機損失推定モデル)の一例である。   Here, the loss estimated by the index management unit 50 will be described with reference to FIG. FIG. 3 is an example of a loss characteristic (motor loss estimation model) indicating a loss generated in the motor using the tensile force and speed generated by the motor as parameters.

電動機損失推定モデルは、例えば、様々な引張力と車両速度または電動機の回転速度に応じて電動機で発生する損失を測定し、その特性を数式化したものである。電動機損失推定モデルは、入力パラメータとして当該電動機が負担した引張力と車両速度または電動機の回転速度とを与えることで、当該電動機の損失を得ることができる。図3はこのモデルをグラフ化したものである。   The motor loss estimation model is obtained by, for example, measuring losses generated in the motor in accordance with various tensile forces and vehicle speeds or motor rotation speeds, and formulating the characteristics. The motor loss estimation model can obtain the loss of the motor by giving the tensile force borne by the motor and the vehicle speed or the rotation speed of the motor as input parameters. FIG. 3 is a graph of this model.

電動機損失推定モデルは、パラメータを引張力と速度ではなく、電動機電流と速度として整理し、電動機電流と車両速度または電動機の回転速度とを入力することで電動機損失の出力を得るように構成してもよい。電動機損失のうち銅損を電流値の関数として表し、鉄損等を速度の関数として表し、両者を結合して得ることもできる。電動機損失推定モデルに入力する電動機電流は実測してもよいし、電動機の設計データに基づき引張力と速度から推定してもよい。損失推定モデル記憶部60は、かかる電動機損失推定モデルを格納している。   The motor loss estimation model organizes parameters as motor current and speed, not tensile force and speed, and configures the motor loss output by inputting motor current and vehicle speed or motor rotation speed. Also good. Of the motor loss, the copper loss can be expressed as a function of the current value, the iron loss or the like can be expressed as a function of the speed, and the both can be combined. The motor current input to the motor loss estimation model may be measured or estimated from the tensile force and speed based on the motor design data. The loss estimation model storage unit 60 stores such a motor loss estimation model.

指標管理部50は、例えば、後述する引張力指令部40で決定した各電動機の引張力指令から各電動機が負担した引張力を得ることができる。また、指標管理部50は、速度検出センサ14から車両速度を得ることができ、電動機がもつ速度センサから電動機の回転速度を得ることができる。これらは、各電動機の損失を推定するためのパラメータとなる。   For example, the index management unit 50 can obtain the tensile force borne by each electric motor from the tensile force command of each electric motor determined by the tensile force command unit 40 described later. Further, the index management unit 50 can obtain the vehicle speed from the speed detection sensor 14 and can obtain the rotation speed of the electric motor from the speed sensor of the electric motor. These are parameters for estimating the loss of each electric motor.

指標管理部50は、所定の周期(例えば100ms)毎に損失推定モデル記憶部60の電動機損失推定モデルを参照して当該電動機の損失を求め、当該損失を時間で積算して温度上昇評価指標を算出する。具体的には、指標管理部50は、損失の値と算出周期の積を毎周期足し合わせていくことにより損失量を演算する。すなわち、指標管理部50は、各電動機の相対的な稼働状況を管理している。ここで、電動機の損失は、当該電動機に入力されたエネルギーのうち熱となって失われる分であり、これは発熱量に相当する。これにより、個々の電動機の発熱量の相違を評価することができる。なお、電動機損失の主要因の一つである銅損は、電動機の電流値の2乗に比例するため、簡易的には、電動機電流を実測あるいは推定し、その2乗値を時間で積算することによって温度上昇要因を評価するようにしてもよい。   The index management unit 50 refers to the motor loss estimation model in the loss estimation model storage unit 60 every predetermined period (for example, 100 ms) to determine the loss of the motor, integrates the loss with time, and calculates the temperature rise evaluation index. calculate. Specifically, the index management unit 50 calculates the loss amount by adding the product of the loss value and the calculation cycle every cycle. That is, the index management unit 50 manages the relative operating status of each electric motor. Here, the loss of the electric motor is an amount lost as heat in the energy input to the electric motor, and this corresponds to the amount of heat generated. Thereby, the difference of the emitted-heat amount of each electric motor can be evaluated. Note that copper loss, which is one of the main causes of motor loss, is proportional to the square of the current value of the motor. Therefore, simply measuring or estimating the motor current and integrating the square value over time. Thus, the temperature rise factor may be evaluated.

ところで、電動機の寿命に影響する温度上昇は、電動機の発熱量だけでなく、電動機からの放熱量によっても異なる。そこで、損失推定モデル記憶部60にさらに放熱量を演算するための放熱量推定モデルを有する放熱量演算部を追加し、電動機損失推定モデルによって求めた発熱量と放熱量推定モデルによって求めた放熱量の差を時間で積算することによって温度上昇評価指標を求めてもよい。放熱量推定モデルは、例えば、電動機の軸に取り付けられたファンにより冷却を行っている場合、電動機の温度と車両速度(電動機の回転数)に応じた放熱量をシミュレーションすることなどにより求め、その特性を数式化したものである。入力パラメータとして当該電動機の温度と車両速度(電動機の回転数)を与えることにより、当該電動機の放熱量を求めることができる。   By the way, the temperature rise that affects the life of the electric motor differs depending not only on the amount of heat generated by the electric motor but also on the amount of heat released from the electric motor. Therefore, a heat dissipation amount calculation unit having a heat dissipation amount estimation model for calculating a heat dissipation amount is further added to the loss estimation model storage unit 60, and the heat generation amount obtained by the motor loss estimation model and the heat dissipation amount obtained by the heat dissipation amount estimation model are calculated. The temperature rise evaluation index may be obtained by integrating the difference between the two over time. The heat dissipation amount estimation model is obtained, for example, by simulating the heat dissipation amount according to the motor temperature and the vehicle speed (the number of rotations of the motor) when cooling is performed by a fan attached to the shaft of the motor. This is a mathematical expression of the characteristics. By giving the temperature of the electric motor and the vehicle speed (the number of rotations of the electric motor) as input parameters, the heat dissipation amount of the electric motor can be obtained.

放熱量推定モデルを用いるのは、正確な温度上昇値を求めるためではなく、温度負荷条件を各電動機で均等化するためであるので、速度に関するおおよその放熱特性が求められればよい。そこで、放熱量推定モデルの入力パラメータとして電動機の温度が得られない場合は、定格運転時等所定の条件を仮定した条件下での飽和温度を入力パラメータとしてもよい。あるいは、電動機の熱容量をシミュレーションまたは実測により予め推定しておき、発熱量と放熱量の差を熱容量で割ることにより温度上昇を求め、温度上昇値を時間で積算したものを温度上昇評価指標としてもよい。   The heat release amount estimation model is used not for obtaining an accurate temperature rise value but for equalizing the temperature load condition for each electric motor. Therefore, it is only necessary to obtain an approximate heat release characteristic relating to speed. Therefore, when the temperature of the motor cannot be obtained as an input parameter of the heat radiation amount estimation model, a saturation temperature under a condition that assumes a predetermined condition such as during rated operation may be used as the input parameter. Alternatively, the heat capacity of the electric motor is estimated in advance by simulation or actual measurement, the temperature rise is obtained by dividing the difference between the heat generation amount and the heat release amount by the heat capacity, and the temperature rise value is integrated by time as the temperature rise evaluation index. Good.

損失量や温度上昇要因の評価値の積算は、当該車両の運用開始時、車両制御装置の電源投入時、手動リセット時等において開始されるが、積算開始時は全ての電動機の評価値が同一となる。また、ある時点において評価値が同一の複数の電動機が存在する場合があるので、同一の評価値の場合の優先順位の規則(通し番号の若い順に選択する等)を設定しておくことが望ましい。   Integration of evaluation values for loss amounts and temperature rise factors starts at the start of operation of the vehicle, when the vehicle control device is turned on, at manual reset, etc., but all motors have the same evaluation value at the start of integration. It becomes. Further, since there may be a plurality of electric motors having the same evaluation value at a certain point in time, it is desirable to set a priority order rule (for example, selecting serial numbers in ascending order) for the same evaluation value.

引張力指令部40は、稼働台数決定部20が算出した必要な電動機の稼働台数、編成引張力決定部10が演算した必要な引張力、および指標管理部50が算出した各電動機の損失量(温度上昇評価指標)に基づき、実際に稼動させる電動機を決定するとともに、稼動させる電動機それぞれが負担する引張力を決定する。稼動させる電動機は、温度上昇評価指標の小さいものから順に、稼動台数決定部20が決定した稼動台数まで選択する。   The tensile force command unit 40 includes the necessary number of operating motors calculated by the operating unit determining unit 20, the necessary tensile force calculated by the knitting tensile force determining unit 10, and the loss amount of each motor calculated by the index management unit 50 ( Based on the temperature rise evaluation index), the electric motor to be actually operated is determined, and the tensile force borne by each of the electric motors to be operated is determined. The electric motors to be operated are selected up to the number of operating units determined by the operating unit determining unit 20 in order from the smallest temperature rise evaluation index.

複数の電動車で構成される編成車両の場合、編成内での損失量の偏りを抑制するため、編成車両全体を複数のブロックに分割し、それぞれのブロック内で、稼動させる電動機を温度上昇評価指標の小さいものから順に選択する。例えば、編成車両の前側と後側の2つのブロックに等分割し、全台数の半分を稼動させる場合は、編成の前側のブロック内で温度上昇評価指標の小さいものから順に、当該ブロック台数の半分を選択し、編成の後側のブロック内で温度上昇評価指標の小さいものから順に、当該ブロックの台数の半分を選択する。   In the case of a knitted vehicle composed of a plurality of electric cars, the entire knitted car is divided into a plurality of blocks in order to suppress the unevenness of the loss amount in the knitting, and the temperature rise evaluation of the electric motor to be operated in each block Select in ascending order of index. For example, when equally dividing into two blocks on the front side and the rear side of the formation vehicle and operating half of the total number of units, half of the number of blocks in order from the smallest temperature rise evaluation index in the block on the front side of the formation And the half of the number of the blocks is selected in order from the smallest temperature rise evaluation index in the block on the rear side of the knitting.

図4は、全16台(または16車両)のうちから8台(または8車両)を選択した例、図5は、全16台(または16車両)を前後で2つのブロックに分割し、前側の8台(または8車両)のうちから4台(または4車両)を、後側の8台(または8車両)のうちから4台(または4車両)を選択した様子を示している。分割数は、全台数および稼働台数切替の状況に応じて適切な数を選択することができる。このとき、分割数は、稼働台数に応じて動的に切り替えてもよい。   4 shows an example in which 8 (or 8 vehicles) are selected from all 16 (or 16 vehicles), and FIG. 5 shows that all 16 (or 16 vehicles) are divided into two blocks in the front and back, and the front side 4 (or 4 vehicles) are selected from among the 8 vehicles (or 8 vehicles), and 4 (or 4 vehicles) are selected from the 8 vehicles (or 8 vehicles) on the rear side. As the number of divisions, an appropriate number can be selected in accordance with the total number of units and the status of switching the number of operating units. At this time, the number of divisions may be dynamically switched according to the number of operating units.

引張力指令部40は、車両引張力を稼働台数で均等割するか、列車情報記憶部80の列車情報から各電動機の軸重を参照し稼動させる電動機の軸重に応じて比例配分する等により電動機ごとの引張力を算出する。   The tensile force command unit 40 equally divides the vehicle tensile force by the number of operating units, or proportionally distributes according to the axial load of the motor to be operated by referring to the axial load of each motor from the train information in the train information storage unit 80. Calculate the tensile force for each motor.

(実施形態の動作)
続いて、図1を参照して、実施形態の列車制御システムの動作を説明する。
(Operation of the embodiment)
Then, with reference to FIG. 1, operation | movement of the train control system of embodiment is demonstrated.

列車の走行維持速度が与えられると、目標速度設定部12は、目標速度情報を保持する。一方、速度検出センサ14は、列車の現時点の速度を検出して編成引張力決定部10に与える。編成引張力決定部10は、目標速度設定部12が保持した目標速度、速度検出センサ14が与える速度情報、列車情報記憶部80が予め記憶した当該列車の全編成の車重情報などに基づいて、目標速度に達するために必要な必要引張力情報を算出する。   When the traveling maintenance speed of the train is given, the target speed setting unit 12 holds the target speed information. On the other hand, the speed detection sensor 14 detects the current speed of the train and gives it to the knitting tensile force determination unit 10. The knitting tensile force determination unit 10 is based on the target speed held by the target speed setting unit 12, speed information given by the speed detection sensor 14, vehicle weight information of all trains of the train stored in advance by the train information storage unit 80, and the like. The necessary tensile force information necessary to reach the target speed is calculated.

稼働台数決定部20は、編成引張力決定部10が生成した必要引張力情報、速度検出センサ14が検出した速度情報、列車情報記憶部80が記憶した車両編成と電動機の数に関する情報などを用いて、稼働台数モデル記憶部30の電動機稼働台数決定モデルを参照することで、電動機稼働台数を決定する。   The number-of-operations determination unit 20 uses necessary tensile force information generated by the knitting tensile force determination unit 10, speed information detected by the speed detection sensor 14, information on the number of vehicle formations and motors stored in the train information storage unit 80, and the like. Thus, the number of operating motors is determined by referring to the model for determining the number of operating motors in the operating unit model storage unit 30.

一方、指標管理部50は、各電動機が負担した引張力、車両速度または電動機の回転速度などを用いて、損失推定モデル記憶部60の電動機損失推定モデルに当てはめることで、温度上昇評価指標を算出する。温度上昇評価指標は、例えば各電動機損失の積算値(損失量)である。   On the other hand, the index management unit 50 calculates the temperature increase evaluation index by applying the motor loss estimation model of the loss estimation model storage unit 60 using the tensile force, the vehicle speed, or the rotation speed of the motor that is borne by each motor. To do. The temperature rise evaluation index is, for example, an integrated value (loss amount) of each motor loss.

続いて、引張力指令部40は、稼働台数決定部20が算出した電動機稼働台数、編成引張力決定部10が生成した必要引張力情報、指標管理部50が生成した温度上昇評価指標を用いて、列車が備える各電動機のうちどの電動機にどれだけの引張力を生じさせるかを算出して電動機引張力指令情報を生成する。引張力指令部40が生成する電動機引張力指令情報は、各電動機を制御する電動機制御部70に与えられ、各電動機制御部70は、対応する電動機を電動機引張力指令情報に応じて駆動させる。   Subsequently, the tensile force command unit 40 uses the number of operating electric motors calculated by the operating number determination unit 20, the necessary tensile force information generated by the knitting tensile force determination unit 10, and the temperature rise evaluation index generated by the index management unit 50. Then, it calculates how much tensile force is generated in which of the electric motors included in the train, and generates electric motor tensile force command information. The motor pulling force command information generated by the pulling force command unit 40 is given to the motor control unit 70 that controls each motor, and each motor control unit 70 drives the corresponding motor according to the motor pulling force command information.

このように、実施形態の列車制御システムによれば、車両全体での必要引張力情報と列車速度に応じて電動機の稼動台数を調整し、温度上昇評価指標が小さい電動機を優先して稼動するので、電動機の稼動台数の調整により効率の高い領域で電動機を運転しつつ、各電動機の発熱量を均等化し、特定の電動機の寿命が短縮されるのを防ぐことができる。   As described above, according to the train control system of the embodiment, the number of motors to be operated is adjusted according to the necessary tensile force information and the train speed in the entire vehicle, and the motors with lower temperature rise evaluation indices are preferentially operated. By adjusting the number of operating motors, it is possible to equalize the amount of heat generated by each motor while operating the motor in a highly efficient region and prevent the life of a specific motor from being shortened.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…列車制御システム、10…編成引張力決定部、20…稼働台数決定部、30…稼働台数モデル記憶部、40…引張力指令部、50…指標管理部、60…損失推定モデル記憶部、70…電動機制御器、80…列車情報記憶部。   DESCRIPTION OF SYMBOLS 1 ... Train control system, 10 ... Knitting tensile force determination part, 20 ... Active number determination part, 30 ... Active number model memory | storage part, 40 ... Tensile force command part, 50 ... Index management part, 60 ... Loss estimation model memory part, 70: Electric motor controller, 80 ... Train information storage unit.

Claims (9)

複数の電動機を備えた車両を制御する制御装置であって、
車両速度または前記電動機の回転速度、前記車両に必要な必要車両引張力、および稼働すべき前記複数の電動機の稼働台数の関係を示す稼働台数モデルを記憶した稼働台数モデル記憶部と、
前記稼働台数モデル記憶部の前記稼働台数モデルを参照して前記車両の車両速度または前記電動機の回転速度と前記必要車両引張力とに対応した稼働すべき前記複数の電動機の稼働台数を算出する稼働台数決定部と、
前記複数の電動機それぞれの温度上昇要因に対応する温度上昇評価指標を算出して管理する指標管理部と、
前記稼働台数決定部が算出した稼働すべき前記複数の電動機の稼働台数、前記必要車両引張力および前記指標管理部が管理する前記複数の電動機それぞれの温度上昇評価指標に基づき、前記複数の電動機のうち稼働すべき電動機および該電動機が発生すべき引張力を示す引張力指令情報を生成する引張力指令部と
を具備する車両制御装置。
A control device for controlling a vehicle including a plurality of electric motors,
An operating number model storage unit storing an operating number model indicating a relationship between a vehicle speed or a rotational speed of the electric motor, a necessary vehicle tensile force required for the vehicle, and an operating number of the plurality of electric motors to be operated;
An operation for calculating the operation number of the plurality of electric motors to be operated corresponding to the vehicle speed of the vehicle or the rotation speed of the electric motor and the required vehicle tensile force with reference to the operation number model of the operation number model storage unit. A unit for determining the number of units;
An index management unit that calculates and manages a temperature increase evaluation index corresponding to a temperature increase factor of each of the plurality of electric motors;
Based on the operating number of the plurality of motors to be operated calculated by the operating number determination unit, the required vehicle tensile force, and the temperature increase evaluation index of each of the plurality of motors managed by the index management unit, the plurality of motors A vehicle control apparatus comprising: an electric motor to be operated; and a tensile force command unit that generates tensile force command information indicating a tensile force to be generated by the electric motor.
前記指標管理部は、前記複数の電動機それぞれが発生した引張力と、前記車両の車両速度または前記電動機の回転速度とに基づいて前記複数の電動機それぞれの損失を求め、該損失を時間で積算することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。   The index management unit obtains a loss of each of the plurality of motors based on a tensile force generated by each of the plurality of motors and a vehicle speed of the vehicle or a rotation speed of the motor, and accumulates the losses over time. The vehicle control device according to claim 1, wherein the temperature rise evaluation index is calculated by the above. 前記複数の電動機それぞれの電流値を取得する電流取得部をさらに備え、
前記指標管理部は、前記電流取得部が取得した電流値と前記車両速度または前記電動機の回転速度とに基づいて前記複数の電動機それぞれの損失を求め、該損失を時間で積算することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。
A current acquisition unit for acquiring a current value of each of the plurality of electric motors;
The index management unit obtains a loss of each of the plurality of electric motors based on the current value acquired by the current acquisition unit and the vehicle speed or the rotation speed of the electric motor, and integrates the loss over time to calculate the temperature. The vehicle control apparatus according to claim 1, wherein an increase evaluation index is calculated.
前記複数の電動機それぞれの電流値を取得する電流取得部をさらに備え、
前記指標管理部は、前記電流取得部が取得した電流値に基づいて前記複数の電動機それぞれの損失を求め、該損失を時間で積算することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。
A current acquisition unit for acquiring a current value of each of the plurality of electric motors;
The index management unit calculates the temperature rise evaluation index by obtaining a loss of each of the plurality of electric motors based on the current value acquired by the current acquisition unit and integrating the loss with time. The vehicle control device according to claim 1.
前記複数の電動機それぞれの電流値を取得する電流取得部をさらに備え、
前記指標管理部は、前記電流取得部が取得した電流値の二乗値を時間で積算することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。
A current acquisition unit for acquiring a current value of each of the plurality of electric motors;
The vehicle control device according to claim 1, wherein the index management unit calculates the temperature increase evaluation index by integrating the square value of the current value acquired by the current acquisition unit with time.
前記電流取得部は、
前記複数の電動機それぞれの電流値を検出すること、または、
前記車両の車両速度または前記電動機の回転速度と前記複数の電動機それぞれの引張力とに基づき前記複数の電動機それぞれの電流値を推定すること
により前記電流値を取得することを特徴とする請求項3ないし5のいずれか1項に記載の車両制御装置。
The current acquisition unit
Detecting a current value of each of the plurality of electric motors, or
The current value is obtained by estimating a current value of each of the plurality of electric motors based on a vehicle speed of the vehicle or a rotation speed of the electric motor and a tensile force of each of the plurality of electric motors. 6. The vehicle control device according to any one of items 5 to 5.
前記車両の車両速度または前記電動機の回転速度に基づいて前記複数の電動機それぞれの放熱量を算出する放熱量演算部をさらに備え、
前記指標管理部は、前記複数の電動機それぞれの損失を求めるとともに、該損失と前記放熱量との差を時間で積算することで前記損失量を算出することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。
A heat dissipation amount calculating unit that calculates a heat dissipation amount of each of the plurality of electric motors based on a vehicle speed of the vehicle or a rotation speed of the electric motor;
The index management unit calculates the temperature increase evaluation index by calculating each loss of the plurality of electric motors, and calculating the loss amount by integrating the difference between the loss and the heat dissipation amount over time. The vehicle control device according to claim 1.
前記車両の車両速度または前記電動機の回転速度に基づいて前記複数の電動機それぞれの放熱量を算出する放熱量演算部をさらに備え、
前記指標管理部は、前記複数の電動機それぞれの損失を求めるとともに、該損失と前記放熱量との差に基づいて温度上昇を推定することによって前記温度上昇評価指標を算出することを特徴とする請求項1記載の車両制御装置。
A heat dissipation amount calculating unit that calculates a heat dissipation amount of each of the plurality of electric motors based on a vehicle speed of the vehicle or a rotation speed of the electric motor;
The index management unit calculates a temperature rise evaluation index by obtaining a loss of each of the plurality of electric motors and estimating a temperature rise based on a difference between the loss and the heat dissipation amount. Item 2. The vehicle control device according to Item 1.
前記複数の電動機は、それぞれ複数の車両に分散して配置され、
前記引張力指令部は、前記複数の車両を複数のブロックに分割し、該ブロックごとに稼働すべき電動機および該電動機が発生すべき引張力を示す引張指令情報を生成すること
を特徴とする請求項1記載の車両制御装置。
The plurality of electric motors are respectively distributed in a plurality of vehicles,
The tensile force command unit divides the plurality of vehicles into a plurality of blocks, and generates a tension command information indicating an electric motor to be operated for each block and a tensile force to be generated by the electric motor. Item 2. The vehicle control device according to Item 1.
JP2011246038A 2011-11-10 2011-11-10 Vehicle control device Pending JP2013102655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246038A JP2013102655A (en) 2011-11-10 2011-11-10 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246038A JP2013102655A (en) 2011-11-10 2011-11-10 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2013102655A true JP2013102655A (en) 2013-05-23

Family

ID=48622724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246038A Pending JP2013102655A (en) 2011-11-10 2011-11-10 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2013102655A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190327A (en) * 2013-06-06 2015-12-23 株式会社村田制作所 Inspection device and inspection method for contactless electric power transmission system
JP2016073197A (en) * 2014-09-25 2016-05-09 ゼネラル・エレクトリック・カンパニイ Vehicle traction control system and method
JP2017011872A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 Drive controller of motor assist system
WO2017216931A1 (en) * 2016-06-16 2017-12-21 三菱電機株式会社 Vehicle control device and vehicle control system
JP2019134615A (en) * 2018-01-31 2019-08-08 株式会社日立製作所 Drive system of railway vehicle and drive method
JP2020048308A (en) * 2018-09-18 2020-03-26 株式会社東芝 Train drive efficiency estimation device and train drive efficiency estimation method
JPWO2019107016A1 (en) * 2017-11-30 2020-11-19 株式会社日立製作所 Train control system and train control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344611A (en) * 1992-06-05 1993-12-24 Toshiba Corp Operation control device for vehicle
JPH07308004A (en) * 1994-05-12 1995-11-21 Hitachi Ltd Controller for electric vehicle
JPH10336805A (en) * 1997-06-03 1998-12-18 Toshiba Corp Electric car control device
JP2006020423A (en) * 2004-07-01 2006-01-19 Toyota Motor Corp Controller of vehicle carrying motor
JP2006238552A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Control device and method for electric apparatus
JP2007325338A (en) * 2006-05-30 2007-12-13 Railway Technical Res Inst Fixed-speed running control method and controller
JP2008054440A (en) * 2006-08-25 2008-03-06 Honda Motor Co Ltd Overheat protection device
JP2009278833A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Vehicle and display method
JP2010011642A (en) * 2008-06-27 2010-01-14 Sharp Corp Motor controller, compressor drive unit, and refrigeration air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344611A (en) * 1992-06-05 1993-12-24 Toshiba Corp Operation control device for vehicle
JPH07308004A (en) * 1994-05-12 1995-11-21 Hitachi Ltd Controller for electric vehicle
JPH10336805A (en) * 1997-06-03 1998-12-18 Toshiba Corp Electric car control device
JP2006020423A (en) * 2004-07-01 2006-01-19 Toyota Motor Corp Controller of vehicle carrying motor
JP2006238552A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Control device and method for electric apparatus
JP2007325338A (en) * 2006-05-30 2007-12-13 Railway Technical Res Inst Fixed-speed running control method and controller
JP2008054440A (en) * 2006-08-25 2008-03-06 Honda Motor Co Ltd Overheat protection device
JP2009278833A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Vehicle and display method
JP2010011642A (en) * 2008-06-27 2010-01-14 Sharp Corp Motor controller, compressor drive unit, and refrigeration air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137908B2 (en) 2011-06-13 2018-11-27 General Electric Company Vehicle traction control system and method
CN105190327A (en) * 2013-06-06 2015-12-23 株式会社村田制作所 Inspection device and inspection method for contactless electric power transmission system
JP2016073197A (en) * 2014-09-25 2016-05-09 ゼネラル・エレクトリック・カンパニイ Vehicle traction control system and method
JP2017011872A (en) * 2015-06-22 2017-01-12 株式会社神戸製鋼所 Drive controller of motor assist system
WO2017216931A1 (en) * 2016-06-16 2017-12-21 三菱電機株式会社 Vehicle control device and vehicle control system
JPWO2017216931A1 (en) * 2016-06-16 2018-11-01 三菱電機株式会社 Vehicle control apparatus and vehicle control system
JPWO2019107016A1 (en) * 2017-11-30 2020-11-19 株式会社日立製作所 Train control system and train control method
JP7130668B2 (en) 2017-11-30 2022-09-05 株式会社日立製作所 Train control system and train control method
JP2019134615A (en) * 2018-01-31 2019-08-08 株式会社日立製作所 Drive system of railway vehicle and drive method
JP2020048308A (en) * 2018-09-18 2020-03-26 株式会社東芝 Train drive efficiency estimation device and train drive efficiency estimation method
JP7216509B2 (en) 2018-09-18 2023-02-01 株式会社東芝 Train drive efficiency estimation device and train drive efficiency estimation method

Similar Documents

Publication Publication Date Title
JP2013102655A (en) Vehicle control device
JP6191586B2 (en) Motor controller, electric vehicle, and method of estimating thermal stress of switching element
KR102071675B1 (en) Method for managing the cooling of a battery with adjustable cooling thresholds
US10522853B2 (en) Fuel cell system, fuel cell vehicle and control method of fuel cell system
US11993273B2 (en) Vehicle component monitoring control systems and methods
JP5988897B2 (en) Propulsion control device
US11970064B2 (en) Multi-motor selection system and method for increased efficiency and energy savings
US9973135B2 (en) Rotary electric machine control system and control method for rotary electric machine
JP6860367B2 (en) Vehicle information processing device
KR20140054492A (en) Battery cooling control method for vehicle
JP4410078B2 (en) Electric motor overheat prevention device
JP6111291B2 (en) Mobile crane
JP6753332B2 (en) Battery system
RU2014148576A (en) METHODS AND DIAGNOSTIC SYSTEM FOR RELAY CONTROLLED MULTI-SPEED ELECTRIC FAN
JP2019152551A (en) Battery degradation determining device
JP2018117400A (en) Driving device for vehicle, and vehicle
JP6228042B2 (en) Drive control system and mobile body having drive control system
JP6520105B2 (en) Motor control system
JP2012035946A (en) Temperature protective device of electric motor for elevator
JP2013070466A (en) Cooling device for electric vehicle
JP5818934B2 (en) Motor control device and motor control method
JP6197533B2 (en) Inverted type moving body control method
JP2017033546A (en) Machine learning device that learns cooling device operating condition, motor control device having machine learning device, motor control system, and machine learning method
JP5814814B2 (en) Vehicle control system and vehicle drive control method
JP2014032021A (en) Current value computing device and cooling device of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512