JP2013101323A - Multifocal ocular lens - Google Patents

Multifocal ocular lens Download PDF

Info

Publication number
JP2013101323A
JP2013101323A JP2012223454A JP2012223454A JP2013101323A JP 2013101323 A JP2013101323 A JP 2013101323A JP 2012223454 A JP2012223454 A JP 2012223454A JP 2012223454 A JP2012223454 A JP 2012223454A JP 2013101323 A JP2013101323 A JP 2013101323A
Authority
JP
Japan
Prior art keywords
ophthalmic lens
multifocal ophthalmic
optical axis
base curve
multifocal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012223454A
Other languages
Japanese (ja)
Inventor
Satoshi Inoue
智 井上
Eijiro Tada
英二郎 多田
Fumitaka Suto
史敬 須藤
Takayuki Iizuka
隆之 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2012223454A priority Critical patent/JP2013101323A/en
Publication of JP2013101323A publication Critical patent/JP2013101323A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multifocal ocular lens that ensures clear far vision and near vision even in a bright place where a pupil diameter becomes smaller, has a satisfactory field of view at an intermediate position between the far and near positions, and is appropriate to suppress degradation in imaging performance resulting from occurrence of flare.SOLUTION: A multifocal ocular lens has a ring band structure in which at least one surface is divided into a plurality of concentric circular refractive surfaces. The multifocal ocular lens has a step in a direction substantially horizontal to an optical axis between adjacent refractive surfaces. The height of the step satisfies a predetermined condition. Also, of the two refractive faces adjacent to each other, the refractive surface far from the optical axis is defined as an outside refractive surface, and the refractive surface close to the optical axis is defined as an inside refractive surface. In this case, the multifocal ocular lens is configured to have at least one structure in which the curvature radius of the outside refractive surface has a value between the curvature radius of the inside refractive surface and the curvature radius of a base-curve shape so as to become closer to the base-curve shape.

Description

本発明は、眼に処方する多焦点眼用レンズに関する。   The present invention relates to a multifocal ophthalmic lens prescribed for the eye.

白内障の治療を目的として、混濁した水晶体を摘出して眼内レンズ(Intraocular Lens, IOL)を挿入する手術が普及している。この種の手術において、水晶体の摘出によって失われる調整力を補う場合は、多焦点眼内レンズを挿入する。多焦点眼内レンズには、遠方度数又は近方度数をエリア毎に付与した屈折型や、遠方度数と近方度数に配分する回折構造型があり、集光点が光軸方向に複数(遠方視、近方視)に分割されている。すなわち、多焦点眼内レンズは、レンズ装用者が日常生活を眼鏡無しで送れるように、遠方視と近方視の何れの集光点においても視力が確保できるように設計されている。この種の多焦点眼内レンズの具体的構成例は、特許文献1や特許文献2に記載されている。   For the purpose of treating cataracts, surgery for removing a turbid lens and inserting an intraocular lens (Intraocular Lens, IOL) has become widespread. In this type of surgery, a multifocal intraocular lens is inserted to compensate for the adjustment power lost by removing the lens. Multifocal intraocular lenses include a refractive type with a distance or near power assigned to each area, and a diffractive structure type that distributes the power to the distance and the near power. Vision, near vision). In other words, the multifocal intraocular lens is designed to ensure visual acuity at both the far and near focusing points so that the lens wearer can send his / her daily life without glasses. Specific configuration examples of this type of multifocal intraocular lens are described in Patent Document 1 and Patent Document 2.

特許文献1には、遠用・近用など、度数毎の専用ゾーンに分割された屈折型多焦点眼内レンズが記載されている。この種の屈折型多焦点眼内レンズは、多焦点の効果がレンズ装用者の瞳孔径に依存して大きく変わるという問題を抱えている。例えば、特許文献1に記載の屈折型多焦点眼内レンズの装用者が晴天時に屋外にいる場合を考える。この場合、レンズ装用者の瞳孔径が絞られることにより、眼内レンズに入射する光束径が遠用ゾーンに制限される。そのため、レンズ装用者は、実質的に遠方視しかできない。   Patent Document 1 describes a refractive multifocal intraocular lens that is divided into dedicated zones for each power, such as distance and near. This type of refractive multifocal intraocular lens has a problem that the effect of multifocal changes greatly depending on the pupil diameter of the lens wearer. For example, consider a case where the wearer of the refractive multifocal intraocular lens described in Patent Document 1 is outdoors in fine weather. In this case, the diameter of the light beam incident on the intraocular lens is limited to the distance zone by reducing the pupil diameter of the lens wearer. Therefore, the lens wearer can substantially only view from a distance.

一方、回折構造型では、瞳孔径に依存する多焦点の効果の変化が抑えられる。特許文献2には、レンズの片面中央部にアポダイズ回折構造が形成された回折構造型多焦点眼内レンズが記載されている。特許文献2に記載の回折構造型多焦点眼内レンズでは、瞳孔径が小さく絞られた際に近方視することが難しいという状況が生じない。しかし、段差数が多いため、多くの不要光が発生し、視野の広範囲に広がるノイズ(フレア)となり、結像性能が劣化する。また、遠方と近方との中間位置に配分される光量が実質的に無いため、中間位置を明瞭視することができない。   On the other hand, in the diffractive structure type, the change of the multifocal effect depending on the pupil diameter can be suppressed. Patent Document 2 describes a diffractive structure type multifocal intraocular lens in which an apodized diffractive structure is formed at the center of one side of the lens. In the diffractive structure type multifocal intraocular lens described in Patent Document 2, there is no situation in which it is difficult to view near when the pupil diameter is reduced. However, since the number of steps is large, a lot of unnecessary light is generated, resulting in noise (flares) that spreads over a wide range of the field of view, and the imaging performance deteriorates. Moreover, since there is substantially no light quantity distributed to the middle position between the far and near places, the middle position cannot be clearly seen.

特許第2935750号公報Japanese Patent No. 2935750 特許第3339689号公報Japanese Patent No. 3333989

本発明は上記の事情に鑑みてなされたものであり、瞳孔径が小さくなるような明るい場所でも明瞭な遠方視及び近方視を担保するとともに、遠方と近方との中間位置の視野も良好で、かつフレアの発生に伴う結像性能の劣化を抑えるのに好適な多焦点眼用レンズを提供することである。なお、本発明は眼内レンズに限らず、コンタクトレンズ等の別の態様の眼用のレンズにも適用することができる。そのため、上記においては、多焦点「眼用」レンズと記している。   The present invention has been made in view of the above circumstances, and ensures a clear distance vision and near vision even in a bright place where the pupil diameter is small, and also has a good visual field at an intermediate position between the distance and the near. And providing a multifocal ophthalmic lens suitable for suppressing deterioration in imaging performance due to the occurrence of flare. Note that the present invention is not limited to an intraocular lens, but can be applied to another type of ophthalmic lens such as a contact lens. Therefore, in the above, it is described as a multifocal “eye” lens.

上記の課題を解決する本発明の一形態に係る多焦点眼用レンズは、少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う屈折面の間に光軸に略水平な方向の段差が形成されている。輪帯構造は、ベースカーブ形状に対して付加されたものである。かかる多焦点眼用レンズは、段差の高さをD(単位:μm)と定義し、e線における多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(1)
0.190<|D×(n−n)|<0.370・・・(1)
を満たすとともに、隣り合う二つの屈折面のうち、光軸から遠い側の屈折面を外側屈折面と定義し、光軸に近い側の屈折面を内側屈折面と定義した場合に、外側屈折面の曲率半径がベースカーブ形状に近付くように、内側屈折面の曲率半径とベースカーブ形状の曲率半径との間の値になっている構造を少なくとも1つ有することを特徴とする。
A multifocal ophthalmic lens according to an embodiment of the present invention that solves the above-described problems has an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and light is transmitted between adjacent refracting surfaces. A step in a direction substantially horizontal to the shaft is formed. The annular structure is added to the base curve shape. Such multifocal ophthalmic lens, the height of the step D (unit: [mu] m) is defined to be the refractive index of the multifocal ophthalmic lens in the e-line is defined as n 1, the refractive index of water at e-line n When defined as 0 , the following condition (1)
0.190 <| D × (n 1 −n 0 ) | <0.370 (1)
Of the two adjacent refracting surfaces, the outer refracting surface is defined as the outer refracting surface, and the refracting surface closer to the optical axis is defined as the inner refracting surface. It is characterized by having at least one structure having a value between the curvature radius of the inner refractive surface and the curvature radius of the base curve shape so that the curvature radius of the curve approaches the base curve shape.

また、上記の課題を解決する本発明の別の形態に係る多焦点眼用レンズは、少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う屈折面の間に光軸に略水平な方向の段差が形成されている。輪帯構造は、ベースカーブ形状に対して付加されたものである。かかる多焦点眼用レンズは、段差の高さをD(単位:μm)と定義し、e線における多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義するとともに、ベースカーブ形状に対して付加されたフレネルレンズ状の段差による機能を、光軸からの高さh(単位:mm)における光路長付加量の形で表現した関数φ(h)に置き換え、二次、四次の光路差関数係数をそれぞれP、Pと定義し、段差でe線における屈折率を想定した際に1波長分の光路長差を与えるブレーズ化波長をλ(単位:μm)と定義し、輪帯の光軸上での位相を設定する定数項をP(−0.5≦P<0.5の範囲で任意の数をとる。)と定義し、ROUND(X、Y)を、Xを小数点第Y位で四捨五入した値を与える関数としたとき、
φ(h)=(P+P・h+P・h−ROUND(P+P・h+P・h、1))×λ
λ=|D×(n−n)|
を満たすとともに、
次の条件(2)
−0.40<P/P<−0.01・・・(2)
を満たすことを特徴とする。
In addition, a multifocal ophthalmic lens according to another embodiment of the present invention that solves the above-described problem has an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and includes refracting surfaces adjacent to each other. A step in the direction substantially horizontal to the optical axis is formed therebetween. The annular structure is added to the base curve shape. Such multifocal ophthalmic lens, the height of the step D (unit: [mu] m) is defined to be the refractive index of the multifocal ophthalmic lens in the e-line is defined as n 1, the refractive index of water at e-line n A function φ (h) that is defined as 0 and that expresses the function due to the step of the Fresnel lens shape added to the base curve shape in the form of an optical path length addition amount at a height h (unit: mm) from the optical axis. ), The second-order and fourth-order optical path difference function coefficients are defined as P 2 and P 4 , respectively, and the blazed wavelength that gives the optical path length difference for one wavelength when assuming the refractive index at the e-line at the step It is defined as λ B (unit: μm), and a constant term for setting the phase on the optical axis of the annular zone is P 0 (takes an arbitrary number in the range of −0.5 ≦ P 0 <0.5). And ROUND (X, Y) is a function that gives a value obtained by rounding X to the nearest Y decimal place. When
φ (h) = (P 0 + P 2 · h 2 + P 4 · h 4 −ROUND (P 0 + P 2 · h 2 + P 4 · h 4 , 1)) × λ B
λ B = | D × (n 1 −n 0 ) |
While satisfying
Next condition (2)
−0.40 <P 4 / P 2 <−0.01 (2)
It is characterized by satisfying.

また、上記の課題を解決する本発明の別の形態に係る多焦点眼用レンズは、少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う屈折面の間に光軸に略水平な方向の段差が形成されている。輪帯構造は、ベースカーブ形状に対して付加されたものである。かかる多焦点眼用レンズは、輪帯構造のうち、光軸に最も近い第一輪帯段差と、第一輪帯段差の1つ外側の第二輪帯段差との、光軸と直交する方向における配置間隔を(a−a)と定義し、輪帯構造の最も外側の最終段差と、最終段差の1つ内側の第一内側段差との、光軸と直交する方向における配置間隔を(alast−alast-1)と定義し、第一内側段差と、第一内側段差の1つ内側の第二内側段差との、光軸と直交する方向における配置間隔を(alast-1−alast-2)と定義した場合に、次の条件(3)及び(4)
0.25<(alast−alast-1)/(a−a)<2.00・・・(3)
1.00<(alast−alast-1)/(alast-1−alast-2)<3.00・・・(4)
を同時に満たすことを特徴とする。
In addition, a multifocal ophthalmic lens according to another embodiment of the present invention that solves the above-described problem has an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and includes refracting surfaces adjacent to each other. A step in the direction substantially horizontal to the optical axis is formed therebetween. The annular structure is added to the base curve shape. Such a multifocal ophthalmic lens includes a first annular zone step closest to the optical axis and a second annular zone step outside the first annular zone step in a direction perpendicular to the optical axis. Is defined as (a 2 −a 1 ), and the arrangement interval in the direction perpendicular to the optical axis between the outermost final step in the annular zone structure and the first inner step inside one of the final steps is defined as (A last −a last−1 ), and the arrangement interval between the first inner step and the second inner step inside the first inner step in the direction perpendicular to the optical axis is (a last−1. -A last-2 ), the following conditions (3) and (4)
0.25 <(a last −a last−1 ) / (a 2 −a 1 ) <2.00 (3)
1.00 <(a last -a last-1 ) / (a last-1 -a last-2 ) <3.00 (4)
Is satisfied at the same time.

本発明に係る多焦点眼用レンズにおいて、ベースカーブ形状の曲率半径をRbase(単位:mm)と定義し、輪帯構造のうちの光軸を含む屈折面の曲率半径をR1(単位:mm)と定義したときに、次の条件(5)
|R1−Rbase|>|Ra−Rbase|・・・(5)
を満たす曲率半径Ra(単位:mm)を有する第一外側屈折面が光軸を含む屈折面の外側にあり、次の条件(6)
|Ra−Rbase|>|Rb−Rbase|・・・(6)
を満たす曲率半径Rb(単位:mm)を有する第二外側屈折面が第一外側屈折面の外側にあってもよい。
In the multifocal ophthalmic lens according to the present invention, the curvature radius of the base curve shape is defined as Rbase (unit: mm), and the curvature radius of the refracting surface including the optical axis in the annular structure is R1 (unit: mm). The following condition (5)
| R1-Rbase |> | Ra-Rbase | (5)
The first outer refracting surface having a radius of curvature Ra (unit: mm) that satisfies the condition is outside the refracting surface including the optical axis, and the following condition (6)
| Ra-Rbase |> | Rb-Rbase | (6)
The second outer refracting surface having a curvature radius Rb (unit: mm) that satisfies the above condition may be outside the first outer refracting surface.

ここで、第二外側屈折面は、例えば輪帯構造のうち最も外側の屈折面であり、第一外側屈折面は、第二外側屈折面の内側に隣接したものである。   Here, the second outer refracting surface is, for example, the outermost refracting surface of the annular structure, and the first outer refracting surface is adjacent to the inner side of the second outer refracting surface.

上記の別の形態に係る多焦点眼用レンズにおいて、段差の高さをD(単位:μm)と定義し、e線における多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(1)
0.190<|D×(n−n)|<0.370・・・(1)
が満たされてもよい。
In the multifocal ophthalmic lens according to another aspect described above, the height of the step is defined as D (unit: μm), the refractive index of the multifocal ophthalmic lens at the e-line is defined as n 1, and When the refractive index of water is defined as n 0 , the following condition (1)
0.190 <| D × (n 1 −n 0 ) | <0.370 (1)
May be satisfied.

本発明に係る多焦点眼用レンズは、輪帯構造の最も外側の最終輪帯が、最終輪帯の外側に位置するベースカーブ形状に滑らかに接続された構成であってもよい。   The multifocal ophthalmic lens according to the present invention may have a configuration in which the outermost final annular zone of the annular zone structure is smoothly connected to a base curve shape positioned outside the final annular zone.

また、上記の課題を解決する本発明の別の形態に係る多焦点眼用レンズは、少なくとも一面に同心円状の周期構造が形成されたものである。周期構造は、ベースカーブ形状に対して付加された、周期が異なる複数の凹凸形状が多焦点眼用レンズの半径方向に繰り返し配置された輪帯構造である。かかる多焦点眼用レンズは、周期構造の光軸方向の最小厚みと最大厚みとの差をDm(単位:μm)と定義し、e線における多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(7)
0.190<|Dm×(n−n)|<0.370・・・(7)
を満たすとともに、互いに隣り合う二つの周期のうち、光軸から遠い側の周期を外側周期と定義し、光軸に近い側の周期を内側周期と定義した場合に、外側周期が内側周期よりも幅広となる構造を少なくとも1つ有することを特徴とする。
In addition, a multifocal ophthalmic lens according to another embodiment of the present invention that solves the above-described problems has a concentric periodic structure formed on at least one surface. The periodic structure is an annular structure in which a plurality of uneven shapes with different periods added to the base curve shape are repeatedly arranged in the radial direction of the multifocal ophthalmic lens. Such multifocal ophthalmic lens, the difference between the minimum thickness and the maximum thickness of the optical axis direction of the periodic structure Dm (unit: [mu] m) is defined to be the refractive index of the multifocal ophthalmic lens in e-ray and n 1 Definition When the refractive index of water at the e-line is defined as n 0 , the following condition (7)
0.190 <| Dm × (n 1 −n 0 ) | <0.370 (7)
Of the two periods adjacent to each other, the period far from the optical axis is defined as the outer period, and the period closer to the optical axis is defined as the inner period. It has at least one wide structure.

本発明に係る多焦点眼用レンズは、例えば樹脂成形品である。この場合、多焦点眼用レンズの屈折率nは、例えば次の条件(8)
1.38<n1<1.75・・・(8)
を満たす。
The multifocal ophthalmic lens according to the present invention is, for example, a resin molded product. In this case, the refractive index n 1 of the multifocal ophthalmic lens is, for example, the following condition (8)
1.38 <n1 <1.75 (8)
Meet.

本発明に係る多焦点眼用レンズは、e線の光束を入射光束径2.0mmで入射させた際に輪帯構造で回折効率が最大となる光の収束位置と、回折効率が2番目に高い光の収束位置から求められる加入度数の絶対値をL(単位:Dptr)と定義した場合に、次の条件(9)
1.0<L<5.0・・・(9)
を満たす構成としてもよい。
The multifocal ophthalmic lens according to the present invention has the light convergence position where the diffraction efficiency is maximum in the annular structure when the e-ray light beam is incident at an incident light beam diameter of 2.0 mm, and the diffraction efficiency is second. When the absolute value of the addition power obtained from the high light convergence position is defined as L (unit: Dptr), the following condition (9)
1.0 <L <5.0 (9)
It is good also as composition which satisfies.

本発明に係る多焦点眼用レンズは、輪帯構造の最も外側の最終輪帯とベースカーブ形状との接続位置の瞳高さ(輪帯構造の終了位置)をhmaxと定義した場合に、次の条件(10)
1.2<hmax<4.0・・・(10)
を満たす構成としてもよい。
In the multifocal ophthalmic lens according to the present invention, when the pupil height (end position of the annular zone structure) of the connection position between the outermost final annular zone of the annular zone structure and the base curve shape is defined as hmax, Condition (10)
1.2 <hmax <4.0 (10)
It is good also as composition which satisfies.

本発明によれば、瞳孔径が小さくなるような明るい場所でも明瞭な遠方視及び近方視を担保するとともに、遠方と近方との中間位置の視野も良好で、かつフレアの発生に伴う結像性能の劣化を抑えるのに好適な多焦点眼用レンズが提供される。   According to the present invention, clear distance vision and near vision can be ensured even in a bright place where the pupil diameter is small, the visual field at the intermediate position between the distance and the distance is good, and concomitant with the occurrence of flare. A multifocal ophthalmic lens suitable for suppressing degradation of image performance is provided.

本発明の実施形態の多焦点眼用レンズの側断面図である。It is a sectional side view of the multifocal ophthalmic lens of embodiment of this invention. 本発明の実施形態のコンタクトレンズの断面構造図である。It is a sectional structure figure of a contact lens of an embodiment of the present invention. 各輪帯の各配置間隔を説明するための図を示す。The figure for demonstrating each arrangement | positioning space | interval of each ring zone is shown. 本発明の実施例1の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 1 of this invention. 本発明の実施例2の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 2 of this invention. 本発明の実施例3の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 3 of this invention. 本発明の実施例4の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 4 of this invention. 本発明の実施例5の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 5 of this invention. 本発明の実施例6の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 6 of this invention. 本発明の実施例7の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 7 of this invention. 本発明の実施例8の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 8 of this invention. 本発明の実施例9の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of Example 9 of this invention. 比較例1の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of the comparative example 1. 比較例2の多焦点眼用レンズの形状や光学性能を示す図である。It is a figure which shows the shape and optical performance of the multifocal ophthalmic lens of the comparative example 2. 本発明の実施形態の多焦点眼用レンズの側断面図である。It is a sectional side view of the multifocal ophthalmic lens of embodiment of this invention.

以下、図面を参照して、本発明の実施形態に係る多焦点眼用レンズについて説明する。   Hereinafter, a multifocal ophthalmic lens according to an embodiment of the present invention will be described with reference to the drawings.

本発明は、コンタクトレンズにもIOLにも適用することができる。図1(a)、図15(a)は、本発明を適用して設計されたコンタクトレンズ1xの一実施形態を示す側断面図であり、図1(b)、図15(b)は、本発明を適用して設計されたIOL1yの一実施形態を示す側断面図である。本明細書中、コンタクトレンズ1x、IOL1yをはじめとする、本発明を適用して設計される多焦点眼用レンズを「多焦点眼用レンズ1」と総称する。多焦点眼用レンズ1は、例えば、屈折率nが次の条件(8)を満たす材料によって成形された樹脂成形品である。
1.38<n1<1.75・・・(8)
多焦点眼用レンズ1で使用される材料には、例えばシリコーン、アクリル樹脂、Hydroxyethyl Methacrylate(HEMA)等が想定される。
The present invention can be applied to both contact lenses and IOLs. FIG. 1A and FIG. 15A are side sectional views showing an embodiment of a contact lens 1x designed by applying the present invention. FIG. 1B and FIG. It is a sectional side view showing one embodiment of IOL1y designed by applying the present invention. In this specification, multifocal ophthalmic lenses designed by applying the present invention, including the contact lenses 1x and IOL1y, are collectively referred to as “multifocal ophthalmic lenses 1”. The multifocal ophthalmic lens 1 is, for example, a resin molded product formed of a material having a refractive index n 1 that satisfies the following condition (8).
1.38 <n1 <1.75 (8)
As a material used for the multifocal ophthalmic lens 1, for example, silicone, acrylic resin, Hydroxyethyl Methacrylate (HEMA) or the like is assumed.

図1(a)及び図1(b)に示されるように、本実施形態の多焦点眼用レンズ1は、光軸を中心とした回転対称形状を有しており、同心円状の複数の屈折面に分割された輪帯構造が一面に形成されている。輪帯構造は、ベースカーブ形状に対して付加されたものであり、互いに隣り合う屈折面の間に、光軸に略水平な方向の段差が形成されている。但し、輪帯構造は、一面全体に形成されているわけではない。多焦点眼用レンズ1の周辺部は、輪帯構造でなくベースカーブ形状となっている。輪帯構造の最も外側の最終輪帯は、最終輪帯の外側に位置するベースカーブ形状に滑らかに接続されている。すなわち、最終輪帯の屈折面とベースカーブ形状(屈折面)とが段差無く連続的に接続されている。「段差無く連続的に接続」とは、最終輪帯の屈折面の接線と、ベースカーブ面の接線とがなす角度が鈍角である状態をいう。最終輪帯とベースカーブ形状との間の段差を削減することにより、段差構造に起因するフレアの発生が有効に抑えられる。なお、輪帯構造は、一面に限らず、各面に分担させるようにして設けてもよい。   As shown in FIG. 1A and FIG. 1B, the multifocal ophthalmic lens 1 of the present embodiment has a rotationally symmetric shape around the optical axis, and a plurality of concentric refractions. An annular structure divided into planes is formed on one side. The annular zone structure is added to the base curve shape, and a step in a direction substantially horizontal to the optical axis is formed between adjacent refracting surfaces. However, the annular structure is not formed on the entire surface. The peripheral portion of the multifocal ophthalmic lens 1 has a base curve shape instead of an annular structure. The outermost final annular zone of the annular zone structure is smoothly connected to a base curve shape located outside the final annular zone. That is, the refractive surface of the last annular zone and the base curve shape (refractive surface) are continuously connected without any step. “Continuous connection without a step” refers to a state where the angle formed by the tangent to the refracting surface of the final ring zone and the tangent to the base curve surface is an obtuse angle. By reducing the level difference between the final ring zone and the base curve shape, the occurrence of flare due to the level difference structure can be effectively suppressed. The annular structure is not limited to one surface, and may be provided so as to be shared by each surface.

図1(a)に示されるように、コンタクトレンズ1xは、第一面Rx1、第二面Rx2を有している。コンタクトレンズ1xの装用時、第一面Rx1は物体側に位置し、第二面Rx2は像側に位置する。コンタクトレンズ1xにおいては、第二面Rx2側に輪帯構造が設けられている。また、図1(b)に示されるように、IOL1yは、第一面Ry1、第二面Ry2を有している。IOL1yの装用時、第一面Ry1は物体側に位置し、第二面Ry2は像側に位置する。IOL1yにおいては、第一面Ry1側に輪帯構造が設けられている。   As shown in FIG. 1A, the contact lens 1x has a first surface Rx1 and a second surface Rx2. When the contact lens 1x is worn, the first surface Rx1 is located on the object side, and the second surface Rx2 is located on the image side. In the contact lens 1x, a ring zone structure is provided on the second surface Rx2 side. Further, as illustrated in FIG. 1B, the IOL 1y has a first surface Ry1 and a second surface Ry2. When the IOL 1y is worn, the first surface Ry1 is located on the object side, and the second surface Ry2 is located on the image side. In the IOL 1y, a ring zone structure is provided on the first surface Ry1 side.

図2は、各種定義を説明するための図であり、コンタクトレンズ1xの断面構造図を示す。図2中、縦軸は、サグ量(単位:mm)を示し、横軸は、瞳高さh(単位:mm)を示す。また、図2中、実線は、実形状(第二面Rx2の形状)を示し、点線は、ベースカーブ形状を示す。また、実線の下側が涙液側であり、実線の上側がレンズ体側である。また、図2中、光軸に対する段差の位置(光軸との距離)を段差位置a(単位:mm)と定義し、段差の光軸方向の高さを段差高さD(単位:μm)と定義する。ここで、段差高さDは、レンズ体が肉厚になる方向に正の符号をとる。また、ベースカーブに対して図2中下側の形状偏差(形状誤差)に正の符号を付し、ベースカーブに対して図2中上側の形状偏差(形状誤差)に負の符号を付す。   FIG. 2 is a diagram for explaining various definitions, and shows a cross-sectional structure diagram of the contact lens 1x. In FIG. 2, the vertical axis indicates the sag amount (unit: mm), and the horizontal axis indicates the pupil height h (unit: mm). In FIG. 2, the solid line indicates the actual shape (the shape of the second surface Rx2), and the dotted line indicates the base curve shape. Further, the lower side of the solid line is the lacrimal fluid side, and the upper side of the solid line is the lens body side. In FIG. 2, the position of the step with respect to the optical axis (distance from the optical axis) is defined as the step position a (unit: mm), and the height of the step in the optical axis direction is the step height D (unit: μm). It is defined as Here, the step height D has a positive sign in the direction in which the lens body becomes thick. Further, a positive sign is attached to the lower shape deviation (shape error) in FIG. 2 with respect to the base curve, and a negative sign is assigned to the upper shape deviation (shape error) in FIG. 2 with respect to the base curve.

輪帯構造は、回折作用を付与する回折構造とも称される。輪帯構造は、例えば鋸歯形状を有するブレーズ型回折構造であり、次の光路差関数(h)で表現することができる。光路差関数(h)は、輪帯構造の回折レンズとしての機能を光軸からの高さh(単位:mm)における光路長付加量の形で表現した関数であり、輪帯構造における各段差の設置位置を規定する。光路差関数(h)は、二次、四次、六次、・・・の光路差関数係数をそれぞれP、P、P、・・・と定義し、波長λの光の回折効率が最大となる回折次数をmと定義した場合に、次の式により表される。
光路差関数(h)=(P2h2+P4h4+P6h6+P8h8+P10h10+P12h12)mλ
The annular structure is also referred to as a diffractive structure that imparts a diffractive action. The annular structure is, for example, a blazed diffraction structure having a sawtooth shape, and can be expressed by the following optical path difference function (h). The optical path difference function (h) is a function expressing the function as a diffractive lens having an annular structure in the form of an added optical path length at a height h (unit: mm) from the optical axis. Specify the installation position of. The optical path difference function (h), the secondary, quaternary, next six, P 2 the optical path difference function coefficient of ... respectively, P 4, P 6, is defined as ..., diffraction efficiency of the light of wavelength λ When the diffraction order that maximizes is defined as m, it is expressed by the following equation.
Optical path difference function (h) = (P 2 h 2 + P 4 h 4 + P 6 h 6 + P 8 h 8 + P 10 h 10 + P 12 h 12 ) mλ

ここで、従来の多焦点眼用レンズは、入射光束を分割して遠方視側集光点と近方視側集光点にそれぞれ集光させる。しかし、これでは、患者が遠方視側集光点と近方視側集光点との間の中間位置を明瞭視できないという問題を存する。そこで、本実施形態の多焦点眼用レンズ1は、入射光束を分割し、遠方視側集光点、近方視側集光点に加えて、中間位置にも集光させることにより、被写界深度を深くして、中間位置も明瞭視できるように構成されている。   Here, the conventional multifocal ophthalmic lens divides an incident light beam and collects it on the far vision side condensing point and the near vision side condensing point, respectively. However, this presents a problem that the patient cannot clearly see the intermediate position between the far vision side focusing point and the near vision side focusing point. Therefore, the multifocal ophthalmic lens 1 of the present embodiment divides an incident light beam and collects it at an intermediate position in addition to the far vision side condensing point and the near vision side condensing point. The depth of field is deepened so that the intermediate position can be clearly seen.

具体的には、本実施形態の多焦点眼用レンズ1は、設計波長(e線(546nm))における多焦点眼用レンズ1の屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(1)
0.190<|D×(n−n)|<0.370・・・(1)
を満たすように構成されている。
Specifically, multifocal ophthalmic lens 1 of this embodiment, the multifocal refractive index of the ophthalmic lens 1 at the design wavelength (e-ray (546 nm)) is defined as n 1, the refractive index of water at e-line Is defined as n 0 , the following condition (1)
0.190 <| D × (n 1 −n 0 ) | <0.370 (1)
It is configured to satisfy.

本実施形態の多焦点眼用レンズ1において、遠方視及び近方視するためには、1次回折次数を用いて近用と遠用の加入度数の差をつけるための加入度数を付加しつつ、1次回折光と0次回折光の回折効率をe線において一定範囲内にバランスさせるように設計する必要がある。しかし、条件(1)の下限を下回ると、0次回折光の回折効率が低くなりすぎる(例えば20%を切る)ため、光量不足により、遠方視(もしくは近方視)が難しくなる。条件(1)の上限を上回ると、1次回折光の回折効率が低くなりすぎる(例えば20%を切る)ため、光量不足により、近方視(もしくは遠方視)が難しくなる。条件(1)を満足する場合は、遠方、近方とも明瞭視することができる。   In the multifocal ophthalmic lens 1 of the present embodiment, in order to perform far vision and near vision, an addition power for adding a difference between the near power and the far power addition power is added using the first order diffraction order. It is necessary to design so that the diffraction efficiencies of the 1st-order diffracted light and the 0th-order diffracted light are balanced within a certain range at the e-line. However, if the lower limit of the condition (1) is not reached, the diffraction efficiency of the 0th-order diffracted light becomes too low (for example, less than 20%), and thus far vision (or near vision) becomes difficult due to insufficient light quantity. If the upper limit of the condition (1) is exceeded, the diffraction efficiency of the first-order diffracted light becomes too low (for example, less than 20%), and near vision (or far vision) becomes difficult due to insufficient light quantity. When the condition (1) is satisfied, it is possible to clearly see both far and near.

本実施形態の多焦点眼用レンズ1は、更に、輪帯構造において隣り合う二つの屈折面のうち、光軸から遠い側の屈折面を外側屈折面と定義し、光軸に近い側の屈折面を内側屈折面と定義した場合に、外側屈折面の曲率半径がベースカーブ形状に近付くように、内側屈折面の曲率半径とベースカーブ形状の曲率半径との間の値になっている構造を少なくとも1つ有するように構成されている。   In the multifocal ophthalmic lens 1 of the present embodiment, among the two refracting surfaces adjacent to each other in the annular structure, the refracting surface far from the optical axis is defined as the outer refracting surface, and the refracting near the optical axis When a surface is defined as an inner refractive surface, a structure having a value between the radius of curvature of the inner refractive surface and the radius of curvature of the base curve shape is set so that the radius of curvature of the outer refractive surface approaches the shape of the base curve. It is configured to have at least one.

このように、外側の輪帯の方が段差同士の間隔が広い構成を付与することにより、近用(もしくは遠用)に配分されていた回折パワーが弱くなり、今まで近方視側集光点(もしくは遠方視側集光点)に集光していた光の一部が遠方視側集光点と近方視側集光点との間の中間位置にも集光するようになる。そのため、患者は、中間位置も明瞭視できるようになる。すなわち、本発明者は、多焦点眼用レンズの技術分野において、ベースカーブ形状に対して付与される輪帯構造の段差同士の間隔が一定又は外側ほど狭くなるという本件特許出願時の当該分野の技術常識の殻を破り、外側の輪帯の方が段差同士の間隔が広い構成を想起し、これにより、遠方、中間、近方ともに明瞭視可能な被写界深度が深い多焦点眼用レンズを実現させた。なお、中間位置の集光点は、外側屈折面の曲率半径がベースカーブ形状の曲率半径に近付くほど、ベースカーブの焦点位置に近付く。また、段差同士の間隔が広がることに伴い、輪帯構造の段差総数が減少するため、フレアの発生も少なくなる。このように、本実施形態の多焦点眼用レンズ1によれば、瞳孔径が小さくなるような明るい場所でも明瞭な遠方視及び近方視が担保されるとともに、遠方と近方との中間位置の視界も良好で、かつフレアの発生に伴う結像性能の劣化も抑えられる。   In this way, the outer ring zone has a configuration in which the gap between the steps is wider, so that the diffraction power that has been distributed to the near (or far) is weakened, and the near vision side condensing until now. A part of the light collected at the point (or the far vision side condensing point) is condensed at an intermediate position between the far vision side condensing point and the near vision side condensing point. Therefore, the patient can clearly see the intermediate position. That is, the inventor of the present invention at the time of filing the present patent application that the interval between the steps of the zonal structure imparted to the base curve shape is constant or narrower toward the outside in the technical field of multifocal ophthalmic lenses. A multifocal ophthalmic lens with a deep depth of field that breaks the shell of common sense and the outer ring zone has wider gaps between steps, making it possible to see clearly in the far, middle, and near distances. Realized. It should be noted that the condensing point at the intermediate position approaches the focal position of the base curve as the radius of curvature of the outer refractive surface approaches the curvature radius of the base curve shape. Further, as the distance between the steps increases, the total number of steps in the ring zone structure decreases, so that the occurrence of flare is reduced. Thus, according to the multifocal ophthalmic lens 1 of the present embodiment, clear distance vision and near vision are ensured even in a bright place where the pupil diameter is small, and an intermediate position between the distance and the near distance. The field of view is also good, and the deterioration of the imaging performance due to the occurrence of flare can be suppressed.

本実施形態の多焦点眼用レンズ1の構成は、次のように表現することもできる。具体的には、多焦点眼用レンズ1は、ベースカーブ形状に対して付加されたフレネルレンズ状の段差による機能を、光軸からの瞳高さh(単位:mm)における光路長付加量の形で表現した関数φ(h)に置き換え、二次、四次の光路差関数係数をそれぞれP、Pと定義し、各段差でe線における屈折率を想定した際に1波長分の光路長差を与えるブレーズ化波長をλ(単位:μm)と定義し、フレネルレンズ状の輪帯の光軸上での位相を設定する定数項をP(−0.5≦P<0.5の範囲で任意の数をとる。)と定義し、ROUND(X、Y)を、Xを小数点第Y位で四捨五入した値を与える関数としたとき、
φ(h)=(P+P・h+P・h−ROUND(P+P・h+P・h、1))×λ
λ=|D×(n−n)|
を満たすとともに、
次の条件(2)
−0.40<P/P<−0.01・・・(2)
を満たすように構成されている。(P+P・h+P・h−ROUND(P+P・h+P・h、1))の値が0.5になる瞳高さhが輪帯の境界に当たる。多焦点眼用レンズ1は、ベースカーブ形状に対し、関数φ(h)の光路差を持つように勾配及び段差が付加されることにより、フレネルレンズ状の輪帯構造が形成されている。
The configuration of the multifocal ophthalmic lens 1 of the present embodiment can also be expressed as follows. Specifically, the multifocal ophthalmic lens 1 has the function of the step difference of the Fresnel lens shape added to the base curve shape, and the optical path length addition amount at the pupil height h (unit: mm) from the optical axis. The second and fourth order optical path difference function coefficients are defined as P 2 and P 4 , respectively, when the refractive index at the e-line is assumed at each step. The blazed wavelength that gives the optical path length difference is defined as λ B (unit: μm), and a constant term for setting the phase on the optical axis of the Fresnel lens-shaped annular zone is P 0 (−0.5 ≦ P 0 < And any number in the range of 0.5.), And ROUND (X, Y) is a function that gives a value obtained by rounding X to the Yth decimal place,
φ (h) = (P 0 + P 2 · h 2 + P 4 · h 4 −ROUND (P 0 + P 2 · h 2 + P 4 · h 4 , 1)) × λ B
λ B = | D × (n 1 −n 0 ) |
While satisfying
Next condition (2)
−0.40 <P 4 / P 2 <−0.01 (2)
It is configured to satisfy. The pupil height h at which the value of (P 0 + P 2 · h 2 + P 4 · h 4 −ROUND (P 0 + P 2 · h 2 + P 4 · h 4 , 1)) is 0.5 corresponds to the boundary of the annular zone. . The multifocal ophthalmic lens 1 has a Fresnel lens-like annular zone structure by adding a gradient and a step to the base curve shape so as to have an optical path difference of the function φ (h).

ここで、球面収差と同様の光学作用を規定する光路差関数係数P4が、回折パワーを規定する光路差関数係数P2の逆符号をとることは、外側の輪帯の方が段差同士の間隔が広い構成を有することを意味する。そのため、本例においても、患者は、中間位置も明瞭視できるようになる。また、段差同士の間隔が広がることに伴い、輪帯構造の段差総数が減少するため、フレアの発生も少なくなる。   Here, the fact that the optical path difference function coefficient P4 that defines the optical action similar to the spherical aberration takes the opposite sign of the optical path difference function coefficient P2 that defines the diffraction power means that the distance between the steps in the outer annular zone is larger. It means having a wide structure. Therefore, also in this example, the patient can clearly see the intermediate position. Further, as the distance between the steps increases, the total number of steps in the ring zone structure decreases, so that the occurrence of flare is reduced.

上記において、条件(2)の下限を下回ると、輪帯構造によって付与される度数変化(近用度数から中間度数を経て遠用度数に至るまでの変化)が急激であるため、結果的に中間位置に振り分けられる輪帯構造の径が小さくなる。そのため、中間位置の光量が大幅に不足し、十分な被写界深度が得られない。また、条件(2)の上限を上回ると、度数変化が緩やかになりすぎるため、結果的に輪帯構造全体の径が大きくなる。この場合、中間位置の光量が大幅に不足し、十分な被写界深度が得られない。特に、瞳孔径を大きく開けない高齢者にとっては、中間位置の光量がより一層不足する。条件(2)を満足する場合は、遠方、中間、近方ともに明瞭視でき、十分な被写界深度が得られる。   In the above, if the lower limit of the condition (2) is not reached, the power change (change from the near power to the intermediate power through the intermediate power) given by the zonal structure is abrupt. The diameter of the ring zone structure distributed to the position is reduced. For this reason, the amount of light at the intermediate position is significantly insufficient, and a sufficient depth of field cannot be obtained. Further, if the upper limit of the condition (2) is exceeded, the frequency change becomes too gradual, resulting in an increase in the diameter of the entire ring zone structure. In this case, the amount of light at the intermediate position is greatly insufficient, and a sufficient depth of field cannot be obtained. In particular, the amount of light at the intermediate position is further insufficient for elderly people who cannot open a large pupil diameter. When the condition (2) is satisfied, it is possible to clearly see far, middle and near, and a sufficient depth of field can be obtained.

なお、本例の多焦点眼用レンズ1においても、条件(1)を満たすと尚よい。   In the multifocal ophthalmic lens 1 of this example, it is more preferable that the condition (1) is satisfied.

また、本実施形態の多焦点眼用レンズ1の構成は、次のように表現することもできる。具体的には、多焦点眼用レンズ1は、輪帯構造の第一輪帯段差と第二輪帯段差との、光軸と直交する方向における配置間隔を(a−a)と定義し、最終段差と第一内側段差との、光軸と直交する方向における配置間隔を(alast−alast-1)と定義し、第一内側段差と第二内側段差との、光軸と直交する方向における配置間隔を(alast-1−alast-2)と定義した場合に、次の条件(3)及び(4)
0.25<(alast−alast-1)/(a−a)<2.00・・・(3)
1.00<(alast−alast-1)/(alast-1−alast-2)<3.00・・・(4)
を同時に満たすように構成されている。
Moreover, the structure of the multifocal ophthalmic lens 1 of this embodiment can also be expressed as follows. Specifically, in the multifocal ophthalmic lens 1, the arrangement interval in the direction perpendicular to the optical axis between the first annular step and the second annular step of the annular structure is defined as (a 2 −a 1 ). The arrangement interval between the final step and the first inner step in the direction orthogonal to the optical axis is defined as (a last −a last-1 ), and the optical axis between the first inner step and the second inner step is When the arrangement interval in the orthogonal direction is defined as (a last-1 −a last-2 ), the following conditions (3) and (4)
0.25 <(a last −a last−1 ) / (a 2 −a 1 ) <2.00 (3)
1.00 <(a last -a last-1 ) / (a last-1 -a last-2 ) <3.00 (4)
It is comprised so that it may satisfy | fill simultaneously.

図3に、各配置間隔を説明するための図を示す。図3の縦軸は、ベースカーブに対して付加された輪帯構造(別の表現によれば、ベースカーブに対する形状偏差(形状誤差)であって、輪帯構造形成面からベースカーブ成分を差し引いて表現した断面構造)(単位:μm))を示し、横軸は、入射光束半径(単位:mm)を示す。図3に示されるように、配置間隔(a−a)を規定する第一輪帯段差、第二輪帯段差は、夫々、光軸に最も近い段差、第一輪帯段差の1つ外側の段差である。また、配置間隔(alast−alast-1)を規定する最終段差、第一内側段差は、夫々、輪帯構造の最も外側の段差、最終段差の1つ内側の段差である。また、配置間隔(alast-1−alast-2)を規定する第二内側段差は、第一内側段差の1つ内側の段差である。なお、図3に示されるように、最終段差とベースカーブ形状は、その接続点(図3中、輪帯終了位置hmax)において滑らかに接続されている。 FIG. 3 is a diagram for explaining each arrangement interval. The vertical axis in FIG. 3 is the ring zone structure added to the base curve (according to another expression, the shape deviation (shape error) with respect to the base curve, and the base curve component is subtracted from the ring zone structure forming surface. The horizontal axis represents the incident light beam radius (unit: mm). As shown in FIG. 3, the first annular zone step and the second annular zone step that define the arrangement interval (a 2 −a 1 ) are one of the step closest to the optical axis and the first annular zone step, respectively. This is the outer step. In addition, the final step and the first inner step that define the arrangement interval (a last −a last−1 ) are the outermost step of the annular zone structure and the step inside one of the final steps, respectively. Further, the second inner step defining the arrangement interval (a last-1 −a last-2 ) is a step inside one of the first inner steps. As shown in FIG. 3, the final step and the base curve shape are smoothly connected at the connection point (ring zone end position hmax in FIG. 3).

条件(3)の下限を下回ると、中心付近に対して周辺の度数変化が急激であるため、結果的に中間位置に振り分けられる輪帯構造の径が小さくなる。そのため中間位置の光量が大幅に不足し、十分な被写界深度を得られない。条件(3)の上限を上回ると、中心付近の度数が非常に強く、周辺の度数変化が緩やかになりすぎるため、結果的に輪帯構造全体の径が大きくなる。この場合、瞳孔が広がっても中間域に分配される光量が不足し、十分な被写界深度を得られない。また、高齢者のように瞳孔径の大きさがそれほど大きくならない場合には、さらに影響が大きい。条件(3)を満たす場合は、遠方、中間、近方ともの瞳孔径が変化した際にも明瞭視でき、十分な被写界深度が得られる。   If the lower limit of the condition (3) is not reached, the peripheral power change is abrupt with respect to the vicinity of the center, and as a result, the diameter of the annular zone structure distributed to the intermediate position becomes small. For this reason, the amount of light at the intermediate position is significantly insufficient, and a sufficient depth of field cannot be obtained. If the upper limit of the condition (3) is exceeded, the power near the center is very strong and the power change around the center becomes too gradual, resulting in an increase in the diameter of the entire ring zone structure. In this case, even if the pupil is widened, the amount of light distributed to the intermediate area is insufficient, and a sufficient depth of field cannot be obtained. Further, when the size of the pupil diameter is not so large as in an elderly person, the influence is even greater. When the condition (3) is satisfied, it can be clearly seen even when the pupil diameters in the far, middle, and near distances change, and a sufficient depth of field can be obtained.

また、条件(4)の下限を下回ると、度数変化が急激であるため、結果的に累進効果を持つ輪帯構造の径が小さくなる。そのため、中間位置の光量が大幅に不足し、十分な被写界深度が得られない。また、条件(4)の上限を上回ると、度数変化が緩やかになりすぎるため、結果的に輪帯構造全体の径が大きくなる。この場合、中間位置の光量が大幅に不足し、十分な被写界深度が得られない。特に、瞳孔径を大きく開けない高齢者にとっては、中間位置の光量がより一層不足する。条件(4)を満足する場合は、遠方、中間、近方ともに明瞭視でき、十分な被写界深度が得られる。   If the lower limit of the condition (4) is not reached, the frequency change is abrupt, and as a result, the diameter of the annular zone structure having a progressive effect is reduced. For this reason, the amount of light at the intermediate position is significantly insufficient, and a sufficient depth of field cannot be obtained. Further, if the upper limit of the condition (4) is exceeded, the frequency change becomes too gradual, and as a result, the diameter of the entire ring zone structure becomes large. In this case, the amount of light at the intermediate position is greatly insufficient, and a sufficient depth of field cannot be obtained. In particular, the amount of light at the intermediate position is further insufficient for elderly people who cannot open a large pupil diameter. When the condition (4) is satisfied, it is possible to clearly see far, middle and near, and a sufficient depth of field can be obtained.

なお、本例の多焦点眼用レンズ1においても、条件(1)を満たすと尚よい。   In the multifocal ophthalmic lens 1 of this example, it is more preferable that the condition (1) is satisfied.

上記3例の多焦点眼用レンズ1は、ベースカーブ形状の曲率半径をRbase(単位:mm)と定義し、輪帯構造のうちの光軸を含む屈折面の曲率半径をR1(単位:mm)と定義したときに、次の条件(5)
|R1−Rbase|>|Ra−Rbase|・・・(5)
を満たす曲率半径Ra(単位:mm)を有する第一外側屈折面が光軸を含む屈折面の外側にあり、次の条件(6)
|Ra−Rbase|>|Rb−Rbase|・・・(6)
を満たす曲率半径Rb(単位:mm)を有する第二外側屈折面が第一外側屈折面の外側にある構成としてもよい。また、第二外側屈折面は、例えば、輪帯構造のうち最も外側の屈折面であり、第一外側屈折面は、第二外側屈折面の内側に隣接したものとしてもよい。
In the multifocal ophthalmic lens 1 of the above three examples, the radius of curvature of the base curve shape is defined as Rbase (unit: mm), and the radius of curvature of the refracting surface including the optical axis in the annular structure is R1 (unit: mm). )), The following condition (5)
| R1-Rbase |> | Ra-Rbase | (5)
The first outer refracting surface having a radius of curvature Ra (unit: mm) that satisfies the condition is outside the refracting surface including the optical axis, and the following condition (6)
| Ra-Rbase |> | Rb-Rbase | (6)
The second outer refracting surface having a curvature radius Rb (unit: mm) that satisfies the above condition may be outside the first outer refracting surface. Further, the second outer refracting surface may be, for example, the outermost refracting surface of the annular structure, and the first outer refracting surface may be adjacent to the inner side of the second outer refracting surface.

上記3例の輪帯構造は何れも、鋸歯形状を有する所謂ブレーズ型回折構造の一種であるが、本実施形態の変形例では、ブレーズ型回折構造に代えて、周期構造型の輪帯構造を適用してもよい。具体的には、変形例の多焦点眼用レンズ1の周期構造は、ベースカーブ形状に対して付加された、同心円状の輪帯構造であり、周期が異なる複数の凹凸形状が多焦点眼用レンズ1の半径方向に繰り返し配置された構成となっている。変形例の多焦点眼用レンズ1は、周期構造の光軸方向の最小厚みと最大厚みとの差をDm(単位:μm)と定義した場合に、次の条件(7)
0.190<|Dm×(n−n)|<0.370・・・(7)
を満たすように構成されている。
Each of the three examples of the annular structure is a kind of so-called blazed diffractive structure having a sawtooth shape. However, in the modification of the present embodiment, a periodic structure type zonal structure is used instead of the blazed diffractive structure. You may apply. Specifically, the periodic structure of the multifocal ophthalmic lens 1 of the modified example is a concentric annular zone structure added to the base curve shape, and a plurality of concave and convex shapes having different periods are used for the multifocal eye. The lens 1 is repeatedly arranged in the radial direction. When the difference between the minimum thickness and the maximum thickness in the optical axis direction of the periodic structure is defined as Dm (unit: μm), the multifocal ophthalmic lens 1 of the modified example has the following condition (7)
0.190 <| Dm × (n 1 −n 0 ) | <0.370 (7)
It is configured to satisfy.

変形例の多焦点眼用レンズ1においても、遠方視及び近方視するため、1次回折次数を用いて近用と遠用の加入度数の差をつけるための加入度数を付加しつつ、1次回折光と0次回折光の回折効率をe線において一定範囲内にバランスさせるように設計する必要がある。しかし、条件(7)の下限を下回ると、0次回折光の回折効率が低くなりすぎる(例えば20%を切る)ため、光量不足により、遠方視(もしくは近方視)が難しくなる。条件(7)の上限を上回ると、1次回折光の回折効率が低くなりすぎる(例えば20%を切る)ため、光量不足により、近方視(もしくは遠方視)が難しくなる。条件(7)を満足する場合は、遠方、近方とも明瞭視することができる。   Also in the multifocal ophthalmic lens 1 of the modified example, in order to perform far vision and near vision, the addition power for adding the difference between the addition power for the near vision and the far vision using the first diffraction order is added. It is necessary to design so that the diffraction efficiencies of the next-order diffracted light and the 0th-order diffracted light are balanced within a certain range at the e-line. However, if the lower limit of the condition (7) is not reached, the diffraction efficiency of the 0th-order diffracted light becomes too low (for example, less than 20%), and thus far vision (or near vision) becomes difficult due to insufficient light quantity. If the upper limit of condition (7) is exceeded, the diffraction efficiency of the first-order diffracted light becomes too low (for example, less than 20%), and near vision (or far vision) becomes difficult due to insufficient light quantity. When the condition (7) is satisfied, it is possible to clearly see both far and near.

変形例の多焦点眼用レンズ1は、更に、周期構造において隣り合う二つの周期のうち、光軸から遠い側の周期を外側周期と定義し、光軸に近い側の周期を内側周期と定義した場合に、外側周期が内側周期よりも幅広となる構造を少なくとも1つ有するように構成されている。   In the multifocal ophthalmic lens 1 according to the modified example, of two periods adjacent to each other in the periodic structure, a period far from the optical axis is defined as an outer period, and a period closer to the optical axis is defined as an inner period. In this case, at least one structure in which the outer period is wider than the inner period is configured.

このように、外側の周期(凹凸の形成間隔)の方が広い構成を付与することにより、近用に配分されていた回折パワーが弱くなり、今まで近方視側集光点に集光していた光の一部が遠方視側集光点と近方視側集光点との間の中間位置にも集光するようになる。そのため、患者は、中間位置も明瞭視できるようになる。また、周期が広がることに伴い、凹凸形状の総数が減少するため、フレアの発生も少なくなる。このように、変形例の多焦点眼用レンズ1によれば、瞳孔径が小さくなるような明るい場所でも明瞭な遠方視及び近方視が担保されるとともに、遠方と近方との中間位置の視界も良好で、かつフレアの発生に伴う結像性能の劣化も抑えられる。   In this way, by providing a structure with a wider outer period (irregularity formation interval), the diffraction power that has been distributed for near use becomes weaker, and the light is focused on the near vision side condensing point until now. Part of the light that has been collected also converges at an intermediate position between the far vision side condensing point and the near vision side condensing point. Therefore, the patient can clearly see the intermediate position. In addition, as the period increases, the total number of concave and convex shapes decreases, and flare is reduced. As described above, according to the multifocal ophthalmic lens 1 of the modified example, clear distance vision and near vision can be ensured even in a bright place where the pupil diameter is small, and an intermediate position between the distance and the near distance is secured. The field of view is good, and the deterioration of imaging performance due to the occurrence of flare can be suppressed.

また、本実施形態の多焦点眼用レンズ1は、e線の光束を入射光束径2.0mm(例えば明るい場所に居る患者の瞳孔径に相当)で入射させた際に輪帯構造で回折効率が最大となる光の収束位置と、回折効率が2番目に高い光の収束位置(すなわち遠方視側集光位置と近方視側集光位置)から求められる加入度数の絶対値をL(単位:Dptr)と定義した場合に、次の条件(9)
1.0<L<5.0・・・(9)
を満たす構成としてもよい。
In addition, the multifocal ophthalmic lens 1 of the present embodiment has a diffraction efficiency with an annular structure when an e-ray light beam is incident with an incident light beam diameter of 2.0 mm (e.g., corresponding to the pupil diameter of a patient in a bright place). L is the absolute value of the addition power obtained from the convergence position of the light that maximizes the light and the convergence position of the light having the second highest diffraction efficiency (that is, the far vision side focusing position and the near vision side focusing position). : Dptr), the following condition (9)
1.0 <L <5.0 (9)
It is good also as composition which satisfies.

条件(9)の下限を下回ると、十分な近用度数が得られないため、近方視することができない。また、条件(9)の上限を上回ると、近用度数が高すぎて、却って眼精疲労を引き起こす虞がある。   If the lower limit of the condition (9) is not reached, a sufficient near vision power cannot be obtained, so near vision cannot be achieved. On the other hand, if the upper limit of the condition (9) is exceeded, the near vision power is too high, and there is a possibility of causing eye strain on the contrary.

また、本実施形態の多焦点眼用レンズ1は、輪帯構造の最も外側の最終輪帯とベースカーブ形状との接続位置の瞳高さ(輪帯構造の終了位置)をhmaxと定義した場合に、次の条件(10)
1.2<hmax<4.0・・・(10)
を満たす構成としてもよい。
Further, in the multifocal ophthalmic lens 1 of the present embodiment, the pupil height (end position of the annular zone structure) of the connection position between the outermost final annular zone of the annular zone structure and the base curve shape is defined as hmax. In the following condition (10)
1.2 <hmax <4.0 (10)
It is good also as composition which satisfies.

条件(10)の下限を下回ると、輪帯構造全体の径が小さすぎるため、結果的に度数変化が急激になる。そのため、近方及び中間位置の光量が大幅に不足し、十分な被写界深度が得られない。また、条件(10)の上限を上回ると、輪帯構造全体の径が大きすぎるため、度数変化が緩やかになりすぎる。この場合、中間位置の光量が大幅に不足し、十分な被写界深度が得られない。特に、瞳孔径を大きく開けない高齢者にとっては、中間位置の光量がより一層不足する。条件(10)を満足する場合は、遠方、中間、近方ともに明瞭視でき、十分な被写界深度が得られる。   If the lower limit of the condition (10) is not reached, the diameter of the entire ring zone structure is too small, and as a result, the frequency change becomes abrupt. For this reason, the amount of light at the near and intermediate positions is significantly insufficient, and a sufficient depth of field cannot be obtained. If the upper limit of the condition (10) is exceeded, the diameter of the entire ring zone structure is too large, and the frequency change becomes too gradual. In this case, the amount of light at the intermediate position is greatly insufficient, and a sufficient depth of field cannot be obtained. In particular, the amount of light at the intermediate position is further insufficient for elderly people who cannot open a large pupil diameter. When the condition (10) is satisfied, it is possible to clearly see far, middle and near, and a sufficient depth of field can be obtained.

次に、これまで説明した多焦点眼用レンズ1の具体的数値実施例を9例説明する。本発明の実施例1〜7の多焦点眼用レンズ1は、ブレーズ型回折構造を有するタイプであり、本実施例8、9の多焦点眼用レンズ1は、周期構造型の輪帯構造を有するタイプである。
また、本実施例5、6の多焦点眼用レンズ1は、IOLであり、それ以外の実施例の多焦点眼用レンズ1は、コンタクトレンズである。本実施例1〜4、8、9の多焦点眼用レンズ1の概略的なレンズ断面図は、図1(a)を援用する。本実施例5、6の多焦点眼用レンズ1については図1(b)を援用する。本実施例7の多焦点眼用レンズ1については図15(a)を援用する。表1に、本実施例1〜9の具体的数値構成を示す。なお、表1中、「切替位置」は、近用度数から中間度数への変化が始まる瞳高さ(単位:mm)を示す。また、表1中、第一面ベースカーブ(単位:mm)は、物体側の面のベースカーブを示し、第二面ベースカーブ(単位:mm)は、像側の面のベースカーブを示す。中心厚(単位:mm)は、光軸上における多焦点眼用レンズ1の厚みを示す。
Next, nine specific numerical examples of the multifocal ophthalmic lens 1 described so far will be described. The multifocal ophthalmic lenses 1 of Examples 1 to 7 of the present invention are of a type having a blazed diffractive structure, and the multifocal ophthalmic lenses 1 of Examples 8 and 9 have a periodic structure type annular zone structure. It is a type that has.
In addition, the multifocal ophthalmic lens 1 of Examples 5 and 6 is an IOL, and the multifocal ophthalmic lens 1 of other examples is a contact lens. FIG. 1A is used as a schematic lens cross-sectional view of the multifocal ophthalmic lens 1 of Examples 1-4, 8, and 9. For the multifocal ophthalmic lens 1 of Examples 5 and 6, FIG. FIG. 15A is referred to for the multifocal ophthalmic lens 1 of the seventh embodiment. Table 1 shows specific numerical configurations of Examples 1 to 9. In Table 1, “switching position” indicates the pupil height (unit: mm) at which the change from the near power to the intermediate power starts. In Table 1, the first surface base curve (unit: mm) represents the base curve of the object side surface, and the second surface base curve (unit: mm) represents the base curve of the image side surface. The center thickness (unit: mm) indicates the thickness of the multifocal ophthalmic lens 1 on the optical axis.

本実施形態では、図1(a)と図1(b)、図15(a)と図15(b)は、夫々、条件(1)が同等となるように段差高さDを決定し形状を設計する場合、同等の技術的効果を有するコンタクトレンズとIOLの相互変換が可能である。すなわち、同等の技術的効果を有するコンタクトレンズとIOLを製造することができる。   In the present embodiment, FIG. 1A and FIG. 1B, FIG. 15A and FIG. 15B are determined by determining the step height D so that the condition (1) is equivalent. When designing a contact lens, it is possible to interconvert contact lenses and IOLs having equivalent technical effects. That is, contact lenses and IOLs having equivalent technical effects can be manufactured.

Figure 2013101323
Figure 2013101323

図4(a)〜図4(d)は、本実施例1の多焦点眼用レンズ1の形状や光学性能を示す図である。図4(a)は、ベースカーブに対して付加された輪帯構造を示す図であり、輪帯構造形成面からベースカーブ成分を差し引いて表現した断面構造を示す。図4(a)中、縦軸は、ベースカーブに対する形状偏差(形状誤差、単位:μm)を示し、横軸は、入射光束半径(瞳高さ、単位:mm)を示す。図4(b)は、入射光束半径と度数との関係を示す図である。図4(b)中、縦軸は、度数(単位:Dptr)を示し、横軸は、入射光束半径(瞳高さ、単位:mm)を示す。図4(c)、図4(d)は、夫々、e線の光束を入射光束半径2.0mm、4.0mmで入射させた際の、スポット強度と度数(単位:Dptr)との関係を示す図である。図4(c)及び図4(d)に示す度数は、輪帯構造によって付与される度数であり、ベースカーブによって付与される度数を差し引いたものである。図4(c)及び図4(d)中、縦軸は、スポット強度を示し、横軸は、度数(単位:Dptr)を示す。本実施例1の多焦点眼用レンズ1は、図4(c)及び図4(d)に示されるように、遠用度数、近用度数が、夫々、0Dptr、2.5Dptrであり、加入度数Lが2.5Dptrである。   FIG. 4A to FIG. 4D are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of the first embodiment. FIG. 4A is a diagram showing an annular structure added to the base curve, and shows a cross-sectional structure expressed by subtracting the base curve component from the annular structure forming surface. In FIG. 4A, the vertical axis indicates the shape deviation (shape error, unit: μm) with respect to the base curve, and the horizontal axis indicates the incident light beam radius (pupil height, unit: mm). FIG. 4B is a diagram showing the relationship between the incident light beam radius and the power. In FIG. 4B, the vertical axis indicates the frequency (unit: Dptr), and the horizontal axis indicates the incident light beam radius (pupil height, unit: mm). 4 (c) and 4 (d) show the relationship between the spot intensity and the frequency (unit: Dptr) when the e-line light beam is incident at an incident light beam radius of 2.0 mm and 4.0 mm, respectively. FIG. The frequencies shown in FIG. 4C and FIG. 4D are frequencies given by the annular structure, and are obtained by subtracting the frequencies given by the base curve. 4 (c) and 4 (d), the vertical axis represents the spot intensity, and the horizontal axis represents the frequency (unit: Dptr). As shown in FIGS. 4C and 4D, the multifocal ophthalmic lens 1 of Example 1 has a distance power and a near power of 0 Dptr and 2.5 Dptr, respectively. The frequency L is 2.5 Dptr.

図5(a)〜図5(d)は、夫々、本実施例2の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。本実施例2の多焦点眼用レンズ1は、図5(c)及び図5(d)に示されるように、遠用度数、近用度数が、夫々、0.0Dptr、3.0Dptrであり、加入度数Lが3.0Dptrである。   5 (a) to 5 (d) are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 2, respectively, and are the same as FIGS. 4 (a) to 4 (d). FIG. As shown in FIGS. 5C and 5D, the multifocal ophthalmic lens 1 of Example 2 has a distance power and a near power of 0.0 Dptr and 3.0 Dptr, respectively. The addition power L is 3.0 Dptr.

図6(a)〜図6(d)は、夫々、本実施例3の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。本実施例3の多焦点眼用レンズ1は、図6(c)及び図6(d)に示されるように、近軸位置での遠用度数、近用度数が、夫々、0.0Dptr、4.0Dptrであるが、Φ2.0での加入度数Lが2.5Dptrである。   6 (a) to 6 (d) are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 3, respectively, and are the same as FIGS. 4 (a) to 4 (d). FIG. As shown in FIGS. 6 (c) and 6 (d), the multifocal ophthalmic lens 1 of Example 3 has a distance power and a near power at the paraxial position of 0.0 Dptr, Although 4.0 Dptr, the addition power L at Φ2.0 is 2.5 Dptr.

図7(a)〜図7(d)は、夫々、本実施例4の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。本実施例4の多焦点眼用レンズ1は、図7(c)及び図7(d)に示されるように、遠用度数、近用度数が、夫々、0.0Dptr、2.0Dptrであり、加入度数Lが2.0Dptrである。ベースカーブにより付与される度数が0.5Dptrのため、最終的な形状では、遠用度数、近用度数が、夫々、0.5Dptr、2.5Dptrである。   FIGS. 7A to 7D are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 4, respectively, and are the same as FIGS. 4A to 4D. FIG. As shown in FIGS. 7C and 7D, the multifocal ophthalmic lens 1 of Example 4 has a distance diopter and a near diopter of 0.0 Dptr and 2.0 Dptr, respectively. The addition power L is 2.0 Dptr. Since the power given by the base curve is 0.5 Dptr, the distance power and the near power are 0.5 Dptr and 2.5 Dptr in the final shape, respectively.

図8(a)〜図8(d)は、夫々、本実施例5の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。本実施例5の多焦点眼用レンズ1は、図8(c)及び図8(d)に示されるように、遠用度数、近用度数が、夫々、20.3Dptr、22.3Dptrであり、加入度数Lが2.0Dptrである。   FIGS. 8A to 8D are views showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 5, respectively, and are the same as FIGS. 4A to 4D. FIG. As shown in FIGS. 8C and 8D, the multifocal ophthalmic lens 1 of Example 5 has a distance power and a near power of 20.3 Dptr and 22.3 Dptr, respectively. The addition power L is 2.0 Dptr.

図9(a)〜図9(d)は、夫々、本実施例6の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。本実施例6の多焦点眼用レンズ1は、図9(c)及び図9(d)に示されるように、遠用度数、近用度数が、夫々、20.3Dptr、23.8Dptrであり、加入度数Lが3.5Dptrである。   FIGS. 9A to 9D are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 6, respectively, and are the same as FIGS. 4A to 4D. FIG. As shown in FIG. 9C and FIG. 9D, the multifocal ophthalmic lens 1 of Example 6 has a distance power and a near power of 20.3 Dptr and 23.8 Dptr, respectively. The addition power L is 3.5 Dptr.

図10(a)〜図10(d)は、夫々、本実施例7の多焦点眼用レンズ1の形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。また、図10(e)は、本実施例7の多焦点眼用レンズ1における、入射光束半径と追加ベース度数との関係を示す図である。図10(e)中、縦軸は、追加ベース度数(単位:Dptr)を示し、横軸は、入射光束半径(瞳高さ、単位:mm)を示す。ここに示す追加ベース度数は、本実施例1〜6におけるベースカーブに対して付加される屈折力である。図10(e)に示されるように、本実施例7では、有効光束径全域に亘り、屈折力2.5Dptrが一様に付加されている。具体的には、本実施例7の多焦点眼用レンズ1は、本実施例1〜6の多焦点眼用レンズ1よりもベースカーブがきつい。本実施例7において、屈折力の高いベースカーブを適用すると、0次回折光が近方に、1次回折光が遠方に集光する。また、累進構造により遠方に集光している光が近方に変化するような累進構造になっていることにより、遠方から近方までの中間に対する回折光の利用効率が高くなる。本実施例7の多焦点眼用レンズ1は、図10(c)及び図10(d)に示されるように、遠用度数、近用度数が、夫々、0.0Dptr、2.5Dptrであり、加入度数Lが−2.5Dptrである。   10 (a) to 10 (d) are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 7, respectively, and are the same as FIGS. 4 (a) to 4 (d). FIG. FIG. 10E is a diagram showing the relationship between the incident light beam radius and the additional base power in the multifocal ophthalmic lens 1 of the seventh embodiment. In FIG. 10E, the vertical axis indicates the additional base power (unit: Dptr), and the horizontal axis indicates the incident light beam radius (pupil height, unit: mm). The additional base power shown here is a refractive power added to the base curves in the first to sixth embodiments. As shown in FIG. 10E, in Example 7, a refractive power of 2.5 Dptr is uniformly added over the entire effective beam diameter. Specifically, the multifocal ophthalmic lens 1 of Example 7 has a tighter base curve than the multifocal ophthalmic lens 1 of Examples 1 to 6. In the seventh embodiment, when a base curve having a high refractive power is applied, the 0th-order diffracted light is converged near and the 1st-order diffracted light is condensed far away. Further, since the progressive structure has a progressive structure in which the light collected in the distance changes to the near distance, the utilization efficiency of the diffracted light with respect to the middle from the far distance to the near distance becomes high. As shown in FIGS. 10C and 10D, the multifocal ophthalmic lens 1 of Example 7 has a distance diopter and a near diopter of 0.0 Dptr and 2.5 Dptr, respectively. The addition power L is -2.5 Dptr.

図11(a)〜図11(e)は、本実施例8の多焦点眼用レンズ1の形状や光学性能を示す図である。図11(a)は、ベースカーブに対して付加された周期構造を示す図であり、周期構造形成面からベースカーブ成分を差し引いて表現した断面構造を示す。図11(a)中、縦軸は、ベースカーブに対する形状偏差(形状誤差、単位:μm)を示し、横軸は、入射光束半径(瞳高さ、単位:mm)を示す。図11(b)は、入射光束半径と度数との関係を示す図である。図11(b)中、縦軸は、度数(単位:Dptr)を示し、横軸は、入射光束半径(瞳高さ、単位:mm)を示す。また、図11(b)中、実線は、1次回折光の度数変化を示し、破線は、−1次回折光の度数変化を示す。また、0次光は、加入度数0.0Dptrで一定となっている。図11(c)、図11(d)は、夫々、図4(c)、図4(d)と同様の図である。図11(e)は、図10(e)と同様の図である。図11(e)に示されるように、本実施例8では、入射光束半径1.0mmまで屈折力1.5Dptrが一様に付加され、それ以降、付加される屈折力が減少し、入射光束半径2.5mmにて0Dptrとなる。本実施例8の多焦点眼用レンズ1は、図11(c)及び図11(d)に示されるように、遠用度数、中間度数、近用度数が、夫々、−0.95Dptr、0.0Dptr、0.95Dptrであり、加入度数Lが1.9Dptrである。ベースカーブにより付与される度数が図11(e)となるため、最終的な形状では遠用度数、中間度数、近用度数が、夫々、0.0Dptr、1.5Dptr、3.0Dptrである。   FIG. 11A to FIG. 11E are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of the eighth embodiment. FIG. 11A is a diagram showing a periodic structure added to the base curve, and shows a cross-sectional structure expressed by subtracting the base curve component from the periodic structure forming surface. In FIG. 11A, the vertical axis represents the shape deviation (shape error, unit: μm) with respect to the base curve, and the horizontal axis represents the incident light beam radius (pupil height, unit: mm). FIG. 11B is a diagram showing the relationship between the incident light beam radius and the power. In FIG. 11B, the vertical axis indicates the frequency (unit: Dptr), and the horizontal axis indicates the incident light beam radius (pupil height, unit: mm). In FIG. 11B, the solid line indicates the power change of the first-order diffracted light, and the broken line indicates the power change of the −1st-order diffracted light. The 0th-order light is constant at an addition power of 0.0 Dptr. FIGS. 11C and 11D are views similar to FIGS. 4C and 4D, respectively. FIG. 11 (e) is the same diagram as FIG. 10 (e). As shown in FIG. 11E, in Example 8, a refractive power of 1.5 Dptr is uniformly added up to an incident light beam radius of 1.0 mm, and thereafter, the added refractive power is reduced and the incident light beam is reduced. It becomes 0 Dptr at a radius of 2.5 mm. As shown in FIGS. 11C and 11D, the multifocal ophthalmic lens 1 of Example 8 has a distance power, an intermediate power, and a near power of −0.95 Dptr, 0, respectively. 0.0 Dptr and 0.95 Dptr, and the addition power L is 1.9 Dptr. Since the power given by the base curve is shown in FIG. 11E, the distance power, the intermediate power, and the near power are 0.0 Dptr, 1.5 Dptr, and 3.0 Dptr in the final shape, respectively.

図12(a)〜図12(e)は、夫々、本実施例9の多焦点眼用レンズ1の形状や光学性能を示す図であり、図11(a)〜図11(e)と同様の図である。本実施例9の多焦点眼用レンズ1は、図12(c)及び図12(d)に示されるように、遠用度数、中間度数、近用度数が、夫々、−0.95Dptr、0.0Dptr、0.95Dptrであり、加入度数Lが1.9Dptrである。ベースカーブにより付与される度数が図12(e)となるため、最終的な形状では遠用度数、中間度数、近用度数が、夫々、0.0Dptr、1.5Dptr、3.0Dptrである。   12 (a) to 12 (e) are diagrams showing the shape and optical performance of the multifocal ophthalmic lens 1 of Example 9, respectively, and are the same as FIGS. 11 (a) to 11 (e). FIG. As shown in FIGS. 12 (c) and 12 (d), the multifocal ophthalmic lens 1 of Example 9 has a distance power, an intermediate power, and a near power of −0.95 Dptr, 0, respectively. 0.0 Dptr and 0.95 Dptr, and the addition power L is 1.9 Dptr. Since the power given by the base curve is as shown in FIG. 12 (e), the distance power, the intermediate power, and the near power are 0.0 Dptr, 1.5 Dptr, and 3.0 Dptr in the final shape, respectively.

(比較例1及び2)
比較例1の多焦点眼用レンズは、ブレーズ型回折構造を有するタイプであり、本実施例1の多焦点眼用レンズ1と同じ加入度数2.5Dptrを持つ。また、比較例2の多焦点眼用レンズは、周期構造型回折構造を有するタイプである。表2に、比較例1及び2の具体的数値構成を示す。
(Comparative Examples 1 and 2)
The multifocal ophthalmic lens of Comparative Example 1 is a type having a blazed diffractive structure, and has the same addition power of 2.5 Dptr as the multifocal ophthalmic lens 1 of Example 1. The multifocal ophthalmic lens of Comparative Example 2 is a type having a periodic structure type diffractive structure. Table 2 shows specific numerical configurations of Comparative Examples 1 and 2.

Figure 2013101323
Figure 2013101323

図13(a)〜図13(d)は、夫々、比較例1の多焦点眼用レンズの形状や光学性能を示す図であり、図4(a)〜図4(d)と同様の図である。比較例1の多焦点眼用レンズは、図13(c)及び図13(d)に示されるように、遠用度数、近用度数が、夫々、0Dptr、2.5Dptrであり、加入度数Lが2.5Dptrである。また、図14(a)〜図14(e)は、夫々、比較例2の多焦点眼用レンズの形状や光学性能を示す図であり、図11(a)〜図11(e)と同様の図である。比較例2の多焦点眼用レンズは、遠用度数、中間度数、近用度数が、夫々、−1.5Dptr、0.0Dptr、1.5Dptrであり、加入度数Lが3.0Dptrである。ベースカーブにより付与される度数が図14(e)となるため、最終的な形状では遠用度数、中間度数、近用度数が、夫々、0.0Dptr、1.5Dptr、3.0Dptrである。   13 (a) to 13 (d) are diagrams showing the shape and optical performance of the multifocal ophthalmic lens of Comparative Example 1, respectively, and are the same views as FIGS. 4 (a) to 4 (d). It is. As shown in FIGS. 13 (c) and 13 (d), the multifocal ophthalmic lens of Comparative Example 1 has a distance power and a near power of 0 Dptr and 2.5 Dptr, respectively, and an addition power L Is 2.5 Dptr. FIGS. 14A to 14E are diagrams showing the shape and optical performance of the multifocal ophthalmic lens of Comparative Example 2, respectively, and are the same as FIGS. 11A to 11E. FIG. The multifocal ophthalmic lens of Comparative Example 2 has a distance power, an intermediate power, and a near power of −1.5 Dptr, 0.0 Dptr, and 1.5 Dptr, respectively, and an addition power L of 3.0 Dptr. Since the power given by the base curve is as shown in FIG. 14E, the distance power, the intermediate power, and the near power are 0.0 Dptr, 1.5 Dptr, and 3.0 Dptr in the final shape, respectively.

(比較検討)
比較例1の多焦点眼用レンズは、外側の輪帯の方が段差同士の間隔が狭くなるように設計されている。また、条件(2)〜(4)の何れも満たさない。そのため、図13(b)〜図13(d)に示されるように、近用度数と遠用度数の間への度数変化がない(すなわち中間度数がない)。また、外側の輪帯ほど段差同士の間隔が狭くなる構成のため、段差総数が必然的に増加する。このように、比較例1ではフレアの発生因子である段差数が多いため、フレアの発生に伴う結像性能の劣化が大きい。比較例2の多焦点眼用レンズも同様である。すなわち、比較例2の多焦点眼用レンズは、外側の周期(凹凸の形成間隔)の方が狭くなるように設計されている。そのため、図14(b)〜図14(d)に示されるように、近用度数と遠用度数の間への度数変化、すなわち中間度数がない。また、段差数が多いため、フレアの発生に伴う結像性能の劣化が大きい。
(Comparison)
The multifocal ophthalmic lens of Comparative Example 1 is designed so that the outer ring zone has a narrower gap between steps. Further, none of the conditions (2) to (4) is satisfied. Therefore, as shown in FIGS. 13B to 13D, there is no frequency change between the near power and the far power (that is, there is no intermediate power). Moreover, since the space | interval of level | step differences becomes narrow as an outer ring zone, the total number of level | steps inevitably increases. As described above, in Comparative Example 1, since the number of steps as a flare generation factor is large, the degradation of imaging performance due to the occurrence of flare is large. The same applies to the multifocal ophthalmic lens of Comparative Example 2. In other words, the multifocal ophthalmic lens of Comparative Example 2 is designed so that the outer period (the unevenness formation interval) is narrower. Therefore, as shown in FIGS. 14B to 14D, there is no frequency change between the near power and the far power, that is, there is no intermediate power. In addition, since the number of steps is large, the degradation of imaging performance due to the occurrence of flare is large.

これに対し、本実施例1〜7の多焦点眼用レンズ1は、外側の輪帯の方が段差同士の間隔が広い構成を有している。別の側面では、条件(2)〜(4)を満たしている。これにより、図4〜図10の各図の(b)〜(d)に示されるように、遠用度数と近用度数との間の中間度数、すなわち度数が変化する領域が存在するため、当該領域に入射した光が中間位置の解像に寄与する。従って、遠方、中間、近方ともに明瞭視でき、十分な被写界深度が得られる。また、段差同士の間隔を広げて段差総数を削減したことにより、段差構造に起因するフレアの発生が有効に抑えられており、結像性能の劣化が小さい。例えば、本実施例1の多焦点眼用レンズ1は、比較例1の多焦点眼用レンズと加入度数が同じであるにも拘わらず、段差総数が少ない(実施例1:9段、比較例1:14段)。また、入射光束半径1.5mm〜2.43mmの部分の光が加入度数の間の位置の解像に寄与するため、十分な被写界深度が達成される。また、本実施例8及び9の多焦点眼用レンズ1は、外側の周期の方が幅広である。そのため、比較例2と異なり、度数が変化する領域が存在することとなり、当該領域に入射した光が中間位置の解像に寄与する。従って、遠方、中間、近方ともに明瞭視でき、十分な被写界深度が得られる。   On the other hand, the multifocal ophthalmic lenses 1 of Examples 1 to 7 have a configuration in which the outer ring zone has a wider interval between steps. In another aspect, the conditions (2) to (4) are satisfied. As a result, as shown in (b) to (d) of each of FIGS. 4 to 10, there is a region where the intermediate power between the distance power and the near power, that is, the frequency changes, Light incident on the region contributes to the resolution of the intermediate position. Therefore, it is possible to clearly see far, middle and near, and a sufficient depth of field can be obtained. In addition, since the total number of steps is reduced by increasing the interval between steps, the occurrence of flare due to the step structure is effectively suppressed, and the degradation of imaging performance is small. For example, although the multifocal ophthalmic lens 1 of Example 1 has the same addition power as the multifocal ophthalmic lens of Comparative Example 1, the total number of steps is small (Example 1: 9 steps, Comparative Example) 1:14). Moreover, since the light in the portion with the incident light beam radius of 1.5 mm to 2.43 mm contributes to the resolution of the position between the addition powers, a sufficient depth of field is achieved. In addition, in the multifocal ophthalmic lens 1 of Examples 8 and 9, the outer period is wider. Therefore, unlike Comparative Example 2, there is a region where the frequency changes, and light incident on the region contributes to the resolution of the intermediate position. Therefore, it is possible to clearly see far, middle and near, and a sufficient depth of field can be obtained.

以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。   The above is the description of the embodiment of the present invention. The present invention is not limited to the above-described configuration, and various modifications can be made within the scope of the technical idea of the present invention.

1 多焦点眼用レンズ
1x コンタクトレンズ
1y IOL
Rx1、Ry1 第一面
Rx2、Ry2 第二面
1 Multifocal ophthalmic lens 1x Contact lens 1y IOL
Rx1, Ry1 First surface Rx2, Ry2 Second surface

Claims (11)

少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う該屈折面の間に光軸に略水平な方向の段差が形成された多焦点眼用レンズであって、
前記輪帯構造は、ベースカーブ形状に対して付加されたものであり、
前記段差の高さをD(単位:μm)と定義し、e線における前記多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(1)
0.190<|D×(n−n)|<0.370・・・(1)
を満たすとともに、
前記隣り合う二つの屈折面のうち、前記光軸から遠い側の屈折面を外側屈折面と定義し、該光軸に近い側の屈折面を内側屈折面と定義した場合に、該外側屈折面の曲率半径が前記ベースカーブ形状に近付くように、該内側屈折面の曲率半径と該ベースカーブ形状の曲率半径との間の値になっている構造を少なくとも1つ有することを特徴とする、多焦点眼用レンズ。
This is a multifocal ophthalmic lens having an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and a step in a substantially horizontal direction is formed on the optical axis between the adjacent refracting surfaces. And
The ring zone structure is added to the base curve shape,
When the height of the step is defined as D (unit: μm), the refractive index of the multifocal ophthalmic lens at the e-line is defined as n 1, and the refractive index of water at the e-line is defined as n 0 The following condition (1)
0.190 <| D × (n 1 −n 0 ) | <0.370 (1)
While satisfying
Of the two adjacent refracting surfaces, a refracting surface far from the optical axis is defined as an outer refracting surface, and a refracting surface closer to the optical axis is defined as an inner refracting surface. Characterized by having at least one structure having a value between the radius of curvature of the inner refractive surface and the radius of curvature of the base curve shape so that the radius of curvature of the base curve shape approaches the base curve shape. Focal ophthalmic lens.
少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う該屈折面の間に光軸に略水平な方向の段差が形成された多焦点眼用レンズであって、
前記輪帯構造は、ベースカーブ形状に対して付加されたものであり、
前記段差の高さをD(単位:μm)と定義し、e線における前記多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義するとともに、
ベースカーブ形状に対して付加されたフレネルレンズ状の段差による機能を、光軸からの高さh(単位:mm)における光路長付加量の形で表現した関数φ(h)に置き換え、二次、四次の光路差関数係数をそれぞれP、Pと定義し、該段差でe線における屈折率を想定した際に1波長分の光路長差を与えるブレーズ化波長をλ(単位:μm)と定義し、該輪帯の光軸上での位相を設定する定数項をP(−0.5≦P<0.5の範囲で任意の数をとる。)と定義し、
ROUND(X、Y)を、Xを小数点第Y位で四捨五入した値を与える関数としたとき、
φ(h)=(P+P・h+P・h−ROUND(P+P・h+P・h、1))×λ
λ=|D×(n−n)|
を満たすとともに、
次の条件(2)
−0.40<P/P<−0.01・・・(2)
を満たすことを特徴とする、多焦点眼用レンズ。
This is a multifocal ophthalmic lens having an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and a step in a substantially horizontal direction is formed on the optical axis between the adjacent refracting surfaces. And
The ring zone structure is added to the base curve shape,
The height of the step D (unit: [mu] m) is defined as, with the refractive index of the multifocal ophthalmic lens in the e-line is defined as n 1, defines the refractive index of water at the e-line and n 0,
The function due to the step of the Fresnel lens shape added to the base curve shape is replaced with a function φ (h) expressed in the form of an optical path length addition amount at a height h (unit: mm) from the optical axis. The fourth-order optical path difference function coefficients are defined as P 2 and P 4 , respectively, and the blazed wavelength that gives the optical path length difference for one wavelength when assuming the refractive index at the e-line at the step is λ B (unit: μm), and a constant term for setting the phase on the optical axis of the annular zone is defined as P 0 (takes an arbitrary number in the range of −0.5 ≦ P 0 <0.5),
When ROUND (X, Y) is a function that gives a value obtained by rounding X to the nearest Y decimal place,
φ (h) = (P 0 + P 2 · h 2 + P 4 · h 4 −ROUND (P 0 + P 2 · h 2 + P 4 · h 4 , 1)) × λ B
λ B = | D × (n 1 −n 0 ) |
While satisfying
Next condition (2)
−0.40 <P 4 / P 2 <−0.01 (2)
Multifocal ophthalmic lens characterized by satisfying
少なくとも一面が同心円状の複数の屈折面に分割された輪帯構造を有し、互いに隣り合う該屈折面の間に光軸に略水平な方向の段差が形成された多焦点眼用レンズであって、
前記輪帯構造は、ベースカーブ形状に対して付与されたものであり、
前記輪帯構造のうち、光軸に最も近い第一輪帯段差と、該第一輪帯段差の1つ外側の第二輪帯段差との、該光軸と直交する方向における配置間隔を(a−a)と定義し、該輪帯構造の最も外側の最終段差と、該最終段差の1つ内側の第一内側段差との、該光軸と直交する方向における配置間隔を(alast−alast-1)と定義し、該第一内側段差と、該第一内側段差の1つ内側の第二内側段差との、該光軸と直交する方向における配置間隔を(alast-1−alast-2)と定義した場合に、次の条件(3)及び(4)
0.25<(alast−alast-1)/(a−a)<2.00・・・(3)
1.00<(alast−alast-1)/(alast-1−alast-2)<3.00・・・(4)
を同時に満たすことを特徴とする、多焦点眼用レンズ。
This is a multifocal ophthalmic lens having an annular structure in which at least one surface is divided into a plurality of concentric refracting surfaces, and a step in a substantially horizontal direction is formed on the optical axis between the adjacent refracting surfaces. And
The ring zone structure is given to the base curve shape,
In the annular zone structure, an arrangement interval between a first annular zone step closest to the optical axis and a second annular zone step outside the first annular zone step in a direction perpendicular to the optical axis ( a 2 −a 1 ), and an arrangement interval in the direction perpendicular to the optical axis between the outermost final step of the annular structure and the first inner step inside one of the final steps is (a last −a last−1 ), and the arrangement interval between the first inner step and the second inner step inside one of the first inner steps in the direction perpendicular to the optical axis is (a last- 1 -a last-2 ), the following conditions (3) and (4)
0.25 <(a last −a last−1 ) / (a 2 −a 1 ) <2.00 (3)
1.00 <(a last -a last-1 ) / (a last-1 -a last-2 ) <3.00 (4)
A multifocal ophthalmic lens characterized by satisfying
前記ベースカーブ形状の曲率半径をRbase(単位:mm)と定義し、前記輪帯構造のうちの光軸を含む屈折面の曲率半径をR1(単位:mm)と定義したときに、次の条件(5)
|R1−Rbase|>|Ra−Rbase|・・・(5)
を満たす曲率半径Ra(単位:mm)を有する第一外側屈折面が前記光軸を含む屈折面の外側にあり、次の条件(6)
|Ra−Rbase|>|Rb−Rbase|・・・(6)
を満たす曲率半径Rb(単位:mm)を有する第二外側屈折面が前記第一外側屈折面の外側にあることを特徴とする、請求項1から請求項3の何れか一項に記載の多焦点眼用レンズ。
When the radius of curvature of the base curve shape is defined as Rbase (unit: mm) and the radius of curvature of the refractive surface including the optical axis in the annular structure is defined as R1 (unit: mm), the following conditions are satisfied. (5)
| R1-Rbase |> | Ra-Rbase | (5)
A first outer refracting surface having a radius of curvature Ra (unit: mm) satisfying the above condition is outside the refracting surface including the optical axis, and the following condition (6)
| Ra-Rbase |> | Rb-Rbase | (6)
The second outer refracting surface having a radius of curvature Rb (unit: mm) satisfying the above condition is outside the first outer refracting surface. 4. Focal ophthalmic lens.
前記第二外側屈折面は、前記輪帯構造のうち最も外側の屈折面であり、前記第一外側屈折面は、該第二外側屈折面の内側に隣接していることを特徴とする、請求項4に記載の多焦点眼用レンズ。   The second outer refracting surface is an outermost refracting surface of the annular structure, and the first outer refracting surface is adjacent to the inner side of the second outer refracting surface. Item 5. The multifocal ophthalmic lens according to Item 4. 前記段差の高さをD(単位:μm)と定義し、e線における前記多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(1)
0.190<|D×(n−n)|<0.370・・・(1)
を満たすことを特徴とする、請求項2又は請求項3を引用する請求項4又は請求項5に記載の多焦点眼用レンズ。
When the height of the step is defined as D (unit: μm), the refractive index of the multifocal ophthalmic lens at the e-line is defined as n 1, and the refractive index of water at the e-line is defined as n 0 The following condition (1)
0.190 <| D × (n 1 −n 0 ) | <0.370 (1)
The multifocal ophthalmic lens according to claim 4 or 5 quoting claim 2 or claim 3, wherein:
前記輪帯構造の最も外側の最終輪帯は、該最終輪帯の外側に位置するベースカーブ形状に滑らかに接続されていることを特徴とする、請求項1から請求項6の何れか一項に記載の多焦点眼用レンズ。   The outermost final annular zone of the annular zone structure is smoothly connected to a base curve shape located outside the final annular zone, according to any one of claims 1 to 6. The multifocal ophthalmic lens described in 1. 少なくとも一面に同心円状の周期構造が形成された多焦点眼用レンズであって、
前記周期構造は、ベースカーブ形状に対して付加された、周期が異なる複数の凹凸形状が前記多焦点眼用レンズの半径方向に繰り返し配置された輪帯構造であり、
前記周期構造の光軸方向の最小厚みと最大厚みとの差をDm(単位:μm)と定義し、e線における前記多焦点眼用レンズの屈折率をnと定義し、e線における水の屈折率をnと定義した場合に、次の条件(7)
0.190<|Dm×(n−n)|<0.370・・・(7)
を満たすとともに、
互いに隣り合う二つの周期のうち、前記光軸から遠い側の周期を外側周期と定義し、該光軸に近い側の周期を内側周期と定義した場合に、該外側周期が該内側周期よりも幅広となる構造を少なくとも1つ有することを特徴とする、多焦点眼用レンズ。
A multifocal ophthalmic lens having a concentric periodic structure formed on at least one surface,
The periodic structure is an annular structure in which a plurality of uneven shapes with different periods added to the base curve shape are repeatedly arranged in the radial direction of the multifocal ophthalmic lens,
The difference to Dm (unit: [mu] m) between the minimum thickness and the maximum thickness of the optical axis direction of the periodic structure is defined to be the refractive index of the multifocal ophthalmic lens in the e-line is defined as n 1, the water in the e-line When the refractive index of n is defined as n 0 , the following condition (7)
0.190 <| Dm × (n 1 −n 0 ) | <0.370 (7)
While satisfying
Of the two adjacent cycles, when the cycle far from the optical axis is defined as the outer cycle and the cycle closer to the optical axis is defined as the inner cycle, the outer cycle is greater than the inner cycle. A multifocal ophthalmic lens, characterized by having at least one wide structure.
屈折率nの樹脂を成形した樹脂成形品であり、
前記屈折率nは、次の条件(8)
1.38<n1<1.75・・・(8)
を満たすことを特徴とする、請求項1から請求項8の何れか一項に記載の多焦点眼用レンズ。
A resin molded product obtained by molding a resin having a refractive index of n 1
The refractive index n 1 satisfies the following condition (8)
1.38 <n1 <1.75 (8)
The multifocal ophthalmic lens according to claim 1, wherein the multifocal ophthalmic lens according to claim 1 is satisfied.
e線の光束を入射光束径2.0mmで入射させた際に前記輪帯構造で回折効率が最大となる光の収束位置と、回折効率が2番目に高い光の収束位置から求められる加入度数の絶対値をL(単位:Dptr)と定義した場合に、次の条件(9)
1.0<L<5.0・・・(9)
を満たすことを特徴とする、請求項1から請求項9の何れか一項に記載の多焦点眼用レンズ。
Add power obtained from the convergence position of the light with the highest diffraction efficiency and the convergence position of the light with the second highest diffraction efficiency when the e-line light beam is incident at an incident light beam diameter of 2.0 mm. When the absolute value of L is defined as L (unit: Dptr), the following condition (9)
1.0 <L <5.0 (9)
The multifocal ophthalmic lens according to claim 1, wherein the multifocal ophthalmic lens according to claim 1 is satisfied.
前記輪帯構造の最も外側の最終輪帯とベースカーブ形状との接続位置の瞳高さをhmaxと定義した場合に、次の条件(10)
1.2<hmax<4.0・・・(10)
を満たすことを特徴とする、請求項1から請求項10の何れか一項に記載の多焦点眼用レンズ。
When the pupil height at the connection position between the outermost final annular zone of the annular zone structure and the base curve shape is defined as hmax, the following condition (10)
1.2 <hmax <4.0 (10)
The multifocal ophthalmic lens according to claim 1, wherein the multifocal ophthalmic lens according to claim 1 is satisfied.
JP2012223454A 2011-10-21 2012-10-05 Multifocal ocular lens Pending JP2013101323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223454A JP2013101323A (en) 2011-10-21 2012-10-05 Multifocal ocular lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011231478 2011-10-21
JP2011231478 2011-10-21
JP2012223454A JP2013101323A (en) 2011-10-21 2012-10-05 Multifocal ocular lens

Publications (1)

Publication Number Publication Date
JP2013101323A true JP2013101323A (en) 2013-05-23

Family

ID=48621956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223454A Pending JP2013101323A (en) 2011-10-21 2012-10-05 Multifocal ocular lens

Country Status (1)

Country Link
JP (1) JP2013101323A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
JP2019174647A (en) * 2018-03-28 2019-10-10 伊藤光学工業株式会社 Spectacle lenses
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
CN112946792A (en) * 2021-02-07 2021-06-11 南京邮电大学 Micro lens for realizing bifocal focusing
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197815B2 (en) 2008-05-13 2019-02-05 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US11022815B2 (en) 2012-08-31 2021-06-01 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US11116624B2 (en) 2016-02-09 2021-09-14 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11573433B2 (en) 2017-06-28 2023-02-07 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11914229B2 (en) 2017-06-28 2024-02-27 Amo Groningen B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
JP2019174647A (en) * 2018-03-28 2019-10-10 伊藤光学工業株式会社 Spectacle lenses
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment
CN112946792A (en) * 2021-02-07 2021-06-11 南京邮电大学 Micro lens for realizing bifocal focusing

Similar Documents

Publication Publication Date Title
JP2013101323A (en) Multifocal ocular lens
RU2508565C2 (en) Extended depth of focus (edof) lens for increasing pseudo-accommodation using pupil dynamics
JP6491106B2 (en) Method and system for providing an intraocular lens with improved depth of field
JP7336449B2 (en) Long distance intraocular lens
KR101309604B1 (en) Pseudo-accomodative iol having diffractive zones with varying areas
US7073906B1 (en) Aspherical diffractive ophthalmic lens
KR101701551B1 (en) Intraocular lens
JP5221720B2 (en) Pseudo-tuning IOL with multiple diffraction patterns
KR101399171B1 (en) Aspheric multifocal diffractive ophthalmic lens
KR20210002505A (en) Lens element
KR20200124236A (en) Lens element
TWI557465B (en) Lens pair, lens systems, and a method for correcting presbyopia
JP2014528100A (en) Lens with extended focal range
IE73484B1 (en) Multifocal diffractive optical device
WO2012070313A1 (en) Multifocal eye lens
KR20120035182A (en) Zonal diffractive multifocal intraocular lens with central monofocal diffractive region
JP2022532966A (en) Five-focus diffractive intraocular lens
JP6500484B2 (en) Multifocal intraocular lens
CN116636955A (en) multifocal intraocular lens
US10537421B2 (en) Diffractive-refractive lens
KR102210211B1 (en) A multifocal contact lens having a plurality of refractive power distributions
CN113514962A (en) Continuous zooming contact lens
CN217767087U (en) Combined type hyperopia lens
US20240061271A1 (en) Multifocal ophthalmic lens with extended depth-of-focus
WO2023031715A1 (en) Multifocal ophthalmic lens with extended depth-of-focus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510