JP6500484B2 - Multifocal intraocular lens - Google Patents

Multifocal intraocular lens Download PDF

Info

Publication number
JP6500484B2
JP6500484B2 JP2015030871A JP2015030871A JP6500484B2 JP 6500484 B2 JP6500484 B2 JP 6500484B2 JP 2015030871 A JP2015030871 A JP 2015030871A JP 2015030871 A JP2015030871 A JP 2015030871A JP 6500484 B2 JP6500484 B2 JP 6500484B2
Authority
JP
Japan
Prior art keywords
region
diffraction
optical unit
area
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015030871A
Other languages
Japanese (ja)
Other versions
JP2016150213A (en
JP2016150213A5 (en
Inventor
将典 八谷
将典 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2015030871A priority Critical patent/JP6500484B2/en
Publication of JP2016150213A publication Critical patent/JP2016150213A/en
Publication of JP2016150213A5 publication Critical patent/JP2016150213A5/ja
Application granted granted Critical
Publication of JP6500484B2 publication Critical patent/JP6500484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses

Description

本開示は、複数の焦点を有し被検者の眼内に設置される多焦点眼内レンズに関する。   The present disclosure relates to a multifocal intraocular lens having a plurality of focal points and installed in the eye of a subject.

白内障の手術において水晶体の代わりに眼内に挿入される眼内レンズとして、光学部への入射光を単一の焦点に集光させる単焦点眼内レンズが知られている。また、近年光学部への入射光を複数の焦点に振り分けて集光させ、被検者眼に擬似的な調節力を与えることができる多焦点眼内レンズが知られている。このような多焦点眼内レンズとしては、光学部のベースカーブ上に形成された回折領域によって入射光を異なる複数の焦点に振り分ける回折型の多焦点眼内レンズが知られている。(例えば、特許文献1参照)。   As an intraocular lens to be inserted into the eye instead of the crystalline lens in cataract surgery, there is known a single-focus intraocular lens that focuses incident light on an optical unit to a single focal point. Also, in recent years, a multifocal intraocular lens is known that can distribute incident light to an optical unit to a plurality of focal points and condense the light so as to give a simulated accommodation power to a subject's eye. As such a multifocal intraocular lens, a diffractive multifocal intraocular lens is known which distributes incident light to a plurality of different focal points by a diffractive area formed on a base curve of an optical section. (See, for example, Patent Document 1).

特開2011−072348号公報JP, 2011-072348, A

ここで、多焦点眼内レンズにおいて、不要な屈折、反射光や回折光が多く発生してしまうと、被検者の網膜上に結ばれる像のコントラストが低下して、被検者は近方視(近くを見ること)や遠方視(遠くを見ること)を快適に行うことができないおそれがある。   Here, in the multifocal intraocular lens, if a large amount of unnecessary refraction, reflected light or diffracted light is generated, the contrast of the image formed on the retina of the subject is lowered and the subject is near There is a possibility that it is not possible to comfortably perform vision (looking near) or far vision (looking far).

そこで、本開示は上記した問題点を解決するためになされたものであり、不要な光の発生を低減できる多焦点眼内レンズを提供することを目的とする。   Therefore, the present disclosure is made to solve the above-mentioned problems, and it is an object of the present disclosure to provide a multifocal intraocular lens capable of reducing the generation of unnecessary light.

本開示の典型的な実施形態に係る多焦点眼内レンズは、患者眼の眼内に挿入される多焦点眼内レンズであって、前面の光学面および後面の光学面を有し、入射光を集光させる光学部を備え、前記光学部は、前記光学面の一部の領域に形成され、前記入射光を回折させて少なくとも第1焦点位置に集光させる回折格子が設けられる回折領域と、前記回折領域が設けられた前記光学面のうち、前記回折領域以外の領域に曲面または平面によって形成され、前記第1焦点位置よりも遠方または近方の第2焦点位置に前記入射光を集光させる非回折領域と、を備え、前記光学部の周方向について前記回折領域と前記非回折領域とが順に形成され、前記回折領域および前記非回折領域のうち近方に前記入射光を集光させる領域の面積が、前記光学部の光軸を中心とする円の内側の領域において占める割合は、前記円の径が大きくなるほど小さくなり、前記回折領域の位相差が1であること、を特徴とする。 A multifocal intraocular lens according to an exemplary embodiment of the present disclosure is a multifocal intraocular lens to be inserted into an eye of a patient's eye, having a front optical surface and a rear optical surface, and the incident light And an optical unit for condensing light, wherein the optical unit is formed in a partial area of the optical surface, and is provided with a diffraction area provided with a diffraction grating for diffracting the incident light to condense at least a first focal position. And forming the curved surface or plane in an area other than the diffraction area among the optical surfaces provided with the diffraction area, and collecting the incident light at a second focus position farther or closer than the first focus position. A non-diffraction region to be illuminated, the diffraction region and the non-diffraction region are sequentially formed in the circumferential direction of the optical unit, and the incident light is condensed to the nearer one of the diffraction region and the non-diffraction region The area of the area to be Ratio in the region inside of a circle around the becomes smaller as the diameter of the circle is larger, that the phase difference of the diffractive region is 1, and wherein.

本開示の多焦点眼内レンズによれば、不要な光の発生を低減できる。   According to the multifocal intraocular lens of the present disclosure, generation of unnecessary light can be reduced.

第1実施形態における多焦点眼内レンズの正面図である。It is a front view of the multifocal intraocular lens in 1st Embodiment. 図1のA−A端面図である。It is an AA end view of FIG. 図1のB−B端面図である。It is a BB end view of FIG. 図1のC−C端面図である。It is a CC end view of FIG. 第1実施形態の第1変形例における光学部の端面図(図3に対応する端面図)である。It is an end elevation (an end elevation corresponding to Drawing 3) of an optic part in the 1st modification of a 1st embodiment. 第2実施形態における多焦点眼内レンズの正面図である。It is a front view of the multifocal intraocular lens in 2nd Embodiment. 図6のD−D端面図である。It is the DD end view of FIG. 図6のE−E端面図である。It is the EE end view of FIG. 第3実施形態における多焦点眼内レンズの正面図である。It is a front view of the multifocal intraocular lens in 3rd Embodiment. 図9のF−F端面図である。It is the FF end view of FIG. 比較例を示す図である。It is a figure which shows a comparative example.

以下、本開示の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present disclosure will be described based on the drawings.

<第1実施形態>
〔眼内レンズの全体説明〕
本実施形態における多焦点眼内レンズ(以下、「眼内レンズ1」という。)は、図1に示すように、光学部10と支持部12を備える。
First Embodiment
[Description of the Intraocular Lens]
The multifocal intraocular lens in the present embodiment (hereinafter referred to as “intraocular lens 1”) includes an optical unit 10 and a support 12 as shown in FIG.

本実施形態の光学部10は、図1〜図3に示すように、円盤形状に形成される。光学部10は、眼内に置いたときに角膜側となる前面20(前面の光学面)と、網膜側となる後面22(後面の光学面)を有する。なお、図2と図3に示す例では、前面20と後面22の両面が凸面で形成される。   The optical part 10 of this embodiment is formed in disk shape, as shown to FIGS. The optical unit 10 has an anterior surface 20 (optical surface of the anterior surface) which is on the cornea side when placed in the eye, and a posterior surface 22 (optical surface of the posterior surface) which is on the retina side. In the example shown in FIGS. 2 and 3, both surfaces of the front surface 20 and the rear surface 22 are convex.

光学部10は、例えば、PMMA(ポリメチルメタクリレート)等の硬い材料や、シリコーン等の単体、又は、アクリル酸エステルとメタクリル酸エステルの複合材料からなる折り曲げ可能な材料から形成される。光学部10を、金型などにより一体的に成形したり、切削加工により形成してもよい。なお、光学部10の詳細は、後述する。   The optical unit 10 is formed of, for example, a hard material such as PMMA (polymethyl methacrylate), a single material such as silicone, or a foldable material made of a composite material of acrylic ester and methacrylic ester. The optical unit 10 may be integrally formed by a mold or the like, or may be formed by cutting. The details of the optical unit 10 will be described later.

支持部12は、光学部10を被検者の眼内にて固定支持するためのものである。本実施形態の支持部12は、一対形成される。支持部12はその一端(基端)が光学部10側に接合され、他端(先端)を自由端としたループ形状を有する。支持部12を、PMMA(ポリメチルメタクリレート)、ポリプロピレン、ポリイミド等の樹脂にて形成してもよい。本実施形態の支持部12は、光学部10の前面20に対し所定の角度(例えば、0〜10度程度)となるように接合される。これにより、光学部10の後面22が嚢内で押し付けられた状態で好適に光学部10が配置されるようになる。   The support unit 12 is for fixing and supporting the optical unit 10 in the eye of the subject. The support part 12 of this embodiment is formed in a pair. The support portion 12 has a loop shape in which one end (proximal end) is joined to the optical portion 10 side and the other end (distal end) is a free end. The support 12 may be formed of a resin such as PMMA (polymethyl methacrylate), polypropylene, or polyimide. The support portion 12 of the present embodiment is bonded to the front surface 20 of the optical portion 10 at a predetermined angle (for example, about 0 to 10 degrees). Thereby, the optical part 10 is suitably arrange | positioned in the state by which the back surface 22 of the optical part 10 was pressed in the capsule.

なお、図1では、光学部10と支持部12とが別々に形成された後に一体化されるスリーピースタイプの眼内レンズを例に挙げる。しかし、これ以外にも本実施形態は、同一素材の光学部10と支持部12とが切削加工、モールディング加工により一体的に形成されるワンピース型の眼内レンズにも適用することができる。   In FIG. 1, a three-piece type intraocular lens in which the optical unit 10 and the support unit 12 are separately formed and then integrated is taken as an example. However, the present embodiment can also be applied to a one-piece intraocular lens in which the optical part 10 and the support part 12 of the same material are integrally formed by cutting and molding.

〔光学部の詳細説明〕
本実施形態における光学部10は、図1〜図3に示すように、その後面22に、ベースカーブCrを備える。また、光学部10は、その前面20に、ベースカーブCf1を備える。ベースカーブとは、回折領域30の回折格子42(後述する)の存在を無視した場合の、前面20および後面22の各々の滑らかな全体形状を示す。ここで、本実施形態におけるベースカーブCr,Cf1は、入射光を屈折力により屈折させて遠用焦点f0に集光させるための曲面形状である。なお、ベースカーブCr,Cf1の一方は平面形状であってもよい。
[Detailed Description of Optical Section]
The optical part 10 in this embodiment equips the back surface 22 with base curve Cr, as shown in FIGS. The optical unit 10 also has a base curve Cf1 on the front surface 20 thereof. The base curve indicates the smooth overall shape of each of the front surface 20 and the rear surface 22 when the presence of the diffraction grating 42 (described later) of the diffraction region 30 is ignored. Here, the base curves Cr and Cf1 in the present embodiment are curved shapes for refracting the incident light by the refractive power and focusing the refracted light on the far focus f0. Note that one of the base curves Cr and Cf1 may have a planar shape.

本実施形態の光学部10は、その後面22に、回折領域30と非回折領域32を備える。そして、光学部10の周方向について回折領域30と非回折領域32の第2領域32bとが順に形成される。本実施形態の回折領域30は、入射光を近用焦点f1(遠用焦点f0よりも近方の焦点位置)に集光させる領域である。すなわち、入射光は、回折領域30を通ることにより回折し、近用焦点f1に集光される。本実施形態の非回折領域32は、入射光を所定の遠用焦点f0(近用焦点f1よりも遠方の焦点位置)に集光させる領域である。すなわち、入射光は、非回折領域32を通ることにより遠用焦点f0に集光される。   The optical section 10 of the present embodiment includes a diffractive area 30 and a non-diffracting area 32 on the rear surface 22. Then, the diffractive region 30 and the second region 32 b of the non-diffracting region 32 are formed in order in the circumferential direction of the optical unit 10. The diffraction area 30 of the present embodiment is an area for condensing incident light to the near focus f1 (a focus position closer to the far focus f0). That is, the incident light is diffracted by passing through the diffraction area 30, and is condensed at the near focus f1. The non-diffraction area 32 of the present embodiment is an area for condensing incident light at a predetermined far focus f0 (a focal position farther than the near focus f1). That is, incident light is condensed to the far focus f0 by passing through the non-diffraction region 32.

本実施形態では、光学部10が持つ屈折率と曲率とによって得られる屈折度数に、回折領域30により発生する加入度が加えられることによって、眼内レンズ1に複数の焦点が与えられる。本実施形態では、眼内レンズ1を眼内に設置した被検者が遠方視を行うための所定の遠用焦点f0(遠用度数)と、被検者が近方視を行うための所定の近用焦点f1(近用度数)が与えられる。   In this embodiment, a plurality of focal points are given to the intraocular lens 1 by adding the addition degree generated by the diffractive region 30 to the dioptric power obtained by the refractive index and the curvature of the optical unit 10. In this embodiment, a predetermined distance focus f0 (distance power) for the subject having the intraocular lens 1 installed in the eye to perform distance vision, and a predetermined for the subject to perform near vision Of the near focus f1 (near power).

本実施形態の回折領域30は、後面22の一部の領域に形成される。具体的には、回折領域30は、後面22にて4カ所形成される。4個の回折領域30は、光学部10の径方向について光学部10の中央部分(非回折領域32の第1領域32a、中心領域)よりも外周部10a側の位置にて、光学部10の周方向について各々等間隔に(90°おきに)間隔を空けながら形成される。すなわち、光軸O(光学部10の中心軸)を中心にして対称に形成される一対の回折領域30が、合計2対形成される。   The diffractive region 30 of the present embodiment is formed in a partial region of the rear surface 22. Specifically, four diffraction regions 30 are formed on the back surface 22. The four diffraction regions 30 are located on the outer peripheral portion 10 a side of the central portion (the first region 32 a of the non-diffraction region 32 and the central region) of the optical portion 10 in the radial direction of the optical unit 10. They are formed at equal intervals (every 90 °) in the circumferential direction. That is, a total of two pairs of diffraction areas 30 formed symmetrically about the optical axis O (the central axis of the optical unit 10) are formed.

本実施形態では、回折領域30における光学部10の周方向の幅δAは、光学部10の径方向の位置に応じて変化する。具体的には、幅δAは、光学部10の径方向について、光軸O側から外周部10a側に向かって、一旦大きくなった後、徐々に小さくなる。   In the present embodiment, the width δA of the diffractive region 30 in the circumferential direction of the optical unit 10 changes in accordance with the radial position of the optical unit 10. Specifically, the width δA gradually increases in the radial direction of the optical unit 10 from the optical axis O toward the outer peripheral portion 10a and then gradually decreases.

本実施形態の回折領域30には、光軸Oを中心として同心円弧状に形成される複数の円弧体40が形成される。光軸Oを含む平面で見た場合の各々の円弧体40の断面は、略鋸歯状に形成される(図3参照)。そして、光学部10の径方向について隣り合う円弧体40同士の境界部分に、回折格子42が設けられる。回折格子42は、各々の円弧体40における光軸O側の面に形成される。   In the diffraction area 30 of the present embodiment, a plurality of arc bodies 40 formed in a concentric arc shape around the optical axis O are formed. The cross section of each arc 40 when viewed in a plane including the optical axis O is formed in a substantially sawtooth shape (see FIG. 3). Then, the diffraction grating 42 is provided at the boundary portion between the arc bodies 40 adjacent to each other in the radial direction of the optical unit 10. The diffraction grating 42 is formed on the surface on the optical axis O side of each of the arcs 40.

本実施形態の回折領域30の位相差Pは、1である。これにより、1次光(近用焦点f1に集光される光)の回折効率(所定の焦点に集光される光の配分)は、ほぼ100%となる。すなわち、回折領域30において、入射光は、回折格子42により回折されて、ほぼ100%、近用焦点f1に集光される。なお、位相差Pは、好ましくは1であるが、1の近傍でもよい。詳細には、回折領域30で得られる1次光の回折効率は、80%以上が好ましい。より好ましくは、回折領域30で得られる1次光の回折効率は、90%以上が好ましい。1次光の回折効率を100%に近づけるほど、回折領域30で生じる不要な次数の回折光を抑制できる。   The phase difference P of the diffraction region 30 of the present embodiment is one. As a result, the diffraction efficiency (distribution of light focused to a predetermined focal point) of primary light (light to be focused to the near focus f1) is approximately 100%. That is, in the diffraction area 30, incident light is diffracted by the diffraction grating 42 and condensed to approximately 100% near focus f1. The phase difference P is preferably 1, but may be in the vicinity of 1. In detail, the diffraction efficiency of the primary light obtained in the diffraction region 30 is preferably 80% or more. More preferably, the diffraction efficiency of the primary light obtained in the diffraction region 30 is preferably 90% or more. As the diffraction efficiency of the first-order light approaches 100%, it is possible to suppress the diffracted light of the unnecessary order generated in the diffraction region 30.

なお、公知の回折型モデルの多焦点眼内レンズでは、回折領域で複数の焦点を付与する代わりに、回折領域で発生する不要な複数次回折光が発生する。例えば、位相差Pを0.5とすると遠方視(0次光)、近方視(1次光)へのエネルギー配分はそれぞれ約40%となり、残りの約20%は不要な複数次回折光となる。この不要な回折光は、グレアやハロー等の不快な光の要因となる。   In the multifocal intraocular lens of the known diffractive model, instead of providing a plurality of focal points in the diffractive area, unnecessary multiple order diffracted light generated in the diffractive area is generated. For example, assuming that the phase difference P is 0.5, the energy distribution to far vision (0th order light) and near vision (1st order light) is approximately 40% each, and the remaining approximately 20% is unnecessary multiple order diffracted light Become. The unnecessary diffracted light causes unpleasant light such as glare and halo.

一方、本実施形態の眼内レンズ1は、回折領域30で1つの焦点(1次光)のみを付与する代わりに、1次光の回折効率を上げる。これによって、回折領域30で生じる不要な回折光を抑制する。よって、不要な回折光の発生を抑制しつつも、回折領域30と非回折領域32とによって、複数の焦点を提供する。   On the other hand, the intraocular lens 1 of the present embodiment raises the diffraction efficiency of primary light instead of providing only one focal point (primary light) in the diffractive area 30. By this, unnecessary diffracted light generated in the diffraction area 30 is suppressed. Thus, while suppressing generation of unnecessary diffracted light, the diffractive region 30 and the non-diffraction region 32 provide a plurality of focal points.

ここで、位相差Pは、0次光(遠用焦点f0に集光される光)と1次光のエネルギー配分に関わるパラメータである。すなわち、位相差Pは、回折領域30の回折格子42により所定の焦点(本実施形態では、近用焦点f1)に集光される光の光量をqとし、回折領域30の回折格子42により集光される全ての入射光の光量をQとするときに、以下の数式で算出される。
[式1]
P=q/Q
Here, the phase difference P is a parameter related to the energy distribution of 0th-order light (light to be focused on the far focus f0) and 1st-order light. That is, with the phase difference P, the light quantity of the light condensed to a predetermined focal point (in this embodiment, the near focus f1 in the present embodiment) by the diffraction grating 42 of the diffraction region 30 is q, and is collected by the diffraction grating 42 of the diffraction region 30 When the light quantity of all incident light to be emitted is Q, it is calculated by the following formula.
[Equation 1]
P = q / Q

また、回折格子42における光軸O方向の高さHは、光学部10の径方向について一定である。なお、高さHは、設計波長をλとし、周辺媒質(例えば、水)の屈折率をn1とし、光学部10の材料の屈折率をn2としたときに、以下の数式により算出される値に設定される。
[式2]
H=(P×λ)/(n2−n1)
Further, the height H in the direction of the optical axis O in the diffraction grating 42 is constant in the radial direction of the optical unit 10. When the design wavelength is λ, the refractive index of the peripheral medium (for example, water) is n1, and the refractive index of the material of the optical unit 10 is n2, the height H is a value calculated by the following equation Set to
[Formula 2]
H = (P × λ) / (n2-n1)

ここでは、一例として、位相差Pを1とし、設計波長λを546nmとし、屈折率n1を1.336とし、屈折率n2を1.52とする。すると、回折格子42の高さHは、0.00297mmとなる。   Here, as an example, the phase difference P is 1, the design wavelength λ is 546 nm, the refractive index n1 is 1.336, and the refractive index n2 is 1.52. Then, the height H of the diffraction grating 42 is 0.00297 mm.

本実施形態の非回折領域32には、回折格子42が形成されず、ベースカーブCrが形成される。すなわち、非回折領域32におけるレンズ面の曲率は、ベースカーブCrの曲率と等しい。   The diffraction grating 42 is not formed in the non-diffraction region 32 of the present embodiment, and a base curve Cr is formed. That is, the curvature of the lens surface in the non-diffraction region 32 is equal to the curvature of the base curve Cr.

本実施形態の非回折領域32は、第1領域32aと第2領域32bを備える。第1領域32aは、光学部10の中央部分(光軸Oを中心とする円形状の部分)に形成される。第2領域32bは、第1領域32aよりも外周部10a側の位置にて、光学部10の周方向について隣り合う回折領域30同士の間の部分に形成される。   The non-diffraction region 32 of the present embodiment includes a first region 32a and a second region 32b. The first region 32 a is formed in the central portion (a circular portion centered on the optical axis O) of the optical unit 10. The second region 32 b is formed in a portion between the diffraction regions 30 adjacent to each other in the circumferential direction of the optical unit 10 at a position closer to the outer peripheral portion 10 a than the first region 32 a.

なお、図1に示す例では、第1領域32aの直径d1は、光学部10の直径d2の25%の大きさであるが、特にこれに限定されず、20%〜70%の大きさであることが好ましい。   In the example shown in FIG. 1, the diameter d1 of the first region 32a is 25% of the diameter d2 of the optical portion 10, but is not particularly limited thereto, and is 20% to 70%. Is preferred.

本実施形態の非回折領域32の第2領域32bにおける光学部10の周方向の幅δBは、光学部10の径方向の位置に応じて変化する。具体的には、幅δBは、光学部10の径方向について光軸O側から外周部10a側に向かうほど、大きくなる。これにより、光学部10の径方向について外周部10a側に向かうほど、光学部10の周方向における回折領域30の占める割合は小さくなる一方で、光学部10の周方向における非回折領域32の占める割合は大きくなる。   The width δB of the circumferential direction of the optical unit 10 in the second region 32b of the non-diffraction region 32 of the present embodiment changes in accordance with the position of the optical unit 10 in the radial direction. Specifically, the width δB becomes larger as it goes from the optical axis O side to the outer peripheral portion 10a side in the radial direction of the optical portion 10. Thereby, while the ratio occupied by the diffraction region 30 in the circumferential direction of the optical unit 10 decreases as going toward the outer peripheral portion 10a in the radial direction of the optical unit 10, the non-diffraction region 32 occupies in the circumferential direction of the optical unit 10 The proportion will increase.

換言すると、光軸Oを中心とする仮想円の円周上に回折領域30が重なる割合は、仮想円の径が大きくなるほど小さくなる。一方で、仮想円の円周上に非回折領域32が重なる割合は、仮想円の径が大きくなるほど大きくなる。ただし、本実施形態では、仮想円の径が第1領域32aの径(直径d1)よりも大きい場合に上記の関係が成り立つ。   In other words, the overlapping ratio of the diffraction region 30 on the circumference of the virtual circle centered on the optical axis O decreases as the diameter of the virtual circle increases. On the other hand, the rate at which the non-diffraction region 32 overlaps on the circumference of the imaginary circle increases as the diameter of the imaginary circle increases. However, in the present embodiment, when the diameter of the imaginary circle is larger than the diameter (diameter d1) of the first region 32a, the above relationship is established.

さらに言い換えて説明を行う。光軸Oを中心とする仮想円の径が、患者眼の最小の瞳孔径(一般的には約3mm)よりも大きい所定の径(本実施形態では、第1領域32aの径よりも大きい径)以上となる周縁領域について考察する。本実施形態では、少なくとも周縁領域では、仮想円の内側の領域において回折領域30の面積が占める割合は、仮想円の径が大きくなるほど小さくなる。一方で、仮想円の内側の領域において非回折領域32の面積が占める割合は、仮想円の径が大きくなるほど大きくなる。この場合、少なくとも周縁領域においては、患者眼の瞳孔径が大きくなるほど、近用のエネルギー配分(つまり、瞳孔を通過する光の光量のうち、近用焦点f1に集光される光の光量の割合)が小さくなる。従って、夜間遠方視を行うために患者眼の瞳孔が大きく開いた場合に、近用焦点f1に集光される光は、グレアまたはハローとして患者に認識され難くなる。   In other words, the explanation will be made. The diameter of the virtual circle centered on the optical axis O is larger than the diameter of the first region 32a (in this embodiment, larger than the minimum pupil diameter of the patient's eye (generally about 3 mm) ) Consider the peripheral area above. In the present embodiment, at least in the peripheral region, the ratio of the area of the diffraction region 30 in the region inside the virtual circle decreases as the diameter of the virtual circle increases. On the other hand, the proportion of the area of the non-diffraction region 32 in the region inside the virtual circle increases as the diameter of the virtual circle increases. In this case, at least in the peripheral region, the larger the pupil diameter of the patient's eye, the closer the energy distribution (that is, the ratio of the light amount of the light collected to the near focus f1 to the light amount of the light passing through the pupil) ) Becomes smaller. Therefore, when the pupil of the patient's eye is widely opened to perform far-field distance vision, light focused on the near focus f1 is less likely to be recognized by the patient as glare or halo.

なお、一例として、図1に示すように、光学部10の周方向における非回折領域32の占める割合は、光学部10の径方向について、第1領域32aと第2領域32bの境界部分の位置(回折領域30における最も光軸O側の位置)で30%(あるいは、20%〜70)であり、最も外周部10a側の位置で100%である。   As an example, as illustrated in FIG. 1, the ratio of the non-diffraction region 32 in the circumferential direction of the optical unit 10 is the position of the boundary portion between the first region 32 a and the second region 32 b in the radial direction of the optical unit 10 It is 30% (or 20% to 70) at (the position closest to the optical axis O in the diffraction region 30), and 100% at the position closest to the outer peripheral portion 10a.

ここで、遠方視、近方視を得るために、例えば光学部100の後面102に、レンズ面の曲率が互いに異なる複数の領域が設けられる比較例(屈折型デザインと呼ばれる多焦点眼内レンズ)を想定する。すると、この比較例においては、図11に示すように、各領域(領域104と領域106)の境界部分の段差h0が大きくなってしまう。通常、屈折型構造において段差h0の境界部は滑らかな曲線で繋がれるが、境界部において不要な屈折、反射光が多く発生する可能性がある。そうすると、例えば、被検者の網膜上に結ばれる像のコントラストが低下して、被検者は近方視や遠方視を快適に行うことができないおそれがある。   Here, in order to obtain far vision and near vision, for example, a comparative example in which a plurality of regions having different curvatures of the lens surface are provided on the back surface 102 of the optical unit 100 (multifocal intraocular lens called refractive design) Assume. Then, in this comparative example, as shown in FIG. 11, the step h0 at the boundary between the regions (regions 104 and 106) becomes large. Normally, in the refractive structure, the boundary of the step h 0 is connected by a smooth curve, but there may be a large amount of unnecessary refraction and reflection light at the boundary. Then, for example, the contrast of the image formed on the retina of the subject is lowered, and the subject may not be able to comfortably perform near vision or far vision.

これに対し、本実施形態の眼内レンズ1によれば、光学部10は、入射光を回折させる回折格子42が形成される回折領域30と、ベースカーブCrが形成される非回折領域32と、を備える。   On the other hand, according to the intraocular lens 1 of the present embodiment, the optical unit 10 includes the diffraction region 30 in which the diffraction grating 42 for diffracting the incident light is formed, and the non-diffraction region 32 in which the base curve Cr is formed. And.

すると、回折格子42の高さHは非常に小さいため、図4に示すように、回折領域30と非回折領域32における境界部分の段差hは、前記の比較例における段差h0と比べて、非常に小さい。そのため、段差hにおいて、0次や1次回折光以外の不要な屈折、反射光が発生し難くなる。したがって、例えば、被検者の網膜上に結ばれる像のコントラストが低下し難くなる。ゆえに、被検者は近方視や遠方視を快適に行うことができる。   Then, since the height H of the diffraction grating 42 is very small, as shown in FIG. 4, the step h at the boundary between the diffraction area 30 and the non-diffraction area 32 is much higher than the height h 0 in the comparative example. Small. Therefore, it becomes difficult to generate unnecessary refracted and reflected light other than the zero-order and first-order diffracted lights in the step h. Therefore, for example, the contrast of the image formed on the retina of the subject hardly decreases. Therefore, the subject can comfortably perform near vision and far vision.

また、非回折領域32の幅δBは、光学部10の径方向について変化する。これにより、光学部10の径方向について、遠用と近用のエネルギーの配分(0次光(遠用焦点f0に集光させる光の光量)と1次光(近用焦点f1に集光させる光の光量)の配分)を自在に調整できる。   Further, the width δB of the non-diffraction region 32 changes in the radial direction of the optical unit 10. Thereby, in the radial direction of the optical unit 10, distribution of energy for far vision and near vision (0th-order light (amount of light to be focused on far focus f0) and primary light (for near focus f1) Distribution of the amount of light) can be freely adjusted.

また、本実施形態では、回折領域30は入射光を近用焦点f1に集光させる領域であり、非回折領域32は入射光を遠用焦点f0に集光させる領域である。そして、光学部10の径方向について外周部10a側に向かうほど、光学部10の周方向における非回折領域32の第2領域32bの占める割合が大きくなる。これにより、少なくとも周縁領域では、光学部10の径方向について外周部10a側に向かうほど、遠用のエネルギーが多くなる(0次光の配分が高くなる)。夜間遠方視を行う際には被検者の瞳孔は大きく開いた状態になるため、グレアおよびハローの原因となる近用のエネルギーの割合は相対的に小さくなる。従って、被検者は快適に遠方視を行うことができる。例えば、被検者は、瞳孔が大きく開きがちな夜間の車の運転を、グレアやハロー等が抑制された状態で、快適に行うことができる。また、周縁領域よりも内側では、回折領域30と非回折領域32が適切な割合で併存している。従って、例えば、近方視を行うために被検者の瞳孔が縮瞳する(近見反射と呼ばれる現象)と、患者は、回折領域30によって集光される光によって適切に近方視を行うことができる。   Further, in the present embodiment, the diffraction area 30 is an area for condensing incident light on the near focus f1, and the non-diffraction area 32 is an area for condensing incident light on the far focus f0. Then, the ratio of the second region 32b to the non-diffraction region 32 in the circumferential direction of the optical unit 10 increases in the radial direction of the optical unit 10 toward the outer peripheral portion 10a. As a result, at least in the peripheral region, the energy for distance increases toward the outer peripheral portion 10 a side in the radial direction of the optical unit 10 (the distribution of 0th-order light increases). When performing far-field distance vision at night, the pupil of the subject is in a wide open state, so the proportion of near-use energy causing glare and halo is relatively small. Therefore, the subject can comfortably perform distance vision. For example, the subject can comfortably drive the car at night during which the pupil tends to widely open, with glare, halo, and the like being suppressed. Further, inside the peripheral area, the diffractive area 30 and the non-diffracting area 32 coexist at an appropriate ratio. Thus, for example, when the pupil of the subject is pupillated to perform near vision (a phenomenon called near vision reflection), the patient appropriately performs near vision with the light collected by the diffraction region 30. be able to.

また、本実施形態の眼内レンズ1は、回折領域30の位相差Pが1であるので、前述した公知の回折型デザインの多焦点眼内レンズに対して、回折領域30において不要な回折光(例えば2次光など)の発生が抑制される。そのため、例えばグレアやハロー等の発生が抑制される。したがって、被検者の網膜上にて結ばれる像のコントラスト低下が抑制される。   Further, since the phase difference P of the diffractive region 30 is 1 in the intraocular lens 1 of the present embodiment, unnecessary diffracted light in the diffractive region 30 with respect to the multifocal intraocular lens of the known diffraction type design described above The generation of (for example, secondary light) is suppressed. Therefore, for example, the occurrence of glare or halo is suppressed. Therefore, the reduction in contrast of the image formed on the retina of the subject is suppressed.

また、光学部10の中央部分(図1における第1領域32aの箇所であり、換言すると中心領域)に、非回折領域32の第1領域32aが形成される。このようにして、光学部10の中央部分に回折格子42が形成される領域を少なくすることで、光学部10の成形が容易となる。そのため、眼内レンズ1の生産性が向上する。   In addition, the first region 32a of the non-diffraction region 32 is formed in the central portion of the optical unit 10 (the location of the first region 32a in FIG. 1, in other words, the central region). By thus reducing the area in which the diffraction grating 42 is formed in the central portion of the optical unit 10, molding of the optical unit 10 becomes easy. Therefore, the productivity of the intraocular lens 1 is improved.

また、光軸Oを中心にして対称に形成される一対の回折領域30が2対形成される。即ち、本実施形態の回折領域30は、光学部10の周方向について互いに間隔を空けながら複数形成され、非回折領域32は、光学部10の周方向について隣り合う回折領域30同士の間に形成される。これにより、例えば、被検者の眼内において眼内レンズ1の位置ずれが生じても、被検者は快適に近方視や遠方視を行うことができる。また、例えば、視軸に対して瞳孔の中心が偏心している被検者、または瞳孔の形状が非円形(例えば楕円形)な被検者に本実施形態の眼内レンズ1を設置しても、被検者は、快適に近方視や遠方視を行うことができる。また、本実施形態の眼内レンズ1は更に、回折領域30は、周方向で等間隔に形成される。これによって、例えば、前述した位置ずれの影響をより受け難くなる。   Further, two pairs of diffraction regions 30 formed symmetrically about the optical axis O are formed. That is, a plurality of diffraction regions 30 of the present embodiment are formed with a space between them in the circumferential direction of the optical unit 10, and the non-diffraction regions 32 are formed between the diffraction regions 30 adjacent in the circumferential direction of the optical unit 10. Be done. Thus, for example, even if the positional deviation of the intraocular lens 1 occurs in the eye of the subject, the subject can comfortably perform near vision and far vision. Also, for example, even if the intraocular lens 1 of the present embodiment is installed on a subject whose center of the pupil is decentered with respect to the visual axis, or a subject whose shape of the pupil is non-circular (for example, elliptical) The subject can comfortably perform near vision or far vision. Further, in the intraocular lens 1 of the present embodiment, the diffraction regions 30 are formed at equal intervals in the circumferential direction. As a result, for example, the influence of the positional deviation described above is less likely to be affected.

なお、第1実施形態の眼内レンズ1の一部を形成させた第1変形例として、光学部10の径方向外側に向かうほど、回折領域30を通過した入射光のうち近用焦点f1に集光される光の割合が小さくなるように、回折領域30の回折格子42を形成してもよい。一例として、図5に示すように、回折格子42の高さHは、光学部10の径方向について外周部10a側へ向かうほど小さくてもよい(つまり、眼内レンズ1がアポダイゼーション特性を有してもよい)。この場合、夜間遠方視を行うために瞳孔が大きく開くと、近用のエネルギーの相対的な割合がさらに小さくなる。よって、グレアやハローがさらに低減される。なお、この場合でも、光学部10の中心に近い部分では、回折領域30の位相差Pは1に近い方が望ましい。   As a first modified example in which a portion of the intraocular lens 1 of the first embodiment is formed, the incident light that has passed through the diffraction area 30 is focused on the near focus f1 as it goes further in the radial direction of the optical unit 10. The diffraction grating 42 of the diffraction region 30 may be formed so that the proportion of the light collected is reduced. As an example, as shown in FIG. 5, the height H of the diffraction grating 42 may be smaller toward the outer peripheral portion 10a in the radial direction of the optical unit 10 (that is, the intraocular lens 1 has an apodization characteristic) May). In this case, as the pupil widens to perform far-field night vision, the relative proportion of near-use energy is further reduced. Thus, glare and halo are further reduced. Even in this case, it is desirable that the phase difference P of the diffraction region 30 be close to 1 at a portion close to the center of the optical unit 10.

また、回折領域30が形成される数は、特に限定されない。例えば、第2変形例として、回折領域30は、後面22にて8カ所形成されてもよい。   Moreover, the number in which the diffraction area | region 30 is formed is not specifically limited. For example, as a second modification, eight diffraction regions 30 may be formed on the back surface 22.

また、回折領域30と非回折領域32は、前面20に形成されても良く、または、前面20と後面22の両面に形成されても良い。また、第1実施形態では、光学部10の中央部分に第1領域32aが形成される。しかし、第1領域32aが形成される部分が回折領域30に置き換えられていてもよい。この場合、光学部10の径方向について光軸O側に向かうほど、近用のエネルギーの割合が大きくなる(1次光の配分が高くなる)。そのため、近方視を行うために被検者の瞳孔が縮瞳した状態になると、遠用のエネルギーの割合が相対的に低くなる。よって、被検者は快適に近方視を行うことができる。   In addition, the diffractive region 30 and the non-diffracting region 32 may be formed on the front surface 20, or may be formed on both the front surface 20 and the rear surface 22. Further, in the first embodiment, the first region 32 a is formed at the central portion of the optical unit 10. However, the portion where the first region 32 a is formed may be replaced with the diffractive region 30. In this case, the closer to the optical axis O in the radial direction of the optical unit 10, the larger the proportion of energy for near use (the distribution of primary light becomes higher). Therefore, when the pupil of the subject is in a state of miosis for near vision, the ratio of energy for distance vision becomes relatively low. Therefore, the subject can comfortably perform near vision.

次に、第2実施形態と第3実施形態について説明するが、第1実施形態や他の実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。   Next, the second embodiment and the third embodiment will be described. The components equivalent to those of the first embodiment and the other embodiments are denoted by the same reference numerals and descriptions thereof will be omitted, and different points will be described. I will focus on it.

<第2実施形態>
本実施形態における光学部10は、図6〜図8に示すように、その後面22に、ベースカーブCrを備える。また、光学部10は、その前面20に、ベースカーブCf2を備える。ここで、本実施形態におけるベースカーブCr,Cf2は、入射光を屈折力により屈折させて近用焦点f1に集光させるための曲面形状である。
Second Embodiment
The optical part 10 in this embodiment equips the back surface 22 with base curve Cr, as shown in FIGS. 6-8. The optical unit 10 also has a base curve Cf2 on the front surface 20 thereof. Here, the base curves Cr and Cf2 in the present embodiment are curved shapes for refracting incident light with a refractive power and focusing the refracted light on the near focus f1.

ここで、第2実施形態におけるベースカーブCf2の曲率は、第1実施形態におけるベースカーブCf1の曲率よりも大きく設定される。また、第1実施形態のベースカーブCrと第2実施形態のベースカーブCrは同じである。そのため、第2実施形態のベースカーブCr,Cf2は、第1実施形態のベースカーブCr,Cf1よりも入射光を近距離で集光させる。これにより、入射光は、ベースカーブCf2とベースカーブCrを通ると、近用焦点f1に集光される。   Here, the curvature of the base curve Cf2 in the second embodiment is set larger than the curvature of the base curve Cf1 in the first embodiment. Further, the base curve Cr of the first embodiment and the base curve Cr of the second embodiment are the same. Therefore, the base curves Cr and Cf2 of the second embodiment condense incident light at a closer distance than the base curves Cr and Cf1 of the first embodiment. Thereby, incident light is condensed to the near focus f1 when passing through the base curve Cf2 and the base curve Cr.

本実施形態の光学部10は、その後面22に、回折領域50と非回折領域52を備える。そして、光学部10の周方向について回折領域50と非回折領域52の第2領域52bとが順に形成される。本実施形態の回折領域50は、入射光を遠用焦点f0に集光させる領域である。すなわち、入射光は、回折領域50を通ることにより回折し、遠用焦点f0に集光される。本実施形態の非回折領域52は、入射光を近用焦点f1に集光させる領域である。すなわち、入射光は、非回折領域52を通ることにより近用焦点f1に集光される。   The optical section 10 of the present embodiment includes a diffractive area 50 and a non-diffracting area 52 on the rear surface 22. Then, the diffraction region 50 and the second region 52 b of the non-diffraction region 52 are sequentially formed in the circumferential direction of the optical unit 10. The diffraction area 50 in the present embodiment is an area for condensing incident light on the far focus f0. That is, the incident light is diffracted by passing through the diffraction area 50, and is condensed at the far focus f0. The non-diffraction area 52 of the present embodiment is an area for condensing incident light on the near focus f1. That is, incident light is condensed to the near focus f 1 by passing through the non-diffraction area 52.

本実施形態の回折領域50は、後面22の一部の領域に形成される。具体的には、回折領域50は、後面22にて4カ所形成される。4個の回折領域50は、光学部10の径方向について光学部10の中央部分(非回折領域52の第1領域52a)よりも外周部10a側の位置にて、光学部10の周方向について各々等間隔に(90°おきに)間隔を空けながら形成される。すなわち、光軸Oを中心にして対称に形成される一対の回折領域50が、合計2対形成される。   The diffraction region 50 of the present embodiment is formed in a partial region of the rear surface 22. Specifically, four diffraction regions 50 are formed on the back surface 22. The four diffraction regions 50 are in the circumferential direction of the optical unit 10 at a position closer to the outer peripheral portion 10 a than the central portion (the first region 52 a of the non-diffraction region 52) in the radial direction of the optical unit 10 They are formed at equal intervals (every 90 °) with intervals. That is, a total of two pairs of diffraction areas 50 formed symmetrically about the optical axis O are formed.

本実施形態の回折領域50における光学部10の周方向の幅δAは、光学部10の径方向の位置に応じて変化する。具体的には、幅δAは、光学部10の径方向について光軸O側から外周部10a側に向かうほど、大きくなる。これにより、光学部10の径方向について外周部10a側に向かうほど、光学部10の周方向における非回折領域52の第2領域52bの占める割合は小さくなる一方で、光学部10の周方向における回折領域50の占める割合は大きくなる。   The width δA in the circumferential direction of the optical unit 10 in the diffraction region 50 of the present embodiment changes in accordance with the position of the optical unit 10 in the radial direction. Specifically, the width δA becomes larger as it goes from the optical axis O side to the outer peripheral portion 10a side in the radial direction of the optical portion 10. As a result, while the ratio of the second region 52b to the non-diffraction region 52 in the circumferential direction of the optical unit 10 decreases in the radial direction of the optical unit 10 toward the outer circumferential portion 10a side, the ratio in the circumferential direction of the optical unit 10 decreases. The proportion of the diffraction region 50 is increased.

本実施形態の回折領域50には、光軸Oを中心として同心円弧状に形成される複数の円弧体60が形成される。光軸Oを含む平面で見た場合の各々の円弧体60の断面は、略鋸歯状に形成される(図8参照)。そして、光学部10の径方向について隣り合う円弧体60同士の境界部分に、回折格子62が設けられる。回折格子62は、各々の円弧体60における光学部10の外周部10a側の面に形成される。   In the diffraction area 50 of the present embodiment, a plurality of arc bodies 60 formed in a concentric arc shape around the optical axis O are formed. The cross section of each arc 60 as viewed in a plane including the optical axis O is formed in a substantially sawtooth shape (see FIG. 8). Then, the diffraction grating 62 is provided at the boundary between the arcs 60 adjacent to each other in the radial direction of the optical unit 10. The diffraction grating 62 is formed on the surface on the outer peripheral portion 10 a side of the optical unit 10 in each arc body 60.

本実施形態の回折領域50の位相差Pは、1である。これにより、回折格子62における0次光の回折効率は、回折領域表面の反射損失を無視して、ほぼ100%となる。すなわち、回折領域50において、入射光は、回折格子62により回折されて、ほぼ100%、遠用焦点f0に集光される。   The phase difference P of the diffraction region 50 of the present embodiment is one. As a result, the diffraction efficiency of zero-order light in the diffraction grating 62 becomes approximately 100%, disregarding the reflection loss on the surface of the diffraction area. That is, in the diffraction area 50, the incident light is diffracted by the diffraction grating 62 and condensed to approximately 100% on the far focus f0.

本実施形態の非回折領域52には、回折格子62が形成されず、ベースカーブCrが形成される。すなわち、非回折領域52におけるレンズ面の曲率は、ベースカーブCrの曲率と等しい。   The diffraction grating 62 is not formed in the non-diffraction region 52 of the present embodiment, and a base curve Cr is formed. That is, the curvature of the lens surface in the non-diffraction region 52 is equal to the curvature of the base curve Cr.

本実施形態の非回折領域52は、第1領域52aと第2領域52bを備える。第1領域52aは、光学部10の中央部分に形成される。第2領域52bは、第1領域52aよりも外周部10a側の位置にて、光学部10の周方向について隣り合う回折領域50同士の間の部分に形成される。   The non-diffraction region 52 of the present embodiment includes a first region 52a and a second region 52b. The first region 52 a is formed in the central portion of the optical unit 10. The second region 52 b is formed in a portion between the diffraction regions 50 adjacent to each other in the circumferential direction of the optical unit 10 at a position closer to the outer peripheral portion 10 a than the first region 52 a.

本実施形態の非回折領域52の第2領域52bにおける光学部10の周方向の幅δBは、光学部10の径方向の位置に応じて変化する。具体的には、幅δBは、光学部10の径方向について、光軸O側から外周部10a側に向って、一旦大きくなった後、徐々に小さくなる。   The width δB of the circumferential direction of the optical unit 10 in the second region 52b of the non-diffraction region 52 of the present embodiment changes in accordance with the position of the optical unit 10 in the radial direction. Specifically, the width δB gradually increases in the radial direction of the optical unit 10 from the optical axis O side to the outer peripheral portion 10a side and then gradually decreases.

本実施形態によれば、回折領域50は入射光を遠用焦点f0に集光させる領域であり、非回折領域52は入射光を近用焦点f1に集光させる領域である。そして、光学部10の径方向について外周部10a側に向かうほど、光学部10の周方向における回折領域50の占める割合が大きくなる。これにより、光学部10の中央部分(非回折領域52の第1領域52a)よりも外周部10a側の位置にて、光学部10の径方向について外周部10a側に向かうほど、遠用のエネルギーが多くなる。そのため、夜間遠方視を行うために被検者の瞳孔が大きく開いた状態となると、不要な近用のエネルギーが相対的に低くなるので、被検者は快適に遠方視を行うことができる。例えば、被検者は、瞳孔が大きく開きがちな夜間の車の運転を、グレアやハローが抑制された状態で、快適に行うことができる。また、光学部10の径方向について光軸O側に向かうほど、近用のエネルギーが多くなる。そのため、近方視を行う際には被検者の瞳孔は小さく開いた状態になるが、被検者は快適に近方視を行うことができる。   According to the present embodiment, the diffraction area 50 is an area for condensing incident light on the far focus f0, and the non-diffraction area 52 is an area for condensing incident light on the near focus f1. Then, the ratio of the diffraction region 50 in the circumferential direction of the optical unit 10 increases as the radial direction of the optical unit 10 is closer to the outer peripheral portion 10 a. Thereby, the energy for distance is increased toward the outer peripheral portion 10 a in the radial direction of the optical portion 10 at a position closer to the outer peripheral portion 10 a than the central portion of the optical portion 10 (the first region 52 a of the non-diffraction region 52). Will increase. Therefore, when the pupil of the subject is in a wide-opened state in order to perform distant vision at night, the unnecessary near-use energy becomes relatively low, and the subject can comfortably perform far vision. For example, the subject can comfortably drive the car at night during which the pupil tends to widely open, with glare and halo suppressed. Moreover, the energy for near use increases as it goes to the optical axis O side in the radial direction of the optical unit 10. Therefore, when performing near vision, the pupil of the subject is in a small open state, but the subject can perform near vision comfortably.

なお、第2実施形態の眼内レンズ1の一部を形成させた第1変形例として、光学部10の径方向外側に向かうほど、回折領域50を通過した入射光のうち遠用焦点f0に集光される光の割合が小さくなるように、回折領域50の回折格子62を形成してもよい。一例として、回折格子62の高さHは、光学部10の径方向について外周部10a側へ向かうほど小さくてもよい。つまり、眼内レンズ1がアポダイゼーション特性を有してもよい。   As a first modified example in which a part of the intraocular lens 1 of the second embodiment is formed, the distance focus f0 of incident light having passed through the diffraction region 50 as it goes further to the radial direction of the optical unit 10 The diffraction grating 62 of the diffraction region 50 may be formed so as to reduce the proportion of light collected. As an example, the height H of the diffraction grating 62 may be smaller toward the outer peripheral portion 10 a in the radial direction of the optical unit 10. That is, the intraocular lens 1 may have an apodization characteristic.

また、回折領域50が形成される数は、特に限定されない。例えば、第2変形例として、回折領域50は、後面22にて8カ所形成されてもよい。   Moreover, the number in which the diffraction area | region 50 is formed is not specifically limited. For example, as a second modification, eight diffraction regions 50 may be formed on the back surface 22.

<第3実施形態>
本実施形態において、図9と図10に示すように、回折領域30は、光学部10の周方向についてO軸を中心とする中心角α1の範囲内であって、かつ、光学部10の径方向について光軸Oの位置から外周部10aの近傍の位置まで形成され、扇形状に形成される。回折領域30は、入射光を回折させて近用焦点f1に集光させる。非回折領域32は、入射光を遠用焦点f0に集光させる。また、中心角α1は、図9に示す例では120°であるが、特にこれに限定されず、90°〜270°であることが好ましい。本実施形態では、第1実施形態および第2実施形態に比べて、回折領域30および非回折領域32の形状が単純になる。従って、眼内レンズ1の製造が容易になる。
Third Embodiment
In the present embodiment, as shown in FIGS. 9 and 10, the diffractive region 30 is within the range of the central angle α1 centered on the O axis in the circumferential direction of the optical unit 10 and the diameter of the optical unit 10 It is formed in a fan shape from the position of the optical axis O in the direction to the position in the vicinity of the outer peripheral portion 10a. The diffraction area 30 diffracts incident light and focuses it on the near focus f1. The non-diffraction region 32 focuses incident light to the far focus f0. The central angle α1 is 120 ° in the example shown in FIG. 9, but is not particularly limited to this, and preferably 90 ° to 270 °. In the present embodiment, the shapes of the diffraction region 30 and the non-diffraction region 32 are simplified as compared with the first embodiment and the second embodiment. Therefore, the manufacture of the intraocular lens 1 is facilitated.

なお、第3実施形態の眼内レンズ1の一部を形成させた第1変形例として、回折格子42の高さHは、光学部10の径方向について外周部10a側へ向かうほど小さくてもよい。つまり、眼内レンズ1がアポダイゼーション特性を有してもよい。   As a first modification in which a portion of the intraocular lens 1 of the third embodiment is formed, the height H of the diffraction grating 42 is smaller toward the outer peripheral portion 10 a in the radial direction of the optical unit 10. Good. That is, the intraocular lens 1 may have an apodization characteristic.

また、第2変形例として、回折領域30に代えて非回折領域52とし、且つ非回折領域32に代えて回折領域50としてもよい。   As a second modification, the non-diffraction region 52 may be substituted for the diffraction region 30, and the diffraction region 50 may be substituted for the non-diffraction region 32.

なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。   The embodiment described above is merely an example, and does not limit the present disclosure in any way, and it goes without saying that various improvements and modifications can be made without departing from the scope of the invention.

例えば、第1実施形態の回折領域30や第2実施形態の回折領域50は、光学部10の径方向について、光軸Oの位置まで形成されてもよい。   For example, the diffraction area 30 of the first embodiment and the diffraction area 50 of the second embodiment may be formed up to the position of the optical axis O in the radial direction of the optical unit 10.

また、前面20と後面22は、凸面や凹面や平面の組み合わせで構成されてもよい。   Further, the front surface 20 and the rear surface 22 may be configured by a combination of a convex surface, a concave surface, and a flat surface.

また、第3実施形態の回折領域30は、複数形成されてもよい。また、複数の回折領域30の各々が異なる焦点を提供してもよい。かかる態様の場合、例えば、複数の回折領域30の各々の位相差Pを1としつつ、焦点位置が互いに異なる複数種類の回折領域を用意して、3以上の焦点を付与する眼内レンズ1を提供できる。   Further, a plurality of diffraction regions 30 of the third embodiment may be formed. Also, each of the plurality of diffractive regions 30 may provide a different focus. In this case, for example, the intraocular lens 1 is provided with three or more focal points by preparing plural kinds of diffraction areas different in focal position while setting the phase difference P of each of the plural diffraction areas 30 to 1. Can be provided.

また、図1の実施形態(第1実施形態)では、回折領域30と非回折領域32とによって2種類の焦点を付与する。しかしながら、2種類の焦点を付与する各々の領域が共に回折領域であってもよい。つまり、非回折領域は必ずしも必要ない。この場合、各々の回折領域のベースカーブが同じであればよい。なお、各々の回折領域の位相差が1であることが望ましいことは言うまでもない。ただし、この場合には、第1〜3実施形態に比べて、光学部10に形成される回折領域の割合が大きくなる。回折領域では、意図しない光の屈折および散乱が、非回折領域に比べて生じやすくなる。従って、第1〜3実施形態では、非回折領域を用いない場合に比べて、意図しない光の屈折および散乱が生じ難い。   Further, in the embodiment of FIG. 1 (first embodiment), two types of focal points are given by the diffraction region 30 and the non-diffraction region 32. However, each of the two types of focal areas may be both diffractive areas. That is, the non-diffraction region is not necessarily required. In this case, the base curves of the respective diffraction regions may be the same. It is needless to say that the phase difference of each diffraction region is preferably 1. However, in this case, the ratio of the diffraction region formed in the optical unit 10 is larger than that in the first to third embodiments. In the diffractive region, unintended refraction and scattering of light are more likely to occur than in the non-diffraction region. Therefore, in the first to third embodiments, unintended refraction and scattering of light are less likely to occur than in the case where the non-diffraction region is not used.

1 眼内レンズ
10 光学部
10a 外周部
12 支持部
20 前面
22 後面
30 回折領域
32 非回折領域
32a 第1領域
32b 第2領域
40 円弧体
42 回折格子
50 回折領域
52 非回折領域
52a 第1領域
52b 第2領域
60 円弧体
62 回折格子
Cr (後面の)ベースカーブ
Cf1 (前面の)ベースカーブ
Cf2 (前面の)ベースカーブ
f0 遠用焦点
f1 近用焦点
O 光軸
δA 幅
δB 幅
P 位相差
q 光量
Q 光量
H 高さ
λ 設計波長
n1 屈折率
n2 屈折率
d1 (第1領域の)直径
d2 (光学部の)直径
h 段差
α1 中心角
DESCRIPTION OF SYMBOLS 1 intraocular lens 10 optical part 10a outer peripheral part 12 support part 20 front surface 22 rear surface 30 diffraction area 32 non-diffraction area 32a first area 32b second area 40 arc body 42 diffraction grating 50 diffraction area 52 non-diffraction area 52a first area 52b Second region 60 Arc body 62 Diffraction grating Cr (for back surface) Base curve Cf1 (for front surface) Base curve Cf2 (for front surface) base curve f0 Far focus f1 Near focus O Optical axis δA Width δA Width δB Width P Phase difference q Light intensity Q Light quantity H Height λ Design wavelength n1 Refractive index n2 Refractive index d1 Diameter (for first region) Diameter d2 (for optical part) Diameter h Step α1 Central angle

Claims (3)

患者眼の眼内に挿入される多焦点眼内レンズであって、
前面の光学面および後面の光学面を有し、入射光を集光させる光学部を備え、
前記光学部は、
前記光学面の一部の領域に形成され、前記入射光を回折させて少なくとも第1焦点位置に集光させる回折格子が設けられる回折領域と、
前記回折領域が設けられた前記光学面のうち、前記回折領域以外の領域に曲面または平面によって形成され、前記第1焦点位置よりも遠方または近方の第2焦点位置に前記入射光を集光させる非回折領域と、
を備え
前記光学部の周方向について前記回折領域と前記非回折領域とが順に形成され、
前記回折領域および前記非回折領域のうち近方に前記入射光を集光させる領域の面積が、前記光学部の光軸を中心とする円の内側の領域において占める割合は、前記円の径が大きくなるほど小さくなり、
前記回折領域の位相差が1であること、
を特徴とする多焦点眼内レンズ。
A multifocal intraocular lens inserted into the eye of a patient's eye, comprising:
An optical unit having an optical surface on the front surface and an optical surface on the rear surface, and condensing incident light;
The optical unit is
A diffraction area provided in a partial area of the optical surface and provided with a diffraction grating that diffracts the incident light and condenses the incident light to at least a first focal position;
Of the optical surface provided with the diffractive region, a curved surface or a flat surface is formed in a region other than the diffractive region, and the incident light is collected at a second focal position farther or closer than the first focal position. The non-diffracting region
Equipped with
The diffraction region and the non-diffraction region are sequentially formed in the circumferential direction of the optical unit,
The ratio of the area of the area of the diffraction area and the non-diffraction area to which the incident light is condensed to the near side in the area inside the circle centered on the optical axis of the optical unit is the diameter of the circle The bigger it gets smaller,
That the phase difference of the diffraction region is 1;
Multifocal intraocular lens characterized by
請求項1の多焦点眼内レンズであって、The multifocal intraocular lens of claim 1, wherein
前記回折領域および前記非回折領域のうち近方に前記入射光を集光させる領域における前記光学部の周方向の幅は、前記光学部の径方向について、前記光学部の光軸側から前記光学部の外周部に向かって、一旦大きくなった後、徐々に小さくなること、The width in the circumferential direction of the optical unit in the region for condensing the incident light to the near side among the diffractive region and the non-diffraction region is the optical axis from the optical axis side of the optical unit in the radial direction of the optical unit And then gradually become smaller toward the outer periphery of the part,
を特徴とする多焦点眼内レンズ。Multifocal intraocular lens characterized by
請求項1または2の多焦点眼内レンズであって、The multifocal intraocular lens according to claim 1 or 2,
前記非回折領域が、少なくとも前記光学部の光軸を中心とする中心領域に形成されることを特徴とする多焦点眼内レンズ。The multifocal intraocular lens, wherein the non-diffraction region is formed at least in a central region centered on the optical axis of the optical unit.
JP2015030871A 2015-02-19 2015-02-19 Multifocal intraocular lens Expired - Fee Related JP6500484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030871A JP6500484B2 (en) 2015-02-19 2015-02-19 Multifocal intraocular lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030871A JP6500484B2 (en) 2015-02-19 2015-02-19 Multifocal intraocular lens

Publications (3)

Publication Number Publication Date
JP2016150213A JP2016150213A (en) 2016-08-22
JP2016150213A5 JP2016150213A5 (en) 2018-03-22
JP6500484B2 true JP6500484B2 (en) 2019-04-17

Family

ID=56694934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030871A Expired - Fee Related JP6500484B2 (en) 2015-02-19 2015-02-19 Multifocal intraocular lens

Country Status (1)

Country Link
JP (1) JP6500484B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504332B1 (en) 2018-08-09 2019-04-24 株式会社ニコン Ophthalmic lens and method of manufacturing ophthalmic lens
WO2020194713A1 (en) * 2019-03-28 2020-10-01 株式会社ニコン Ophthalmic lens and ophthalmic lens production method
WO2020194712A1 (en) * 2019-03-28 2020-10-01 株式会社ニコン Ophthalmic lens and method for producing ophthalmic lens
AU2020416508A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Achromatic lenses with zone order mixing for vision treatment
AU2020418360A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Achromatic lenses for vision treatment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3381691D1 (en) * 1982-10-13 1990-08-02 Ng Trustees & Nominees Ltd BIFOCAL CONTACT LENSES.
US5089023A (en) * 1990-03-22 1992-02-18 Massachusetts Institute Of Technology Diffractive/refractive lens implant
FR2661914B1 (en) * 1990-05-11 1994-05-06 Essilor Internal Cie Gle Optique METHOD FOR MANUFACTURING A TRANSPARENT POLYMER LENS WITH MODULATED REFRACTION INDEX.
US5096285A (en) * 1990-05-14 1992-03-17 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
US5198844A (en) * 1991-07-10 1993-03-30 Johnson & Johnson Vision Products, Inc. Segmented multifocal contact lens
US7441894B2 (en) * 2006-02-09 2008-10-28 Alcon Manufacturing, Ltd. Pseudo-accommodative IOL having diffractive zones with varying areas
US20090088840A1 (en) * 2007-10-02 2009-04-02 Simpson Michael J Zonal diffractive multifocal intraocular lenses
US8709079B2 (en) * 2009-06-09 2014-04-29 Novartis Ag IOL with varying correction of chromatic aberration
JP6190133B2 (en) * 2013-03-25 2017-08-30 Hoya株式会社 Ophthalmic lens design method and ophthalmic lens manufacturing method

Also Published As

Publication number Publication date
JP2016150213A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5824000B2 (en) Pseudo-tuning IOL with diffraction zones with various areas
KR101478501B1 (en) Apodized diffractive iol with frustrated diffractive region
KR101314775B1 (en) Pseudo-accomodative iol having multiple diffractive patterns
KR101248488B1 (en) Apodized aspheric diffractive lenses
JP6500484B2 (en) Multifocal intraocular lens
JP5462154B2 (en) Diffractive intraocular lens
JP5453419B2 (en) Depth of focus (EDOF) lens with increased degree of pseudo-adjustment by pupil dynamics
JP6491106B2 (en) Method and system for providing an intraocular lens with improved depth of field
JP6258869B2 (en) Composite refraction diffraction IOL apodized for pseudo-adjustment
JP5480980B2 (en) Intraocular lens
JP4551489B2 (en) Manufacturing method of diffractive lens
JP5824076B2 (en) Diffractive multifocal ophthalmic lens and manufacturing method thereof
JP5481588B1 (en) Accommodating intraocular lens
KR20090009303A (en) Aspheric multifocal diffractive ophthalmic lens
WO2018150236A1 (en) Diffractive multifocal implantable lens device
JP2011528272A (en) Adjustable IOL with annular optics and extended depth of focus
JP2008049167A (en) Truncated diffractive intraocular lenses
US10537421B2 (en) Diffractive-refractive lens
JP5460211B2 (en) Multifocal intraocular lens
TWI555522B (en) An extended depth of focus (edof) lens to increase pseudo-accommodation by utilizing pupil dynamics
JPWO2021181300A5 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6500484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees