WO2020194713A1 - Ophthalmic lens and ophthalmic lens production method - Google Patents

Ophthalmic lens and ophthalmic lens production method Download PDF

Info

Publication number
WO2020194713A1
WO2020194713A1 PCT/JP2019/013803 JP2019013803W WO2020194713A1 WO 2020194713 A1 WO2020194713 A1 WO 2020194713A1 JP 2019013803 W JP2019013803 W JP 2019013803W WO 2020194713 A1 WO2020194713 A1 WO 2020194713A1
Authority
WO
WIPO (PCT)
Prior art keywords
ophthalmic lens
phase difference
region
optical axis
distance
Prior art date
Application number
PCT/JP2019/013803
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 奥平
啓 伊藤
智裕 川崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/013803 priority Critical patent/WO2020194713A1/en
Publication of WO2020194713A1 publication Critical patent/WO2020194713A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to an ophthalmic lens such as an intraocular lens and a method for manufacturing an ophthalmic lens.
  • Intraocular lens that is loaded into the eyeball instead of the crystalline lens after removal of the crystalline lens
  • intraocular lens Phakic Intraocular lens, PIL
  • An intraocular lens that is used in contact with the eyeball of the lens is used.
  • a multifocal type ophthalmic lens is also used to supplement the focal adjustment ability of the eye.
  • a multifocal ophthalmic lens having a central refraction region that provides one refraction focusing ability and a diffraction region that provides near diffraction focusing ability and far diffraction focusing ability. Lenses have also been proposed (see Patent Document 1).
  • the ophthalmic lens of the first aspect of the present invention is an ophthalmic lens worn in or near the eyeball, and in a state of being worn on the eyeball, transmits light to form an image on the retina.
  • the first region includes a first region and a second region, and the first region adds a first phase difference that monotonically increases or decreases monotonically depending on the distance from the optical axis of the ophthalmic lens with respect to the light beam passing through the first region.
  • the second region adds a second phase difference that increases or decreases a plurality of times according to the distance from the optical axis to the light beam passing through the second region, and the fluctuation range of the first phase difference is the said.
  • An ophthalmic lens that is 1.1 times or more the fluctuation range of the second phase difference.
  • the ophthalmic lens according to the first aspect is produced by a processing apparatus.
  • FIG. 1 (a) shows the top view
  • FIG. 1 (b) shows the sectional view.
  • FIG. 3A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the first embodiment and the distance from the optical axis.
  • FIG. 3B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first embodiment.
  • FIG. 4A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Modification 1 and the distance from the optical axis.
  • FIG. 4B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first modification.
  • FIG. 5A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the second modification and the distance from the optical axis.
  • FIG. 5B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the second modification.
  • FIG. 6A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Modification 3 and the distance from the optical axis.
  • FIG. 6B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of Modification 3.
  • FIG. 7A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 4 and the distance from the optical axis.
  • FIG. 7B is a diagram showing an MTF of an image formed on the retina in the eyeball equipped with the ophthalmic lens of the modified example 4.
  • FIG. 8A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 5 and the distance from the optical axis.
  • FIG. 8B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the modified example 5.
  • FIG. 9A is a top view of the ophthalmic lens 10a of the modified example 6.
  • FIG. 9B is a top view of the ophthalmic lens 10b of the modified example 7.
  • FIG. 10A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 8 and the distance from the optical axis.
  • 10B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the modified example 8. The figure which shows the MTF of the image formed on the retina in the eyeball which attached the conventional single focus type ophthalmic lens.
  • FIG. 1 is a diagram showing an intraocular lens 10 as an example of an ophthalmic lens according to an embodiment of the present invention
  • FIG. 1 (a) is a top view
  • FIG. 1 (b) is FIG. 1 (a).
  • the cross-sectional view on the Y axis is shown.
  • the intraocular lens 10 has two refracting surfaces, a light incident surface 11 and a light emitting surface 12.
  • the incident surface 11 is a spherical surface
  • the injection surface 12 is a surface having smooth irregularities with respect to the reference surface 13 which is a spherical surface.
  • the injection surface 12 may be a continuous surface.
  • the optical axis AX of the intraocular lens 10 is the axis of rotational symmetry of the entrance surface 11 and the emission surface 12 (or the reference surface 13).
  • the radius r0 of the intraocular lens 10 is, for example, about 2.5 mm to 3.0 mm.
  • the intraocular lens 10 may have a support portion (not shown) around the intraocular lens 10.
  • the X-axis and the Y-axis shown in FIG. 1A are axes in an arbitrary direction that are in a plane perpendicular to the optical axis AX and are orthogonal to each other. For any one point Q on the injection surface 12, the distance from the optical axis is defined as the distance r, and the azimuth angle from the X axis centered on the optical axis AX is ⁇ .
  • FIG. 2 is a diagram showing a cross section of the eyeball 100 loaded with the intraocular lens 10 of the first embodiment.
  • the intraocular lens 10 shown in FIG. 2 is a lens loaded in the eyeball 100 in place of a crystalline lens (not shown) extracted from the eyeball, and is a vitreous body originally at a position where the crystalline lens is arranged. It is arranged between 32 and the anterior chamber 31. An iris 36 is arranged inside the anterior chamber 31.
  • the intraocular lens 10 is arranged so that its optical axis AX substantially coincides with the center line EX of the eyeball on a straight line connecting the center of the cornea 30 and the center of the macula 35, but it does not necessarily have to coincide exactly. ..
  • the intraocular lens 10 is a lens having the same refractive power as the original crystalline lens, and the light rays L1 and L2 from an object in the outside world (not shown) are refracted by the cornea 30, and the anterior chamber 31, the intraocular lens 10, And through the lens 32, an image is formed at an imaging point 34 near the center of the yellow spot 35 on the retina 33.
  • the two rays L1 and L2 shown in FIG. 2 are examples, and in reality, a large number of rays (imaging rays) emitted from an object and entering the incident surface are the above-mentioned cornea 30, the intraocular lens 10, and the like. The image is formed at the imaging point 34 on the retina 33.
  • the aberration-free imaging ray is referred to as an aberration-free imaging ray.
  • the amount of smooth unevenness of the injection surface 12 shown in FIG. 1B with respect to the reference surface 13 is determined according to the distance from the optical axis AX in the direction away from the optical axis AX, as will be described later. Therefore, the uneven shape described above is, for example, a shape rotationally symmetric with respect to the optical axis AX.
  • the uneven shape of the injection surface 12 is exaggerated in the direction of the optical axis AX.
  • the distance from the reference surface 13 to the injection surface 12 in each portion of the injection surface 12 is referred to as the height of the injection surface 12, and the side of the injection surface 12 away from the intraocular lens 10 is represented by a positive sign. ..
  • the phase difference of light is (2 ⁇ / wavelength) times the optical path length difference.
  • the wavelength of the passing light beam is 0.55 [ ⁇ m]
  • the light ray passing through the portion of the ejection surface 12 having a height of H [ ⁇ m] passes through the portion having a height of 0 [ ⁇ m].
  • FIG. 3A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the ophthalmic lens 10 of the first embodiment and the distance from the optical axis AX. Is.
  • the height H of the injection surface 12 is higher than the reference surface 13 in the region near the optical axis AX. There is. Therefore, the phase difference P1 has a positive value in the region near the optical axis AX.
  • the phase difference P1 decreases monotonically as the distance r from the optical axis AX increases, and the first minimum value MP1 is set at a position where the distance r from the optical axis AX becomes r1 (about 0.6 mm as an example). Take. Then, in the region where the distance r from the optical axis AX is r1 or more, the phase difference P2 repeats increasing and decreasing according to the distance r from the optical axis AX.
  • the region in which the distance r from the optical axis AX is within r1 is referred to as the first region Z1
  • the region in which the distance r from the optical axis AX is r1 or more is referred to as the second region Z2. That is, the first region Z1 adds a first phase difference P1 that monotonically decreases with respect to the light rays passing through the first region Z1 according to the distance r from the optical axis AX
  • the second region Z2 provides the second region Z2.
  • a second phase difference P2 that increases or decreases a plurality of times according to the distance r from the optical axis AX is added to the passing light beam.
  • the difference between the maximum value and the minimum value of the first phase difference P1 is called the fluctuation width W1
  • the difference between the maximum value and the minimum value of the second phase difference P2 is called the fluctuation width W2.
  • the first phase difference P1 and the second phase difference P2 are also collectively referred to as phase differences P1 and P2.
  • the optical axis AX intersects the injection surface 12 in the first region Z1, that is, the first region Z1 intersects the optical axis AX.
  • the first region Z1 may be the central region of the intraocular lens including the reference point (eg, the optical axis AX, the center point) of the intraocular lens 10.
  • the first phase difference P1 and the second phase difference P2 are continuous and have a minimum value at the boundary BL between the first region Z1 and the first region Z2.
  • the aberration-free imaging light beam when the first phase difference P1 and the second phase difference P2 are set to 0 does not have an image of an object 66 [cm] away from the eyeball 100. It is set to form an image on the macula 35 due to aberration. This is done by optimizing the shapes and arrangements of the incident surface 11 and the reference surface 13 of the intraocular lens 10 by a known method.
  • the first phase difference P1 added to the light beam passing through the intraocular lens 10 by the height H of the ejection surface 12 in the first region Z1 is, for example, an amount according to the Gaussian function with respect to the distance r from the optical axis. ..
  • the first phase difference P1 may be a quantity according to the sinc function with respect to the distance r from the optical axis or a function represented by the "power" of the sinc function.
  • the first phase difference P1 may be a function based on the Gaussian function or the sin function described above, to which another function is added. That is, the first phase difference P1 may include a function based on a Gaussian function or a sinc function.
  • the shape of the height H is designed by making the shape of the height H of the injection surface 12 in the first phase difference P1, that is, the first region Z1 a shape based on the Gaussian function and the sinc function that are mathematically easy to handle. And easy to manufacture.
  • the constant a is a constant relating to the cycle of increase / decrease with respect to the distance r from the optical axis AX of the second phase difference P2, and when the unit of the distance r from the optical axis AX is [mm], 11.5 [ It is rad / mm 2 ], and is preferably a value of 6 [rad / mm 2 ] or more and 14 [rad / mm 2 ] or less.
  • the constant b is a constant relating to the phase of increase / decrease with respect to the distance r of the second phase difference P2 from the optical axis AX. Since the sine function is a periodic function, the constant b has no upper and lower limits, but the value of the constant b is the first phase difference P1 and the second phase difference at the boundary BL between the first region Z1 and the second region Z2. Set so that P2 and P2 are continuous.
  • the constant c is, for example, 1.08 [rad]. The details of the value of the constant a and the value of the constant c will be described later.
  • the second phase difference P2 in the second region Z2 may be a function of the equation (1) plus another function. That is, the second phase difference P2 in the second region Z2 may include the function of the equation (1).
  • the maximum value of the first phase difference added to the light ray passing through the first region Z1 is the amount added to the light ray passing through the optical axis AX, which is +3.97 [rad].
  • the minimum value of the first phase difference is an amount in which the distance r from the optical axis AX is added to the light ray passing through the position of r1, and is -0.72 [rad]. Therefore, the fluctuation width W1 which is the difference between the maximum value and the minimum value of the first phase difference is 4.69 [rad].
  • the fluctuation width W2 of the second phase difference applied to the light rays passing through the second region Z2 is from the minimum value of -1.08 [rad] of the second phase difference P2 in the second region Z2 to the maximum value of 1.26 [rad]. Up to 2.34 [rad]. That is, in the first embodiment, the fluctuation width W1 of the first phase difference is set to be about twice as large as the fluctuation width W2 of the second phase difference.
  • the intraocular lens 10 of the first embodiment is the focal point of the optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32 by adding the above phase differences P1 and P2 to the imaging light beam.
  • the depth can be increased.
  • the increase in the depth of focus is partly due to the multifocal filter effect caused by the second phase difference P2 added to the transmitted light by the second region Z2 increasing or decreasing substantially periodically according to the distance r from the optical axis AX. by. That is, the intraocular lens 10 of the first embodiment divides a plurality of light rays (luminous flux) passing through the second region Z2 into a plurality of light fluxes.
  • the refractive powers (addition degree) of 0 diopter, +1.5 diopter, and +3 diopter are added to the plurality of luminous fluxes (-1st order diffracted light, 0th order diffracted light, and + 1st order diffracted light) divided into wave planes, respectively.
  • the intraocular lens 10 of the first embodiment since the fluctuation width W1 of the first phase difference P1 is as large as about twice the fluctuation width W2 of the second phase difference P2, a plurality of lenses that have passed through the first region Z1.
  • the depth of focus expansion effect due to the first phase difference P1 is added to the light beam (luminous flux).
  • the multifocal effect by the plurality of light rays transmitted through the second region Z2 and the depth of focus expansion effect by the plurality of light rays transmitted through the first region Z1 are combined. Therefore, the depth of focus can be further expanded.
  • FIG. 3B shows an imaging point 34 in the eyeball 100 (an optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32) loaded with the intraocular lens 10 of the first embodiment. It is a graph which shows the simulation result in each diopter of the MTF (Modulation Transfer Function) at a predetermined spatial frequency (eg, about 50 [LP / mm]) of the image formed on the retina 33 in the vicinity.
  • MTF Modulation Transfer Function
  • FIG. 3B shows three types of MTFs when the pupil diameter (diameter of the opening of the iris 36) is 3 mm, 4 mm, and 6 mm.
  • the pupil diameter of the human eyeball 100 is about 3 to 4 mm in a bright environment and about 6 mm in a dark environment.
  • the vertical axis of the graph represents the modulation transfer rate (MTF) of the spatial frequency component (eg, about 50 [LP / mm]) of the image on the retina 33, and the horizontal axis represents the amount of defocus in the center line EX direction (eg, about 50 [LP / mm]).
  • the amount of defocus when the object is moved in the center line EX direction is expressed in diopter [1 / m] units.
  • an image of an object at infinity is formed at a position of 0 diopters on the horizontal axis
  • an image of an object 1 m away from the eyeball 100 is formed at a position of +1 dioptre on the horizontal axis.
  • FIG. 11A is a diagram showing an MTF when a conventional single focus type intraocular lens is attached to the eyeball as a comparative example.
  • the pupil diameter used in the simulation and the number of spatial frequencies of the image on the retina 33 are the same as in FIG. 3 (b).
  • the intraocular lens 10 of the present embodiment is 0, +1.5 in each pupil diameter as compared with the conventional single focus type intraocular lens.
  • the MTF value can be increased at the focus position of +3 diopters. That is, it can be seen that the depth of focus of the eyeball 100 is expanded by the intraocular lens 10 of the present embodiment attached to the eyeball 100.
  • the MTF of the intraocular lens 10 of the present embodiment can obtain a good image for an object at infinity (0 diopter) and has a distance of about 66 cm and 33 cm with respect to the eyeball corresponding to +1.5 and +3 diopters. A good image can also be obtained for an object in.
  • FIG. 11B is a diagram showing an MTF when a conventional bifocal intraocular lens is attached to the eyeball as a comparative example.
  • the pupil diameter used in the simulation and the number of spatial frequencies of the image on the retina 33 are the same as in FIG. 3 (b).
  • the MTF value can be increased especially at the defocus position of 0 and +2 diopters, but the MTF value at the defocus position of +1 diopter in the meantime is low.
  • the intraocular lens 10 of the present embodiment as shown in FIG. 3 (b), particularly when the pupil diameter is 3 mm, between each of the above-mentioned 0, +1.5 and +3 diopters.
  • the MTF value can also be increased at the focus positions of +0.75 and +2.2 diopters. Further, the MTF value can be increased even at the focus position of +4 diopter. This is due to the effect of expanding the depth of focus due to the addition of the first phase difference P1 described above.
  • the pupil diameter of 3 mm is the pupil diameter in a bright place such as outdoors in the daytime
  • the intraocular lens 10 of the present embodiment is used in a bright place from a short distance of about 25 cm from the eyeball to infinity. A good image can be obtained for a wide range of objects.
  • phase difference P1 in the first region Z1, between the light ray passing near the optical axis AX and the light ray passing near the boundary BL with the second region Z2, as described above, there is a first phase difference.
  • this phase difference is not limited to the above-mentioned value of about 4.69 [rad], and if the phase difference is 2 [rad] or more or 3 [rad] or more, the above-mentioned depth of focus expansion effect can be obtained. Obtainable.
  • the fluctuation width W1 of the first phase difference P1 is twice the fluctuation width W2 of the second phase difference P2, but the fluctuation width W1 of the first phase difference P1 is the second phase difference P2. If the fluctuation width is 1.5 times or more of W2, a large depth of focus expansion effect due to the first phase difference P1 can be obtained. Further, in the present embodiment, if the fluctuation width W1 of the first phase difference P1 is 1.1 times or more the fluctuation width W2 of the second phase difference P2, a practically sufficient depth of focus expansion effect can be obtained. ..
  • the first region Z1 is located inside the pupil diameter of 3 mm.
  • the second region Z2 need to exist in an appropriate area ratio.
  • the distance r1 from the optical axis AX at the boundary BL between the first region Z1 and the second region Z2 is preferably 0.4 mm or more and 0.8 mm or less. If the distance r1 is smaller than 0.4 mm, the area of the first region Z1 becomes smaller, and a sufficient depth of focus expansion effect cannot be obtained. On the other hand, when the distance r1 is larger than 0.8 mm, the area of the second region Z2 becomes small, and it becomes impossible to obtain a sufficient multiplex effect.
  • the value of the constant a in the above equation (1) is a parameter that determines the amount corresponding to the period of the sin function in the equation (1), and therefore, the refractive power of the above-mentioned multifocal filter formed by the second region Z2. It becomes a parameter that determines.
  • the increase / decrease of the second phase difference P2 added by the second region Z2 is not limited to the shape by the sin function of the equation (1), and may be another shape.
  • the cycle of increase / decrease of the second phase difference P2 shall be 0.2 mm or more and 0.5 mm or less in the range where the distance r from the optical axis AX is from 1 mm to 1.5 mm. Is also good.
  • an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and an appropriate multiplex focus can be applied. It can be effective.
  • the cycle of increase / decrease of the second phase difference P2 may be 0.1 mm or more and 0.5 mm or less in the range of the distance from the optical axis AX from 1 mm to 2.5 mm.
  • an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and more appropriate multiplexing can be performed. The focus effect can be exerted.
  • the value of the constant c in the above equation (1) is a parameter that determines the diffraction efficiency of the multifocal filter.
  • the wave plane is divided from the multifocal filter formed by the second region Z2.
  • the light amounts of the three diffracted lights of light, 0th-order light, and + 1st-order light are approximately equal. Therefore, the value of the constant c is preferably a value of 0.75 to 1.75 [rad] in consideration of the balance of the amount of light of the -1st order light, the 0th order light, and the +1st order light.
  • the fluctuation width W2 (maximum value-minimum value) of the second phase difference P2 is approximately 1.5 to 3.5 [rad].
  • the increase / decrease of the second phase difference P2 is not limited to the sin function of the equation (1), and may be based on another function. Even in that case, the fluctuation width W2 of the second phase difference P2 in the second region Z2 is 1.5 [rad] or more and 1.5 [rad] or more in the range where the distance r from the optical axis AX is 1 mm to 1.5 mm. It is preferably 3.5 [rad] or less.
  • the distance r is in the above range and the fluctuation width W2 of the second phase difference P2 is in the above range, the amount of light of the -1st order diffracted light, the 0th order light diffracted light, and the +1st order diffracted light generated from the second region Z2.
  • the balance of can be set to an appropriate value to effectively exert the multifocal effect.
  • the fluctuation width W2 of the second phase difference P2 in the second region Z2 is 1.5 [rad] or more and 3.5 [rad] or more in the range where the distance r from the optical axis AX is 1 mm to 2.5 mm. ]
  • the following is preferable.
  • the balance of can be set to an appropriate value to make the multifocal effect more effective.
  • the shape of the incident surface 11 and the reference surface 13 of the intraocular lens 10 may be a so-called aspherical surface such as an ellipsoidal surface, an eccentric surface, a hyperboloid or a paraboloid, instead of a spherical surface, and may be a concave surface or a convex surface. It may be flat or flat. Further, the uneven shape may be formed on the incident surface 11 instead of the injection surface 12, or may be formed on both the incident surface 11 and the injection surface 12.
  • the intraocular lens 10 is made of, for example, an acrylic resin material (for example, a copolymer of acrylate and methacrylate), hydrogel, or silicone. Further, the ophthalmic lens (eg, intraocular lens 10) may be a flexible lens made of a foldable flexible material (eg, acrylic resin material, silicone), and is a lens made of a hard material. You may.
  • the refractive index of the material constituting the intraocular lens 10 is not limited to 1.494 described above, and may be any other value.
  • FIG. 4A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging ray by the ejection surface 12 of the intraocular lens 10 of the modification 1 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the first modification is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
  • the change is gradual in the second region Z2 of the injection surface 12 where the second phase difference P2 increases as the distance r from the optical axis AX increases.
  • the change is set to be steep at the portion where the second phase difference P2 decreases as the distance r increases.
  • the second phase difference P2 has a change amount (differential amount with respect to the distance r) in the vicinity of one maximum value or a minimum value, particularly in the peripheral region 1.2 mm or more away from the optical axis, with respect to the optical axis side. It is asymmetrical on the side opposite to the optical axis side.
  • the amount of -1st-order diffracted light generated by dividing the wave surface from the second region Z2 can be made larger than the amount of +1-order diffracted light. ..
  • the second phase difference P2 added to the transmitted light by the second region Z2 is represented by the following equation (2) as an example.
  • P2 c ⁇ sin (ar 2 -b) + D ⁇ sin (2ar 2- b) ⁇ ⁇ ⁇ (2)
  • the first term on the right side of the equation (2) is the same as the right side of the equation (1).
  • the second term on the right side of equation (2) is a term representing the so-called double frequency of the sin function of equation (1), and the value of the constant d is -0.1 to -0.4 times the value of the above constant c. It is a value of degree.
  • the second phase difference P2 may be obtained by further adding the 3 times frequency, 4 times frequency, and 5 times frequency of the above sine function to the equation (2).
  • FIG. 4B shows the vicinity of the imaging point 34 in the eyeball 100 (an optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32) loaded with the intraocular lens 10 of the first modification. It is a graph which shows the simulation result in each diopter of the MTF (Modulation Transfer Function) at a predetermined spatial frequency (eg, about 50 [LP / mm]) of the image formed on the retina 33 of the above. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • MTF Modulation Transfer Function
  • the amount of -1st-order diffracted light generated by dividing the wave plane from the second region Z2 is set to be larger than the amount of +1st-order diffracted light. Therefore, the MTF at the focal position of 0 diopter (object at infinity) corresponding to the focal point of -1st order diffracted light is the focal point of +3 diopter (object 33 [cm] away from the eyeball 100) corresponding to the focal point of +1st order diffracted light. It can be higher than the MTF at the position. This effect is more pronounced when the pupil diameter is 4 mm or more, which includes more light rays passing through the second region Z2. Similar to the intraocular lens 10 of the first embodiment shown in FIG. 3 (b), when the pupil diameter is 3 mm, the MTF value is increased even at the focus positions of +0.75 and +2.2 diopters. it can.
  • the second phase difference P2 of the intraocular lens 10 of the modification 1 does not necessarily have to follow the equation (2).
  • the second phase difference P2 added by the second region Z2 contains the component of the second term on the right side of the equation (2), the amount of light of the -1st order diffracted light and the +1st order diffracted light generated from the second region Z2.
  • the ratio of can be changed. As a result, it is possible to realize an intraocular lens 10 that emphasizes a distant view and an intraocular lens 10 that emphasizes a closer view.
  • FIG. 5A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 2 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modification 2 is almost the same as the configuration of the intraocular lens 10 of the modification 1 described above, only the differences from the modification 1 described above will be described below.
  • the distance r from the optical axis AX is larger than the fluctuation width W21 of the second phase difference P2 in the range of 1 to 1.5 mm.
  • the fluctuation width W22 of the second phase difference P2 in the range where r is 2 to 2.5 mm is larger. That is, the intraocular lens 10 of the modified example 2 exhibits a larger multiplex effect than the intraocular lens 10 of the modified example 1 when the pupil diameter exceeds 4 mm.
  • FIG. 5B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the second modification. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 2 compared to the intraocular lens 10 of the modified example 1 shown in FIG. 4 (b), when the pupil diameter is 6 mm (when it exceeds 4 mm), it becomes 0 diopter and +3 diopter.
  • the MTF at the corresponding focus position is increasing. That is, when the pupil diameter exceeds 4 mm, a larger multiplex effect is exhibited.
  • This is suitable for, for example, the intraocular lens 10 when it is necessary to emphasize the distant view and the near view in an environment where the pupil diameter exceeds 4 mm, that is, in a slightly dark environment such as indoors or at dusk.
  • FIG. 6A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 3 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modification 3 is almost the same as the configuration of the intraocular lens 10 of the modification 1 described above, only the differences from the modification 1 described above will be described below.
  • the distance r from the optical axis AX is larger than the fluctuation width W22 of the second phase difference P2 in the range of 2 to 2.5 mm.
  • the fluctuation width W21 of the second phase difference P2 in the range where r is 1 to 1.5 mm is larger. That is, the intraocular lens 10 of the modified example 2 exhibits a larger multiplex effect than the intraocular lens 10 of the modified example 1 when the pupil diameter is 4 mm or less.
  • FIG. 6B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the second modification. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the focus position corresponds to 0 diopter and +3 diopter.
  • MTF is increasing. That is, when the pupil diameter is 4 mm or less, a larger multiplex effect is exhibited.
  • FIG. 7A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 4 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modified example 4 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
  • the first phase difference P1 decreases monotonically as the distance r from the optical axis AX increases, and the phase differences P1 and P2 have a distance r from the optical axis AX r2.
  • the first minimum value MP2 is taken at the position where (about 0.4 mm) is obtained.
  • the second phase difference P2 repeatedly increases and decreases according to the distance r from the optical axis AX, but in the region where the distance r from the optical axis AX is 2 mm or more,
  • the fluctuation width W22 of the second phase difference P2 gradually decreases as the distance r increases.
  • the fluctuation width W21 of the second phase difference P2 in the range where the distance r from the optical axis AX is 1 to 1.5 mm is about 2.2 [rad].
  • the cycle of increase / decrease with respect to the distance r of the second phase difference P2 from the optical axis AX is shorter than that of the first embodiment and other modified examples. Therefore, the refractive powers (addition degree) of ⁇ 3.5 diopters and +3.5 diopters are added to the -1st order diffracted light and the + 1st order diffracted light generated from the second region Z2, respectively.
  • the shapes and arrangements of the incident surface 11 and the reference surface 13 are such that when the phase differences P1 and P2 are 0, the eyeball 100 loaded with the intraocular lens 10 is the eyeball 100. It is set to form an image of an object 30 [cm] away from the macula 35 without aberration. Therefore, for the -1st order diffracted light to which the addition degree of ⁇ 3.5 dioptres is added in the second region, an image of an object at almost infinity is formed on the macula 35 in the eyeball 100.
  • the second position is increased according to the increase in the distance r from the optical axis AX.
  • the change is steep in the portion where the phase difference P2 increases, and the change is set to be gradual in the portion where the second phase difference P2 decreases as the distance r increases.
  • Such a change in the second phase difference P2 can be obtained, for example, by setting the value of the constant d to a value of about +0.1 to +0.4 times the value of the constant c in the above equation (2). ..
  • the pupil diameter is particularly small (when the pupil diameter is 4 mm or less, the amount of +1st order light generated from the second region Z2 is larger than the amount of -1st order light. Therefore, it is possible to realize the intraocular lens 10 having excellent resolution of a near view, particularly in a relatively bright environment.
  • FIG. 7B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 4. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those shown in FIG. 3 (b) above, but FIG. 7 (b) also shows the MTF when the pupil diameter is 2 mm.
  • the focus position corresponds to 0 diopter and +3 diopter.
  • MTF is increasing. That is, when the pupil diameter is 4 mm or less, a larger multiplex effect is exhibited.
  • the fluctuation widths W21 and W22 of the second phase difference P2 added to the light rays passing through the second region are increased or decreased according to the distance from the optical axis AX.
  • the multifocal effect due to the second phase difference P2 can be changed according to the pupil diameter. This makes it possible to realize an intraocular lens 10 in which the object distance at which a good image can be obtained changes according to the brightness of the surroundings.
  • FIG. 8A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 5 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modified example 5 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
  • the fluctuation width W21 of the second phase difference P2 in the range where the distance r from the optical axis AX is about 0.5 mm to 1.5 mm is , 2.2 [rad].
  • the fluctuation width W22 of the second phase difference P2 in the range where the distance r from the optical axis AX is 2 to 2.5 mm is 0.5 [rad] or less. Therefore, in the range where the distance r from the optical axis AX in the second region Z2 is 2 to 2.5 mm, the multiplex effect is hardly exhibited.
  • FIG. 8B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 5. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the multifocal effect is weakened at a pupil diameter of about 4 mm or more, so that the MTF at 0 diopter and +3 diopter becomes a low value.
  • the MTF at +1.5 diopters which corresponds to the focal position of the 0th order diffracted light from the second region Z2, can be increased. That is, the intraocular lens 10 of the modified example 5, like the intraocular lens 10 of the first embodiment and other modified examples, realizes an expansion of the depth of focus, and the eyeball 100 is particularly in a dark environment.
  • a near view at a predetermined distance for example, about 66 [cm]
  • the phase differences P1 and P2 are determined according to the distance r from the optical axis AX, that is, they have a shape rotationally symmetric with respect to the optical axis AX. There is. However, the phase differences P1 and P2 do not necessarily have to be rotationally symmetric with respect to the optical axis AX in order to correct astigmatism caused by the shape of the cornea 30.
  • the phase differences P1 and P2 may have a shape that is twice symmetrical with respect to the optical axis AX, or may have a shape that is three times symmetrical.
  • the value of r in the equations (1) and (2) is shown in the equation (3).
  • g is a constant of about 0 or more and 0.5 or less
  • is the azimuth angle of any one point Q on the injection surface 12 as described above
  • is an arbitrary initial phase.
  • the first phase difference P1 added by the first region Z1 is determined based on a function such as a Gaussian function or a sinc function with respect to the distance r from the optical axis AX as described above, those functions are also used. As the argument of, the above r'may be used instead of the distance r.
  • FIG. 9A is a top view of the intraocular lens 10a of the modified example 6.
  • the first region Z1 is a region centered on the optical axis AX of the intraocular lens 10a, but in the intraocular lens 10a of the modification 6, the boundary BL The center of the first region Z1 surrounded by is eccentric from the optical axis AX. Therefore, each point on the boundary BL is not equidistant from the optical axis AX.
  • FIG. 9B is a top view of the intraocular lens 10b of the modified example 7. Also in the intraocular lens 10b of the modified example 7, the center of the first region Z1 surrounded by the boundary BL is located at a position eccentric from the optical axis AX, and the optical axis AX intersects with the first region Z1. Not.
  • the intraocular lenses 10 of the modified examples 6 and 7 are suitable for correcting astigmatism of intensity caused by, for example, the shape of the cornea 30.
  • the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to decrease monotonically according to the distance r from the optical axis.
  • the first phase difference P1 may increase monotonically according to the distance r from the optical axis.
  • the phase differences P1 and P2 shown in FIG. 3A and the like may have their symbols inverted (inverted in the vertical axis direction).
  • the boundary BL between the first region Z1 and the second region Z2 is the position where the first phase difference P1 which increases monotonically according to the distance r from the optical axis takes the first maximum value. Become.
  • FIG. 10A shows the phase differences P1 and P2 and the optical axis AX in the intraocular lens 10 of the modified example 8 having a shape in which the first phase difference P1 monotonically increases with the distance r from the optical axis. It is a figure which shows the relationship with the distance from. Since the configuration of the intraocular lens 10 of the modified example 8 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
  • the height H of the ejection surface 12 is lower than the reference surface 13 in the vicinity of the optical axis AX, and the negative phase difference P1 (with respect to the light rays transmitted in the vicinity of the optical axis AX).
  • the first phase difference P1 added to the transmitted light by the first region Z1 increases monotonically.
  • the phase differences P1 and P2 take the maximum value MM1.
  • the second phase difference P2 decreases as the distance r increases, and at the position where the distance r is 1.6 mm, the minimum value MP2 adjacent to the maximum value MM1 Take.
  • the difference W0 between the maximum value MM1 and the minimum value MP2 is, for example, about 1.4 [rad]. That is, the second phase difference P2 changes by about 1.4 [rad] from the maximum value MM1 to the minimum value MP2.
  • this value will be referred to as the first value W0.
  • the second phase difference P2 repeats increasing and decreasing even in a region where the distance r from the optical axis AX is larger than the position of the minimum value MP2 described above.
  • the fluctuation range is the fluctuation range W2.
  • the fluctuation width W2 is twice or more the first value W0.
  • the fluctuation width W1 is 2 [rad] or more, or 3 [rad] or more larger than the fluctuation width W2.
  • FIG. 10B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 8. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 8 compared to the conventional single focus type intraocular lens whose MTF simulation result is shown in FIG. 11 (b), at each pupil diameter, particularly at the focus position of +1 to +3 diopters.
  • the value of MTF can be increased. That is, it can be seen that the depth of focus of the eyeball 100 is expanded by the intraocular lens 10 of the present embodiment attached to the eyeball 100.
  • the intraocular lens 10 of the modified example 8 has MTF at continuous focus positions instead of discrete ones. It can be seen that the value of can be increased.
  • the signs of the phase differences P1 and P2 of the intraocular lens 10 of the modified example 8 shown in FIG. 11A may also be inverted (inverted in the vertical axis direction).
  • the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to continuously change according to the distance r from the optical axis.
  • the first phase difference P1 may change discretely according to the distance r from the optical axis.
  • the scattered light generated by the sudden change in the phase difference is reduced, and the intraocular lens 10 that provides a clearer field of view is realized. be able to.
  • the first phase difference P1 and the first phase difference P2 are not only continuous but also smooth at the boundary BL between the first region Z1 and the second region Z2. It may be continuous with. In this case, it is possible to realize an intraocular lens 10 that provides a clearer field of view by reducing scattered light generated by abrupt changes in phase differences P1 and P2 near the boundary BL.
  • the phase difference is added by changing the height H of the incident surface 11 or the ejection surface 12 of the intraocular lens 10, but the phase difference P1 and The method of adding P2 is not limited to this method.
  • the phase differences P1 and P2 may be added by changing the shape (height) of the internal surface on which the lenses face each other.
  • the intraocular lens 10 can be formed by using a material (eg, silicone, acrylic resin, etc.) whose refractive index changes concentrically around the optical axis AX.
  • a material eg, silicone, acrylic resin, etc.
  • the refractive power of the actual intraocular lens 10 varies from person to person. Strictly speaking, it is different from the refractive power of. Therefore, in the simulation using the Navarro model, the thickness of the intraocular lens 10 and the radius of curvature of the incident surface 11 and the reference surface 13 are appropriately changed so that the imaging point 34 (focus) coincides with the retina 33 of the Navarro model. Then perform the simulation.
  • any intraocular lens corresponds to one of the intraocular lenses 10 of the first embodiment or each modification. .. That is, the refractive index and shape of the intraocular lens are numerically attached to the Navarro model, and the radius of curvature of the incident surface 11 and the reference surface 13 of the intraocular lens is appropriately changed to form the imaging point 34 (focus). Is matched on the retina 33 of the Navarro model. Under that condition, it can be determined whether or not the phase difference between the light rays passing through the first region Z1 and the second region Z2 has the above-mentioned phase difference.
  • the ophthalmic lens in the present embodiment is not limited to the intraocular lens 10 (IOL) loaded in the eyeball 100 instead of the crystalline lens, but is an implantable contact lens (IPL) loaded between the iris 36 and the crystalline lens. ) May be.
  • the intraocular lens for a so-called piggy bag which is additionally loaded for correction with respect to the eyeball 100 to which the intraocular lens is attached, may be used.
  • it may be a corneal inlay or a corneal inlay loaded into the cornea.
  • the ophthalmic lens may be a contact lens worn on the outside of the cornea 30.
  • the user can wear a contact lens having the configuration described in the present embodiment and an existing intraocular lens (eg, a single focus type IOL) on the eye and use them in combination.
  • ophthalmic lenses can be used for various vision correction applications such as IOLs that can be used for both pseudo-lens and crystalline lenses.
  • the ophthalmic lens may be a spectacle lens worn away from the eyeball.
  • the ophthalmic lens (intraocular lens 10) of the above first embodiment and each modification is an ophthalmic lens 10 worn in or near the eyeball 100, and is worn on the eyeball 100. It includes a first region Z1 and a second region Z2 that transmit light to form an image on the retina. Then, the first region Z1 adds a first phase difference P1 that monotonically increases or decreases monotonically according to the distance from the optical axis AX of the ophthalmic lens 10 to the light rays passing through the first region Z1, and the second region Z1.
  • the Z2 adds a second phase difference P2 that increases or decreases a plurality of times according to the distance from the optical axis AX to the light rays passing through the second region Z2.
  • the fluctuation width W1 of the first phase difference P1 is 1.1 times or more the fluctuation width W2 of the second phase difference P2.
  • the first region Z1 is arranged so as to intersect the optical axis AX, and the first phase difference P1 and the second phase difference P2 are continuous at the boundary BL between the first region Z1 and the second region Z2.
  • the minimum value MP1 or the maximum value may be taken at the boundary BL, and the distance from the optical axis AX to the boundary BL may be 0.4 mm or more and 0.8 mm or less.
  • the cycle of increase / decrease of the second phase difference P2 may be 0.2 mm or more and 0.5 mm or less in the range of the distance r from the optical axis AX from 1 mm to 1.5 mm. Further, the cycle of increase / decrease of the second phase difference P2 may be 0.1 mm or more and 0.5 mm or less in the range of the distance r from the optical axis AX from 1 mm to 2.5 mm.
  • an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and an appropriate multiplex focus can be applied. It can be effective.
  • the fluctuation width W1 of the first phase difference P1 may be 1.5 times or more the fluctuation width W2 of the second phase difference P2.
  • the fluctuation width W2 of the second phase difference P2 may be 1.5 [rad] or more and 3.5 [rad] or less in the range of the distance r from the optical axis AX from 1 mm to 1.5 mm. .. With this configuration, it is possible to more effectively exert the multiple focus effect by the plurality of light rays transmitted through the second region Z2, particularly in a bright environment where the pupil diameter is about 3 mm.
  • the fluctuation width W2 of the second phase difference P2 may be 0.5 [rad] or less in the range where the distance r from the optical axis AX is 2 mm or more.
  • the fluctuation width W2 of the second phase difference P2 may be 1.5 [rad] or more and 3.5 [rad] or less in the range of the distance r from the optical axis AX from 1 mm to 2.5 mm. ..
  • the first phase difference P1 may be configured to change continuously in the first region Z1. As a result, it is possible to realize an ophthalmic lens that reduces scattered light generated by a sudden change in phase difference and provides a clearer field of view.
  • the first region Z1 is formed between a light ray passing near the optical axis AX in the first region Z1 and a light ray passing near the boundary BL with the second region Z2 in the first region Z1. It may be configured to add a phase difference of [rad] or more. With this configuration, the effect of expanding the depth of focus by the plurality of light rays transmitted through the first region Z1 can be further increased.
  • the method for manufacturing the ophthalmic lens 10 is the method for manufacturing the ophthalmic lens described in the above-described first embodiment and each modification, and the ophthalmic lens is manufactured by using design data indicating the lens shape of the ophthalmic lens. It is provided with a processing process manufactured by a processing apparatus (eg, mold processing apparatus, cutting apparatus, polishing apparatus, etc.).
  • the method for manufacturing an ophthalmic lens includes a design process for designing the lens shape and generating the design data.
  • the above design data can be generated by converting information such as the above phase differences P1 and P2 (eg, design conditions) into a lens shape.
  • the lens set includes a plurality of ophthalmic lenses having different depths of focus and the number of focal points (eg, multiple focal points such as two or three focal points) of the ophthalmic lens of the present embodiment.
  • the present invention is not limited to the above contents. Other aspects considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. In this embodiment, all or a part of the above-described embodiments may be combined.
  • 10, 10a, 10b Ophthalmic lens (intraocular lens), 100: Eyeball, 11: Incident surface, 12: Ejection surface, 13: Reference surface, AX: Optical axis, r: Distance from optical axis, Z1; 1 region, Z2; 2nd region, BL: boundary, P1: 1st phase difference: P2: 2nd phase difference, W1: 1st phase difference fluctuation width, W2: 2nd phase difference fluctuation width, 30: cornea , 31: Anterior chamber, 32: Vitreous, 33: Retina, 35: Yellow spot, 36: Iris

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

This ophthalmic lens is placed within or near an eye, and is provided with a first region and a second region which transmit light and form an image on the retina when the lens is placed within/near the eye. The first region adds, to light rays passing through the first region, a first phase difference which monotonically increases or monotonically decreases according to the distance from the optical axis of the ophthalmic lens. The second region adds, to light rays passing through the second region, a second phase difference which increases or decreases multiple times according to the distance from the optical axis. The first phase difference varies in an amplitude which is 1.1 times or more that of the second phase difference.

Description

眼科用レンズ及び眼科用レンズの製造方法Manufacturing method of ophthalmic lens and ophthalmic lens
 本発明は、眼内レンズ等の眼科用レンズ、眼科用レンズの製造方法に関する。 The present invention relates to an ophthalmic lens such as an intraocular lens and a method for manufacturing an ophthalmic lens.
 水晶体の摘出後に水晶体に代わって眼球内に装填する眼内レンズ(Intraocular lens、IOL)、水晶体の併用して眼球内に装填する有水晶体眼内レンズ(Phakic Intraocular lens、PIL)、およびコンタクトレンズ等の眼球に接触させて使用する眼科用レンズが用いられている。
 また、眼の焦点調節力を補うために、多焦点タイプの眼科用レンズも用いられている。多焦点タイプの眼科用レンズの1つとして、1つの屈折合焦能力を提供する中央屈折領域と、近回折合焦能力及び遠回折合焦能力を提供する回折領域とを備えた多焦点眼科用レンズも提案されている(特許文献1参照)。
Intraocular lens (IOL) that is loaded into the eyeball instead of the crystalline lens after removal of the crystalline lens, intraocular lens (Phakic Intraocular lens, PIL) that is loaded into the eyeball in combination with the crystalline lens, contact lenses, etc. An intraocular lens that is used in contact with the eyeball of the lens is used.
In addition, a multifocal type ophthalmic lens is also used to supplement the focal adjustment ability of the eye. As one of the multifocal type ophthalmic lenses, a multifocal ophthalmic lens having a central refraction region that provides one refraction focusing ability and a diffraction region that provides near diffraction focusing ability and far diffraction focusing ability. Lenses have also been proposed (see Patent Document 1).
日本国特開2009-82723号公報Japanese Patent Application Laid-Open No. 2009-82723
 本発明の第1の態様の眼科用レンズは、眼球内または眼球近傍に装着される眼科用レンズであって、眼球に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域および第2領域を備え、前記第1領域は、前記第1領域を通る光線に対し、前記眼科用レンズの光軸からの距離に応じて単調増加または単調減少する第1位相差を付加し、前記第2領域は、前記第2領域を通る光線に対し、前記光軸からの距離に応じて複数回増減する第2位相差を付加し、前記第1位相差の変動幅は、前記第2位相差の変動幅の1.1倍以上である、眼科用レンズ。
 本発明の第2の態様の眼科用レンズの製造方法は、第1の態様の眼科用レンズを加工装置によって製造する。
The ophthalmic lens of the first aspect of the present invention is an ophthalmic lens worn in or near the eyeball, and in a state of being worn on the eyeball, transmits light to form an image on the retina. The first region includes a first region and a second region, and the first region adds a first phase difference that monotonically increases or decreases monotonically depending on the distance from the optical axis of the ophthalmic lens with respect to the light beam passing through the first region. Then, the second region adds a second phase difference that increases or decreases a plurality of times according to the distance from the optical axis to the light beam passing through the second region, and the fluctuation range of the first phase difference is the said. An ophthalmic lens that is 1.1 times or more the fluctuation range of the second phase difference.
In the method for producing an ophthalmic lens according to the second aspect of the present invention, the ophthalmic lens according to the first aspect is produced by a processing apparatus.
本発明の第1実施形態の眼科用レンズを示す図であり、図1(a)は上面図を、図1(b)は断面図を示す。It is a figure which shows the ophthalmic lens of the 1st Embodiment of this invention, FIG. 1 (a) shows the top view, and FIG. 1 (b) shows the sectional view. 第1実施形態の眼科用レンズが装着された眼球の断面を示す図。The figure which shows the cross section of the eyeball which attached the ophthalmic lens of 1st Embodiment. 図3(a)は、第1実施形態の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図3(b)は、第1実施形態の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 3A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the first embodiment and the distance from the optical axis. FIG. 3B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first embodiment. 図4(a)は、変形例1の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図4(b)は、変形例1の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 4A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Modification 1 and the distance from the optical axis. FIG. 4B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first modification. 図5(a)は、変形例2の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図5(b)は、変形例2の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 5A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the second modification and the distance from the optical axis. FIG. 5B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the second modification. 図6(a)は、変形例3の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図6(b)は、変形例3の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 6A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Modification 3 and the distance from the optical axis. FIG. 6B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of Modification 3. 図7(a)は、変形例4の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図7(b)は、変形例4の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 7A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 4 and the distance from the optical axis. FIG. 7B is a diagram showing an MTF of an image formed on the retina in the eyeball equipped with the ophthalmic lens of the modified example 4. 図8(a)は、変形例5の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図8(b)は、変形例5の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 8A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 5 and the distance from the optical axis. FIG. 8B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the modified example 5. 図9(a)は、変形例6の眼科用レンズ10aの上面図を示す図。図9(b)は、変形例7の眼科用レンズ10bの上面図を示す図。FIG. 9A is a top view of the ophthalmic lens 10a of the modified example 6. FIG. 9B is a top view of the ophthalmic lens 10b of the modified example 7. 図10(a)は、変形例8の眼科用レンズが無収差結像光線に対して付加する位相差と、光軸からの距離との関係を示す図。図10(b)は、変形例8の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。FIG. 10A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 8 and the distance from the optical axis. FIG. 10B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the modified example 8. 従来の単焦点型の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。The figure which shows the MTF of the image formed on the retina in the eyeball which attached the conventional single focus type ophthalmic lens.
(第1実施形態)
 図1は、本発明の一実施の形態の眼科用レンズの一例として眼内レンズ10を示す図であり、図1(a)は上面図を、図1(b)は、図1(a)におけるY軸上での断面図を示している。眼内レンズ10は、光の入射面11および光の射出面12の2つの屈折面を有している。一例として、入射面11は球面であり、射出面12は球面である基準面13に対して滑らかな凹凸を有する面である。この場合、例えば、射出面12は連続的な面であっても良い。
(First Embodiment)
FIG. 1 is a diagram showing an intraocular lens 10 as an example of an ophthalmic lens according to an embodiment of the present invention, FIG. 1 (a) is a top view, and FIG. 1 (b) is FIG. 1 (a). The cross-sectional view on the Y axis is shown. The intraocular lens 10 has two refracting surfaces, a light incident surface 11 and a light emitting surface 12. As an example, the incident surface 11 is a spherical surface, and the injection surface 12 is a surface having smooth irregularities with respect to the reference surface 13 which is a spherical surface. In this case, for example, the injection surface 12 may be a continuous surface.
 眼内レンズ10の光軸AXは、入射面11および射出面12(または基準面13)の回転対称軸である。眼内レンズ10の半径r0は、一例として2.5mmから3.0mm程度である。眼内レンズ10はその周囲に、不図示の支持部を有していても良い。
 図1(a)に示したX軸およびY軸は、光軸AXに垂直な面内にあって相互に直交する任意の方向の軸である。射出面12上の任意の1点Qについて、光軸からの距離を距離rとし、光軸AXを中心とするX軸からの方位角をθとする。
The optical axis AX of the intraocular lens 10 is the axis of rotational symmetry of the entrance surface 11 and the emission surface 12 (or the reference surface 13). The radius r0 of the intraocular lens 10 is, for example, about 2.5 mm to 3.0 mm. The intraocular lens 10 may have a support portion (not shown) around the intraocular lens 10.
The X-axis and the Y-axis shown in FIG. 1A are axes in an arbitrary direction that are in a plane perpendicular to the optical axis AX and are orthogonal to each other. For any one point Q on the injection surface 12, the distance from the optical axis is defined as the distance r, and the azimuth angle from the X axis centered on the optical axis AX is θ.
 図2は、第1実施形態の眼内レンズ10が装填されている眼球100の断面を示す図である。図2に示した眼内レンズ10は、眼球から摘出された不図示の水晶体の代わりとして眼球100内に装填されているレンズであり、元来は水晶体が配置されている位置である、硝子体32と前房31との間に配置されている。前房31の内部には、虹彩36が配置されている。眼内レンズ10は、その光軸AXが角膜30の中心と黄斑35の中心とを結ぶ直線を眼球の中心線EXと、概ね一致するように配置されるが、必ずしも厳密に一致する必要はない。 FIG. 2 is a diagram showing a cross section of the eyeball 100 loaded with the intraocular lens 10 of the first embodiment. The intraocular lens 10 shown in FIG. 2 is a lens loaded in the eyeball 100 in place of a crystalline lens (not shown) extracted from the eyeball, and is a vitreous body originally at a position where the crystalline lens is arranged. It is arranged between 32 and the anterior chamber 31. An iris 36 is arranged inside the anterior chamber 31. The intraocular lens 10 is arranged so that its optical axis AX substantially coincides with the center line EX of the eyeball on a straight line connecting the center of the cornea 30 and the center of the macula 35, but it does not necessarily have to coincide exactly. ..
 眼内レンズ10は、元来の水晶体と同様の屈折力を持つレンズであり、不図示の外界の物体からの光線L1、L2は、角膜30で屈折し、前房31、眼内レンズ10、および硝子体32を経て、網膜33上の黄斑35の中心近傍にある結像点34に結像する。
 図2に示した2本の光線L1、L2は例示であって、実際には、物体から発して入射面に入る多数の光線(結像光線)が、上記の角膜30や眼内レンズ10等を経て、網膜33上の結像点34に結像している。角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系に収差がなければ、多数の結像光線のそれぞれの間に光路長差(位相差)はない。以下では、この無収差状態の結像光線を、無収差結像光線と呼ぶ。
The intraocular lens 10 is a lens having the same refractive power as the original crystalline lens, and the light rays L1 and L2 from an object in the outside world (not shown) are refracted by the cornea 30, and the anterior chamber 31, the intraocular lens 10, And through the lens 32, an image is formed at an imaging point 34 near the center of the yellow spot 35 on the retina 33.
The two rays L1 and L2 shown in FIG. 2 are examples, and in reality, a large number of rays (imaging rays) emitted from an object and entering the incident surface are the above-mentioned cornea 30, the intraocular lens 10, and the like. The image is formed at the imaging point 34 on the retina 33. If there is no aberration in the optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous 32, there is no optical path length difference (phase difference) between each of the large number of imaging rays. Hereinafter, the aberration-free imaging ray is referred to as an aberration-free imaging ray.
 図1(b)に示した射出面12の基準面13に対する滑らかな凹凸の量は、一例として、後述するように光軸AXから離れる方向において光軸AXからの距離に応じて定まっている。従って、上記の凹凸形状は、一例として光軸AXに対して回転対称な形状である。なお、図1(b)においては、射出面12の凹凸形状を光軸AX方向に誇張して描いている。
 本明細書では、射出面12内の各部分における基準面13から射出面12までの距離を、射出面12の高さと呼び、射出面12が眼内レンズ10から離れる側を正の符号として表す。
As an example, the amount of smooth unevenness of the injection surface 12 shown in FIG. 1B with respect to the reference surface 13 is determined according to the distance from the optical axis AX in the direction away from the optical axis AX, as will be described later. Therefore, the uneven shape described above is, for example, a shape rotationally symmetric with respect to the optical axis AX. In FIG. 1B, the uneven shape of the injection surface 12 is exaggerated in the direction of the optical axis AX.
In the present specification, the distance from the reference surface 13 to the injection surface 12 in each portion of the injection surface 12 is referred to as the height of the injection surface 12, and the side of the injection surface 12 away from the intraocular lens 10 is represented by a positive sign. ..
 眼内レンズ10の屈折率は水晶体の屈折力と同様であり、一例として1.494であり、一方、眼内レンズ10に接する硝子体の屈折率は、一例として1.336である。従って、射出面12の高さがHである部分を通過する光線には、高さが0である部分を通過する光線に対して、H×(1.494-1.336)=H×0.158 の光路長差が付加される。光の位相差は光路長差の(2π/波長)倍である。 The refractive index of the intraocular lens 10 is similar to the refractive power of the crystalline lens, which is 1.494 as an example, while the refractive index of the vitreous body in contact with the intraocular lens 10 is 1.336 as an example. Therefore, for the light rays passing through the portion where the height of the ejection surface 12 is H, the optical path length difference of H × (1.494-1.336) = H × 0.158 with respect to the light rays passing through the portion where the height is 0. Is added. The phase difference of light is (2π / wavelength) times the optical path length difference.
 よって、通過する光線の波長を 0.55[μm]とすれば、射出面12の中の高さがH[μm] である部分を通過する光線には、高さが0[μm]の部分を通過する光線に対して、2π×H×0.158/0.55 = H×1.805[rad] の位相差が付加される。
 従って、射出面12の基準面13からの高さH[μm]は、この数値を一例として1.805倍した位相差[rad]と等価である。そこで、本明細書においては、以降、射出面12の基準面13からの高さH[μm]を、眼内レンズ10が無収差結像光線に対して付加する位相差P1、P2[rad]と等価なものとして扱う。
Therefore, if the wavelength of the passing light beam is 0.55 [μm], the light ray passing through the portion of the ejection surface 12 having a height of H [μm] passes through the portion having a height of 0 [μm]. A phase difference of 2π × H × 0.158 / 0.55 = H × 1.805 [rad] is added to the light beam.
Therefore, the height H [μm] of the injection surface 12 from the reference surface 13 is equivalent to the phase difference [rad] obtained by multiplying this value by 1.805 as an example. Therefore, in the present specification, the phase differences P1 and P2 [rad] in which the intraocular lens 10 adds the height H [μm] of the ejection surface 12 from the reference surface 13 to the aberration-free imaging ray. Treat as equivalent to.
 図3(a)は、第1実施形態の眼科用レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。
 第1実施形態においては、図1(b)および図3(a)に示したように、射出面12の高さHは、光軸AXの近傍の領域では、基準面13よりも高くなっている。従って、光軸AXの近傍の領域においては、位相差P1は正の値になっている。
 位相差P1は、光軸AXからの距離rが増大するに連れて単調に減少し、光軸AXからの距離rがr1(一例として約0.6mm)となる位置において第1の極小値MP1をとる。そして、光軸AXからの距離rがr1以上の領域では、位相差P2は、光軸AXからの距離rに応じて増減を繰り返す。
FIG. 3A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the ophthalmic lens 10 of the first embodiment and the distance from the optical axis AX. Is.
In the first embodiment, as shown in FIGS. 1 (b) and 3 (a), the height H of the injection surface 12 is higher than the reference surface 13 in the region near the optical axis AX. There is. Therefore, the phase difference P1 has a positive value in the region near the optical axis AX.
The phase difference P1 decreases monotonically as the distance r from the optical axis AX increases, and the first minimum value MP1 is set at a position where the distance r from the optical axis AX becomes r1 (about 0.6 mm as an example). Take. Then, in the region where the distance r from the optical axis AX is r1 or more, the phase difference P2 repeats increasing and decreasing according to the distance r from the optical axis AX.
 以下、光軸AXからの距離rが上記のr1以内である領域を第1領域Z1と呼び、光軸AXからの距離rがr1以上である領域を第2領域Z2と呼ぶ。すなわち、第1領域Z1は、第1領域Z1を通る光線に対し光軸AXからの距離rに応じて単調減少する第1位相差P1を付加し、第2領域Z2は、第2領域Z2を通る光線に対し光軸AXからの距離rに応じて複数回増減する第2位相差P2を付加する。 Hereinafter, the region in which the distance r from the optical axis AX is within r1 is referred to as the first region Z1, and the region in which the distance r from the optical axis AX is r1 or more is referred to as the second region Z2. That is, the first region Z1 adds a first phase difference P1 that monotonically decreases with respect to the light rays passing through the first region Z1 according to the distance r from the optical axis AX, and the second region Z2 provides the second region Z2. A second phase difference P2 that increases or decreases a plurality of times according to the distance r from the optical axis AX is added to the passing light beam.
 第1位相差P1の最大値と最小値の差を変動幅W1と呼び、第2位相差P2の最大値と最小値の差を変動幅W2と呼ぶ。また、第1位相差P1と第2位相差P2を、合わせて位相差P1、P2とも呼ぶ。
 図1(a)において、光軸AXは第1領域Z1において射出面12と交差しており、すなわち第1領域Z1は光軸AXと交差している。なお、第1領域Z1は、眼内レンズ10の基準点(例、光軸AX、中心点)を含む眼内レンズの中央領域であっても良い。
 第1実施形態においては、第1位相差P1と第2位相差P2とは、第1領域Z1と第1領域Z2との境界BLにおいて、連続であり、かつ極小値をとる。
The difference between the maximum value and the minimum value of the first phase difference P1 is called the fluctuation width W1, and the difference between the maximum value and the minimum value of the second phase difference P2 is called the fluctuation width W2. Further, the first phase difference P1 and the second phase difference P2 are also collectively referred to as phase differences P1 and P2.
In FIG. 1A, the optical axis AX intersects the injection surface 12 in the first region Z1, that is, the first region Z1 intersects the optical axis AX. The first region Z1 may be the central region of the intraocular lens including the reference point (eg, the optical axis AX, the center point) of the intraocular lens 10.
In the first embodiment, the first phase difference P1 and the second phase difference P2 are continuous and have a minimum value at the boundary BL between the first region Z1 and the first region Z2.
 第1領域Z1および第2領域Z2を通る光線は、角膜30、眼内レンズ10、および硝子体32等の屈折作用により、網膜33上の黄斑35上に像を形成する。
 第1実施形態の眼内レンズ10は、仮に第1位相差P1および第2位相差P2を0としたときの無収差結像光線が、眼球100から66[cm]離れた物体の像を無収差で黄斑35上に結像するように設定されている。これは、公知の方法により眼内レンズ10の入射面11および基準面13の形状や配置を最適化することによりなされている。
The light rays passing through the first region Z1 and the second region Z2 form an image on the macula 35 on the retina 33 by the refraction action of the cornea 30, the intraocular lens 10, the vitreous body 32 and the like.
In the intraocular lens 10 of the first embodiment, the aberration-free imaging light beam when the first phase difference P1 and the second phase difference P2 are set to 0 does not have an image of an object 66 [cm] away from the eyeball 100. It is set to form an image on the macula 35 due to aberration. This is done by optimizing the shapes and arrangements of the incident surface 11 and the reference surface 13 of the intraocular lens 10 by a known method.
 第1実施形態においては、射出面12の高さを光軸AXからの距離rに応じて変化させることにより、第1領域Z1を通過する光線および第2領域Z2を透過する光線に、それぞれ位相差(収差)を付加している。
 第1領域Z1における射出面12の高さHにより眼内レンズ10を透過する光線に付加される第1位相差P1は、一例として、光軸からの距離rに対するガウス関数に従った量である。
 あるいは、第1位相差P1は、光軸からの距離rに対するsinc関数またはsinc関数の「べき乗」で表される関数に従う量であっても良い。 
In the first embodiment, by changing the height of the injection surface 12 according to the distance r from the optical axis AX, the light rays passing through the first region Z1 and the light rays passing through the second region Z2 are positioned respectively. A phase difference (aberration) is added.
The first phase difference P1 added to the light beam passing through the intraocular lens 10 by the height H of the ejection surface 12 in the first region Z1 is, for example, an amount according to the Gaussian function with respect to the distance r from the optical axis. ..
Alternatively, the first phase difference P1 may be a quantity according to the sinc function with respect to the distance r from the optical axis or a function represented by the "power" of the sinc function.
 また、第1位相差P1は、上述のガウス関数やsin関数に基づく関数に、さらに別の関数を加えたものであっても良い。すなわち、第1位相差P1は、ガウス関数やsinc関数に基づく関数を含むものであっても良い。
 第1位相差P1、すなわち第1領域Z1における射出面12の高さHの形状を、数学的に取り扱いの容易なガウス関数やsinc関数に基づく形状とすることで、高さHの形状の設計や製造が容易になる。
Further, the first phase difference P1 may be a function based on the Gaussian function or the sin function described above, to which another function is added. That is, the first phase difference P1 may include a function based on a Gaussian function or a sinc function.
The shape of the height H is designed by making the shape of the height H of the injection surface 12 in the first phase difference P1, that is, the first region Z1 a shape based on the Gaussian function and the sinc function that are mathematically easy to handle. And easy to manufacture.
 第2領域Z2を透過する光線に付加される第2位相差P2は、一例として、光軸からの距離r、任意の定数a、任意の定数bおよび任意の定数cを用いて表される式(1)、
   P2 = c×sin(ar-b)  ・・・(1)
で表されるものである。
 ここで、定数aは、第2位相差P2の光軸AXからの距離rに対する増減の周期に関する定数であり、光軸AXからの距離rの単位を[mm]とするとき、一例として 11.5[rad/mm]であり、6[rad/mm]以上かつ14[rad/mm]以下の数値であることが好ましい。
The second phase difference P2 added to the light ray passing through the second region Z2 is expressed by using, for example, a distance r from the optical axis, an arbitrary constant a, an arbitrary constant b, and an arbitrary constant c. (1),
P2 = c × sin (ar 2 -b) ··· (1)
It is represented by.
Here, the constant a is a constant relating to the cycle of increase / decrease with respect to the distance r from the optical axis AX of the second phase difference P2, and when the unit of the distance r from the optical axis AX is [mm], 11.5 [ It is rad / mm 2 ], and is preferably a value of 6 [rad / mm 2 ] or more and 14 [rad / mm 2 ] or less.
 定数bは、第2位相差P2の光軸AXからの距離rに対する増減の位相に関する定数である。sin関数が周期関数であることから定数bには上限および下限はないが、定数bの値は、第1領域Z1と第2領域Z2との境界BLにおいて第1位相差P1と第2位相差P2とが連続となるように設定する。
 定数cは、一例として、1.08[rad] である。
 定数aの値、および定数cの値の詳細については、後述する。
 なお、第2領域Z2における第2位相差P2は、式(1)の関数に、さらに別の関数を加えたものであっても良い。すなわち、第2領域Z2における第2位相差P2は、式(1)の関数を含むものであっても良い。
The constant b is a constant relating to the phase of increase / decrease with respect to the distance r of the second phase difference P2 from the optical axis AX. Since the sine function is a periodic function, the constant b has no upper and lower limits, but the value of the constant b is the first phase difference P1 and the second phase difference at the boundary BL between the first region Z1 and the second region Z2. Set so that P2 and P2 are continuous.
The constant c is, for example, 1.08 [rad].
The details of the value of the constant a and the value of the constant c will be described later.
The second phase difference P2 in the second region Z2 may be a function of the equation (1) plus another function. That is, the second phase difference P2 in the second region Z2 may include the function of the equation (1).
 第1領域Z1を通過する光線に付加される第1位相差の最大値は、光軸AXを通過する光線に対して付加される量であり、+3.97[rad]である。一方、第1位相差の最小値は、光軸AXからの距離rがr1の位置を通過する光線に対して付加される量であり、-0.72[rad] である。よって、第1位相差の最大値と最小値の差である変動幅W1は、4.69[rad]である。 The maximum value of the first phase difference added to the light ray passing through the first region Z1 is the amount added to the light ray passing through the optical axis AX, which is +3.97 [rad]. On the other hand, the minimum value of the first phase difference is an amount in which the distance r from the optical axis AX is added to the light ray passing through the position of r1, and is -0.72 [rad]. Therefore, the fluctuation width W1 which is the difference between the maximum value and the minimum value of the first phase difference is 4.69 [rad].
 第2領域Z2を通過する光線に付加される第2位相差の変動幅W2は、第2領域Z2内の第2位相差P2の最小値の-1.08[rad]から最大値の 1.26[rad]までの、2.34[rad] である。
 すなわち、第1実施形態においては、第1位相差の変動幅W1を、第2位相差の変動幅W2の約2倍の大きさに設定している。
The fluctuation width W2 of the second phase difference applied to the light rays passing through the second region Z2 is from the minimum value of -1.08 [rad] of the second phase difference P2 in the second region Z2 to the maximum value of 1.26 [rad]. Up to 2.34 [rad].
That is, in the first embodiment, the fluctuation width W1 of the first phase difference is set to be about twice as large as the fluctuation width W2 of the second phase difference.
 第1実施形態の眼内レンズ10は、結像光線に上記の位相差P1、P2を付加したことにより、角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系の焦点深度を増大することができる。
 焦点深度の増大は、1つには、第2領域Z2が透過光に付加する第2位相差P2が光軸AXからの距離rに応じて略周期的に増減することにより生じる多重焦点フィルタ効果による。すなわち、第1実施形態の眼内レンズ10は、第2領域Z2を通通る複数の光線(光束)を複数の光束に波面分割する。そして、波面分割された複数の光束(-1次回折光、0次回折光、および+1次回折光)には、それぞれ0ディオプトリ、+1.5ディオプトリ、+3ディオプトリの屈折力(加入度)が付加される。
The intraocular lens 10 of the first embodiment is the focal point of the optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32 by adding the above phase differences P1 and P2 to the imaging light beam. The depth can be increased.
The increase in the depth of focus is partly due to the multifocal filter effect caused by the second phase difference P2 added to the transmitted light by the second region Z2 increasing or decreasing substantially periodically according to the distance r from the optical axis AX. by. That is, the intraocular lens 10 of the first embodiment divides a plurality of light rays (luminous flux) passing through the second region Z2 into a plurality of light fluxes. Then, the refractive powers (addition degree) of 0 diopter, +1.5 diopter, and +3 diopter are added to the plurality of luminous fluxes (-1st order diffracted light, 0th order diffracted light, and + 1st order diffracted light) divided into wave planes, respectively.
 さらに、第1実施形態の眼内レンズ10は、第1位相差P1の変動幅W1が、第2位相差P2の変動幅W2の約2倍と大きいため、第1領域Z1を透過した複数の光線(光束)には、第1位相差P1による焦点深度拡大効果が付加される。
 この結果、第1実施形態の眼内レンズ10は、第2領域Z2を透過した複数の光線による多重焦点効果と、第1領域Z1を透過した複数の光線による焦点深度拡大効果とが相俟って、焦点深度を一層拡大することができる。
Further, in the intraocular lens 10 of the first embodiment, since the fluctuation width W1 of the first phase difference P1 is as large as about twice the fluctuation width W2 of the second phase difference P2, a plurality of lenses that have passed through the first region Z1. The depth of focus expansion effect due to the first phase difference P1 is added to the light beam (luminous flux).
As a result, in the intraocular lens 10 of the first embodiment, the multifocal effect by the plurality of light rays transmitted through the second region Z2 and the depth of focus expansion effect by the plurality of light rays transmitted through the first region Z1 are combined. Therefore, the depth of focus can be further expanded.
 図3(b)は、第1実施形態の眼内レンズ10が装填された眼球100(角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系)において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数(例、約50[LP/mm])でのMTF(Modulation Transfer Function)の、各ディオプトリにおけるシミュレーション結果を示すグラフである。 FIG. 3B shows an imaging point 34 in the eyeball 100 (an optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32) loaded with the intraocular lens 10 of the first embodiment. It is a graph which shows the simulation result in each diopter of the MTF (Modulation Transfer Function) at a predetermined spatial frequency (eg, about 50 [LP / mm]) of the image formed on the retina 33 in the vicinity.
 シミュレーションは、2008年にHerbert Grossにより編纂された「Handbook of Optical Systems: Vol. 4 Survey of Optical Instruments」(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)の第36章第4節に開示される、Navarroモデルに基づくものである。
 すなわち、上記のNavarroモデルによる焦点距離の光学系(角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系)を想定し、その光学系を通過する各結像光線に図3(a)に示した位相差P1、P2を付加して、シミュレーションを行った。
The simulation is disclosed in Chapter 36, Section 4 of "Handbook of Optical Systems: Vol. 4 Survey of Optical Instruments" (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) compiled by Herbert Gross in 2008. , Based on the Navarro model.
That is, assuming an optical system with a focal length based on the Navarro model (an optical system including a cornea 30, anterior chamber 31, intraocular lens 10, and vitreous body 32), each imaging ray passing through the optical system is shown in the figure. The simulation was performed by adding the phase differences P1 and P2 shown in 3 (a).
 図3(b)は、瞳径(虹彩36の開口部の直径)が3mm、4mm、6mmの場合の3通りの、MTFを示している。なお、人間の眼球100の瞳径は、明るい環境下において3~4mm程度、暗い環境下において6mm程度である。
 グラフの縦軸は、網膜33上の像の空間周波数成分(例、約50[LP/mm])の変調伝達率(MTF)を表し、横軸は、中心線EX方向へのデフォーカス量(中心線EX方向へ物体を移動させた場合のデフォーカス量)をディオプトリ[1/m]単位で表している。例えば、無限遠方の物体の像が横軸上の0ディオプトリの位置に形成されるとき、眼球100から1m離れた物体の像は、横軸上の+1ディオプトリの位置に形成される。
FIG. 3B shows three types of MTFs when the pupil diameter (diameter of the opening of the iris 36) is 3 mm, 4 mm, and 6 mm. The pupil diameter of the human eyeball 100 is about 3 to 4 mm in a bright environment and about 6 mm in a dark environment.
The vertical axis of the graph represents the modulation transfer rate (MTF) of the spatial frequency component (eg, about 50 [LP / mm]) of the image on the retina 33, and the horizontal axis represents the amount of defocus in the center line EX direction (eg, about 50 [LP / mm]). The amount of defocus when the object is moved in the center line EX direction) is expressed in diopter [1 / m] units. For example, when an image of an object at infinity is formed at a position of 0 diopters on the horizontal axis, an image of an object 1 m away from the eyeball 100 is formed at a position of +1 dioptre on the horizontal axis.
 一方、図11(a)は、比較例として、従来の単焦点型の眼内レンズを眼球に装着した場合のMTFを示す図である。シミュレーションに用いた瞳径および網膜33上の像の空間周波数数は図3(b)の場合と同じである。
 図3(b)と図11(a)とを比較すると、本実施形態の眼内レンズ10は、従来の単焦点型の眼内レンズに対して、各瞳径において、特に0、+1.5、および+3ディオプトリのフォーカス位置においてMTFの値を高くできる。すなわち、眼球100に装着される本実施形態の眼内レンズ10により眼球100の焦点深度が拡大されることが判る。
 本実施形態の眼内レンズ10のMTFは、無限遠(0ディオプトリ)の物体に対して良像が得られるとともに、+1.5および+3ディオプトリに対応する、眼球に対して66cmおよび33cm程度の距離にある物体に対しても良像が得られる。
On the other hand, FIG. 11A is a diagram showing an MTF when a conventional single focus type intraocular lens is attached to the eyeball as a comparative example. The pupil diameter used in the simulation and the number of spatial frequencies of the image on the retina 33 are the same as in FIG. 3 (b).
Comparing FIG. 3 (b) and FIG. 11 (a), the intraocular lens 10 of the present embodiment is 0, +1.5 in each pupil diameter as compared with the conventional single focus type intraocular lens. , And the MTF value can be increased at the focus position of +3 diopters. That is, it can be seen that the depth of focus of the eyeball 100 is expanded by the intraocular lens 10 of the present embodiment attached to the eyeball 100.
The MTF of the intraocular lens 10 of the present embodiment can obtain a good image for an object at infinity (0 diopter) and has a distance of about 66 cm and 33 cm with respect to the eyeball corresponding to +1.5 and +3 diopters. A good image can also be obtained for an object in.
 図11(b)は、比較例として、従来の2重焦点型の眼内レンズを眼球に装着した場合のMTFを示す図である。シミュレーションに用いた瞳径および網膜33上の像の空間周波数数は図3(b)の場合と同じである。
 従来の2重焦点型の眼内レンズにおいても、特に0および+2ディオプトリのデフォーカス位置においてMTFの値を高くできるが、その間の例えば+1ディオプトリのデフォーカス位置でのMTFの値は低い。
FIG. 11B is a diagram showing an MTF when a conventional bifocal intraocular lens is attached to the eyeball as a comparative example. The pupil diameter used in the simulation and the number of spatial frequencies of the image on the retina 33 are the same as in FIG. 3 (b).
Even in the conventional double focus type intraocular lens, the MTF value can be increased especially at the defocus position of 0 and +2 diopters, but the MTF value at the defocus position of +1 diopter in the meantime is low.
 これに対して、本実施形態の眼内レンズ10は、図3(b)に示したとおり、特に瞳径が3mmの場合、上述の0、+1.5および+3の各ディオプトリの各間の、+0.75、および+2.2ディオプトリのフォーカス位置においても、MTFの値を高くできる。さらに、+4ディオプトリのフォーカス位置においても、MTFの値を高くできる。これは、上述の第1位相差P1が付加されたことによる焦点深度拡大効果によるものである。
 瞳径が3mmとは、概ね日中の室外等の明るい場所における瞳径であるので、本実施形態の眼内レンズ10は、明るい場所においては、眼球から25cm程度の近距離から無限遠までの広範囲の物体に対して良像が得られる。
On the other hand, in the intraocular lens 10 of the present embodiment, as shown in FIG. 3 (b), particularly when the pupil diameter is 3 mm, between each of the above-mentioned 0, +1.5 and +3 diopters. The MTF value can also be increased at the focus positions of +0.75 and +2.2 diopters. Further, the MTF value can be increased even at the focus position of +4 diopter. This is due to the effect of expanding the depth of focus due to the addition of the first phase difference P1 described above.
Since the pupil diameter of 3 mm is the pupil diameter in a bright place such as outdoors in the daytime, the intraocular lens 10 of the present embodiment is used in a bright place from a short distance of about 25 cm from the eyeball to infinity. A good image can be obtained for a wide range of objects.
 上記の例では、第1領域Z1のうち、光軸AXの近傍を通る光線と、第2領域Z2との境界BLの近傍を通る光線との間には、上述のとおり、第1位相差の最大値と最小値の差である4.69[rad]の位相差(第1位相差P1)が付加されている。ただし、この位相差は上述の4.69[rad]程度の値に限られる訳でなく、2[rad]以上の位相差又は3[rad]以上の位相差であれば、上述の焦点深度拡大効果を得ることができる。 In the above example, in the first region Z1, between the light ray passing near the optical axis AX and the light ray passing near the boundary BL with the second region Z2, as described above, there is a first phase difference. A phase difference (first phase difference P1) of 4.69 [rad], which is the difference between the maximum value and the minimum value, is added. However, this phase difference is not limited to the above-mentioned value of about 4.69 [rad], and if the phase difference is 2 [rad] or more or 3 [rad] or more, the above-mentioned depth of focus expansion effect can be obtained. Obtainable.
 なお、上記の例では、第1位相差P1の変動幅W1は、第2位相差P2の変動幅W2の2倍としたが、第1位相差P1の変動幅W1が第2位相差P2の変動幅W2の1.5倍以上であれば、第1位相差P1による大きな焦点深度拡大効果を得ることができる。
 また、本実施形態において、第1位相差P1の変動幅W1が第2位相差P2の変動幅W2の1.1倍以上であれば、実用的に十分な焦点深度拡大効果を得ることができる。
In the above example, the fluctuation width W1 of the first phase difference P1 is twice the fluctuation width W2 of the second phase difference P2, but the fluctuation width W1 of the first phase difference P1 is the second phase difference P2. If the fluctuation width is 1.5 times or more of W2, a large depth of focus expansion effect due to the first phase difference P1 can be obtained.
Further, in the present embodiment, if the fluctuation width W1 of the first phase difference P1 is 1.1 times or more the fluctuation width W2 of the second phase difference P2, a practically sufficient depth of focus expansion effect can be obtained. ..
 なお、瞳径が3mmの場合において、第2位相差P2による多重焦点効果と第1位相差P1による焦点深度拡大効果とを共に得るためには、3mmの瞳径の内側に、第1領域Z1と第2領域Z2とが適度な面積比で存在している必要がある。
 このためには、第1領域Z1と第2領域Z2との境界BLでの光軸AXからの距離r1は0.4mm以上、かつ0.8mm以下であることが好ましい。距離r1が0.4mmより小さいと第1領域Z1の面積小さくなり、十分な焦点深度拡大効果を得ることができなくなる。一方、距離r1が0.8mmより大きくなると第2領域Z2の面積が小さくなり、十分な多重焦点効果を得ることができなくなる。
When the pupil diameter is 3 mm, in order to obtain both the multiplex focus effect due to the second phase difference P2 and the depth of focus expansion effect due to the first phase difference P1, the first region Z1 is located inside the pupil diameter of 3 mm. And the second region Z2 need to exist in an appropriate area ratio.
For this purpose, the distance r1 from the optical axis AX at the boundary BL between the first region Z1 and the second region Z2 is preferably 0.4 mm or more and 0.8 mm or less. If the distance r1 is smaller than 0.4 mm, the area of the first region Z1 becomes smaller, and a sufficient depth of focus expansion effect cannot be obtained. On the other hand, when the distance r1 is larger than 0.8 mm, the area of the second region Z2 becomes small, and it becomes impossible to obtain a sufficient multiplex effect.
 上述の式(1)における定数aの値は、式(1)のsin関数の周期に相当する量を決定するパラメーターであり、従って、第2領域Z2が形成する上述の多重焦点フィルタの屈折力を決定するパラメーターとなる。
 なお、第2領域Z2が付加する第2位相差P2の増減は、式(1)のsin関数による形状に限るわけではなく、他の形状であっても良い。
The value of the constant a in the above equation (1) is a parameter that determines the amount corresponding to the period of the sin function in the equation (1), and therefore, the refractive power of the above-mentioned multifocal filter formed by the second region Z2. It becomes a parameter that determines.
The increase / decrease of the second phase difference P2 added by the second region Z2 is not limited to the shape by the sin function of the equation (1), and may be another shape.
 ただし、いずれの場合であっても、第2位相差P2の増減の周期は、光軸AXからの距離rが1mmから1.5mmまでの範囲において、0.2mm以上、かつ0.5mm以下としても良い。
 距離rが上記の範囲において、増減の周期を上記の範囲とすることで、第2領域Z2から発生する回折光に、適当な屈折力(加入度)を付加することができ、適切な多重焦点効果を発揮させることができる。
However, in any case, the cycle of increase / decrease of the second phase difference P2 shall be 0.2 mm or more and 0.5 mm or less in the range where the distance r from the optical axis AX is from 1 mm to 1.5 mm. Is also good.
When the distance r is in the above range and the period of increase / decrease is in the above range, an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and an appropriate multiplex focus can be applied. It can be effective.
 さらに、第2位相差P2の増減の周期は、光軸AXからの距離が1mmから2.5mmの範囲において、0.1mm以上、かつ0.5mm以下としても良い。
 距離rが上記の範囲において、増減の周期を上記の範囲とすることで、第2領域Z2から発生する回折光に、適当な屈折力(加入度)を付加することができ、さらに適切な多重焦点効果を発揮させることができる。
Further, the cycle of increase / decrease of the second phase difference P2 may be 0.1 mm or more and 0.5 mm or less in the range of the distance from the optical axis AX from 1 mm to 2.5 mm.
When the distance r is in the above range and the period of increase / decrease is in the above range, an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and more appropriate multiplexing can be performed. The focus effect can be exerted.
 上述の式(1)における定数cの値は、多重焦点フィルタの回折効率を決定するパラメーターとなる。第2位相差P2の増減が、式(1)のsin関数に従うとき、定数cの値が 1.45[rad]であると、第2領域Z2が形成する多重焦点フィルタから波面分割される-1次光、0次光、および+1次光の3つの回折光の光量が概ね等しくなる。従って、定数cの値は、-1次光、0次光、および+1次光の光量のバランスを考慮して、0.75~1.75[rad]の値であることが好ましい。
 定数cが上記の範囲であるとき、第2位相差P2の変動幅W2(最大値-最小値)は、概ね1.5~3.5[rad]となる。
The value of the constant c in the above equation (1) is a parameter that determines the diffraction efficiency of the multifocal filter. When the increase / decrease of the second phase difference P2 follows the sin function of the equation (1), if the value of the constant c is 1.45 [rad], the wave plane is divided from the multifocal filter formed by the second region Z2. The light amounts of the three diffracted lights of light, 0th-order light, and + 1st-order light are approximately equal. Therefore, the value of the constant c is preferably a value of 0.75 to 1.75 [rad] in consideration of the balance of the amount of light of the -1st order light, the 0th order light, and the +1st order light.
When the constant c is in the above range, the fluctuation width W2 (maximum value-minimum value) of the second phase difference P2 is approximately 1.5 to 3.5 [rad].
 上述のように、第2位相差P2の増減は、式(1)のsin関数に限るわけではなく、他の関数に基づくものであっても良い。その場合であっても、第2領域Z2における第2位相差P2の変動幅W2は、光軸AXからの距離rが1mmから1.5mmの範囲においては、1.5[rad]以上、かつ3.5[rad]以下であることが好ましい。
 距離rが上記の範囲において、第2位相差P2の変動幅W2を上記の範囲とすることで、第2領域Z2から発生する-1次回折光、0次光回折光、および+1次回折光の光量のバランスを適当な値に設定し、多重焦点効果を効果的に発揮させることができる。
As described above, the increase / decrease of the second phase difference P2 is not limited to the sin function of the equation (1), and may be based on another function. Even in that case, the fluctuation width W2 of the second phase difference P2 in the second region Z2 is 1.5 [rad] or more and 1.5 [rad] or more in the range where the distance r from the optical axis AX is 1 mm to 1.5 mm. It is preferably 3.5 [rad] or less.
When the distance r is in the above range and the fluctuation width W2 of the second phase difference P2 is in the above range, the amount of light of the -1st order diffracted light, the 0th order light diffracted light, and the +1st order diffracted light generated from the second region Z2. The balance of can be set to an appropriate value to effectively exert the multifocal effect.
 さらに、第2領域Z2における第2位相差P2の変動幅W2は、光軸AXからの距離rが1mmから2.5mmの範囲においては、1.5[rad]以上、かつ3.5[rad]以下であることが好ましい。
 距離rが上記の範囲において、第2位相差P2の変動幅W2を上記の範囲とすることで、第2領域Z2から発生する-1次回折光、0次光回折光、および+1次回折光の光量のバランスを適当な値に設定し、多重焦点効果を一層効果的に発揮させることができる。
Further, the fluctuation width W2 of the second phase difference P2 in the second region Z2 is 1.5 [rad] or more and 3.5 [rad] or more in the range where the distance r from the optical axis AX is 1 mm to 2.5 mm. ] The following is preferable.
When the distance r is in the above range and the fluctuation width W2 of the second phase difference P2 is in the above range, the amount of light of the -1st order diffracted light, the 0th order light diffracted light, and the +1st order diffracted light generated from the second region Z2. The balance of can be set to an appropriate value to make the multifocal effect more effective.
 なお、眼内レンズ10の入射面11および基準面13の形状は、球面ではなく楕円面、偏球面、双曲面または放物面等のいわゆる非球面であっても良く、さらに凹面または凸面のいずれであっても良く、または平面であっても良い。
 また、上記の凹凸形状は、射出面12ではなく、入射面11に形成されていても良く、入射面11と射出面12の両方に形成されていても良い。
The shape of the incident surface 11 and the reference surface 13 of the intraocular lens 10 may be a so-called aspherical surface such as an ellipsoidal surface, an eccentric surface, a hyperboloid or a paraboloid, instead of a spherical surface, and may be a concave surface or a convex surface. It may be flat or flat.
Further, the uneven shape may be formed on the incident surface 11 instead of the injection surface 12, or may be formed on both the incident surface 11 and the injection surface 12.
 眼内レンズ10は、例えば、アクリル樹脂材料(例えばアクリレートとメタクリレートとの共重合体)、ハイドロゲル、またはシリコーンからなる。また、眼科用レンズ(例、眼内レンズ10)は、折り畳み可能な柔軟な材料(例、アクリル樹脂材料、シリコーン)で構成される軟性レンズであっても良く、硬質の材料からなるレンズであっても良い。
 眼内レンズ10を構成する材料の屈折率は、上述の1.494に限らず、他の値であっても良い。
The intraocular lens 10 is made of, for example, an acrylic resin material (for example, a copolymer of acrylate and methacrylate), hydrogel, or silicone. Further, the ophthalmic lens (eg, intraocular lens 10) may be a flexible lens made of a foldable flexible material (eg, acrylic resin material, silicone), and is a lens made of a hard material. You may.
The refractive index of the material constituting the intraocular lens 10 is not limited to 1.494 described above, and may be any other value.
(変形例1)
 図4(a)は、変形例1の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例1の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
(Modification example 1)
FIG. 4A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging ray by the ejection surface 12 of the intraocular lens 10 of the modification 1 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the first modification is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
 変形例1の眼内レンズ10では、射出面12の第2領域Z2おいて、光軸AXからの距離rの増加に応じて第2位相差P2が増加する部分ではその変化が緩やかであり、距離rの増加に応じて第2位相差P2が減少する部分ではその変化が急峻になるように設定されている。換言すれば、第2位相差P2は、特に、光軸から1.2mm以上離れた周辺領域において、1つの極大値または極小値の近傍における変化量(距離rに対する微分量)が、光軸側と光軸側とは反対側とで非対称である。
 射出面12の上記の形状により、変形例1の眼内レンズ10では、第2領域Z2から波面分割されて生成される-1次回折光の光量を、+1次回折光の光量より多くすることができる。
In the intraocular lens 10 of the first modification, the change is gradual in the second region Z2 of the injection surface 12 where the second phase difference P2 increases as the distance r from the optical axis AX increases. The change is set to be steep at the portion where the second phase difference P2 decreases as the distance r increases. In other words, the second phase difference P2 has a change amount (differential amount with respect to the distance r) in the vicinity of one maximum value or a minimum value, particularly in the peripheral region 1.2 mm or more away from the optical axis, with respect to the optical axis side. It is asymmetrical on the side opposite to the optical axis side.
Due to the above-mentioned shape of the injection surface 12, in the intraocular lens 10 of the first modification, the amount of -1st-order diffracted light generated by dividing the wave surface from the second region Z2 can be made larger than the amount of +1-order diffracted light. ..
 第2領域Z2が透過光に付加する第2位相差P2は、一例として以下の式(2)で表される。
   P2 = c×sin(ar-b)
       +d×sin(2ar-b)  ・・・(2)
 式(2)の右辺の第1項は、式(1)の右辺と同一である。式(2)の右辺の第2項は、式(1)のsin関数のいわゆる2倍周波を表す項であり、定数dの値は、上述の定数cの値の-0.1倍から-0.4倍程度の値である。
 第2位相差P2は、式(2)にさらに、上記sin関数の3倍周波、4倍周波および5倍周波を加算したものであっても良い。
The second phase difference P2 added to the transmitted light by the second region Z2 is represented by the following equation (2) as an example.
P2 = c × sin (ar 2 -b)
+ D × sin (2ar 2- b) ・ ・ ・ (2)
The first term on the right side of the equation (2) is the same as the right side of the equation (1). The second term on the right side of equation (2) is a term representing the so-called double frequency of the sin function of equation (1), and the value of the constant d is -0.1 to -0.4 times the value of the above constant c. It is a value of degree.
The second phase difference P2 may be obtained by further adding the 3 times frequency, 4 times frequency, and 5 times frequency of the above sine function to the equation (2).
 図4(b)は、変形例1の眼内レンズ10が装填された眼球100(角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系)において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数(例、約50[LP/mm])でのMTF(Modulation Transfer Function)の、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。 FIG. 4B shows the vicinity of the imaging point 34 in the eyeball 100 (an optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32) loaded with the intraocular lens 10 of the first modification. It is a graph which shows the simulation result in each diopter of the MTF (Modulation Transfer Function) at a predetermined spatial frequency (eg, about 50 [LP / mm]) of the image formed on the retina 33 of the above. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
 変形例1の眼内レンズ10においては、上述のとおり、第2領域Z2から波面分割されて生成される-1次回折光の光量が、+1次回折光の光量より多くなるように設定されている。従って、-1次回折光の焦点に相当する0ディオプトリ(無限遠の物体)の焦点位置におけるMTFを、+1次回折光の焦点に相当する+3ディオプトリ(眼球100から33[cm]離れた物体)の焦点位置におけるMTFよりも、高くすることができる。この効果は、第2領域Z2を透過する光線がより多く含まれる瞳径4mm以上の場合においてより顕著に表れる。
 なお、図3(b)に示した第1実施形態の眼内レンズ10と同様に、瞳径3mmの場合に、+0.75、および+2.2ディオプトリのフォーカス位置においても、MTFの値を高くできる。
In the intraocular lens 10 of the first modification, as described above, the amount of -1st-order diffracted light generated by dividing the wave plane from the second region Z2 is set to be larger than the amount of +1st-order diffracted light. Therefore, the MTF at the focal position of 0 diopter (object at infinity) corresponding to the focal point of -1st order diffracted light is the focal point of +3 diopter (object 33 [cm] away from the eyeball 100) corresponding to the focal point of +1st order diffracted light. It can be higher than the MTF at the position. This effect is more pronounced when the pupil diameter is 4 mm or more, which includes more light rays passing through the second region Z2.
Similar to the intraocular lens 10 of the first embodiment shown in FIG. 3 (b), when the pupil diameter is 3 mm, the MTF value is increased even at the focus positions of +0.75 and +2.2 diopters. it can.
 変形例1の眼内レンズ10の第2位相差P2は、必ずしも、式(2)に従うものである必要はない。ただし、第2領域Z2が付加する第2位相差P2が、式(2)の右辺の第2項の成分を含むことにより、第2領域Z2から発生する-1次回折光と+1次回折光の光量の比を変更することができる。これにより、より遠景を重視した眼内レンズ10や、より近景を重視した眼内レンズ10を実現することができる。 The second phase difference P2 of the intraocular lens 10 of the modification 1 does not necessarily have to follow the equation (2). However, since the second phase difference P2 added by the second region Z2 contains the component of the second term on the right side of the equation (2), the amount of light of the -1st order diffracted light and the +1st order diffracted light generated from the second region Z2. The ratio of can be changed. As a result, it is possible to realize an intraocular lens 10 that emphasizes a distant view and an intraocular lens 10 that emphasizes a closer view.
(変形例2)
 図5(a)は、変形例2の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例2の眼内レンズ10の構成は、上述の変形例1の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例1との差異点についてのみ説明を行う。
(Modification 2)
FIG. 5A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 2 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modification 2 is almost the same as the configuration of the intraocular lens 10 of the modification 1 described above, only the differences from the modification 1 described above will be described below.
 変形例2の眼内レンズ10では、射出面12の第2領域Z2おいて、光軸AXからの距離rが1から1.5mmの範囲における第2位相差P2の変動幅W21よりも、距離rが2から2.5mmの範囲における第2位相差P2の変動幅W22の方が大きい。
 すなわち、変形例2の眼内レンズ10では、瞳径が4mmを超える場合に、変形例1の眼内レンズ10よりも、より大きな多重焦点効果を発揮する。
In the intraocular lens 10 of the second modification, in the second region Z2 of the injection surface 12, the distance r from the optical axis AX is larger than the fluctuation width W21 of the second phase difference P2 in the range of 1 to 1.5 mm. The fluctuation width W22 of the second phase difference P2 in the range where r is 2 to 2.5 mm is larger.
That is, the intraocular lens 10 of the modified example 2 exhibits a larger multiplex effect than the intraocular lens 10 of the modified example 1 when the pupil diameter exceeds 4 mm.
 図5(b)は、変形例2の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。 FIG. 5B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the second modification. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
 変形例2の眼内レンズ10においては、図4(b)に示した変形例1の眼内レンズ10に比べ、瞳径が6mmの場合(4mmを超える場合)に、0ディオプトリおよび+3ディオプトリに相当するフォーカス位置でのMTFが高まっている。すなわち、瞳径が4mmを超える場合に、より大きな多重焦点効果を発揮している。
 これは例えば、瞳径が4mmを超えて開く環境、すなわち室内や夕暮れ時等のやや暗めの環境下において、遠景と近景を重視する必要がある場合の眼内レンズ10に適している。
In the intraocular lens 10 of the modified example 2, compared to the intraocular lens 10 of the modified example 1 shown in FIG. 4 (b), when the pupil diameter is 6 mm (when it exceeds 4 mm), it becomes 0 diopter and +3 diopter. The MTF at the corresponding focus position is increasing. That is, when the pupil diameter exceeds 4 mm, a larger multiplex effect is exhibited.
This is suitable for, for example, the intraocular lens 10 when it is necessary to emphasize the distant view and the near view in an environment where the pupil diameter exceeds 4 mm, that is, in a slightly dark environment such as indoors or at dusk.
(変形例3)
 図6(a)は、変形例3の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例3の眼内レンズ10の構成は、上述の変形例1の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例1との差異点についてのみ説明を行う。
(Modification 3)
FIG. 6A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 3 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modification 3 is almost the same as the configuration of the intraocular lens 10 of the modification 1 described above, only the differences from the modification 1 described above will be described below.
 変形例3の眼内レンズ10では、射出面12の第2領域Z2おいて、光軸AXからの距離rが2から2.5mmの範囲における第2位相差P2の変動幅W22よりも、距離rが1から1.5mmの範囲における第2位相差P2の変動幅W21の方が大きい。
 すなわち、変形例2の眼内レンズ10では、瞳径が4mm以下の場合に、変形例1の眼内レンズ10よりも、より大きな多重焦点効果を発揮する。
In the intraocular lens 10 of the third modification, in the second region Z2 of the injection surface 12, the distance r from the optical axis AX is larger than the fluctuation width W22 of the second phase difference P2 in the range of 2 to 2.5 mm. The fluctuation width W21 of the second phase difference P2 in the range where r is 1 to 1.5 mm is larger.
That is, the intraocular lens 10 of the modified example 2 exhibits a larger multiplex effect than the intraocular lens 10 of the modified example 1 when the pupil diameter is 4 mm or less.
 図6(b)は、変形例2の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。 FIG. 6B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the second modification. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
 変形例3の眼内レンズ10においては、図4(b)に示した変形例1の眼内レンズ10に比べ、瞳径が4mm以下の場合に、0ディオプトリおよび+3ディオプトリに相当するフォーカス位置でのMTFが高まっている。すなわち、瞳径が4mm以下の場合に、より大きな多重焦点効果を発揮している。 In the intraocular lens 10 of the modified example 3, compared to the intraocular lens 10 of the modified example 1 shown in FIG. 4 (b), when the pupil diameter is 4 mm or less, the focus position corresponds to 0 diopter and +3 diopter. MTF is increasing. That is, when the pupil diameter is 4 mm or less, a larger multiplex effect is exhibited.
(変形例4)
 図7(a)は、変形例4の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例4の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
(Modification example 4)
FIG. 7A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 4 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modified example 4 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
 変形例4の眼内レンズ10では、第1位相差P1は、光軸AXからの距離rが増大するに連れて単調に減少し、位相差P1、P2は光軸AXからの距離rがr2(約0.4mm)となる位置において第1の極小値MP2をとる。光軸AXからの距離rがr2以上の領域では、第2位相差P2は、光軸AXからの距離rに応じて増減を繰り返すが、光軸AXからの距離rが2mm以上の領域では、第2位相差P2の変動幅W22は距離rの増大に伴って徐々に減少する。
 なお、光軸AXからの距離rが1から1.5mmの範囲における第2位相差P2の変動幅W21は、2.2[rad]程度である。
In the intraocular lens 10 of the modified example 4, the first phase difference P1 decreases monotonically as the distance r from the optical axis AX increases, and the phase differences P1 and P2 have a distance r from the optical axis AX r2. The first minimum value MP2 is taken at the position where (about 0.4 mm) is obtained. In the region where the distance r from the optical axis AX is r2 or more, the second phase difference P2 repeatedly increases and decreases according to the distance r from the optical axis AX, but in the region where the distance r from the optical axis AX is 2 mm or more, The fluctuation width W22 of the second phase difference P2 gradually decreases as the distance r increases.
The fluctuation width W21 of the second phase difference P2 in the range where the distance r from the optical axis AX is 1 to 1.5 mm is about 2.2 [rad].
 変形例4の眼内レンズ10では、第1実施形態および他の変形例に比べて、第2位相差P2の光軸AXからの距離rに対する増減の周期が短い。従って、第2領域Z2から発生する-1次回折光、および+1次回折光には、それぞれ-3.5ディオプトリ、および+3.5ディオプトリの屈折力(加入度)が付加される。 In the intraocular lens 10 of the modified example 4, the cycle of increase / decrease with respect to the distance r of the second phase difference P2 from the optical axis AX is shorter than that of the first embodiment and other modified examples. Therefore, the refractive powers (addition degree) of −3.5 diopters and +3.5 diopters are added to the -1st order diffracted light and the + 1st order diffracted light generated from the second region Z2, respectively.
 変形例4の眼内レンズ10においては、入射面11および基準面13の形状や配置は、位相差P1、P2が0であるとき、眼内レンズ10が装填されている眼球100が、眼球100から30[cm]離れた物体の像を無収差で黄斑35上に結像するように設定されている。従って、第2領域で-3.5ディオプトリの加入度が付加される-1次回折光については、ほぼ無限遠の物体の像が眼球100内の黄斑35上に結像することになる。 In the intraocular lens 10 of the modified example 4, the shapes and arrangements of the incident surface 11 and the reference surface 13 are such that when the phase differences P1 and P2 are 0, the eyeball 100 loaded with the intraocular lens 10 is the eyeball 100. It is set to form an image of an object 30 [cm] away from the macula 35 without aberration. Therefore, for the -1st order diffracted light to which the addition degree of −3.5 dioptres is added in the second region, an image of an object at almost infinity is formed on the macula 35 in the eyeball 100.
 また、変形例4の眼内レンズ10では、第2領域Z2内の光軸AXからの距離rが0.4から1mmの範囲において、光軸AXからの距離rの増加に応じて第2位相差P2が増加する部分ではその変化が急峻であり、距離rの増加に応じて第2位相差P2が減少する部分ではその変化が緩やかになるように設定されている。このような第2位相差P2の変化は、例えば、上述の式(2)において、定数dの値を、定数cの値の+0.1倍から+0.4倍程度の値に設定することにより得られる。 Further, in the intraocular lens 10 of the modified example 4, in the range where the distance r from the optical axis AX in the second region Z2 is in the range of 0.4 to 1 mm, the second position is increased according to the increase in the distance r from the optical axis AX. The change is steep in the portion where the phase difference P2 increases, and the change is set to be gradual in the portion where the second phase difference P2 decreases as the distance r increases. Such a change in the second phase difference P2 can be obtained, for example, by setting the value of the constant d to a value of about +0.1 to +0.4 times the value of the constant c in the above equation (2). ..
 これにより、変形例4の眼内レンズ10では、特に瞳径が小さい(4mm以下の場合に、第2領域Z2から発生する+1次光の光量が、-1次光の光量よりも多くなる。従って、ため、特に比較的明るい環境下において近景の解像に優れる眼内レンズ10を実現できる。 As a result, in the intraocular lens 10 of the modified example 4, the pupil diameter is particularly small (when the pupil diameter is 4 mm or less, the amount of +1st order light generated from the second region Z2 is larger than the amount of -1st order light. Therefore, it is possible to realize the intraocular lens 10 having excellent resolution of a near view, particularly in a relatively bright environment.
 図7(b)は、変形例4の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様であるが、図7(b)においては、瞳径が2mmの場合のMTFも示している。 FIG. 7B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 4. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those shown in FIG. 3 (b) above, but FIG. 7 (b) also shows the MTF when the pupil diameter is 2 mm.
 変形例4の眼内レンズ10においては、図7(b)に示した変形例1の眼内レンズ10に比べ、瞳径が4mm以下の場合に、0ディオプトリおよび+3ディオプトリに相当するフォーカス位置でのMTFが高まっている。すなわち、瞳径が4mm以下の場合に、より大きな多重焦点効果を発揮している。 In the intraocular lens 10 of the modified example 4, compared to the intraocular lens 10 of the modified example 1 shown in FIG. 7 (b), when the pupil diameter is 4 mm or less, the focus position corresponds to 0 diopter and +3 diopter. MTF is increasing. That is, when the pupil diameter is 4 mm or less, a larger multiplex effect is exhibited.
 上述の変形例2から変形例4までのように、第2領域を通過する光線に付加する第2位相差P2の変動幅W21、W22を、光軸AXからの距離に応じて増加または減少させることにより、第2位相差P2による多重焦点効果を、瞳径に応じて変化させることができる。これにより、周囲の明るさに応じて良好な像が得られる物体距離が変化する眼内レンズ10を実現することができる。 As in the above-mentioned modifications 2 to 4, the fluctuation widths W21 and W22 of the second phase difference P2 added to the light rays passing through the second region are increased or decreased according to the distance from the optical axis AX. As a result, the multifocal effect due to the second phase difference P2 can be changed according to the pupil diameter. This makes it possible to realize an intraocular lens 10 in which the object distance at which a good image can be obtained changes according to the brightness of the surroundings.
(変形例5)
 図8(a)は、変形例5の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例5の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
(Modification 5)
FIG. 8A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 5 and the distance from the optical axis AX. is there. Since the configuration of the intraocular lens 10 of the modified example 5 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
 変形例5の眼内レンズ10では、射出面12の第2領域Z2おいて、光軸AXからの距離rが約0.5mmから1.5mmの範囲における第2位相差P2の変動幅W21は、2.2[rad]程度である。しかし、光軸AXからの距離rが2から2.5mmの範囲における第2位相差P2の変動幅W22は、0.5[rad]以下である。
 従って、第2領域Z2の中の光軸AXからの距離rが2から2.5mmの範囲は、多重焦点効果をほとんど発揮しない。
In the intraocular lens 10 of the modified example 5, in the second region Z2 of the injection surface 12, the fluctuation width W21 of the second phase difference P2 in the range where the distance r from the optical axis AX is about 0.5 mm to 1.5 mm is , 2.2 [rad]. However, the fluctuation width W22 of the second phase difference P2 in the range where the distance r from the optical axis AX is 2 to 2.5 mm is 0.5 [rad] or less.
Therefore, in the range where the distance r from the optical axis AX in the second region Z2 is 2 to 2.5 mm, the multiplex effect is hardly exhibited.
 図8(b)は、変形例5の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。 FIG. 8B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 5. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
 変形例5の眼内レンズ10においては、上述のとおり、4mm程度以上の瞳径において多重焦点効果が弱まるため、0ディオプトリおよび+3ディオプトリでのMTFは低めの値となる。しかし、第2領域Z2からの0次回折光の焦点位置に相当する+1.5ディオプトリでのMTFを高くすることができる。
 すなわち、変形例5の眼内レンズ10は、第1実施形態および他の変形例の眼内レンズ10と同様に、焦点深度の拡大を実現しつつ、かつ、特に暗めの環境下において、眼球100から所定の距離(例えば66[cm]程度)にある近景を、良好に黄斑35上に結像させることができる。
In the intraocular lens 10 of the modified example 5, as described above, the multifocal effect is weakened at a pupil diameter of about 4 mm or more, so that the MTF at 0 diopter and +3 diopter becomes a low value. However, the MTF at +1.5 diopters, which corresponds to the focal position of the 0th order diffracted light from the second region Z2, can be increased.
That is, the intraocular lens 10 of the modified example 5, like the intraocular lens 10 of the first embodiment and other modified examples, realizes an expansion of the depth of focus, and the eyeball 100 is particularly in a dark environment. A near view at a predetermined distance (for example, about 66 [cm]) can be satisfactorily imaged on the macula 35.
 以上の第1実施形態および各変形例の眼内レンズ10においては、位相差P1、P2は光軸AXから距離rに応じて決まる、すなわち光軸AXに対して回転対称な形状を有するものとしている。しかし、角膜30の形状に起因する乱視の補正等のために、位相差P1、P2は必ずしも光軸AXに対して回転対称でなくても良い。 In the above first embodiment and the intraocular lens 10 of each modification, the phase differences P1 and P2 are determined according to the distance r from the optical axis AX, that is, they have a shape rotationally symmetric with respect to the optical axis AX. There is. However, the phase differences P1 and P2 do not necessarily have to be rotationally symmetric with respect to the optical axis AX in order to correct astigmatism caused by the shape of the cornea 30.
 例えば、位相差P1、P2は、光軸AXに対して2回対称な形状であっても良く、3回対称な形状であっても良い。この場合に、式(1)、式(2)に従って、第2位相差P2を決定するには、例えば、式(1)、式(2)中のrの値を、式(3)に示すr’で置き換えて第2位相差P2を決定すれば良い。
   r’=r×{1+g・sin(2θ-φ)} ・・・(3)
 ここで、gは、0以上かつ0.5以下程度の定数であり、θは上述のとおり射出面12上の任意の1点Qの方位角であり、φは任意の初期位相である。
 同様に、第1領域Z1が付加する第1位相差P1を、上述のように光軸AXからの距離rに対するがガウス関数あるいはsinc関数等の関数に基づいて決定する場合にも、それらの関数の引数として、距離rに代えて上記のr’を用いれば良い。
For example, the phase differences P1 and P2 may have a shape that is twice symmetrical with respect to the optical axis AX, or may have a shape that is three times symmetrical. In this case, in order to determine the second phase difference P2 according to the equations (1) and (2), for example, the value of r in the equations (1) and (2) is shown in the equation (3). The second phase difference P2 may be determined by replacing it with r'.
r'= r × {1 + g · sin (2θ-φ)} ・ ・ ・ (3)
Here, g is a constant of about 0 or more and 0.5 or less, θ is the azimuth angle of any one point Q on the injection surface 12 as described above, and φ is an arbitrary initial phase.
Similarly, when the first phase difference P1 added by the first region Z1 is determined based on a function such as a Gaussian function or a sinc function with respect to the distance r from the optical axis AX as described above, those functions are also used. As the argument of, the above r'may be used instead of the distance r.
 (変形例6)
 図9(a)は、変形例6の眼内レンズ10aの上面図を示す図である。
 上述の第1実施形態および各変形例においては、第1領域Z1は、眼内レンズ10aの光軸AXを中心とする領域であったが、変形例6の眼内レンズ10aにおいては、境界BLで囲まれている第1領域Z1の中心は、光軸AXから偏心した位置にある。従って、境界BL上のそれぞれの点までは、光軸AXから等距離ではない。
(Modification 6)
FIG. 9A is a top view of the intraocular lens 10a of the modified example 6.
In the above-described first embodiment and each modification, the first region Z1 is a region centered on the optical axis AX of the intraocular lens 10a, but in the intraocular lens 10a of the modification 6, the boundary BL The center of the first region Z1 surrounded by is eccentric from the optical axis AX. Therefore, each point on the boundary BL is not equidistant from the optical axis AX.
 (変形例7)
 図9(b)は、変形例7の眼内レンズ10bの上面図を示す図である。変形例7の眼内レンズ10bにおいても、境界BLで囲まれている第1領域Z1の中心は、光軸AXから偏心した位置にあり、さらに、光軸AXは第1領域Z1とは交差していない。
 このような変形例6および変形例7の眼内レンズ10は、例えば、角膜30の形状等に起因する強度の乱視の補正に適している。
(Modification 7)
FIG. 9B is a top view of the intraocular lens 10b of the modified example 7. Also in the intraocular lens 10b of the modified example 7, the center of the first region Z1 surrounded by the boundary BL is located at a position eccentric from the optical axis AX, and the optical axis AX intersects with the first region Z1. Not.
The intraocular lenses 10 of the modified examples 6 and 7 are suitable for correcting astigmatism of intensity caused by, for example, the shape of the cornea 30.
以上の第1実施形態および各変形例においては、第1領域Z1が透過光に付加する第1位相差P1は、光軸からの距離rに応じて単調に減少するものとした。しかし、第1位相差P1は光軸からの距離rに応じて、単調に増加するものであっても良い。
 例えば、図3(a)等に示した位相差P1、P2は、その符号を反転させたもの(縦軸方向に反転させたもの)であっても良い。
 なお、その場合には、第1領域Z1と第2領域Z2の境界BLは、光軸からの距離rに応じて単調に増加する第1位相差P1が、第1の極大値をとる位置となる。
In the above first embodiment and each modification, the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to decrease monotonically according to the distance r from the optical axis. However, the first phase difference P1 may increase monotonically according to the distance r from the optical axis.
For example, the phase differences P1 and P2 shown in FIG. 3A and the like may have their symbols inverted (inverted in the vertical axis direction).
In that case, the boundary BL between the first region Z1 and the second region Z2 is the position where the first phase difference P1 which increases monotonically according to the distance r from the optical axis takes the first maximum value. Become.
 (変形例8)
 図10(a)は、第1位相差P1が光軸からの距離rに応じて、単調に増加する形状を有する変形例8の眼内レンズ10における、位相差P1、P2と、光軸AXからの距離との関係を示す図である。変形例8の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
(Modification 8)
FIG. 10A shows the phase differences P1 and P2 and the optical axis AX in the intraocular lens 10 of the modified example 8 having a shape in which the first phase difference P1 monotonically increases with the distance r from the optical axis. It is a figure which shows the relationship with the distance from. Since the configuration of the intraocular lens 10 of the modified example 8 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
 変形例8の眼内レンズ10では、射出面12の高さHは光軸AXの近傍において基準面13よりも低く、光軸AXの近傍を透過する光線に対して、負の位相差P1(一例として、-25[rad]程度)を付加する。
 光軸AXからの距離rの増大に伴い、第1領域Z1が透過光に付加する第1位相差P1は単調に増加する。そして、距離rが1.4mm(距離r1)の位置(境界BL)において、位相差P1、P2は、極大値MM1をとる。
In the intraocular lens 10 of the modified example 8, the height H of the ejection surface 12 is lower than the reference surface 13 in the vicinity of the optical axis AX, and the negative phase difference P1 (with respect to the light rays transmitted in the vicinity of the optical axis AX). As an example, add about -25 [rad]).
As the distance r from the optical axis AX increases, the first phase difference P1 added to the transmitted light by the first region Z1 increases monotonically. Then, at the position (boundary BL) where the distance r is 1.4 mm (distance r1), the phase differences P1 and P2 take the maximum value MM1.
 境界BLよりも光軸AXから離れた第2領域Z2において、距離rの増大に伴って第2位相差P2は減少し、距離rが1.6mmの位置において、極大値MM1に隣接する極小値MP2をとる。極大値MM1と極小値MP2との差W0は、一例として、1.4[rad]程度である。すなわち、第2位相差P2は、極大値MM1から極小値MP2までの間で 1.4[rad]程度変化する。以下では、この値を、第1の値W0と呼ぶことにする。
 第2位相差P2は、上記の極小値MP2の位置よりも光軸AXからの距離rが増大する領域においても、増減を繰り返す。その変動幅は上述のとおり、変動幅W2である。
 変形例8の眼内レンズ10では、変動幅W2は、第1の値W0の2倍以上である。また、上述の第1実施形態および各変形例と同様に、変動幅W1は、変動幅W2よりも2[rad]以上、又は3[rad]以上大きい。
In the second region Z2 farther from the optical axis AX than the boundary BL, the second phase difference P2 decreases as the distance r increases, and at the position where the distance r is 1.6 mm, the minimum value MP2 adjacent to the maximum value MM1 Take. The difference W0 between the maximum value MM1 and the minimum value MP2 is, for example, about 1.4 [rad]. That is, the second phase difference P2 changes by about 1.4 [rad] from the maximum value MM1 to the minimum value MP2. Hereinafter, this value will be referred to as the first value W0.
The second phase difference P2 repeats increasing and decreasing even in a region where the distance r from the optical axis AX is larger than the position of the minimum value MP2 described above. As described above, the fluctuation range is the fluctuation range W2.
In the intraocular lens 10 of the modified example 8, the fluctuation width W2 is twice or more the first value W0. Further, similarly to the above-described first embodiment and each modification, the fluctuation width W1 is 2 [rad] or more, or 3 [rad] or more larger than the fluctuation width W2.
 図10(b)は、変形例8の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各ディオプトリにおけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。 FIG. 10B shows each diopter of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modified example 8. It is a graph which shows the simulation result in. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
 変形例8の眼内レンズ10では、図11(b)にMTFのシミュレーション結果を示した従来の単焦点型の眼内レンズに対して、各瞳径において、特に+1から+3ディオプトリのフォーカス位置においてMTFの値を高くできる。すなわち、眼球100に装着される本実施形態の眼内レンズ10により眼球100の焦点深度が拡大されることが判る。 In the intraocular lens 10 of the modified example 8, compared to the conventional single focus type intraocular lens whose MTF simulation result is shown in FIG. 11 (b), at each pupil diameter, particularly at the focus position of +1 to +3 diopters. The value of MTF can be increased. That is, it can be seen that the depth of focus of the eyeball 100 is expanded by the intraocular lens 10 of the present embodiment attached to the eyeball 100.
 また、図11(b)に示した、従来の2重焦点型の眼内レンズによるMTFのシミュレーション結果と比べると、変形例8の眼内レンズ10では、離散的ではなく連続したフォーカス位置においてMTFの値を高くできることが判る。
 なお、図11(a)に示した変形例8の眼内レンズ10の位相差P1、P2についても、その符号を反転(縦軸方向に反転)させても良い。
Further, as compared with the simulation result of MTF using the conventional double focus type intraocular lens shown in FIG. 11B, the intraocular lens 10 of the modified example 8 has MTF at continuous focus positions instead of discrete ones. It can be seen that the value of can be increased.
The signs of the phase differences P1 and P2 of the intraocular lens 10 of the modified example 8 shown in FIG. 11A may also be inverted (inverted in the vertical axis direction).
(第1実施形態および各変形例に関する補足説明)
 以上の第1実施形態および各変形例においては、第1領域Z1が透過光に付加する第1位相差P1は、光軸からの距離rに応じて連続的に変化するものとした。しかし、第1位相差P1は光軸からの距離rに応じて、離散的に変化しても良い。
 ただし、第1位相差P1が距離rに応じて連続的に変化することにより、位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。
(Supplementary explanation regarding the first embodiment and each modification)
In the above first embodiment and each modification, the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to continuously change according to the distance r from the optical axis. However, the first phase difference P1 may change discretely according to the distance r from the optical axis.
However, since the first phase difference P1 continuously changes according to the distance r, the scattered light generated by the sudden change in the phase difference is reduced, and the intraocular lens 10 that provides a clearer field of view is realized. be able to.
 また、第1実施形態および各変形例のいずれにおいても、第1領域Z1と第2領域Z2との境界BLにおいて、第1位相差P1および第1位相差P2が連続であるだけでなく、滑らかに連続していても良い。この場合、境界BL付近での位相差P1、P2の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。 Further, in both the first embodiment and each modification, the first phase difference P1 and the first phase difference P2 are not only continuous but also smooth at the boundary BL between the first region Z1 and the second region Z2. It may be continuous with. In this case, it is possible to realize an intraocular lens 10 that provides a clearer field of view by reducing scattered light generated by abrupt changes in phase differences P1 and P2 near the boundary BL.
 なお、上述の第1実施形態、および各変形例では、眼内レンズ10の入射面11または射出面12の高さHを変化させることで位相差を付加するものとしているが、位相差P1、P2を付加する方法は、この方法に限られるわけではない。
 例えば、眼内レンズ10が複数枚のレンズから成る場合、それらのレンズが対向する内部の面の形状(高さ)を変化させることで位相差P1、P2を付加しても良い。
In the first embodiment described above and each modification, the phase difference is added by changing the height H of the incident surface 11 or the ejection surface 12 of the intraocular lens 10, but the phase difference P1 and The method of adding P2 is not limited to this method.
For example, when the intraocular lens 10 is composed of a plurality of lenses, the phase differences P1 and P2 may be added by changing the shape (height) of the internal surface on which the lenses face each other.
 あるいは、眼内レンズ10の第1領域Z1、第2領域Z2に、その屈折率が光軸AXからの距離rに対して変化する屈折率変動部を設けることによっても、上記の位相差P1、P2を付加することができる。すなわち、例えば眼内レンズ10を、光軸AXを中心とする同心円状に屈折率が変化する材質(例、シリコーン、アクリル樹脂など)を用いて形成することができる。 Alternatively, by providing a refractive index fluctuation portion in the first region Z1 and the second region Z2 of the intraocular lens 10 in which the refractive index changes with respect to the distance r from the optical axis AX, the above-mentioned phase difference P1 and P2 can be added. That is, for example, the intraocular lens 10 can be formed by using a material (eg, silicone, acrylic resin, etc.) whose refractive index changes concentrically around the optical axis AX.
 なお、上述のシミュレーションにおいて参照した上述の文献のTable36-16に開示される水晶体の形状および屈折率は、標準的な一例に過ぎないので、その屈折力は個人差のある実際の眼内レンズ10の屈折力とは厳密には異なるのが一般的である。
 そこで、Navarroモデルを使用するシミュレーションに際しては、結像点34(焦点)がNavarroモデルの網膜33に一致するように、眼内レンズ10厚さや、入射面11および基準面13の曲率半径を適宜変更してシミュレーションを行えば良い。
Since the shape and refractive index of the crystalline lens disclosed in Table 36-16 of the above-mentioned document referred to in the above simulation are only standard examples, the refractive power of the actual intraocular lens 10 varies from person to person. Strictly speaking, it is different from the refractive power of.
Therefore, in the simulation using the Navarro model, the thickness of the intraocular lens 10 and the radius of curvature of the incident surface 11 and the reference surface 13 are appropriately changed so that the imaging point 34 (focus) coincides with the retina 33 of the Navarro model. Then perform the simulation.
 逆に言えば、上記のシミュレーション手法を用いて、任意の眼内レンズが、上記の第1実施形態または各変形例の眼内レンズ10の1つに該当するか否かを判断することもできる。すなわち、その眼内レンズの屈折率および形状を、Navarroモデルに数値的に装着し、その眼内レンズの入射面11や基準面13の曲率半径を適宜変更して、結像点34(焦点)をNavarroモデルの網膜33上に一致させる。その条件下において、第1領域Z1、および第2領域Z2を通過する各光線が有する位相差が上記の位相差になっているか否かにより判断することができる。 Conversely, using the simulation method described above, it is also possible to determine whether or not any intraocular lens corresponds to one of the intraocular lenses 10 of the first embodiment or each modification. .. That is, the refractive index and shape of the intraocular lens are numerically attached to the Navarro model, and the radius of curvature of the incident surface 11 and the reference surface 13 of the intraocular lens is appropriately changed to form the imaging point 34 (focus). Is matched on the retina 33 of the Navarro model. Under that condition, it can be determined whether or not the phase difference between the light rays passing through the first region Z1 and the second region Z2 has the above-mentioned phase difference.
 以上の本実施形態における眼科用レンズは、水晶体の代わりに眼球100内に装填される眼内レンズ10(IOL)に限らず、虹彩36と水晶体の間に装填されるインプランタブルコンタクトレンズ(IPL)であっても良い。また、眼内レンズが装着された眼球100に対して、補正用に追加で装填されるいわゆるピギーバッグ用の眼内レンズであっても良い。あるいは、角膜内に装填する角膜インレーまたは角膜アンレーであっても良い。 The ophthalmic lens in the present embodiment is not limited to the intraocular lens 10 (IOL) loaded in the eyeball 100 instead of the crystalline lens, but is an implantable contact lens (IPL) loaded between the iris 36 and the crystalline lens. ) May be. Further, the intraocular lens for a so-called piggy bag, which is additionally loaded for correction with respect to the eyeball 100 to which the intraocular lens is attached, may be used. Alternatively, it may be a corneal inlay or a corneal inlay loaded into the cornea.
 あるいは、眼科用レンズは、角膜30の外側に装着されるコンタクトレンズであっても良い。この場合、ユーザは、本実施形態に記載の構成を備えるコンタクトレンズと既存の眼内レンズ(例、単焦点型のIOL)とを眼に装着して組み合わせて使用することが可能である。また、眼科用レンズは、偽水晶体及び有水晶体の両方の用途について使用できるIOL等の様々な視力矯正用途に使用できる。
 さらには、眼科用レンズは、眼球から離れて装着される眼鏡レンズであっても良い。
Alternatively, the ophthalmic lens may be a contact lens worn on the outside of the cornea 30. In this case, the user can wear a contact lens having the configuration described in the present embodiment and an existing intraocular lens (eg, a single focus type IOL) on the eye and use them in combination. In addition, ophthalmic lenses can be used for various vision correction applications such as IOLs that can be used for both pseudo-lens and crystalline lenses.
Furthermore, the ophthalmic lens may be a spectacle lens worn away from the eyeball.
(第1実施形態および各変形例の効果)
(1)以上の第1実施形態および各変形例の眼科用レンズ(眼内レンズ10)は、眼球100内または眼球近傍に装着される眼科用レンズ10であって、眼球100に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域Z1および第2領域Z2を備える。そして、第1領域Z1は、第1領域Z1を通る光線に対し、眼科用レンズ10の光軸AXからの距離に応じて単調増加または単調減少する第1位相差P1を付加し、第2領域Z2は、第2領域Z2を通る光線に対し、光軸AXからの距離に応じて複数回増減する第2位相差P2を付加する。そして、第1位相差P1の変動幅W1は、第2位相差P2の変動幅W2の1.1倍以上である。
 この構成により、第2領域Z2を透過した複数の光線による多重焦点効果と、第1領域Z1を透過した複数の光線による焦点深度拡大効果とが相俟って、焦点深度が拡大された眼科用レンズ10を実現することができる。
(Effects of the first embodiment and each modification)
(1) The ophthalmic lens (intraocular lens 10) of the above first embodiment and each modification is an ophthalmic lens 10 worn in or near the eyeball 100, and is worn on the eyeball 100. It includes a first region Z1 and a second region Z2 that transmit light to form an image on the retina. Then, the first region Z1 adds a first phase difference P1 that monotonically increases or decreases monotonically according to the distance from the optical axis AX of the ophthalmic lens 10 to the light rays passing through the first region Z1, and the second region Z1. Z2 adds a second phase difference P2 that increases or decreases a plurality of times according to the distance from the optical axis AX to the light rays passing through the second region Z2. The fluctuation width W1 of the first phase difference P1 is 1.1 times or more the fluctuation width W2 of the second phase difference P2.
With this configuration, the multifocal effect of a plurality of light rays transmitted through the second region Z2 and the depth of focus expansion effect of a plurality of light rays transmitted through the first region Z1 are combined, and the depth of focus is expanded for ophthalmology. The lens 10 can be realized.
(2)第1領域Z1は光軸AXと交差するように配置し、第1位相差P1と第2位相差P2とは第1領域Z1と第2領域Z2との境界BLにおいて連続であり、かつ境界BLにおいて極小値MP1または極大値をとり、光軸AXから境界BLまでの距離が0.4mm以上かつ0.8mm以下としても良い。
 この構成により、明るい環境下における瞳径が3mmの場合において、第2位相差P2による多重焦点効果と第1位相差P1による焦点深度拡大効果とをバランス良く発揮させ、焦点深度が一層拡大された眼科用レンズ10を実現することができる。
(2) The first region Z1 is arranged so as to intersect the optical axis AX, and the first phase difference P1 and the second phase difference P2 are continuous at the boundary BL between the first region Z1 and the second region Z2. Moreover, the minimum value MP1 or the maximum value may be taken at the boundary BL, and the distance from the optical axis AX to the boundary BL may be 0.4 mm or more and 0.8 mm or less.
With this configuration, when the pupil diameter is 3 mm in a bright environment, the multiple focus effect due to the second phase difference P2 and the depth of focus expansion effect due to the first phase difference P1 are exhibited in a well-balanced manner, and the depth of focus is further expanded. The ophthalmic lens 10 can be realized.
(3)第2位相差P2の増減の周期は、光軸AXからの距離rが1mmから1.5mmの範囲において、0.2mm以上かつ0.5mm以下としても良い。
 また、第2位相差P2の増減の周期は、光軸AXからの距離rが1mmから2.5mmの範囲において、0.1mm以上、かつ0.5mm以下としても良い。
 距離rが上記の範囲において、増減の周期を上記の範囲とすることで、第2領域Z2から発生する回折光に、適当な屈折力(加入度)を付加することができ、適切な多重焦点効果を発揮させることができる。
(4)第1位相差P1の変動幅W1は、第2位相差P2の変動幅W2の1.5倍以上としても良い。この構成により、第1領域Z1を透過した複数の光線による焦点深度拡大効果を一層増大させることができる。
(3) The cycle of increase / decrease of the second phase difference P2 may be 0.2 mm or more and 0.5 mm or less in the range of the distance r from the optical axis AX from 1 mm to 1.5 mm.
Further, the cycle of increase / decrease of the second phase difference P2 may be 0.1 mm or more and 0.5 mm or less in the range of the distance r from the optical axis AX from 1 mm to 2.5 mm.
When the distance r is in the above range and the period of increase / decrease is in the above range, an appropriate refractive power (addition) can be added to the diffracted light generated from the second region Z2, and an appropriate multiplex focus can be applied. It can be effective.
(4) The fluctuation width W1 of the first phase difference P1 may be 1.5 times or more the fluctuation width W2 of the second phase difference P2. With this configuration, the effect of expanding the depth of focus by the plurality of light rays transmitted through the first region Z1 can be further increased.
(5)第2位相差P2の変動幅W2は、光軸AXからの距離rが1mmから1.5mmの範囲において、1.5[rad]以上、かつ3.5[rad]以下としても良い。この構成により、特に瞳径が3mm程度となる明るい環境下において、第2領域Z2を透過した複数の光線による多重焦点効果を一層効果的に発揮させることができる。
(6)第2位相差P2の変動幅W2は、光軸AXからの距離rが2mm以上の範囲において、0.5[rad]以下としても良い。この構成により、焦点深度の拡大を実現しつつ、特に瞳径が5mm程度以上となる暗めの環境下において、眼球100から所定の距離にある物体の像を、良好に黄斑35上に結像させることができる。
(5) The fluctuation width W2 of the second phase difference P2 may be 1.5 [rad] or more and 3.5 [rad] or less in the range of the distance r from the optical axis AX from 1 mm to 1.5 mm. .. With this configuration, it is possible to more effectively exert the multiple focus effect by the plurality of light rays transmitted through the second region Z2, particularly in a bright environment where the pupil diameter is about 3 mm.
(6) The fluctuation width W2 of the second phase difference P2 may be 0.5 [rad] or less in the range where the distance r from the optical axis AX is 2 mm or more. With this configuration, while realizing the expansion of the depth of focus, an image of an object at a predetermined distance from the eyeball 100 is satisfactorily imaged on the macula 35, especially in a dark environment where the pupil diameter is about 5 mm or more. be able to.
(7)第2位相差P2の変動幅W2は、光軸AXからの距離rが1mmから2.5mmの範囲において、1.5[rad]以上、かつ3.5[rad]以下としても良い。この構成により、第2領域Z2から発生する-1次回折光、0次光回折光、および+1次回折光の光量のバランスを適当な値に設定し、多重焦点効果を一層効果的に発揮させることができる。
(8)第1位相差P1は、第1領域Z1内において連続的に変化するように構成しても良い。これにより、位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼科用レンズを実現することができる。
(7) The fluctuation width W2 of the second phase difference P2 may be 1.5 [rad] or more and 3.5 [rad] or less in the range of the distance r from the optical axis AX from 1 mm to 2.5 mm. .. With this configuration, the balance of the amount of light of the -1st order diffracted light, the 0th order diffracted light, and the + 1st order diffracted light generated from the second region Z2 can be set to an appropriate value, and the multiplex effect can be more effectively exhibited. it can.
(8) The first phase difference P1 may be configured to change continuously in the first region Z1. As a result, it is possible to realize an ophthalmic lens that reduces scattered light generated by a sudden change in phase difference and provides a clearer field of view.
(9)第1領域Z1は、第1領域Z1のうち光軸AXの近傍を通る光線と、第1領域Z1のうち第2領域Z2との境界BLの近傍を通る光線との間に、3[rad]以上の位相差を付加する構成としても良い。この構成により、第1領域Z1を透過した複数の光線による焦点深度拡大効果を一層増大させることができる。 (9) The first region Z1 is formed between a light ray passing near the optical axis AX in the first region Z1 and a light ray passing near the boundary BL with the second region Z2 in the first region Z1. It may be configured to add a phase difference of [rad] or more. With this configuration, the effect of expanding the depth of focus by the plurality of light rays transmitted through the first region Z1 can be further increased.
(眼科用レンズの製造方法)
 次に、上記した本実施形態の眼科用レンズ10の製造方法について説明する。眼科用レンズ10の製造方法は、上述の第1実施形態および各変形例に記載した眼科用レンズの製造方法であって、眼科用レンズのレンズ形状を示す設計データを用いて該眼科用レンズを加工装置(例、金型加工装置、切削装置、研磨装置など)によって製造する加工工程を備える。そして、眼科用レンズの製造方法は、上記レンズ形状を設計して上記設計データを生成する設計工程を備える。ここで、上記の設計データは、上記した位相差P1、P2などの情報(例、設計条件)をレンズ形状へ変換して生成できる。
(Manufacturing method of ophthalmic lenses)
Next, a method for manufacturing the ophthalmic lens 10 of the present embodiment described above will be described. The method for manufacturing the ophthalmic lens 10 is the method for manufacturing the ophthalmic lens described in the above-described first embodiment and each modification, and the ophthalmic lens is manufactured by using design data indicating the lens shape of the ophthalmic lens. It is provided with a processing process manufactured by a processing apparatus (eg, mold processing apparatus, cutting apparatus, polishing apparatus, etc.). The method for manufacturing an ophthalmic lens includes a design process for designing the lens shape and generating the design data. Here, the above design data can be generated by converting information such as the above phase differences P1 and P2 (eg, design conditions) into a lens shape.
 また、本実施形態の眼科用レンズを複数備えてレンズセットを提供することもできる。この場合、レンズセットは、本実施形態の眼科用レンズの焦点深度や焦点の数(例、2、3焦点などの多焦点)が異なる複数の眼科用レンズを備える構成である。
 本発明は以上の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。本実施形態は、上記した態様の全て又は一部を組み合わせても良い。
It is also possible to provide a lens set by providing a plurality of ophthalmic lenses of the present embodiment. In this case, the lens set includes a plurality of ophthalmic lenses having different depths of focus and the number of focal points (eg, multiple focal points such as two or three focal points) of the ophthalmic lens of the present embodiment.
The present invention is not limited to the above contents. Other aspects considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. In this embodiment, all or a part of the above-described embodiments may be combined.
10,10a,10b:眼科用レンズ(眼内レンズ)、100:眼球、11:入射面、12:射出面、13:基準面、AX:光軸、r:光軸からの距離、Z1;第1領域、Z2;第2領域、BL:境界、P1:第1位相差:P2:第2位相差、W1:第1位相差の変動幅、W2:第2位相差の変動幅、30:角膜、31:前房、32:硝子体、33:網膜、35:黄斑、36:虹彩
 
10, 10a, 10b: Ophthalmic lens (intraocular lens), 100: Eyeball, 11: Incident surface, 12: Ejection surface, 13: Reference surface, AX: Optical axis, r: Distance from optical axis, Z1; 1 region, Z2; 2nd region, BL: boundary, P1: 1st phase difference: P2: 2nd phase difference, W1: 1st phase difference fluctuation width, W2: 2nd phase difference fluctuation width, 30: cornea , 31: Anterior chamber, 32: Vitreous, 33: Retina, 35: Yellow spot, 36: Iris

Claims (25)

  1.  眼球内または眼球近傍に装着される眼科用レンズであって、
     眼球に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域および第2領域を備え、
     前記第1領域は、前記第1領域を通る光線に対し、前記眼科用レンズの光軸からの距離に応じて単調増加または単調減少する第1位相差を付加し、
     前記第2領域は、前記第2領域を通る光線に対し、前記光軸からの距離に応じて複数回増減する第2位相差を付加し、
     前記第1位相差の変動幅は、前記第2位相差の変動幅の1.1倍以上である、眼科用レンズ。
    An ophthalmic lens that is worn in or near the eyeball.
    It has a first region and a second region that allow light to pass through and form an image on the retina when worn on the eyeball.
    The first region adds a first phase difference that monotonically increases or decreases monotonically depending on the distance from the optical axis of the ophthalmic lens to the light rays passing through the first region.
    The second region adds a second phase difference that increases or decreases a plurality of times according to the distance from the optical axis to the light rays passing through the second region.
    An ophthalmic lens in which the fluctuation range of the first phase difference is 1.1 times or more the fluctuation range of the second phase difference.
  2.  請求項1に記載の眼科用レンズにおいて、
     前記第1領域は、前記光軸と交差し、
     前記第1位相差と前記第2位相差とは、前記第1領域と前記第2領域との境界において連続であり、かつ前記境界において極小値または極大値をとり、
     前記光軸から前記境界までの距離が0.4mm以上、かつ0.8mm以下である、眼科用レンズ。
    In the ophthalmic lens according to claim 1.
    The first region intersects the optical axis and
    The first phase difference and the second phase difference are continuous at the boundary between the first region and the second region, and take a minimum value or a maximum value at the boundary.
    An ophthalmic lens in which the distance from the optical axis to the boundary is 0.4 mm or more and 0.8 mm or less.
  3.  請求項1または請求項2に記載の眼科用レンズにおいて、
     前記第2位相差の前記増減の周期は、前記光軸からの距離が1mmから1.5mmの範囲において、0.2mm以上、かつ0.5mm以下である、眼科用レンズ。
    In the ophthalmic lens according to claim 1 or 2.
    An ophthalmic lens in which the cycle of the increase / decrease of the second phase difference is 0.2 mm or more and 0.5 mm or less in a range of a distance from the optical axis of 1 mm to 1.5 mm.
  4.  請求項1から請求項3までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の前記増減の周期は、前記光軸からの距離が1mmから2.5mmの範囲において、0.1mm以上、かつ0.5mm以下である、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 3.
    An ophthalmic lens in which the cycle of the increase / decrease of the second phase difference is 0.1 mm or more and 0.5 mm or less in a range of a distance from the optical axis of 1 mm to 2.5 mm.
  5.  請求項1から請求項4までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差の変動幅は、前記第2位相差の変動幅の1.5倍以上である、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 4.
    An ophthalmic lens in which the fluctuation width of the first phase difference is 1.5 times or more the fluctuation width of the second phase difference.
  6.  請求項1から請求項5までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の変動幅は、前記光軸からの距離が1mmから1.5mmの範囲において、1.5[rad]以上、かつ3.5[rad]以下である、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 5.
    An ophthalmic lens having a fluctuation range of the second phase difference of 1.5 [rad] or more and 3.5 [rad] or less in a range of 1 mm to 1.5 mm from the optical axis.
  7.  請求項1から請求項6までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の変動幅は、前記光軸からの距離が2mm以上の範囲において、0.5[rad]以下である、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 6.
    An ophthalmic lens having a fluctuation range of the second phase difference of 0.5 [rad] or less in a range of 2 mm or more from the optical axis.
  8.  請求項1から請求項6までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の変動幅は、前記光軸からの距離が1mmから2.5mmの範囲において、1.5[rad]以上、かつ3.5[rad]以下である、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 6.
    An ophthalmic lens having a fluctuation range of the second phase difference of 1.5 [rad] or more and 3.5 [rad] or less in a range of 1 mm to 2.5 mm from the optical axis.
  9.  請求項1に記載の眼科用レンズにおいて、
     前記第1領域は、前記光軸と交差し、前記第1領域を通る光線に対し、前記光軸からの距離に応じて単調増加または単調減少する前記第1位相差を付加し、
     前記第1位相差と前記第2位相差とは、前記第1領域と前記第2領域との境界において連続であり、かつ前記境界において極小値または極大値をとり、
     前記光軸から前記境界までの距離が0.4mm以上、かつ1.5mm未満である、眼科用レンズ。
    In the ophthalmic lens according to claim 1.
    The first region intersects the optical axis and adds the first phase difference that monotonically increases or decreases depending on the distance from the optical axis to the light rays passing through the first region.
    The first phase difference and the second phase difference are continuous at the boundary between the first region and the second region, and take a minimum value or a maximum value at the boundary.
    An ophthalmic lens having a distance from the optical axis to the boundary of 0.4 mm or more and less than 1.5 mm.
  10.  請求項9に記載の眼科用レンズにおいて、
     前記第2位相差は、
     極小値または極大値である前記境界と、前記境界に対し光軸から離れた側に隣接する極大値または極小値までの間に第1の値だけ変化するとともに、
     前記第2位相差の変動幅は、前記第1の値の2倍以上である、眼科用レンズ。
    In the ophthalmic lens according to claim 9.
    The second phase difference is
    The first value changes between the boundary that is the minimum value or the maximum value and the maximum value or the minimum value that is adjacent to the side away from the optical axis with respect to the boundary.
    An ophthalmic lens in which the fluctuation range of the second phase difference is at least twice the first value.
  11.  請求項1から請求項10までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差は、前記第1領域内において連続的に変化する、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 10.
    An ophthalmic lens in which the first phase difference changes continuously within the first region.
  12.  請求項1から請求項11までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1領域は、前記第1領域のうち前記光軸の近傍を通る光線と、前記第1領域のうち前記第2領域との境界の近傍を通る光線との間に、3[rad]以上の位相差を付加する、眼科用レンズ。
    In the ophthalmic lens according to any one of claims 1 to 11.
    The first region is 3 [rad] or more between a light ray passing near the optical axis of the first region and a light ray passing near the boundary with the second region of the first region. An ophthalmic lens that adds the phase difference of.
  13.  請求項1から請求項12までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差は、前記光軸からの距離に対するガウス関数で表される成分を含む、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 12.
    The first phase difference is an ophthalmic lens containing a component represented by a Gaussian function with respect to the distance from the optical axis.
  14.  請求項1から請求項12までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差は、前記光軸からの距離に対するSINC関数に基づく関数で表される成分を含む、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 12.
    The first phase difference is an ophthalmic lens containing a component represented by a function based on a SINC function with respect to the distance from the optical axis.
  15.  請求項1から請求項14までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の変動幅は、前記光軸からの距離に応じて増加、または減少する、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 14.
    An ophthalmic lens in which the fluctuation range of the second phase difference increases or decreases according to the distance from the optical axis.
  16.  請求項1から請求項15までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差は、前記光軸からの距離r、任意の定数a、任意の定数bを用いて、sin(ar-b)で表される成分を含む、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 15.
    The second phase difference is a distance r from the optical axis, arbitrary constant a, using any of the constants b, containing a component represented by sin (ar 2 -b), ophthalmic lenses.
  17.  請求項14に記載の眼科用レンズにおいて、
     前記第2位相差は、さらに、sin(2ar-2b)で表される成分を含む、眼科用レンズ。
    In the ophthalmic lens according to claim 14.
    It said second phase difference, further, sin comprising a component represented by (2ar 2-2b), ophthalmic lenses.
  18.  請求項1から請求項17までの何れか一項に記載の眼科用レンズにおいて、
     前記光線に前記第1位相差および前記第2位相差を付加する凹凸形状を有する面を備える、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 17.
    An ophthalmic lens comprising a surface having an uneven shape that adds the first phase difference and the second phase difference to the light beam.
  19.  請求項1から請求項18までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸に対して回転対称である、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 18.
    An ophthalmic lens in which the first phase difference and the second phase difference are rotationally symmetric with respect to the optical axis.
  20.  請求項1から請求項18までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸に対して2回以上の複数回対称である、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 18.
    An ophthalmic lens in which the first phase difference and the second phase difference are two or more times symmetrical with respect to the optical axis.
  21.  請求項1から請求項20までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、水晶体の代わりに眼球内に装填される眼内レンズである、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 20.
    The ophthalmic lens is an intraocular lens that is loaded into the eyeball instead of the crystalline lens.
  22.  請求項1から請求項20までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、虹彩と水晶体の間に装填されるインプランタブルコンタクトレンズである、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 20.
    The ophthalmic lens is an ophthalmic lens which is an implantable contact lens loaded between the iris and the crystalline lens.
  23.  請求項1から請求項20までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、角膜内に装填する角膜インレーまたは角膜アンレーである、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 20.
    The ophthalmic lens is an ophthalmic lens which is a corneal inlay or a corneal inlay loaded into the cornea.
  24.  請求項1から請求項20までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、角膜に接触するコンタクトレンズである、眼科用レンズ。
    The ophthalmic lens according to any one of claims 1 to 20.
    The ophthalmic lens is an ophthalmic lens which is a contact lens that comes into contact with the cornea.
  25.  眼科用レンズの製造方法であって、
     請求項1から請求項24までのいずれか一項に記載の眼科用レンズを加工装置によって製造する、眼科用レンズの製造方法。
     
    A method for manufacturing ophthalmic lenses
    A method for manufacturing an ophthalmic lens, wherein the ophthalmic lens according to any one of claims 1 to 24 is manufactured by a processing apparatus.
PCT/JP2019/013803 2019-03-28 2019-03-28 Ophthalmic lens and ophthalmic lens production method WO2020194713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013803 WO2020194713A1 (en) 2019-03-28 2019-03-28 Ophthalmic lens and ophthalmic lens production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013803 WO2020194713A1 (en) 2019-03-28 2019-03-28 Ophthalmic lens and ophthalmic lens production method

Publications (1)

Publication Number Publication Date
WO2020194713A1 true WO2020194713A1 (en) 2020-10-01

Family

ID=72611283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013803 WO2020194713A1 (en) 2019-03-28 2019-03-28 Ophthalmic lens and ophthalmic lens production method

Country Status (1)

Country Link
WO (1) WO2020194713A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268158A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive Multifocal Lens Having Radially Varying Light Distribution
JP2010134282A (en) * 2008-12-05 2010-06-17 Hoya Corp Diffractive multifocal lens
JP2012512709A (en) * 2008-12-18 2012-06-07 アルコン,インコーポレイティド Intraocular lens with extended depth of focus
WO2013118177A1 (en) * 2012-02-09 2013-08-15 株式会社メニコン Diffraction-type multifocal eye lens and manufacturing method therefor
JP2016150213A (en) * 2015-02-19 2016-08-22 株式会社ニデック Multi-focal intraocular lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268158A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive Multifocal Lens Having Radially Varying Light Distribution
JP2010134282A (en) * 2008-12-05 2010-06-17 Hoya Corp Diffractive multifocal lens
JP2012512709A (en) * 2008-12-18 2012-06-07 アルコン,インコーポレイティド Intraocular lens with extended depth of focus
WO2013118177A1 (en) * 2012-02-09 2013-08-15 株式会社メニコン Diffraction-type multifocal eye lens and manufacturing method therefor
JP2016150213A (en) * 2015-02-19 2016-08-22 株式会社ニデック Multi-focal intraocular lens

Similar Documents

Publication Publication Date Title
KR101248488B1 (en) Apodized aspheric diffractive lenses
JP4926068B2 (en) Ophthalmic lens having a plurality of phase plates
ES2803225T3 (en) Ophthalmic multifocal diffractive lens
EP0457553B1 (en) Multifocal multizone diffractive ophthalmic lenses
JP6981987B2 (en) Multifocal lens with reduced visual impairment
CA2744049C (en) Intraocular lens with extended depth of focus
JP2021524051A (en) Lens element
JP2013514833A (en) Finite echelette lens, system and method
JP2013514833A5 (en)
KR20080094101A (en) Pseudo-accomodative iol having diffractive zones with varying areas
CN116981982A (en) Self-adaptive multifocal diffraction eyepiece
US10792147B2 (en) Ophthalmic lens and method of manufacturing ophthalmic lens
KR20070116141A (en) Intraocular lens
WO2020194713A1 (en) Ophthalmic lens and ophthalmic lens production method
WO2020194712A1 (en) Ophthalmic lens and method for producing ophthalmic lens
ES2895799B2 (en) Refractive-diffractive ophthalmic lens with extended depth of focus
CN116747048B (en) Intraocular lens
WO2024144489A1 (en) A quadrifocal diffractive ocular lens
WO2024144490A1 (en) A synergistic pair of multifocal diffractive ocular lenses
WO2024121218A1 (en) A pair of spectacle lenses comprising a first optical lens intended to be worn in front of a first eye of a wearer and a second optical lens intended to be worn in front of a second eye of the wearer
EP4200665A1 (en) A zonal diffractive ocular lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP