WO2012070313A1 - Multifocal eye lens - Google Patents

Multifocal eye lens Download PDF

Info

Publication number
WO2012070313A1
WO2012070313A1 PCT/JP2011/072763 JP2011072763W WO2012070313A1 WO 2012070313 A1 WO2012070313 A1 WO 2012070313A1 JP 2011072763 W JP2011072763 W JP 2011072763W WO 2012070313 A1 WO2012070313 A1 WO 2012070313A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
intraocular lens
lens
refractive surface
diffractive
Prior art date
Application number
PCT/JP2011/072763
Other languages
French (fr)
Japanese (ja)
Inventor
金井 守康
飯塚 隆之
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2012070313A1 publication Critical patent/WO2012070313A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions

Definitions

  • the present invention relates to a bifocal ophthalmic lens that is prescribed for the eyes.
  • Multifocal intraocular lenses include a refractive type with a distance or near power assigned to each area, and a diffractive structure type that distributes the power to the distance and the near power. Vision, near vision).
  • the multifocal intraocular lens is designed to ensure visual acuity at both the far and near focusing points so that the lens wearer can send his / her daily life without glasses.
  • Patent Document 1 Japanese Patent Publication JP3195386B
  • Patent Document 2 US Patent Application Publication No. US2006 / 0098163A
  • Patent Document 3 Japanese Unexamined Patent Publication JP2008-43752A
  • Patent Document 1 describes a refractive multifocal lens in which a lens surface is divided into at least five optical zones.
  • This type of refractive multifocal intraocular lens has a problem that the appearance of near vision mainly varies greatly depending on the pupil diameter of the lens wearer. For example, consider a case where a wearer of a refractive multifocal intraocular lens described in Patent Document 1 is outdoors in fine weather. In this case, it is considered that the pupil diameter of the lens wearer is narrowed and the luminous flux incident on the intraocular lens is limited to a part of the second zone at the maximum. Since the lens wearer can mainly use only the optical zone for far vision, it is difficult to perform near vision.
  • Patent Document 2 describes a diffractive structure type multifocal intraocular lens in which a blaze type diffractive structure is formed on the entire surface of one side of a lens.
  • the diffractive structure type multifocal intraocular lens does not have a problem that the appearance of near vision or far vision changes depending on the pupil diameter.
  • the diffractive structure type multifocal intraocular lens has a problem that the contrast is lowered.
  • the diffractive structure type multifocal intraocular lens described in Patent Document 2 uses about 80% of the incident light amount by distributing it to the distant power and the near power. However, the remaining about 20% becomes noise (flare) that spreads over a wide range of the field of view and lowers the contrast.
  • Patent Document 3 describes a diffractive structure type multifocal intraocular lens in which an apodized diffractive structure is formed at the center of one surface of a lens and no diffractive structure is provided around the diffractive structure.
  • the diffractive structure type multifocal intraocular lens described in Patent Document 3 it is difficult to view near when the pupil diameter is reduced as in the refractive multifocal lens described in Patent Document 1. Does not occur due to the presence of the diffractive structure at the center of the lens.
  • near vision becomes difficult at night when the pupil diameter increases. That is, the periphery of the diffractive structure at the center of one side of the lens has a simple refractive surface shape and has only a far power. For this reason, the occurrence of flare in dark vision is suppressed, and far vision is good at night when the pupil diameter is large.
  • near vision has a shortage of light, resulting in a large reduction in visual acuity.
  • an intraocular lens in which a refractive structure is formed around the diffractive structure is referred to as a hybrid multifocal intraocular lens.
  • the hybrid multifocal intraocular lens is considered to maintain a good field of view with a sufficient amount of light in both far vision and near vision at night when the pupil diameter increases.
  • the distribution of the diffractive structure and the refractive structure is appropriately set.
  • the distribution of the diffractive structures is too large, noise that spreads over a wide range of the visual field cannot be sufficiently suppressed, and there is a risk of hindering walking at night or driving a car.
  • the maximum pupil diameter in scotopic vision generally decreases with age. For example, it is said that the maximum pupil diameter is about ⁇ 4 mm in the 60s and only about ⁇ 3 mm in the 70s. Therefore, when the distribution of the refractive structure is too large, there is a possibility that multi-focalization is insufficient particularly in elderly people, and near vision becomes difficult.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is a hybrid type suitable for prescription even for middle-aged people with a relatively large maximum pupil diameter and elderly people with a small maximum pupil diameter. It is to provide a multifocal ophthalmic lens.
  • the present invention can be applied not only to intraocular lenses but also to other types of ophthalmic lenses such as contact lenses. Therefore, in the above, it is described as a multifocal “ophthalmic” lens.
  • a multifocal ophthalmic lens that solves the above problems includes a diffractive surface structure formed in a central portion including an optical axis, and a refractive surface structure formed in a peripheral portion surrounding the central portion. At least on one side.
  • the diffractive surface structure divides an incident light beam and focuses it on a far vision side condensing point and a near vision side condensing point, respectively.
  • the refractive surface structure has a plurality of refractive surface regions having different curvatures.
  • the plurality of refracting surface regions have an annular shape surrounding the central portion.
  • the farthest refractive surface area is provided with a distance power for condensing the incident light beam at the far vision side condensing point.
  • the amount of light is ensured in a well-balanced distance and near vision even at an intermediate or large pupil diameter, which is suitable for prescription for middle to old cataract patients and the like. It is.
  • the distance between the boundary between the central portion and the peripheral portion and the optical axis is set in order to achieve multifocalization more reliably regardless of the pupil diameter and to suppress the decrease in contrast due to flare.
  • the following conditional expression (1) 0.29 ⁇ a / b ⁇ 0.50 (1) It is good also as composition which satisfies.
  • the diffractive surface structure has, for example, an annular zone having at least one step centered on the optical axis.
  • the multifocal ophthalmic lens according to the present invention achieves multifocalization more reliably regardless of the pupil diameter, and suppresses the decrease in contrast due to flare, and the step formed on the most peripheral side of the diffractive surface structure and the light
  • the distance from the axis is defined as a 'and the effective radius is defined as b
  • the width of each refracting surface region is set to H in order to suppress both the change in the distribution light quantity of the distance power and the distance power depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction.
  • the following conditional expression (3) 0.040 ⁇ H / 2b (3) It is good also as composition which satisfies.
  • the multifocal ophthalmic lens according to the present invention may be configured such that the refractive surface region farther from the central portion becomes wider in order to suppress a change in the amount of distributed light between the distance power and the near power depending on the pupil diameter. Good.
  • the multifocal ophthalmic lens according to the present invention may have a configuration having at least three refractive surface regions.
  • the three refracting surface regions are given, for example, the distance power, the distance power for condensing the incident light beam at the near vision side condensing point, and the distance power in order from the center side.
  • a hybrid multifocal ophthalmic lens suitable for prescription from middle-aged to elderly is provided.
  • FIG. 1 is a lens cross-sectional view illustrating a schematic configuration of a hybrid multifocal intraocular lens according to an embodiment (Example 1) of the present invention.
  • 1 is a cross-sectional structural view and a top view of a first surface of a hybrid multifocal intraocular lens according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional structure diagram expressed by subtracting a curvature component of distant power from the cross-sectional structure shown in FIG. It is a figure which shows the light quantity distribution ratio of a distance power and a near power of the hybrid type multifocal intraocular lens of Example 1 of this invention. It is lens sectional drawing which shows schematic structure of the hybrid type multifocal intraocular lens of Example 2 of this invention.
  • FIG. 7 is a cross-sectional structure diagram expressed by subtracting a curvature component of a distant power from the cross-sectional structure shown in FIG. It is a figure which shows the light quantity distribution ratio of the distance power and the near power of the hybrid type multifocal intraocular lens of Example 2 of this invention. It is lens sectional drawing which shows schematic structure of the hybrid type multifocal intraocular lens of Example 3 of this invention. It is the cross-section figure of the 1st surface of the hybrid type multifocal intraocular lens of Example 3 of this invention, and a top view.
  • FIG. 7 is a cross-sectional structure diagram expressed by subtracting a curvature component of a distant power from the cross-sectional structure shown in FIG. It is a figure which shows the light quantity distribution ratio of the distance power and the near power of the hybrid type multifocal intraocular lens of Example 2 of this invention. It is lens sectional drawing which shows schematic structure of the hybrid type multifocal intraocular lens of Example 3 of this invention. It is
  • FIG. 11 is a cross-sectional structure diagram expressed by subtracting a curvature component of distant power from the cross-sectional structure shown in FIG. It is a figure which shows the light quantity distribution ratio of a distance power and a near power of the hybrid type multifocal intraocular lens of Example 3 of this invention.
  • FIG. 1 is a lens cross-sectional view showing a schematic configuration of a hybrid multifocal intraocular lens 1 according to an embodiment of the present invention.
  • the hybrid multifocal intraocular lens 1 has an outer diameter OD and has a rotationally symmetric shape about the optical axis AX.
  • Examples of the material of the hybrid multifocal intraocular lens 1 include silicone, acrylic resin, and Hydroxyethyl Methacrylate (HEMA).
  • the hybrid multifocal intraocular lens 1 has a first surface R1 and a second surface R2.
  • the first surface R1 is located on the object side and the second surface R2 is located on the image side.
  • a diffractive portion DIF having a diffractive structure is formed in the central portion of the first surface R1 (a circular region centered on the optical axis AX).
  • the diffractive portion DIF divides the incident light beam and focuses it on the far vision side condensing point and the near vision side condensing point, respectively.
  • the diffractive structure of the diffractive portion DIF is, for example, a blazed diffractive structure having a sawtooth shape, and is represented by the following optical path difference function ⁇ (h).
  • the optical path difference function ⁇ (h) is a function expressing the function of the diffractive portion DIF as a diffractive lens in the form of an additional optical path length at a height h from the optical axis, and the installation position of each annular step in the annular structure Is specified.
  • the optical path difference function ⁇ (h) defines second-order, fourth-order, sixth-order,... Optical path difference function coefficients as P 2 , P 4 , P 6 ,.
  • ⁇ (h) (P 2 h 2 + P 4 h 4 + P 6 h 6 + P 8 h 8 + P 10 h 10 + P 12 h 12 ) m ⁇
  • a refracting part REF is formed in the peripheral part of the diffractive part DIF (a region from the outermost peripheral edge of the diffractive part DIF to the outermost peripheral edge of the effective diameter of the hybrid multifocal intraocular lens 1).
  • the refracting part REF has a plurality of annular refracting surface areas concentric with the diffractive part DIF.
  • Each refracting surface region has a refracting surface having a different curvature, and condenses an incident light beam on one of the condensing points on the far vision side or the near vision side.
  • the second surface R2 is a spherical surface.
  • the second surface R2 may be an aspherical surface for aberration correction.
  • the intermediate pupil diameter of about ⁇ 3 to 4 mm has the largest refractive part REF. It is considered that the object light is incident up to the inner refractive surface region (hereinafter referred to as “innermost refractive surface region” for convenience). Therefore, the hybrid multifocal intraocular lens 1 of the present embodiment gives a distant power to the innermost refractive surface area.
  • the light beam transmitted through the innermost refractive surface region is also condensed at the far vision side condensing point. The far-sightedness and nearsightedness are maintained well even when prescribed for elderly cataract patients with a maximum pupil diameter of about 3 to 4 mm, because the light intensity is balanced slightly more in the distance vision than in the nearsightedness. It is.
  • conditional expression (1) is set as described above in order to more surely achieve multifocalization with the pupil diameter of an elderly person or the like and to suppress a decrease in contrast due to flare.
  • Conditional expression (2) merely replaces the radius a of the diffractive portion DIF in conditional expression (1) with the radius a ′ of the annular step, and the technical idea is substantially the same as conditional expression (1). .
  • conditional expression (1) or (2) If the upper limit of conditional expression (1) or (2) is exceeded, the decrease in contrast due to flare increases, leading to poor visibility. If the lower limit of conditional expression (1) or (2) is not reached, the area of the diffractive portion DIF is small even for a small pupil diameter, and a sufficient multifocal effect cannot be obtained.
  • the hybrid multifocal intraocular lens 1 has the following conditional expression (3) when the width of each refractive surface area of the refractive part REF is defined as Hn (n is a natural number of 2 or more). 0.040 ⁇ Hn / 2b (3) It is good also as composition which satisfies.
  • the diffractive portion DIF is defined as “first zone”
  • the innermost refractive surface region is defined as “second zone”
  • the refractive surface region outside the innermost refractive surface region is defined from the inner refractive surface region.
  • third zone also referred to as “third zone”, “fourth zone”,.
  • symbols H2, H3, H4 are attached to the widths of the second zone, the third zone, the fourth zone,.
  • each zone width of the refracting part REF is, the more advantageous is that the change in the amount of light distributed between the far power and the near power depending on the pupil diameter becomes smaller.
  • the narrower the zone width the more the transmission frequency characteristic is converged by a specific frequency determined by the diameter of the zone, and the deterioration of the imaging performance due to the influence of diffraction increases even in the refracting surface region. Therefore, the conditional expression (3) is set as described above in order to suppress both the change in the distribution light quantity depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction.
  • conditional expression (3) If the upper limit of conditional expression (3) is exceeded, the change in the distribution light quantity depending on the pupil diameter is large. If the lower limit of conditional expression (3) is not reached, the influence of diffraction increases rapidly, and the imaging performance is significantly degraded.
  • the distribution light quantity ratio depending on the pupil diameter is approximately obtained by a value in which the total area of the incident light beam diameter is the denominator and the area of the distance power or near power zone inside is a numerator. (However, in the first zone, the area is multiplied by the diffraction efficiency.) In this calculation, the denominator value increases as the pupil diameter increases. Therefore, the change in the distribution light quantity ratio cannot be suppressed within a certain range unless the numerator value is increased in the outer zone. Therefore, the hybrid multifocal intraocular lens 1 may be configured such that the zone width increases toward the outer zone of the refractive part REF.
  • the refracting part REF may be configured to have at least three zones.
  • the near power may be given to the third zone outside the second zone to which the far power is given, and the far power may be given to the fourth zone outside the third zone.
  • Each of the hybrid multifocal intraocular lenses 1 according to Examples 1 to 3 of the present invention has first to fourth zones.
  • the second, third, and fourth zones are assigned a far power, a near power, and a far power, respectively.
  • the second surface R2 is a spherical surface.
  • the distant power in water is set to 20 Dptr.
  • a schematic lens cross-sectional view of the hybrid multifocal intraocular lens 1 of Example 1 is as shown in FIG.
  • the specific numerical configuration of the first surface R1 of the hybrid multifocal intraocular lens 1 according to the first embodiment is as shown in Table 1.
  • FIGS. 2A and 2B are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the first embodiment, respectively.
  • the vertical axis represents the sag amount (unit: mm)
  • the horizontal axis represents the lens radius (unit: mm).
  • the vertical axis and the horizontal axis indicate lens radii (unit: mm) orthogonal to each other.
  • a solid line on the first surface R1 indicates an annular step formed in the first zone, and a two-dot line on the first surface R1 indicates a boundary between the first to fourth zones.
  • the vertical axis of FIG. 3 indicates the sag amount (unit: mm), and the horizontal axis indicates the lens radius (unit: mm).
  • a typical sawtooth shape that contributes to the near power remains in the first zone from which the curvature component of the far power is subtracted.
  • a curve indicated by a broken line in the first zone shows a shape obtained by subtracting the curvature component of the distant power from the curvature radius R that is the base of the fine shape of the first zone.
  • the second and fourth zones to which the far power is given are flattened because the power is subtracted.
  • the third zone is an inclined surface indicating the addition power obtained by subtracting the far power from the near power.
  • FIG. 4 shows the light quantity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the first embodiment.
  • the vertical axis in FIG. 4 indicates the ratio of the distance power or the near power to the total light quantity (unit:%), and the horizontal axis indicates the lens diameter (unit: mm).
  • a region where the light intensity distribution ratio of the far power and the near power is constant corresponds to the first zone.
  • a region where the light intensity distribution ratio of the far power increases corresponds to the second and fourth zones.
  • a region where the light quantity distribution ratio of the near power increases corresponds to the third zone.
  • the sum of the light intensity distribution ratios of the far power and the near power in the first zone is about 80%.
  • the remaining 20% is mainly flare.
  • the widths of the second to fourth zones are set so that the light quantity distribution ratio between the far power and the near power is almost within the range of 30 to 60%.
  • FIG. 5 is a lens cross-sectional view illustrating a schematic configuration of the hybrid multifocal intraocular lens 1 according to the second embodiment.
  • the specific numerical configuration of the first surface R1 of the hybrid multifocal intraocular lens 1 of Example 2 is as shown in Table 2.
  • FIG. 6 (a) and 6 (b) are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the second embodiment, respectively.
  • FIG. 8 shows the light quantity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the second embodiment.
  • FIG. 9 is a lens cross-sectional view illustrating a schematic configuration of the hybrid multifocal intraocular lens 1 according to the third embodiment. Specific numerical configurations of the first surface R1 of the hybrid multifocal intraocular lens 1 of Example 3 are as shown in Table 3.
  • the hybrid multifocal intraocular lens 1 of Example 3 has a design that emphasizes both the suppression of flare generated in the first zone and the securing of far vision in situations where the pupil diameter is large, such as dark place vision. Yes. Specifically, the hybrid multifocal intraocular lens 1 of the third embodiment has a smaller first zone and a wider fourth zone than the first and second embodiments.
  • Curvature of second surface R2 ⁇ 13.24 Center thickness (optical member thickness on the optical axis AX)
  • D 0.70
  • Refractive index ne for the e-line 1.49379
  • Abbe number for e-line ⁇ e 57.69
  • FIGS. 10A and 10B are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the third embodiment, respectively.
  • FIG. 12 shows the light intensity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the third embodiment.
  • the hybrid multifocal intraocular lens 1 according to the first to third embodiments has a light quantity for far vision and near vision even at an intermediate pupil diameter of about ⁇ 3 to 4 mm. Appropriately secured. Therefore, the hybrid multifocal intraocular lens 1 of Examples 1 to 3 can sufficiently cope with prescription for elderly cataract patients and the like.
  • the third zone for near vision in the vicinity of ⁇ 3 to 4 mm, the amount of light is ensured appropriately for distance vision and near vision even in dark places for middle-aged people with a relatively large maximum pupil diameter.
  • the flare caused by diffraction is suppressed to be extremely small by minimizing the first zone which is the central diffraction portion. For this reason, the contrast is particularly high when viewed in the dark.
  • Table 4 is a list of values calculated when the conditional expressions (1) to (3) are applied in the first to third embodiments.
  • the hybrid multifocal intraocular lens 1 of Examples 1 to 3 satisfies all the conditional expressions (1) to (3). Therefore, the hybrid multifocal intraocular lens 1 according to the first to third embodiments can achieve multifocalization even in an elderly person with a small intermediate pupil diameter or maximum pupil diameter, and can reduce contrast due to flare. (Effect by satisfying conditional expression (1) or (2)).
  • the change in the distribution light quantity depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction in the refractive surface area are simultaneously suppressed (conditions) Effect by satisfying the expression (3)).
  • the hybrid multifocal intraocular lens 1 of the present embodiment can also be applied to a contact lens.
  • the contact lens has a meniscus shape, for example, and has a region corresponding to the first to fourth zones on at least one of the object side surface and the image side surface. Since the contact lens has a large outer diameter so as to be stable near the center of the cornea (for example, ⁇ 14.5 mm), the effective radius b is set to 1/4 of the outer diameter (diameter). (1) to (3) may be applied.

Abstract

This multifocal eye lens has, on at least one surface thereof: a diffractive surface structure formed at the center section, which includes the light axis; and a refractive surface structure formed at the peripheral section surrounding the center section. The diffractive surface structure is furnished with a diffractive effect that splits an incoming light beam and focuses the beam at each of a distance vision focal point and a near vision focal point. The refractive surface structure is configured from a plurality of refractive surface regions having different curvatures. The plurality of refractive surface regions have an annular shape surrounding the center section. The center-most refractive surface regions are furnished with a distance dioptric power that focuses the incoming light beam to the distance vision focal point.

Description

多焦点眼用レンズMultifocal ophthalmic lens
 本発明は、眼に処方する遠近両用の多焦点眼用レンズに関する。 The present invention relates to a bifocal ophthalmic lens that is prescribed for the eyes.
 白内障の治療を目的として、混濁した水晶体を摘出して眼内レンズ(Intraocular Lens, IOL)を挿入する手術が普及している。この種の手術において、水晶体の摘出によって失われる調整力を補う場合は、多焦点眼内レンズを挿入する。多焦点眼内レンズには、遠方度数又は近方度数をエリア毎に付与した屈折型や、遠方度数と近方度数に配分する回折構造型があり、集光点が光軸方向に複数(遠方視、近方視)に分割されている。すなわち、多焦点眼内レンズは、レンズ装用者が日常生活を眼鏡無しで送れるように、遠方視と近方視の何れの集光点においても視力を確保するデザインとなっている。この種の多焦点眼内レンズの具体的構成例は、例えば、日本特許公報JP3195386B(以下、特許文献1という)、米国特許出願公開公報US2006/0098163A(以下、特許文献2という)、日本特許出願公開公報JP2008-43752A(以下、特許文献3という)に記載されている。 For the purpose of treating cataracts, surgery that removes the turbid lens and inserts an intraocular lens (Intraocular Lens, IOL) has become widespread. In this type of surgery, a multifocal intraocular lens is inserted to compensate for the adjustment power lost by removing the lens. Multifocal intraocular lenses include a refractive type with a distance or near power assigned to each area, and a diffractive structure type that distributes the power to the distance and the near power. Vision, near vision). In other words, the multifocal intraocular lens is designed to ensure visual acuity at both the far and near focusing points so that the lens wearer can send his / her daily life without glasses. Specific configuration examples of this type of multifocal intraocular lens include, for example, Japanese Patent Publication JP3195386B (hereinafter referred to as Patent Document 1), US Patent Application Publication No. US2006 / 0098163A (hereinafter referred to as Patent Document 2), Japanese Patent Application. This is described in Japanese Unexamined Patent Publication JP2008-43752A (hereinafter referred to as Patent Document 3).
 特許文献1には、レンズ面が少なくとも5つの光学ゾーンに分割された屈折型多焦点レンズが記載されている。この種の屈折型多焦点眼内レンズは、主に近方視の見え方がレンズ装用者の瞳孔径に依存して大きく変わるという問題を抱えている。例えば特許文献1に記載の屈折型多焦点眼内レンズの装用者が晴天時に屋外にいる場合を考える。この場合、レンズ装用者の瞳孔径が絞られて、眼内レンズに入射する光束径が最大でも第2ゾーンの一部までに制限されると考えられる。レンズ装用者は、主に遠方視用の光学ゾーンしか利用できないため、近方視することが難しい。 Patent Document 1 describes a refractive multifocal lens in which a lens surface is divided into at least five optical zones. This type of refractive multifocal intraocular lens has a problem that the appearance of near vision mainly varies greatly depending on the pupil diameter of the lens wearer. For example, consider a case where a wearer of a refractive multifocal intraocular lens described in Patent Document 1 is outdoors in fine weather. In this case, it is considered that the pupil diameter of the lens wearer is narrowed and the luminous flux incident on the intraocular lens is limited to a part of the second zone at the maximum. Since the lens wearer can mainly use only the optical zone for far vision, it is difficult to perform near vision.
 特許文献2には、レンズの片面全面にブレーズ型の回折構造を形成した回折構造型多焦点眼内レンズが記載されている。回折構造型多焦点眼内レンズには、瞳孔径に依存して近方視や遠方視の見え方が変わるという問題が生じない。しかし、回折構造型多焦点眼内レンズは、コントラストが低下するという問題を抱えている。例えば特許文献2に記載の回折構造型多焦点眼内レンズは、入射光量の約80%を遠方度数と近方度数に配分し利用する。ところが、残りの約20%は、視野の広範囲に広がるノイズ(フレア)となり、コントラストを低下させる。特に、夜間等の暗所視において街灯や車のヘッドライト等の明るい光源が視野内にある場合は光源のフレアが視野全体に広がり、ホワイトアウトのような視界一面が真っ白で何も見えない状況になる虞がある。 Patent Document 2 describes a diffractive structure type multifocal intraocular lens in which a blaze type diffractive structure is formed on the entire surface of one side of a lens. The diffractive structure type multifocal intraocular lens does not have a problem that the appearance of near vision or far vision changes depending on the pupil diameter. However, the diffractive structure type multifocal intraocular lens has a problem that the contrast is lowered. For example, the diffractive structure type multifocal intraocular lens described in Patent Document 2 uses about 80% of the incident light amount by distributing it to the distant power and the near power. However, the remaining about 20% becomes noise (flare) that spreads over a wide range of the field of view and lowers the contrast. In particular, when there is a bright light source such as a streetlight or car headlight in the dark when viewing at night, etc., the flare of the light source spreads over the entire field of view, and the entire field of view such as whiteout is completely white and invisible There is a risk of becoming.
 特許文献3には、レンズの片面中央部にアポダイズ回折構造を形成し、該回折構造の周囲部に回折構造を持たない回折構造型多焦点眼内レンズが記載されている。特許文献3に記載の回折構造型多焦点眼内レンズでは、特許文献1に記載されている屈折型多焦点レンズのような瞳孔径が小さく絞られた際に近方視することが難しいという状況はレンズ中央部の回折構造の存在によって生じない。しかし、瞳孔径が大きくなる夜間で近方視が難しくなるという問題がある。すなわち、レンズの片面中央部の回折構造の周囲部は単純な屈折面形状であり、遠方度数のみを有している。そのため、暗所視におけるフレアの発生が抑えられ、瞳孔径が大きくなる夜間において遠方視は良好である。しかし、近方視は光量不足となるため、視力低下が大きくなる。 Patent Document 3 describes a diffractive structure type multifocal intraocular lens in which an apodized diffractive structure is formed at the center of one surface of a lens and no diffractive structure is provided around the diffractive structure. In the diffractive structure type multifocal intraocular lens described in Patent Document 3, it is difficult to view near when the pupil diameter is reduced as in the refractive multifocal lens described in Patent Document 1. Does not occur due to the presence of the diffractive structure at the center of the lens. However, there is a problem that near vision becomes difficult at night when the pupil diameter increases. That is, the periphery of the diffractive structure at the center of one side of the lens has a simple refractive surface shape and has only a far power. For this reason, the occurrence of flare in dark vision is suppressed, and far vision is good at night when the pupil diameter is large. However, near vision has a shortage of light, resulting in a large reduction in visual acuity.
 本発明者は、特許文献3で想定される上記問題を解決すべく、レンズ中央部に形成された回折構造の周囲部に曲率の異なる2つ(遠方度数、近方度数)のゾーンを持つ屈折型構造を形成することを着想した。以下、説明の便宜上、回折構造の周囲部に屈折型構造を形成した眼内レンズをハイブリット型多焦点眼内レンズと記す。ハイブリット型多焦点眼内レンズは、瞳孔径が大きくなる夜間において遠方視と近方視の何れにおいても光量が確保されて良好な視界が保たれると考えられる。 In order to solve the above-mentioned problem assumed in Patent Document 3, the present inventor has a refraction having two zones (far power and near power) having different curvatures around the diffractive structure formed at the center of the lens. The idea was to form a mold structure. Hereinafter, for convenience of explanation, an intraocular lens in which a refractive structure is formed around the diffractive structure is referred to as a hybrid multifocal intraocular lens. The hybrid multifocal intraocular lens is considered to maintain a good field of view with a sufficient amount of light in both far vision and near vision at night when the pupil diameter increases.
 しかし、ハイブリット型多焦点眼内レンズでは、回折構造と屈折型構造の配分を適切に設定しないと両者の利点が十分に生かせない虞がある。例えば回折構造の配分が大きすぎると視野の広範囲に広がるノイズが十分に抑えきれず、夜間の歩行や車の運転等に支障をきたす虞がある。そして、暗所視における最大瞳孔径は一般に年齢と共に小さくなり、例えば60代ではφ4mm程度まで、70代ではφ3mm程度までしか開かないといわれている。そのため、屈折型構造の配分が大きすぎると特に高齢者では多焦点化が不十分となり近方視が難しくなるという虞がある。 However, in the hybrid type multifocal intraocular lens, there is a possibility that the advantages of both cannot be fully utilized unless the distribution of the diffractive structure and the refractive structure is appropriately set. For example, if the distribution of the diffractive structures is too large, noise that spreads over a wide range of the visual field cannot be sufficiently suppressed, and there is a risk of hindering walking at night or driving a car. The maximum pupil diameter in scotopic vision generally decreases with age. For example, it is said that the maximum pupil diameter is about φ4 mm in the 60s and only about φ3 mm in the 70s. Therefore, when the distribution of the refractive structure is too large, there is a possibility that multi-focalization is insufficient particularly in elderly people, and near vision becomes difficult.
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは最大瞳孔径が比較的大きい中年齢者でも、最大瞳孔径が小さい高齢者であっても処方に適したハイブリット型の多焦点眼用レンズを提供することである。なお、本発明は眼内レンズに限らずコンタクトレンズ等の別形態の眼用のレンズにも適用することができる。そのため、上記においては多焦点「眼用」レンズと記している。 The present invention has been made in view of the above circumstances, and the object of the present invention is a hybrid type suitable for prescription even for middle-aged people with a relatively large maximum pupil diameter and elderly people with a small maximum pupil diameter. It is to provide a multifocal ophthalmic lens. The present invention can be applied not only to intraocular lenses but also to other types of ophthalmic lenses such as contact lenses. Therefore, in the above, it is described as a multifocal “ophthalmic” lens.
 上記の課題を解決する本発明の一形態に係る多焦点眼用レンズは、光軸を含む中央部に形成された回折面構造と、中央部を囲う周囲部に形成された屈折面構造とを少なくとも一面に有している。回折面構造は、入射光束を分割して遠方視側集光点と近方視側集光点にそれぞれ集光する。屈折面構造は、曲率の異なる複数の屈折面領域を有している。複数の屈折面領域は、中央部を囲う円環形状を有している。最も中央部側の屈折面領域は、入射光束を遠方視側集光点に集光する遠方度数が付与されている。 A multifocal ophthalmic lens according to an embodiment of the present invention that solves the above problems includes a diffractive surface structure formed in a central portion including an optical axis, and a refractive surface structure formed in a peripheral portion surrounding the central portion. At least on one side. The diffractive surface structure divides an incident light beam and focuses it on a far vision side condensing point and a near vision side condensing point, respectively. The refractive surface structure has a plurality of refractive surface regions having different curvatures. The plurality of refracting surface regions have an annular shape surrounding the central portion. The farthest refractive surface area is provided with a distance power for condensing the incident light beam at the far vision side condensing point.
 本発明に係る多焦点眼用レンズによれば、中間的又は大きな瞳孔径においても遠方視及び近方視でバランス良く光量が確保されるため、中年齢から高齢の白内障患者等への処方に好適である。 According to the multifocal ophthalmic lens according to the present invention, the amount of light is ensured in a well-balanced distance and near vision even at an intermediate or large pupil diameter, which is suitable for prescription for middle to old cataract patients and the like. It is.
 本発明に係る多焦点眼用レンズは、瞳孔径によらず多焦点化をより確実に達成すると共にフレアによるコントラストの低下を抑えるため、中央部と周囲部との境界と光軸との距離をaと定義し、有効半径をbと定義した場合、次の条件式(1)
0.29≦ a/b ≦0.50    (1)
を満たす構成としてもよい。
In the multifocal ophthalmic lens according to the present invention, the distance between the boundary between the central portion and the peripheral portion and the optical axis is set in order to achieve multifocalization more reliably regardless of the pupil diameter and to suppress the decrease in contrast due to flare. When defined as a and the effective radius defined as b, the following conditional expression (1)
0.29 ≦ a / b ≦ 0.50 (1)
It is good also as composition which satisfies.
 回折面構造は、例えば光軸を中心とした少なくとも1つの段差をもつ輪帯を有している。本発明に係る多焦点眼用レンズは、瞳孔径によらず多焦点化をより確実に達成すると共にフレアによるコントラストの低下を抑えるため、回折面構造の最も周囲部側に形成された段差と光軸との距離をa’と定義し、有効半径をbと定義した場合、次の条件式(2)
0.25≦ a’/b ≦0.47    (2)
を満たす構成としてもよい。
The diffractive surface structure has, for example, an annular zone having at least one step centered on the optical axis. The multifocal ophthalmic lens according to the present invention achieves multifocalization more reliably regardless of the pupil diameter, and suppresses the decrease in contrast due to flare, and the step formed on the most peripheral side of the diffractive surface structure and the light When the distance from the axis is defined as a 'and the effective radius is defined as b, the following conditional expression (2)
0.25 ≦ a ′ / b ≦ 0.47 (2)
It is good also as composition which satisfies.
 本発明に係る多焦点眼用レンズは、瞳孔径に依存した遠方度数と近方度数の配分光量の変化と回折の影響による結像性能の劣化を共に抑えるため、各屈折面領域の幅をHと定義した場合、次の条件式(3)
0.040≦ H/2b    (3)
を満たす構成としてもよい。
In the multifocal ophthalmic lens according to the present invention, the width of each refracting surface region is set to H in order to suppress both the change in the distribution light quantity of the distance power and the distance power depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction. The following conditional expression (3)
0.040 ≦ H / 2b (3)
It is good also as composition which satisfies.
 本発明に係る多焦点眼用レンズは、瞳孔径に依存した遠方度数と近方度数の配分光量の変化を抑えるため、中央部から離れた屈折面領域ほど幅が広くなるように構成されてもよい。 The multifocal ophthalmic lens according to the present invention may be configured such that the refractive surface region farther from the central portion becomes wider in order to suppress a change in the amount of distributed light between the distance power and the near power depending on the pupil diameter. Good.
 本発明に係る多焦点眼用レンズは、少なくとも3つの屈折面領域を有した構成としてもよい。3つの屈折面領域は、例えば、中央部側から順に、遠方度数、入射光束を近方視側集光点に集光する近方度数、該遠方度数が付与されている。 The multifocal ophthalmic lens according to the present invention may have a configuration having at least three refractive surface regions. The three refracting surface regions are given, for example, the distance power, the distance power for condensing the incident light beam at the near vision side condensing point, and the distance power in order from the center side.
 本発明によれば、中年齢者から高齢者への処方に適したハイブリット型の多焦点眼用レンズが提供される。 According to the present invention, a hybrid multifocal ophthalmic lens suitable for prescription from middle-aged to elderly is provided.
本発明の実施形態(実施例1)のハイブリット型多焦点眼内レンズの概略構成を示すレンズ断面図である。1 is a lens cross-sectional view illustrating a schematic configuration of a hybrid multifocal intraocular lens according to an embodiment (Example 1) of the present invention. 本発明の実施例1のハイブリット型多焦点眼内レンズの第一面の断面構造図、上面図である。1 is a cross-sectional structural view and a top view of a first surface of a hybrid multifocal intraocular lens according to a first embodiment of the present invention. 図2(a)に示す断面構造から遠方度数の曲率成分を差し引いて表現した断面構造図である。FIG. 3 is a cross-sectional structure diagram expressed by subtracting a curvature component of distant power from the cross-sectional structure shown in FIG. 本発明の実施例1のハイブリット型多焦点眼内レンズの遠方度数と近方度数の光量配分比を示す図である。It is a figure which shows the light quantity distribution ratio of a distance power and a near power of the hybrid type multifocal intraocular lens of Example 1 of this invention. 本発明の実施例2のハイブリット型多焦点眼内レンズの概略構成を示すレンズ断面図である。It is lens sectional drawing which shows schematic structure of the hybrid type multifocal intraocular lens of Example 2 of this invention. 本発明の実施例2のハイブリット型多焦点眼内レンズの第一面の断面構造図、上面図である。It is the cross-section figure of the 1st surface of the hybrid type multifocal intraocular lens of Example 2 of this invention, and a top view. 図6(a)に示す断面構造から遠方度数の曲率成分を差し引いて表現した断面構造図である。FIG. 7 is a cross-sectional structure diagram expressed by subtracting a curvature component of a distant power from the cross-sectional structure shown in FIG. 本発明の実施例2のハイブリット型多焦点眼内レンズの遠方度数と近方度数の光量配分比を示す図である。It is a figure which shows the light quantity distribution ratio of the distance power and the near power of the hybrid type multifocal intraocular lens of Example 2 of this invention. 本発明の実施例3のハイブリット型多焦点眼内レンズの概略構成を示すレンズ断面図である。It is lens sectional drawing which shows schematic structure of the hybrid type multifocal intraocular lens of Example 3 of this invention. 本発明の実施例3のハイブリット型多焦点眼内レンズの第一面の断面構造図、上面図である。It is the cross-section figure of the 1st surface of the hybrid type multifocal intraocular lens of Example 3 of this invention, and a top view. 図10(a)に示す断面構造から遠方度数の曲率成分を差し引いて表現した断面構造図である。FIG. 11 is a cross-sectional structure diagram expressed by subtracting a curvature component of distant power from the cross-sectional structure shown in FIG. 本発明の実施例3のハイブリット型多焦点眼内レンズの遠方度数と近方度数の光量配分比を示す図である。It is a figure which shows the light quantity distribution ratio of a distance power and a near power of the hybrid type multifocal intraocular lens of Example 3 of this invention.
 以下、図面を参照して、本発明の実施形態のハイブリット型多焦点眼内レンズについて説明する。 Hereinafter, a hybrid multifocal intraocular lens according to an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態のハイブリット型多焦点眼内レンズ1の概略構成を示すレンズ断面図である。ハイブリット型多焦点眼内レンズ1は、外径ODを持ち、光軸AXを中心とした回転対称形状を有している。ハイブリット型多焦点眼内レンズ1の材料には、シリコーン、アクリル樹脂、Hydroxyethyl Methacrylate(HEMA)等が挙げられる。 FIG. 1 is a lens cross-sectional view showing a schematic configuration of a hybrid multifocal intraocular lens 1 according to an embodiment of the present invention. The hybrid multifocal intraocular lens 1 has an outer diameter OD and has a rotationally symmetric shape about the optical axis AX. Examples of the material of the hybrid multifocal intraocular lens 1 include silicone, acrylic resin, and Hydroxyethyl Methacrylate (HEMA).
 ハイブリット型多焦点眼内レンズ1は、第一面R1、第二面R2を有している。ハイブリット型多焦点眼内レンズ1の装用時、第一面R1は物体側に位置し、第二面R2は像側に位置する。 The hybrid multifocal intraocular lens 1 has a first surface R1 and a second surface R2. When the hybrid multifocal intraocular lens 1 is worn, the first surface R1 is located on the object side and the second surface R2 is located on the image side.
 第一面R1の中央部(光軸AXを中心とした円状領域)には、回折構造を持つ回折部DIFが形成されている。回折部DIFは、入射光束を分割して遠方視側集光点と近方視側集光点にそれぞれ集光する。回折部DIFの回折構造は、例えば鋸歯形状を有するブレーズ型回折構造であり、次の光路差関数φ(h)で表される。光路差関数φ(h)は、回折部DIFの回折レンズとしての機能を光軸からの高さhにおける光路長付加量の形で表現した関数であり、輪帯構造における各環状段差の設置位置を規定する。光路差関数φ(h)は、二次、四次、六次、・・・の光路差関数係数をそれぞれP、P、P、・・・と定義し、波長λの光の回折効率が最大となる回折次数をmと定義した場合に、次の式により表される。なお、本実施形態のハイブリット型多焦点眼内レンズ1は、1次の回折次数(m=1)を用いて近方視のための加入度数を付加し、1次回折光と遠方度数の0次回折光の回折効率をe線において一定範囲内にバランスさせるように設計されている。
φ(h)=(P2h2+P4h4+P6h6+P8h8+P10h10+P12h12)mλ
A diffractive portion DIF having a diffractive structure is formed in the central portion of the first surface R1 (a circular region centered on the optical axis AX). The diffractive portion DIF divides the incident light beam and focuses it on the far vision side condensing point and the near vision side condensing point, respectively. The diffractive structure of the diffractive portion DIF is, for example, a blazed diffractive structure having a sawtooth shape, and is represented by the following optical path difference function φ (h). The optical path difference function φ (h) is a function expressing the function of the diffractive portion DIF as a diffractive lens in the form of an additional optical path length at a height h from the optical axis, and the installation position of each annular step in the annular structure Is specified. The optical path difference function φ (h) defines second-order, fourth-order, sixth-order,... Optical path difference function coefficients as P 2 , P 4 , P 6 ,. When the diffraction order that maximizes the efficiency is defined as m, it is expressed by the following equation. The hybrid multifocal intraocular lens 1 of the present embodiment uses a first-order diffraction order (m = 1) to add an addition power for near vision, and a first-order diffracted light and a far power zero-next time. It is designed to balance the diffraction efficiency of the folded light within a certain range at the e-line.
φ (h) = (P 2 h 2 + P 4 h 4 + P 6 h 6 + P 8 h 8 + P 10 h 10 + P 12 h 12 ) mλ
 回折部DIFの周囲部(回折部DIFの最外周縁からハイブリット型多焦点眼内レンズ1の有効径の最外周縁までの領域)には、屈折部REFが形成されている。屈折部REFは、回折部DIFと同心の円環状の屈折面領域を複数有している。各屈折面領域は、互いに異なる曲率の屈折面を持ち、入射光束を遠方視側又は近方視側の何れか一方の集光点に集光する。 A refracting part REF is formed in the peripheral part of the diffractive part DIF (a region from the outermost peripheral edge of the diffractive part DIF to the outermost peripheral edge of the effective diameter of the hybrid multifocal intraocular lens 1). The refracting part REF has a plurality of annular refracting surface areas concentric with the diffractive part DIF. Each refracting surface region has a refracting surface having a different curvature, and condenses an incident light beam on one of the condensing points on the far vision side or the near vision side.
 第二面R2は、球面である。第二面R2は、収差補正のため非球面としてもよい。 The second surface R2 is a spherical surface. The second surface R2 may be an aspherical surface for aberration correction.
 本件特許出願時の当該分野の技術常識に基づいて寸法を決定し設計されたハイブリット型多焦点眼内レンズ1を装用した場合、φ3~4mm程度の中間的な瞳孔径では、屈折部REFの最も内側の屈折面領域(以下、便宜上、「最内屈折面領域」と記す。)まで物体光が入射すると考えられる。そこで、本実施形態のハイブリット型多焦点眼内レンズ1は、最内屈折面領域に遠方度数を付与している。中間的な瞳孔径では、回折部DIFを透過した光束に加えて最内屈折面領域を透過した光束も遠方視側集光点に集光する。遠方視で光量が近方視よりやや多め程度にバランスされるため、最大瞳孔径がφ3~4mm程度の高齢の白内障患者等に処方した場合でも夜間の遠方視及び近方視が良好に保たれる。 When the hybrid multifocal intraocular lens 1 whose dimensions are determined and designed on the basis of the common general technical knowledge in the field at the time of filing of the present patent application is worn, the intermediate pupil diameter of about φ3 to 4 mm has the largest refractive part REF. It is considered that the object light is incident up to the inner refractive surface region (hereinafter referred to as “innermost refractive surface region” for convenience). Therefore, the hybrid multifocal intraocular lens 1 of the present embodiment gives a distant power to the innermost refractive surface area. With an intermediate pupil diameter, in addition to the light beam transmitted through the diffractive portion DIF, the light beam transmitted through the innermost refractive surface region is also condensed at the far vision side condensing point. The far-sightedness and nearsightedness are maintained well even when prescribed for elderly cataract patients with a maximum pupil diameter of about 3 to 4 mm, because the light intensity is balanced slightly more in the distance vision than in the nearsightedness. It is.
 ハイブリット型多焦点眼内レンズ1は、回折部DIFの半径(回折部DIFと屈折部REFとの境界と光軸AXとの距離)をaと定義し、有効半径をbと定義した場合、次の条件式(1)
0.29≦ a/b ≦0.50    (1)
を満たす構成としてもよい。又は、回折部DIFの最も外側に形成された環状段差の半径(当該環状段差と光軸AXとの距離)をa’と定義した場合に、次の条件式(2)
0.25≦ a’/b ≦0.47    (2)
を満たす構成としてもよい。有効半径bの2倍は、外径OD又は屈折部REFの最外周径とほぼ等しく、一般に眼内レンズの場合はφ6mm程度となる。
In the hybrid type multifocal intraocular lens 1, when the radius of the diffraction part DIF (the distance between the boundary between the diffraction part DIF and the refractive part REF and the optical axis AX) is defined as a and the effective radius is defined as b, Conditional expression (1)
0.29 ≦ a / b ≦ 0.50 (1)
It is good also as composition which satisfies. Alternatively, when the radius of the annular step formed on the outermost side of the diffraction part DIF (the distance between the annular step and the optical axis AX) is defined as a ′, the following conditional expression (2)
0.25 ≦ a ′ / b ≦ 0.47 (2)
It is good also as composition which satisfies. Twice the effective radius b is approximately equal to the outer diameter OD or the outermost peripheral diameter of the refracting portion REF, and is generally about 6 mm in the case of an intraocular lens.
 60代の高齢者は瞳孔径がφ2~4mm程度しかなく、70代ではφ2~3mm程度しかないといわれている。このような瞳孔径変化が小さい高齢者等の処方に対応するためには、この範囲で遠方視側及び近方視側の光量をバランスさせかつ瞳孔径による変化を小さく保つ多焦点化が求められる。一般的な若年者の最大瞳孔径φ7mmのときの有効半径bを3.5mmとし、上記瞳孔径φ2~4mmの半分(半径相当)をaとした場合、
1/3.5<a/b<1.5/3.5 =0.29<a/b<0.43 (70代)
1/3.5<a/b<2/3.5 =0.29<a/b<0.57 (60代)
が成り立つ。
Elderly people in their 60s are said to have a pupil diameter of only about 2 to 4 mm, and in the 70s only about 2 to 3 mm. In order to deal with such prescriptions for elderly people with small changes in pupil diameter, multifocalization is required to balance the amount of light on the far vision side and near vision side in this range and keep the change due to pupil diameter small. . When the effective radius b is 3.5 mm when the maximum pupil diameter of a general young person is 7 mm, and half of the pupil diameter φ2 to 4 mm (corresponding to a radius) is a,
1 / 3.5 <a / b <1.5 / 3.5 = 0.29 <a / b <0.43 (70s)
1 / 3.5 <a / b <2 / 3.5 = 0.29 <a / b <0.57 (60s)
Holds.
 高齢者等の瞳孔径で多焦点化をより確実に達成するためには、回折部DIFを大径化するのが最も確実かつ簡易な解決方法である。そのため、近年、高齢者の白内障手術において多焦点眼内レンズを処方する場合、屈折型より回折構造型の多焦点眼内レンズを選択することが多い。しかし、回折部DIFの直径が大きいほどフレアによるコントラストの低下が目立つ。特に最大瞳孔径がφ4~5mmの50~60代の年齢層では、フレアの影響は決して小さくない。そこで、条件式(1)は、高齢者等の瞳孔径で多焦点化をより確実に達成すると共にフレアによるコントラストの低下を抑えるため、上記の通りに設定されている。条件式(2)は、条件式(1)の回折部DIFの半径aを環状段差の半径a’に置き換えただけであり、技術的思想としては条件式(1)と実質的に同じである。 In order to achieve multifocalization more reliably with the pupil diameter of elderly people and the like, the most reliable and simple solution is to increase the diameter of the diffraction part DIF. Therefore, in recent years, when prescribing a multifocal intraocular lens in cataract surgery for elderly people, a diffractive structure type multifocal intraocular lens is often selected rather than a refractive type. However, the greater the diameter of the diffractive portion DIF, the more conspicuous the decrease in contrast due to flare. Especially in the 50-60s age group with a maximum pupil diameter of φ4-5mm, the influence of flare is not small. Therefore, the conditional expression (1) is set as described above in order to more surely achieve multifocalization with the pupil diameter of an elderly person or the like and to suppress a decrease in contrast due to flare. Conditional expression (2) merely replaces the radius a of the diffractive portion DIF in conditional expression (1) with the radius a ′ of the annular step, and the technical idea is substantially the same as conditional expression (1). .
 条件式(1)又は(2)の上限を上回ると、フレアによるコントラストの低下が大きくなり視界不良を招く。条件式(1)又は(2)の下限を下回ると、小さい瞳孔径に対しても回折部DIFの面積が小さく、十分な多焦点効果が得られない。 If the upper limit of conditional expression (1) or (2) is exceeded, the decrease in contrast due to flare increases, leading to poor visibility. If the lower limit of conditional expression (1) or (2) is not reached, the area of the diffractive portion DIF is small even for a small pupil diameter, and a sufficient multifocal effect cannot be obtained.
 ハイブリット型多焦点眼内レンズ1は、屈折部REFの各屈折面領域の幅をHn(nは2以上の自然数)と定義した場合、次の条件式(3)
0.040≦ Hn/2b    (3)
を満たす構成としてもよい。なお、以降においては、説明の便宜上、回折部DIFを「第1ゾーン」、最内屈折面領域を「第2ゾーン」、最内屈折面領域の外側の屈折面領域を内側の屈折面領域から順に「第3ゾーン」、「第4ゾーン」、・・・とも記す。条件式(3)においては、第2ゾーン、第3ゾーン、第4ゾーン・・・の各幅に符号H2、H3、H4が付される。
The hybrid multifocal intraocular lens 1 has the following conditional expression (3) when the width of each refractive surface area of the refractive part REF is defined as Hn (n is a natural number of 2 or more).
0.040 ≦ Hn / 2b (3)
It is good also as composition which satisfies. In the following, for convenience of explanation, the diffractive portion DIF is defined as “first zone”, the innermost refractive surface region is defined as “second zone”, and the refractive surface region outside the innermost refractive surface region is defined from the inner refractive surface region. Also referred to as “third zone”, “fourth zone”,. In the conditional expression (3), symbols H2, H3, H4 are attached to the widths of the second zone, the third zone, the fourth zone,.
 屈折部REFの各ゾーン幅が狭いほど瞳孔径に依存した遠方度数と近方度数の配分光量の変化が小さくなる点で有利である。しかし、ゾーン幅が狭いほど透過周波数特性がゾーンの直径で決まる特定の周波数により一層収束して、屈折面領域であっても回折の影響による結像性能の劣化が大きくなる。そこで、条件式(3)は、瞳孔径に依存した配分光量の変化と回折の影響による結像性能の劣化を共に抑えるため、上記の通りに設定されている。 The narrower each zone width of the refracting part REF is, the more advantageous is that the change in the amount of light distributed between the far power and the near power depending on the pupil diameter becomes smaller. However, the narrower the zone width, the more the transmission frequency characteristic is converged by a specific frequency determined by the diameter of the zone, and the deterioration of the imaging performance due to the influence of diffraction increases even in the refracting surface region. Therefore, the conditional expression (3) is set as described above in order to suppress both the change in the distribution light quantity depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction.
 条件式(3)の上限を上回ると、瞳孔径に依存した配分光量の変化が大きい。条件式(3)の下限を下回ると、回折の影響が急激に増加して結像性能が著しく劣化する。 If the upper limit of conditional expression (3) is exceeded, the change in the distribution light quantity depending on the pupil diameter is large. If the lower limit of conditional expression (3) is not reached, the influence of diffraction increases rapidly, and the imaging performance is significantly degraded.
 ところで、瞳孔径に依存した配分光量比は、入射光束径の全面積を分母とし、その内側にある遠方度数又は近方度数のゾーンの面積を分子とした値で近似的に求められる。(但し、第1ゾーンは面積に回折効率を乗じた値とする。)この計算では、瞳孔径が大きくなるほど分母の値が大きくなる。そのため、分子の値を外側のゾーンほど大きくしなければ配分光量比の変化を一定範囲内に抑えることができない。そこで、ハイブリット型多焦点眼内レンズ1は、屈折部REFの外側のゾーンほどゾーン幅が大きくなるように構成されてもよい。 By the way, the distribution light quantity ratio depending on the pupil diameter is approximately obtained by a value in which the total area of the incident light beam diameter is the denominator and the area of the distance power or near power zone inside is a numerator. (However, in the first zone, the area is multiplied by the diffraction efficiency.) In this calculation, the denominator value increases as the pupil diameter increases. Therefore, the change in the distribution light quantity ratio cannot be suppressed within a certain range unless the numerator value is increased in the outer zone. Therefore, the hybrid multifocal intraocular lens 1 may be configured such that the zone width increases toward the outer zone of the refractive part REF.
 屈折部REFは、少なくとも3ゾーンを有した構成としてもよい。例えば遠方度数が付与された第2ゾーンの外側の第3ゾーンに近方度数を付与し、第3ゾーンの外側の第4ゾーンに遠方度数を付与してもよい。 The refracting part REF may be configured to have at least three zones. For example, the near power may be given to the third zone outside the second zone to which the far power is given, and the far power may be given to the fourth zone outside the third zone.
 次に、これまで説明したハイブリット型多焦点眼内レンズ1の具体的数値実施例を3例説明する。本発明の実施例1~3のハイブリット型多焦点眼内レンズ1は、何れも第1~4ゾーンを有している。第2、3、4ゾーンにはそれぞれ、遠方度数、近方度数、遠方度数が付与されている。第二面R2は球面である。水中における遠方度数は20Dptrに設定されている。 Next, three specific numerical examples of the hybrid multifocal intraocular lens 1 described so far will be described. Each of the hybrid multifocal intraocular lenses 1 according to Examples 1 to 3 of the present invention has first to fourth zones. The second, third, and fourth zones are assigned a far power, a near power, and a far power, respectively. The second surface R2 is a spherical surface. The distant power in water is set to 20 Dptr.
 本実施例1のハイブリット型多焦点眼内レンズ1の概略的なレンズ断面図は、図1に示される通りである。本実施例1のハイブリット型多焦点眼内レンズ1の第一面R1の具体的数値構成は、表1に示される通りである。 A schematic lens cross-sectional view of the hybrid multifocal intraocular lens 1 of Example 1 is as shown in FIG. The specific numerical configuration of the first surface R1 of the hybrid multifocal intraocular lens 1 according to the first embodiment is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例1のハイブリット型多焦点眼内レンズ1の第一面R1以外の具体的数値構成は、次に示される通りである。
第二面R2の曲率=-13.24
中心厚(光軸AX上の光学部材厚)D=0.70
e線に対する屈折率ne=1.49379
e線に対するアッベ数νe=57.69
有効半径b=3.0
水中における近方度数=23.5Dptr
Specific numerical configurations other than the first surface R1 of the hybrid multifocal intraocular lens 1 according to the first embodiment are as follows.
Curvature of second surface R2 = −13.24
Center thickness (optical member thickness on the optical axis AX) D = 0.70
Refractive index ne for the e-line = 1.49379
Abbe number for e-line νe = 57.69
Effective radius b = 3.0
Near power in water = 23.5 Dptr
 図2(a)、(b)はそれぞれ、本実施例1のハイブリット型多焦点眼内レンズ1の第一面R1の断面構造図、上面図を示す。図2(a)の縦軸はサグ量(単位:mm)を示し、横軸はレンズ半径(単位:mm)を示す。図2(b)の縦軸と横軸は互いに直交するレンズ半径(単位:mm)を示す。図2(b)中、第一面R1上の実線は第1ゾーンに形成された環状段差を示し、第一面R1上の二点差線は第1~4の各ゾーンの境界を示す。 FIGS. 2A and 2B are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the first embodiment, respectively. In FIG. 2A, the vertical axis represents the sag amount (unit: mm), and the horizontal axis represents the lens radius (unit: mm). In FIG. 2B, the vertical axis and the horizontal axis indicate lens radii (unit: mm) orthogonal to each other. In FIG. 2B, a solid line on the first surface R1 indicates an annular step formed in the first zone, and a two-dot line on the first surface R1 indicates a boundary between the first to fourth zones.
 図3は、図2(a)に示す断面構造から遠方度数(=20Dptr)の曲率成分を差し引いて表現した断面構造図を示す。図3の縦軸はサグ量(単位:mm)を示し、横軸はレンズ半径(単位:mm)を示す。図3中、遠方度数の曲率成分が差し引かれた第1ゾーンには、近方度数に寄与する典型的な鋸歯形状が残る。第1ゾーンの破線で示される曲線は、第1ゾーンの微細形状のベースとなる曲率半径Rから遠方度数の曲率成分を差し引いた形状を示す。遠方度数が付与された第2、4ゾーンはパワーが差し引かれたため、平面化される。第3ゾーンは、近方度数から遠方度数を差し引いた加入度数を示す傾斜面となる。 FIG. 3 shows a cross-sectional structure diagram expressed by subtracting the curvature component of the distant power (= 20 Dptr) from the cross-sectional structure shown in FIG. The vertical axis of FIG. 3 indicates the sag amount (unit: mm), and the horizontal axis indicates the lens radius (unit: mm). In FIG. 3, a typical sawtooth shape that contributes to the near power remains in the first zone from which the curvature component of the far power is subtracted. A curve indicated by a broken line in the first zone shows a shape obtained by subtracting the curvature component of the distant power from the curvature radius R that is the base of the fine shape of the first zone. The second and fourth zones to which the far power is given are flattened because the power is subtracted. The third zone is an inclined surface indicating the addition power obtained by subtracting the far power from the near power.
 図4は、本実施例1のハイブリット型多焦点眼内レンズ1のレンズ半径に応じた遠方度数と近方度数の光量配分比を示す。図4の縦軸は全光量に対する遠方度数又は近方度数の光量比(単位:%)を示し、横軸はレンズ径(単位:mm)を示す。図4中、遠方度数と近方度数の光量配分比が共に一定の領域が第1ゾーンに対応する。遠方度数の光量配分比が増加(別の側面によれば近方度数の光量配分比が減少)する領域が第2、4ゾーンに対応する。近方度数の光量配分比が増加(別の側面によれば遠方度数の光量配分比が減少)する領域が第3ゾーンに対応する。図4に示されるように、第1ゾーンの遠方度数と近方度数の光量配分比を加算すると80%程度である。残りの約20%は主にフレアである。本出願人は、光量配分比が30%を下回ると、視力が急激に低下することを見出した。そのため、第2~4ゾーンの幅は、遠方度数と近方度数の光量配分比が何れも30~60%の範囲にほぼ収まるように設定されている。 FIG. 4 shows the light quantity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the first embodiment. The vertical axis in FIG. 4 indicates the ratio of the distance power or the near power to the total light quantity (unit:%), and the horizontal axis indicates the lens diameter (unit: mm). In FIG. 4, a region where the light intensity distribution ratio of the far power and the near power is constant corresponds to the first zone. A region where the light intensity distribution ratio of the far power increases (according to another aspect, the light intensity distribution ratio of the near power decreases) corresponds to the second and fourth zones. A region where the light quantity distribution ratio of the near power increases (according to another aspect, the light quantity distribution ratio of the far power decreases) corresponds to the third zone. As shown in FIG. 4, the sum of the light intensity distribution ratios of the far power and the near power in the first zone is about 80%. The remaining 20% is mainly flare. The present applicant has found that when the light intensity distribution ratio falls below 30%, the visual acuity rapidly decreases. For this reason, the widths of the second to fourth zones are set so that the light quantity distribution ratio between the far power and the near power is almost within the range of 30 to 60%.
 なお、実施例1の各図及び表についての説明は、以降の実施例で提示される各図及び表においても適用される。 In addition, the description about each figure and table | surface of Example 1 is applied also to each figure and table | surface presented in the following Examples.
 図5は、本実施例2のハイブリット型多焦点眼内レンズ1の概略構成を示すレンズ断面図である。本実施例2のハイブリット型多焦点眼内レンズ1の第一面R1の具体的数値構成は、表2に示される通りである。 FIG. 5 is a lens cross-sectional view illustrating a schematic configuration of the hybrid multifocal intraocular lens 1 according to the second embodiment. The specific numerical configuration of the first surface R1 of the hybrid multifocal intraocular lens 1 of Example 2 is as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施例2のハイブリット型多焦点眼内レンズ1の第一面R1以外の具体的数値構成は、次に示される通りである。本実施例2のハイブリット型多焦点眼内レンズ1は、本実施例1と比べて第1ゾーンの環状段差が狭いピッチで設けられると共に第3ゾーンの曲率が大きいため、近方度数が本実施例1よりも強い。
第二面R2の曲率=-13.24
中心厚(光軸AX上の光学部材厚)D=0.70
e線に対する屈折率ne=1.49379
e線に対するアッベ数νe=57.69
有効半径b=3.0
水中における近方度数=24.5Dptr
Specific numerical configurations other than the first surface R1 of the hybrid multifocal intraocular lens 1 according to the second embodiment are as follows. In the hybrid multifocal intraocular lens 1 of the second embodiment, the annular step in the first zone is provided at a narrow pitch as compared with the first embodiment and the curvature of the third zone is large, so the near power is the present. Stronger than Example 1.
Curvature of second surface R2 = −13.24
Center thickness (optical member thickness on the optical axis AX) D = 0.70
Refractive index ne for the e-line = 1.49379
Abbe number for e-line νe = 57.69
Effective radius b = 3.0
Near power in water = 24.5 Dptr
 図6(a)、(b)はそれぞれ、本実施例2のハイブリット型多焦点眼内レンズ1の第一面R1の断面構造図、上面図を示す。図7は、図6(a)に示す断面構造から遠方度数(=20Dptr)の曲率成分を差し引いて表現した断面構造図を示す。図8は、本実施例2のハイブリット型多焦点眼内レンズ1のレンズ半径に応じた遠方度数と近方度数の光量配分比を示す。 6 (a) and 6 (b) are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the second embodiment, respectively. FIG. 7 shows a cross-sectional structure diagram expressed by subtracting the curvature component of the distant power (= 20 Dptr) from the cross-sectional structure shown in FIG. FIG. 8 shows the light quantity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the second embodiment.
 図9は、本実施例3のハイブリット型多焦点眼内レンズ1の概略構成を示すレンズ断面図である。本実施例3のハイブリット型多焦点眼内レンズ1の第一面R1の具体的数値構成は、表3に示される通りである。 FIG. 9 is a lens cross-sectional view illustrating a schematic configuration of the hybrid multifocal intraocular lens 1 according to the third embodiment. Specific numerical configurations of the first surface R1 of the hybrid multifocal intraocular lens 1 of Example 3 are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本実施例3のハイブリット型多焦点眼内レンズ1の第一面R1以外の具体的数値構成は、次に示される通りである。本実施例3のハイブリット型多焦点眼内レンズ1は、第1ゾーンで発生するフレアの抑制と暗所視等の瞳孔径が大きい状況での遠方視の確保の両方を重視した設計となっている。具体的には、本実施例3のハイブリット型多焦点眼内レンズ1は、本実施例1や2と比べて第1ゾーンが小さいと共に第4ゾーンの幅が広い。
第二面R2の曲率=-13.24
中心厚(光軸AX上の光学部材厚)D=0.70
e線に対する屈折率ne=1.49379
e線に対するアッベ数νe=57.69
有効半径b=3.0
水中における近方度数=24.5Dptr
Specific numerical configurations other than the first surface R1 of the hybrid multifocal intraocular lens 1 according to the third embodiment are as follows. The hybrid multifocal intraocular lens 1 of Example 3 has a design that emphasizes both the suppression of flare generated in the first zone and the securing of far vision in situations where the pupil diameter is large, such as dark place vision. Yes. Specifically, the hybrid multifocal intraocular lens 1 of the third embodiment has a smaller first zone and a wider fourth zone than the first and second embodiments.
Curvature of second surface R2 = −13.24
Center thickness (optical member thickness on the optical axis AX) D = 0.70
Refractive index ne for the e-line = 1.49379
Abbe number for e-line νe = 57.69
Effective radius b = 3.0
Near power in water = 24.5 Dptr
 図10(a)、(b)はそれぞれ、本実施例3のハイブリット型多焦点眼内レンズ1の第一面R1の断面構造図、上面図を示す。図11は、図10(a)に示す断面構造から遠方度数(=20Dptr)の曲率成分を差し引いて表現した断面構造図を示す。図12は、本実施例3のハイブリット型多焦点眼内レンズ1のレンズ半径に応じた遠方度数と近方度数の光量配分比を示す。 FIGS. 10A and 10B are a cross-sectional structural view and a top view of the first surface R1 of the hybrid multifocal intraocular lens 1 of the third embodiment, respectively. FIG. 11 shows a cross-sectional structure diagram expressed by subtracting the curvature component of the distant power (= 20 Dptr) from the cross-sectional structure shown in FIG. FIG. 12 shows the light intensity distribution ratio between the distant power and the near power according to the lens radius of the hybrid multifocal intraocular lens 1 of the third embodiment.
(まとめ)
 本実施例1~3のハイブリット型多焦点眼内レンズ1は、図4、8、12に示されるように、φ3~4mm程度の中間的な瞳孔径においても遠方視及び近方視で光量が適切に確保される。そのため、本実施例1~3のハイブリット型多焦点眼内レンズ1は、高齢の白内障患者等への処方にも十分に対応可能である。また、φ3~4mm付近に近方視の第3ゾーンを配置することで、最大瞳孔径が比較的大きい中年齢者における暗所視時においても遠方視及び近方視で光量が適切に確保される。さらに本実施例3においては、図10及び11に示されるように、中央回折部である第1ゾーンを必要最小限とすることにより、回折によるフレアが極めて小さく抑えられている。そのため、特に暗所視時でのコントラストが高く保たれている。
(Summary)
As shown in FIGS. 4, 8, and 12, the hybrid multifocal intraocular lens 1 according to the first to third embodiments has a light quantity for far vision and near vision even at an intermediate pupil diameter of about φ3 to 4 mm. Appropriately secured. Therefore, the hybrid multifocal intraocular lens 1 of Examples 1 to 3 can sufficiently cope with prescription for elderly cataract patients and the like. In addition, by arranging the third zone for near vision in the vicinity of φ3 to 4 mm, the amount of light is ensured appropriately for distance vision and near vision even in dark places for middle-aged people with a relatively large maximum pupil diameter. The Furthermore, in the third embodiment, as shown in FIGS. 10 and 11, the flare caused by diffraction is suppressed to be extremely small by minimizing the first zone which is the central diffraction portion. For this reason, the contrast is particularly high when viewed in the dark.
 表4は、本実施例1~3において条件式(1)~(3)を適用したときに算出される値の一覧表である。表4に示されるように、本実施例1~3のハイブリット型多焦点眼内レンズ1は、条件式(1)~(3)を全て満たす。そのため、本実施例1~3のハイブリット型多焦点眼内レンズ1は、中間的な瞳孔径や最大瞳孔径が小さい高齢者であっても多焦点化が達成されると共にフレアによるコントラストの低下が抑えられている(条件式(1)又は(2)を満たすことによる効果)。本実施例1~3のハイブリット型多焦点眼内レンズ1は、更に、瞳孔径に依存した配分光量の変化と屈折面領域における回折の影響による結像性能の劣化も同時に抑えられている(条件式(3)を満たすことによる効果)。 Table 4 is a list of values calculated when the conditional expressions (1) to (3) are applied in the first to third embodiments. As shown in Table 4, the hybrid multifocal intraocular lens 1 of Examples 1 to 3 satisfies all the conditional expressions (1) to (3). Therefore, the hybrid multifocal intraocular lens 1 according to the first to third embodiments can achieve multifocalization even in an elderly person with a small intermediate pupil diameter or maximum pupil diameter, and can reduce contrast due to flare. (Effect by satisfying conditional expression (1) or (2)). In the hybrid multifocal intraocular lens 1 according to the first to third embodiments, the change in the distribution light quantity depending on the pupil diameter and the deterioration of the imaging performance due to the influence of diffraction in the refractive surface area are simultaneously suppressed (conditions) Effect by satisfying the expression (3)).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば本実施形態のハイブリット型多焦点眼内レンズ1は、コンタクトレンズにも適用することができる。コンタクトレンズは、例えばメニスカス形状であり、物体側面又は像側面の少なくとも一方に第1~4ゾーンに相当する領域を有する。なお、コンタクトレンズの場合、角膜の中央付近に安定するように大きな外径を有しているため(例えば、φ14.5mm)、有効半径bは、外径(直径)の1/4として条件式(1)~(3)を適用すればよい。 The above is the description of the embodiment of the present invention. The present invention is not limited to the above-described configuration, and various modifications can be made within the scope of the technical idea of the present invention. For example, the hybrid multifocal intraocular lens 1 of the present embodiment can also be applied to a contact lens. The contact lens has a meniscus shape, for example, and has a region corresponding to the first to fourth zones on at least one of the object side surface and the image side surface. Since the contact lens has a large outer diameter so as to be stable near the center of the cornea (for example, φ14.5 mm), the effective radius b is set to 1/4 of the outer diameter (diameter). (1) to (3) may be applied.

Claims (6)

  1.  光軸を含む中央部に形成された回折面構造と、
     前記中央部を囲う周囲部に形成された屈折面構造と、
    を少なくとも一面に有し、
     前記回折面構造は、入射光束を分割して遠方視側集光点と近方視側集光点にそれぞれ集光し、
     前記屈折面構造は、曲率の異なる複数の屈折面領域を有し、
     前記複数の屈折面領域は、前記中央部を囲う円環形状を有し、
     最も前記中央部側の前記屈折面領域は、前記入射光束を前記遠方視側集光点に集光する遠方度数が付与されていることを特徴とする多焦点眼用レンズ。
    A diffractive surface structure formed in the center including the optical axis;
    A refracting surface structure formed in a peripheral portion surrounding the central portion;
    On at least one side,
    The diffractive surface structure divides an incident light beam and collects it on a far vision side condensing point and a near vision side condensing point, respectively.
    The refractive surface structure has a plurality of refractive surface regions having different curvatures,
    The plurality of refractive surface regions have an annular shape surrounding the central portion,
    The multifocal ophthalmic lens according to claim 1, wherein a distance power for condensing the incident light beam on the far vision side condensing point is given to the refractive surface region closest to the center.
  2.  前記中央部と前記周囲部との境界と前記光軸との距離をaと定義し、有効半径をbと定義した場合、次の条件式(1)
    0.29≦ a/b ≦0.50    (1)
    を満たすことを特徴とする、請求項1に記載の多焦点眼用レンズ。
    When the distance between the boundary between the central portion and the peripheral portion and the optical axis is defined as a and the effective radius is defined as b, the following conditional expression (1)
    0.29 ≦ a / b ≦ 0.50 (1)
    The multifocal ophthalmic lens according to claim 1, wherein:
  3.  前記回折面構造は、前記光軸を中心とした少なくとも1つの段差をもつ輪帯を有し、
     前記回折面構造の最も前記周囲部側に形成された前記段差と前記光軸との距離をa’と定義し、有効半径をbと定義した場合、次の条件式(2)
    0.25≦ a’/b ≦0.47    (2)
    を満たすことを特徴とする、請求項1に記載の多焦点眼用レンズ。
    The diffractive surface structure has an annular zone having at least one step around the optical axis,
    When the distance between the step formed on the most peripheral side of the diffractive surface structure and the optical axis is defined as a ′ and the effective radius is defined as b, the following conditional expression (2)
    0.25 ≦ a ′ / b ≦ 0.47 (2)
    The multifocal ophthalmic lens according to claim 1, wherein:
  4.  各前記屈折面領域の幅をHと定義した場合、次の条件式(3)
    0.040≦ H/2b    (3)
    を満たすことを特徴とする、請求項1から請求項3の何れか一項に記載の多焦点眼用レンズ。
    When the width of each refractive surface region is defined as H, the following conditional expression (3)
    0.040 ≦ H / 2b (3)
    The multifocal ophthalmic lens according to any one of claims 1 to 3, wherein:
  5.  前記中央部から離れた前記屈折面領域ほど幅が広いことを特徴とする、請求項1から請求項4の何れか一項に記載の多焦点眼用レンズ。 The multifocal ophthalmic lens according to any one of claims 1 to 4, wherein a width of the refractive surface region farther from the central portion is wider.
  6.  少なくとも3つの屈折面領域を有し、
     前記3つの屈折面領域は、前記中央部側から順に、前記遠方度数、前記入射光束を前記近方視側集光点に集光する近方度数、該遠方度数が付与されていることを特徴とする、請求項1から請求項5の何れか一項に記載の多焦点眼用レンズ。
    Having at least three refractive surface regions;
    The three refracting surface regions are provided with the far power, the near power for condensing the incident light flux on the near vision side condensing point, and the far power in order from the central portion side. The multifocal ophthalmic lens according to any one of claims 1 to 5.
PCT/JP2011/072763 2010-11-24 2011-10-03 Multifocal eye lens WO2012070313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-261774 2010-11-24
JP2010261774A JP2014032212A (en) 2010-11-24 2010-11-24 Multifocal ophthalmic lens

Publications (1)

Publication Number Publication Date
WO2012070313A1 true WO2012070313A1 (en) 2012-05-31

Family

ID=46145671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072763 WO2012070313A1 (en) 2010-11-24 2011-10-03 Multifocal eye lens

Country Status (2)

Country Link
JP (1) JP2014032212A (en)
WO (1) WO2012070313A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246337B2 (en) * 2014-04-15 2017-12-13 株式会社メニコン Diffraction multifocal ophthalmic lens and method of manufacturing diffractive multifocal ophthalmic lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258143A1 (en) * 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
JP2008043752A (en) * 2006-08-02 2008-02-28 Alcon Manufacturing Ltd Apodized diffractive iol having frustrated diffractive region
US20100100177A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
WO2010046356A1 (en) * 2008-10-20 2010-04-29 Amo Groningen B.V. Multifocal intraocular lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258143A1 (en) * 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
JP2008043752A (en) * 2006-08-02 2008-02-28 Alcon Manufacturing Ltd Apodized diffractive iol having frustrated diffractive region
US20100100177A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
WO2010046356A1 (en) * 2008-10-20 2010-04-29 Amo Groningen B.V. Multifocal intraocular lens

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197815B2 (en) 2008-05-13 2019-02-05 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US11022815B2 (en) 2012-08-31 2021-06-01 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US11116624B2 (en) 2016-02-09 2021-09-14 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11573433B2 (en) 2017-06-28 2023-02-07 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11914229B2 (en) 2017-06-28 2024-02-27 Amo Groningen B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment

Also Published As

Publication number Publication date
JP2014032212A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012070313A1 (en) Multifocal eye lens
US11022815B2 (en) Multi-ring lens, systems and methods for extended depth of focus
RU2671544C2 (en) Construction of multifocal lens and method of prevention and/or slowing progression of myopia
CN113281913B (en) Multifocal lenses with reduced chromatic aberration
JP6041401B2 (en) Method and apparatus including extended depth of focus intraocular lens
CA2590085C (en) Apodized aspheric diffractive lenses
CA2741158C (en) Multifocal intraocular lens
AU2009341430B2 (en) Multizonal lens with extended depth of focus
US20100016965A1 (en) Accommodative IOL with Toric Optic and Extended Depth of Focus
JP2013515284A5 (en)
JP2013515284A (en) Single microstructure lens, system and method
JP2013514833A5 (en)
JP2013101323A (en) Multifocal ocular lens
JP4190764B2 (en) Aspheric spectacle lens
WO2021111821A1 (en) Intraocular lens
CN213423626U (en) Novel contact lens
CN113514962A (en) Continuous zooming contact lens
US20180021126A1 (en) Diffractive-refractive lens
JP6956526B2 (en) Single focus intraocular lens
US20240061271A1 (en) Multifocal ophthalmic lens with extended depth-of-focus
JP2023534079A (en) multifocal lens
CA3226046A1 (en) Multifocal ophthalmic lens with extended depth-of-focus
CN116035762A (en) Intraocular lens for correcting peripheral visual field aberration
CN117369165A (en) Non-fixed focus contact lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP