JP2013100629A - Glove - Google Patents

Glove Download PDF

Info

Publication number
JP2013100629A
JP2013100629A JP2012142165A JP2012142165A JP2013100629A JP 2013100629 A JP2013100629 A JP 2013100629A JP 2012142165 A JP2012142165 A JP 2012142165A JP 2012142165 A JP2012142165 A JP 2012142165A JP 2013100629 A JP2013100629 A JP 2013100629A
Authority
JP
Japan
Prior art keywords
porous membrane
bubble
glove
volume
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012142165A
Other languages
Japanese (ja)
Other versions
JP5323968B2 (en
Inventor
Atsushi Takai
淳 高井
Yoshiaki Miyamoto
芳明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012142165A priority Critical patent/JP5323968B2/en
Priority to PCT/JP2012/075714 priority patent/WO2013054721A1/en
Priority to MYPI2014000685A priority patent/MY157554A/en
Priority to CN201280050485.4A priority patent/CN103857304B/en
Publication of JP2013100629A publication Critical patent/JP2013100629A/en
Application granted granted Critical
Publication of JP5323968B2 publication Critical patent/JP5323968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves

Abstract

PROBLEM TO BE SOLVED: To provide gloves more excellent in effect to reduce stuffy feeling than existing ones.SOLUTION: The gloves include porous film formed from rubber or resin and having a bubble content of ≥20 and ≤60 vol.%, an average bubble diameter of ≤150 μm, and a bubble communication rate of ≥30 and ≤80%.

Description

本発明は、ゴムまたは樹脂の多孔質膜を含む手袋に関するものである。   The present invention relates to a glove including a porous membrane of rubber or resin.

一般家庭や工場、医療現場、あるいはスポーツといった様々な場面において人の手肌を保護したり、食中毒や感染症等を防止したり、あるいは取り扱う対象物(半導体や精密機器等)を手肌の皮脂等から保護したりするために、各種の手袋が広く用いられている。
特に、全体がゴムまたは樹脂の皮膜によって一体に形成された手袋は、薄肉で指先の細かい作業等にも適しているため広く利用されている。
Sebum on the skin of hands to protect human skin, prevent food poisoning, infectious diseases, etc., or handle objects (semiconductors, precision equipment, etc.) in various situations such as general households, factories, medical sites, and sports Various types of gloves are widely used for protection from the like.
In particular, gloves that are integrally formed of a rubber or resin film are widely used because they are thin and suitable for work with fine fingertips.

前記手袋は、いわゆる浸漬法によって製造するのが一般的である。
例えば全体がゴムの皮膜によって一体に形成された手袋を製造する場合は、まずゴムのラテックスに加硫剤等の各種添加剤を配合して未加硫もしくは前加硫状態の浸漬液を調製する。また、手袋の立体形状に対応した例えば陶器製の型を用意して、その表面を凝固剤(主に硝酸カルシウム水溶液)で処理する。
The glove is generally manufactured by a so-called dipping method.
For example, when manufacturing a glove that is integrally formed of a rubber film as a whole, first, various additives such as a vulcanizing agent are blended with rubber latex to prepare an unvulcanized or pre-cured immersion liquid. . Also, for example, a ceramic mold corresponding to the three-dimensional shape of the glove is prepared, and the surface thereof is treated with a coagulant (mainly calcium nitrate aqueous solution).

次いで、前記型を前記浸漬液に一定時間に亘って浸漬したのち引き上げることで、型の表面に浸漬液を付着させる。
そして引き上げた型ごと加熱して浸漬液を乾燥させるとともにゴムを加硫させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫させたのち脱型することにより、全体がゴムの皮膜によって一体に形成された手袋が製造される。
Next, the mold is dipped in the immersion liquid for a predetermined time and then pulled up to attach the immersion liquid to the surface of the mold.
Then, the entire mold is heated to dry the immersion liquid and vulcanize the rubber, or once dried and heated together with the mold to vulcanize the rubber, and then demolded to form a rubber film as a whole. The glove formed integrally is manufactured.

また、全体が樹脂の皮膜によって一体に形成された手袋は、前記ゴムのラテックスを含む浸漬液に代えて、樹脂のエマルションに各種添加剤を配合して調製した浸漬液を用いること以外は前記と同様にして製造することができる。
ところが、前記ゴムや樹脂の連続した皮膜は透湿性や吸湿性を有さないため、前記手袋を長時間装着していると、汗によって手が蒸れたりべたついたりする、いわゆる蒸れ感を生じるという問題がある。
In addition, the glove formed integrally with the resin film is replaced with the immersion liquid containing the rubber latex, except that an immersion liquid prepared by blending various additives into the resin emulsion is used. It can be manufactured in the same manner.
However, since the continuous film of rubber or resin does not have moisture permeability or hygroscopicity, if the glove is worn for a long time, the hand may become stuffy or sticky due to sweat, so-called stuffiness may occur. There is.

手袋を、主に連続気孔構造を有する多孔質膜を含む2層以上の積層構造、特に手と接触する最内層を前記多孔質膜とした積層構造として、手から発生した湿気を、前記多孔質膜によって吸収させたり、あるいは前記多孔質膜の通気性によって外部に放出させたりすることで、前記蒸れ感を軽減する方法がある。
浸漬法では、浸漬液を泡立たせることで、形成されるゴムまたは樹脂の皮膜を、主に連続気孔構造を有する多孔質膜とすることができる。
The glove has a laminated structure of two or more layers mainly including a porous film having a continuous pore structure, particularly a laminated structure in which the innermost layer contacting the hand is the porous film, and moisture generated from the hand is There is a method of reducing the feeling of stuffiness by absorbing it with a membrane or releasing it to the outside by the air permeability of the porous membrane.
In the dipping method, the rubber or resin film formed can be mainly formed into a porous film having a continuous pore structure by bubbling the dipping solution.

例えば特許文献1では、前記多孔質膜を繊維製手袋と積層して手袋に通気性を付与している。   For example, in Patent Document 1, the porous membrane is laminated with a fiber glove to impart air permeability to the glove.

特開2011−1662号公報JP 2011-1662 A

しかし発明者の検討によると、従来の多孔質膜は、その内部に含まれる気泡の総量(気泡総体積)が総じて小さいために吸湿性や通気性が十分でない。
例えば特許文献1等に記載の多孔質膜のように繊維性手袋と積層する多孔質膜は、外部からの水等の侵入を防止する観点から、孔の大きさや数には自ずと制限があるため、その通気性は十分ではない。
However, according to the inventor's study, the conventional porous membrane is not sufficiently hygroscopic or air permeable because the total amount of bubbles contained in the inside (the total volume of bubbles) is generally small.
For example, a porous membrane laminated with a fibrous glove like the porous membrane described in Patent Document 1 and the like is naturally limited in the size and number of holes from the viewpoint of preventing the entry of water and the like from the outside. , Its breathability is not enough.

そのため、前記多孔質膜を備えた従来の手袋は、いずれもユーザーが期待する蒸れ感の軽減を十分に満足しうるものではないのが現状である。
本発明の目的は、これまでよりも蒸れ感の軽減効果に優れた手袋を提供することにある。
For this reason, none of the conventional gloves provided with the porous film can sufficiently satisfy the reduction of stuffiness expected by the user.
The objective of this invention is providing the glove excellent in the reduction effect of a damp feeling than before.

前記課題を解決するため、発明者は、多孔質膜の構造と、前記多孔質膜を備えた手袋の吸湿性、および蒸れ感との関係について鋭意検討した。
その結果、多孔質膜の、気泡総体積の指標としての気泡含有率を20体積%以上、60体積%以下、個々の気泡の大きさを示す平均気泡径を150μm以下、そして連続気孔構造の比率を示す気泡の連通率を30%以上、80%以下に規定することにより、当該多孔質膜を、主に連続気孔構造を有し、しかも気泡総体積が大きく吸湿性に優れたものとして、手袋の蒸れ感を大幅に軽減できることを見出し、本発明を完成するに至った。
In order to solve the above-mentioned problems, the inventor diligently studied the relationship between the structure of the porous membrane, the hygroscopicity of the gloves equipped with the porous membrane, and the feeling of stuffiness.
As a result, the bubble content of the porous membrane as an index of the total bubble volume is 20 volume% to 60 volume%, the average bubble diameter indicating the size of each bubble is 150 μm or less, and the ratio of the continuous pore structure By defining the communication rate of bubbles indicating 30% or more and 80% or less, the porous membrane has a continuous pore structure, and the total volume of the bubbles is large and has excellent hygroscopicity. It was found that the feeling of stuffiness can be greatly reduced, and the present invention has been completed.

すなわち本発明は、ゴムまたは樹脂の多孔質膜を含む手袋であって、前記多孔質膜は、気泡含有率が20体積%以上、60体積%以下、平均気泡径が150μm以下で、かつ気泡の連通率が30%以上、80%以下であることを特徴とするものである。
本発明において、多孔質膜の単位体積あたりに含まれる気泡の総体積の割合を示す前記気泡含有率が前記範囲に限定されるのは、下記の理由による。
That is, the present invention is a glove including a porous membrane of rubber or resin, and the porous membrane has a bubble content of 20% by volume to 60% by volume, an average bubble diameter of 150 μm or less, and The communication rate is 30% or more and 80% or less.
In the present invention, the bubble content indicating the ratio of the total volume of bubbles contained per unit volume of the porous membrane is limited to the above range for the following reason.

すなわち気泡含有率が20体積%未満では、多孔質膜中の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
一方、気泡含有率が60体積%を超える場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなる。
これに対し、多孔質膜の気泡含有率を20体積%以上、60体積%以下の範囲とすれば多孔質膜、ならびに手袋に適度な強度を付与しながら、当該多孔質膜の気泡総体積をできるだけ大きくし、吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
That is, when the bubble content is less than 20% by volume, the total volume of bubbles in the porous membrane is insufficient, the hygroscopicity becomes insufficient, and the effect of reducing the feeling of stuffiness of the glove cannot be obtained.
On the other hand, when the bubble content exceeds 60% by volume, the strength of the porous membrane, and hence the glove, is lowered, and it is easily broken during use.
On the other hand, if the bubble content of the porous film is in the range of 20% by volume or more and 60% by volume or less, the total volume of the bubbles in the porous film is adjusted while giving appropriate strength to the porous film and the glove. It is possible to make it as large as possible, improve the hygroscopicity as much as possible, and greatly reduce the feeling of stuffiness of gloves.

なお、かかる効果をより一層向上して、蒸れ感をより一層軽減することを考慮すると、前記気泡含有率は、前記範囲内でも35体積%以上とするのが好ましい。
また平均気泡径が前記範囲に限定されるのは、下記の理由による。
In consideration of further improving this effect and further reducing the feeling of stuffiness, the bubble content is preferably 35% by volume or more even within the above range.
Moreover, it is based on the following reason that an average bubble diameter is limited to the said range.

すなわち平均気泡径が150μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
これに対し、多孔質膜の平均気泡径を150μm以下の範囲とすれば、気泡内部の表面積を増やすことができるため、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
That is, when the average bubble diameter exceeds 150 μm, even if the amount of bubbles is the same, the surface area inside each bubble becomes small, so that the hygroscopic property is lowered and moisture cannot be efficiently absorbed.
On the other hand, if the average bubble diameter of the porous membrane is in the range of 150 μm or less, the surface area inside the bubbles can be increased, so that the hygroscopicity of the porous membrane can be improved and moisture can be absorbed more efficiently. In this way, the feeling of stuffiness of gloves can be greatly reduced.

なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記平均気泡径は、前記範囲内でも70μm以下とするのが好ましい。
さらに、連続気孔構造の比率を示す気泡の連通率が前記範囲に限定されるのは、下記の理由による。
すなわち気泡の連通率が30%未満では、吸湿に寄与しない独立気孔構造の割合が多くなるため多孔質膜の吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
In consideration of further improving this effect and further reducing the feeling of stuffiness of gloves, the average bubble diameter is preferably 70 μm or less even within the above range.
Furthermore, the reason why the communication rate of bubbles indicating the ratio of the continuous pore structure is limited to the above range is as follows.
That is, when the bubble communication rate is less than 30%, the proportion of the independent pore structure that does not contribute to moisture absorption increases, so that the hygroscopicity of the porous membrane becomes insufficient, and the effect of reducing the feeling of stuffiness of the gloves cannot be obtained.

これに対し、多孔質膜の気泡の連通率を30%以上の範囲とすれば、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。   On the other hand, if the bubble communication rate of the porous membrane is in the range of 30% or more, the moisture absorption property of the porous membrane is improved, moisture can be absorbed more efficiently, and the greasy feeling of the glove is improved. It can be greatly reduced.

ただし連通率が高すぎる場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなる。そのため前記連通率は、前記範囲内でも80%以下に限定される。
なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記連通率は、前記範囲内でも50%以上とするのが好ましい。
However, if the communication rate is too high, the strength of the porous membrane, and thus the glove, is reduced, and it is easily broken during use. Therefore, the communication rate is limited to 80% or less even within the above range.
In consideration of further improving this effect and further reducing the feeling of stuffiness of the glove, the communication rate is preferably 50% or more even within the above range.

本発明によれば、これまでよりも蒸れ感の軽減効果に優れた手袋を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the glove excellent in the reduction effect of a damp feeling than before can be provided.

本発明は、ゴムまたは樹脂の多孔質膜を含む手袋であって、前記多孔質膜は、気泡含有率が20体積%以上、60体積%以下、平均気泡径が150μm以下で、かつ気泡の連通率が30%以上、80%以下であることを特徴とするものである。
前記多孔質膜の気泡含有率が前記範囲に限定されるのは、下記の理由による。
すなわち気泡含有率が20体積%未満では、多孔質膜中の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
The present invention is a glove comprising a porous membrane of rubber or resin, wherein the porous membrane has a bubble content of 20% by volume or more and 60% by volume or less, an average bubble diameter of 150 μm or less, and communication of bubbles. The rate is 30% or more and 80% or less.
The reason why the bubble content of the porous film is limited to the above range is as follows.
That is, when the bubble content is less than 20% by volume, the total volume of bubbles in the porous membrane is insufficient, the hygroscopicity becomes insufficient, and the effect of reducing the feeling of stuffiness of the glove cannot be obtained.

一方、気泡含有率が60体積%を超える場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなる。
これに対し、多孔質膜の気泡含有率を20体積%以上、60体積%以下の範囲とすれば多孔質膜、ならびに手袋に適度な強度を付与しながら、当該多孔質膜の気泡総体積をできるだけ大きくし、吸湿性を極力向上して、手袋の蒸れ感を大幅に軽減することが可能となる。
On the other hand, when the bubble content exceeds 60% by volume, the strength of the porous membrane, and hence the glove, is lowered, and it is easily broken during use.
On the other hand, if the bubble content of the porous film is in the range of 20% by volume or more and 60% by volume or less, the total volume of the bubbles in the porous film is adjusted while giving appropriate strength to the porous film and the glove. It is possible to make it as large as possible, improve the hygroscopicity as much as possible, and greatly reduce the feeling of stuffiness of gloves.

なお、かかる効果をより一層向上して、蒸れ感をより一層軽減することを考慮すると、前記気泡含有率は、前記範囲内でも35体積%以上とするのが好ましい。
また平均気泡径が前記範囲に限定されるのは、下記の理由による。
In consideration of further improving this effect and further reducing the feeling of stuffiness, the bubble content is preferably 35% by volume or more even within the above range.
Moreover, it is based on the following reason that an average bubble diameter is limited to the said range.

すなわち平均気泡径が150μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
これに対し、多孔質膜の平均気泡径を150μm以下の範囲とすれば、気泡内部の表面積を増やすことができるため、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
That is, when the average bubble diameter exceeds 150 μm, even if the amount of bubbles is the same, the surface area inside each bubble becomes small, so that the hygroscopic property is lowered and moisture cannot be efficiently absorbed.
On the other hand, if the average bubble diameter of the porous membrane is in the range of 150 μm or less, the surface area inside the bubbles can be increased, so that the hygroscopicity of the porous membrane can be improved and moisture can be absorbed more efficiently. In this way, the feeling of stuffiness of gloves can be greatly reduced.

なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記平均気泡径は、前記範囲内でも70μm以下とするのが好ましい。
また、多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保することを考慮すると、前記平均気泡径は、前記範囲内でも10μm以上、特に50μm以上とするのが好ましい。
In consideration of further improving this effect and further reducing the feeling of stuffiness of gloves, the average bubble diameter is preferably 70 μm or less even within the above range.
Further, considering that the total bubble volume of the porous film is sufficiently increased to ensure good hygroscopicity, the average bubble diameter is preferably 10 μm or more, particularly 50 μm or more even within the above range.

さらに、連続気孔構造の比率を示す気泡の連通率が前記範囲に限定されるのは、下記の理由による。
すなわち気泡の連通率が30%未満では、吸湿に寄与しない独立気孔構造の割合が多くなるため多孔質膜の吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
これに対し、多孔質膜の気泡の連通率を30%以上の範囲とすれば、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
Furthermore, the reason why the communication rate of bubbles indicating the ratio of the continuous pore structure is limited to the above range is as follows.
That is, when the bubble communication rate is less than 30%, the proportion of the independent pore structure that does not contribute to moisture absorption increases, so that the hygroscopicity of the porous membrane becomes insufficient, and the effect of reducing the feeling of stuffiness of the gloves cannot be obtained.
On the other hand, if the bubble communication rate of the porous membrane is in the range of 30% or more, the moisture absorption property of the porous membrane is improved, moisture can be absorbed more efficiently, and the greasy feeling of the glove is improved. It can be greatly reduced.

ただし連通率が高すぎる場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなる。そのため前記連通率は、前記範囲内でも80%以下に限定される。
なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記連通率は、前記範囲内でも50%以上とするのが好ましい。
However, if the communication rate is too high, the strength of the porous membrane, and thus the glove, is reduced, and it is easily broken during use. Therefore, the communication rate is limited to 80% or less even within the above range.
In consideration of further improving this effect and further reducing the feeling of stuffiness of the glove, the communication rate is preferably 50% or more even within the above range.

なお本発明では、前記気泡含有率、平均気泡径、および気泡の連通率を、それぞれ下記の方法で測定した値でもって表すこととする。測定は、いずれも23±1℃の環境下で実施するものとする。
〈気泡含有率〉
多孔質膜を含む手袋から所定の面積の試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影する。そして撮影した顕微鏡写真から多孔質膜、および薄膜の厚みを測定し、前記厚みと試験片の面積とから、前記多孔質膜、および薄膜の体積を求める。
In the present invention, the bubble content rate, the average bubble diameter, and the bubble communication rate are represented by values measured by the following methods, respectively. All measurements shall be carried out in an environment of 23 ± 1 ° C.
<Bubble content>
A specimen having a predetermined area is cut out from the glove including the porous membrane, and a micrograph of the cross section is taken using a digital microscope. Then, the thickness of the porous film and the thin film is measured from the photographed micrograph, and the volume of the porous film and the thin film is obtained from the thickness and the area of the test piece.

また前記薄膜の体積と、当該薄膜を形成する材料の真比重とから薄膜の質量を求める。
次に、電子天秤を用いて試験片の質量を測定し、前記質量から先に求めた薄膜の質量を差し引いて、多孔質膜の質量を求める。
そして前記体積と質量とから、多孔質膜の見かけの比重を算出し、当該見かけの比重と、多孔質膜を形成する材料の真比重とから、前記多孔質膜の気泡総体積の指標としての気泡含有率(体積%)を算出する。
The mass of the thin film is determined from the volume of the thin film and the true specific gravity of the material forming the thin film.
Next, the mass of the test piece is measured using an electronic balance, and the mass of the porous membrane is obtained by subtracting the mass of the thin film previously obtained from the mass.
Then, the apparent specific gravity of the porous membrane is calculated from the volume and the mass, and the apparent specific gravity and the true specific gravity of the material forming the porous membrane are used as an index of the total bubble volume of the porous membrane. The bubble content (volume%) is calculated.

〈平均気泡径〉
多孔質膜を含む手袋から試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影する。そして撮影した顕微鏡写真から任意で50個の気泡を選び、それぞれの気泡の直径を2点間距離測定モードによって測定して、その平均値を平均気泡径(μm)として算出する。
<Average bubble diameter>
A specimen is cut from the glove containing the porous membrane, and a micrograph of the cross section is taken using a digital microscope. Then, 50 bubbles are arbitrarily selected from the photographed micrograph, the diameter of each bubble is measured in the two-point distance measurement mode, and the average value is calculated as the average bubble diameter (μm).

〈気泡の連通率〉
多孔質膜を含む手袋から所定の面積の試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影する。そして撮影した顕微鏡写真から多孔質膜の厚みを測定し、前記厚みと試験片の面積とから、前記多孔質膜の体積を求める。
次に前記試験片の質量を測定した後、メタノールに浸漬して多孔質膜中に吸収させる。そして試験片をメタノール中から取り出し、ペーパータオルで表面を拭った後に再び質量を測定して、浸漬前後の質量の増加分をメタノールの吸収質量とする。
<Bubble communication rate>
A specimen having a predetermined area is cut out from the glove including the porous membrane, and a micrograph of the cross section is taken using a digital microscope. Then, the thickness of the porous membrane is measured from the photographed micrograph, and the volume of the porous membrane is determined from the thickness and the area of the test piece.
Next, after measuring the mass of the test piece, it is immersed in methanol and absorbed in the porous membrane. And after taking out a test piece from methanol and wiping the surface with a paper towel, mass is measured again, and the increase in the mass before and behind immersion is taken as the absorption mass of methanol.

次に前記吸収質量とメタノールの比重とから、多孔質膜が吸収したメタノールの体積を求めて連続気孔構造の体積と規定し、かかる体積と、先に測定した多孔質膜の体積とから、前記多孔質膜の単位体積あたりの、連続気孔構造の含有率(体積%)を求める。
そして前記連続気孔構造の含有率(体積%)の、先に求めた気泡含有率、すなわち単位体積あたりの全ての気泡の含有率(体積%)に対する百分率を求めて、気泡の連通率(%)とする。
Next, from the absorption mass and the specific gravity of methanol, the volume of methanol absorbed by the porous membrane is determined and defined as the volume of the continuous pore structure. From the volume and the volume of the porous membrane previously measured, The content (volume%) of the continuous pore structure per unit volume of the porous membrane is determined.
Then, the percentage of the content of the continuous pore structure (% by volume) with respect to the previously obtained bubble content, that is, the percentage of all the bubbles per unit volume (% by volume) is obtained, and the rate of bubble communication (%) And

前記多孔質膜は、従来の皮膜と同様に、浸漬法によって、ゴムのラテックスを含む浸漬液を型の表面に付着させて手袋の形状に成膜するとともにゴムを加硫させるか、あるいは樹脂のエマルションを含む浸漬液を型の表面に付着させて手袋の形状に成膜するとともに樹脂を固化または硬化させることによって形成することができる。
この際、型の表面に付着させる前の浸漬液を、あらかじめかく拌したり空気等を吹き込んだりして泡立たせておくことにより、多孔質膜が形成される。
In the same manner as the conventional film, the porous film is formed by immersing an immersion liquid containing a latex of rubber on the surface of the mold to form a glove shape and vulcanizing the rubber by a dipping method. It can be formed by adhering an immersion liquid containing an emulsion to the mold surface to form a film in the shape of a glove and solidifying or curing the resin.
At this time, the porous film is formed by foaming the immersion liquid before adhering to the mold surface by stirring or blowing air or the like in advance.

多孔質膜の気泡含有率、平均気泡径、および気泡の連通率をそれぞれ前記範囲内とするためには、例えば浸漬液を泡立たせる条件や浸漬液の組成、型を浸漬して浸漬液を型表面に付着させる際の浸漬条件、あるいは浸漬液を型表面に付着させた後の乾燥、加硫、固化、硬化の条件等を任意に、かつ個別に調整すればよい。
ゴムを含む浸漬液は、従来同様に、ゴムのラテックスに加硫剤等の各種添加剤を配合して調製される。
In order to set the bubble content of the porous film, the average bubble diameter, and the bubble communication rate within the above ranges, for example, the conditions for foaming the immersion liquid, the composition of the immersion liquid, and the mold are immersed in the mold. What is necessary is just to adjust the immersion conditions at the time of making it adhere to the surface, or the conditions of drying, vulcanization, solidification, and hardening after attaching the immersion liquid to the mold surface, individually and individually.
The immersion liquid containing rubber is prepared by blending various additives such as a vulcanizing agent with a latex of rubber as in the prior art.

前記ゴムとしては天然ゴム、および合成ゴムの中からラテックス化が可能な種々のゴムがいずれも使用可能であり、かかるゴムとしては、例えば天然ゴム、脱蛋白天然ゴム、アクリロニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム(CR)等の1種または2種以上が挙げられる。
前記ゴムを加硫させる加硫剤としては硫黄や有機含硫黄化合物等が挙げられる。前記加硫剤の配合割合は、ゴムラテックス中の固形分(ゴム分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
As the rubber, natural rubber and various rubbers that can be made into latex from synthetic rubber can be used. Examples of such rubber include natural rubber, deproteinized natural rubber, and acrylonitrile-butadiene rubber (NBR). , One or more of styrene-butadiene rubber (SBR), chloroprene rubber (CR) and the like.
Examples of the vulcanizing agent for vulcanizing the rubber include sulfur and organic sulfur-containing compounds. The blending ratio of the vulcanizing agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the solid content (rubber content) in the rubber latex.

前記ゴムおよび加硫剤を含む浸漬液中には、さらに加硫促進剤、加硫促進助剤、老化防止剤、充填剤、分散剤、安定剤、発泡剤等の各種添加剤を配合してもよい。
このうち加硫促進剤としては、例えばPX(N−エチル−N−フェニルジチオカルバミン酸亜鉛)、PZ(ジメチルジチオカルバミン酸亜鉛)、EZ(ジエチルジチオカルバミン酸亜鉛)、BZ(ジブチルジチオカルバミン酸亜鉛)、MZ(2−メルカプトベンゾチアゾールの亜鉛塩)、TT(テトラメチルチウラムジスルフィド)等の1種または2種以上が挙げられる。
In the immersion liquid containing the rubber and the vulcanizing agent, various additives such as a vulcanization accelerator, a vulcanization acceleration aid, an anti-aging agent, a filler, a dispersant, a stabilizer, and a foaming agent are further blended. Also good.
Among these, examples of the vulcanization accelerator include PX (zinc N-ethyl-N-phenyldithiocarbamate), PZ (zinc dimethyldithiocarbamate), EZ (zinc diethyldithiocarbamate), BZ (zinc dibutyldithiocarbamate), MZ ( 1 type or 2 types or more, such as 2-mercaptobenzothiazole zinc salt) and TT (tetramethyl thiuram disulfide).

前記加硫促進剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
加硫促進助剤としては、例えば亜鉛華(酸化亜鉛)、および/またはステアリン酸等が挙げられる。前記加硫促進助剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
The blending ratio of the vulcanization accelerator is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber content in the rubber latex.
Examples of the vulcanization acceleration aid include zinc white (zinc oxide) and / or stearic acid. The blending ratio of the vulcanization acceleration aid is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of rubber in the rubber latex.

老化防止剤としては、一般に非汚染性のフェノール類が好適に用いられるが、アミン類を使用してもよい。前記老化防止剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
充填剤としては、例えばカオリンクレー、ハードクレー、炭酸カルシウム等の1種または2種以上が挙げられる。前記充填剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり10質量部以下であるのが好ましい。
In general, non-fouling phenols are preferably used as the antioxidant, but amines may also be used. The blending ratio of the anti-aging agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of rubber in the rubber latex.
Examples of the filler include one or more of kaolin clay, hard clay, calcium carbonate, and the like. The blending ratio of the filler is preferably 10 parts by mass or less per 100 parts by mass of rubber in the rubber latex.

分散剤は、前記各種添加剤をゴムラテックス中に良好に分散させるために配合されるものであり、前記分散剤としては、例えば陰イオン系界面活性剤等の1種または2種以上が挙げられる。前記分散剤の配合割合は、分散対象である成分の総量の0.3質量部以上、1質量部以下であるのが好ましい。
安定剤は、前記のように浸漬液を泡立たせる際に、前記泡立ちを助けるためのものであり、前記安定剤としては、例えば界面活性剤等の、浸漬液の起泡を助ける機能を有する種々の安定剤が使用可能である。前記安定剤は省略しても良いが、配合する場合は、形成する多孔質膜の気泡含有率、平均気泡径、および気泡の連通率に応じて、その配合割合を適宜設定すればよい。
The dispersant is blended in order to favorably disperse the various additives in the rubber latex, and examples of the dispersant include one or more of anionic surfactants. . The blending ratio of the dispersant is preferably 0.3 parts by mass or more and 1 part by mass or less of the total amount of components to be dispersed.
The stabilizer is for assisting the foaming when foaming the immersion liquid as described above, and as the stabilizer, for example, a surfactant or the like having various functions for assisting foaming of the immersion liquid. These stabilizers can be used. The stabilizer may be omitted, but when blended, the blending ratio may be appropriately set according to the bubble content, average bubble diameter, and bubble communication rate of the porous film to be formed.

樹脂を含む浸漬液は、従来同様に、樹脂のエマルションに各種添加剤を配合して調製される。
前記樹脂としては、塩化ビニル系樹脂、ウレタン系樹脂、アクリル系樹脂等の、エマルション化が可能な樹脂の1種または2種以上が挙げられる。
このうちウレタン系樹脂や硬化性アクリル系樹脂等の熱硬化性樹脂によって多孔質膜を形成する場合は、前記浸漬法によって浸漬液を型の表面に付着させ、次いで一旦乾燥させた後に必要に応じて型ごと加熱して樹脂を硬化反応させるか、あるいは型ごと加熱して浸漬液を乾燥させるのと同時に樹脂を硬化反応させればよい。
The immersion liquid containing a resin is prepared by blending various additives into a resin emulsion, as in the prior art.
Examples of the resin include one or more resins that can be emulsified, such as a vinyl chloride resin, a urethane resin, and an acrylic resin.
Among these, when forming a porous film with a thermosetting resin such as a urethane resin or a curable acrylic resin, the immersion liquid is attached to the surface of the mold by the dipping method, and then once dried, if necessary. The resin may be cured by heating with the mold, or the resin may be cured at the same time as heating the mold and drying the immersion liquid.

また、塩化ビニル系樹脂や熱可塑性のアクリル系樹脂等の熱可塑性樹脂によって多孔質膜を形成する場合は、型ごと浸漬液を乾燥させて樹脂を固化させればよい。また、型ごと加熱して浸漬液を乾燥させ、次いで冷却して樹脂を固化させてもよい。
前記樹脂を含む浸漬液中には、さらに老化防止剤、充填剤、分散剤、安定剤、発泡剤等の各種添加剤を配合してもよい。
Further, when the porous film is formed from a thermoplastic resin such as a vinyl chloride resin or a thermoplastic acrylic resin, the resin may be solidified by drying the immersion liquid for each mold. Alternatively, the mold may be heated to dry the immersion liquid and then cooled to solidify the resin.
In the immersion liquid containing the resin, various additives such as an anti-aging agent, a filler, a dispersant, a stabilizer, and a foaming agent may be further blended.

このうち老化防止剤としては、先に例示した非汚染性のフェノール類やアミン類等の1種または2種以上が挙げられる。前記老化防止剤の配合割合は、樹脂エマルション中の固形分(樹脂分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
充填剤としては、前記例示の充填剤の1種または2種以上が挙げられる。前記充填剤の配合割合は、樹脂エマルション中の樹脂分100質量部あたり10質量部以下であるのが好ましい。
Among these, as an anti-aging agent, 1 type, or 2 or more types, such as the non-polluting phenols and amines which were illustrated previously, are mentioned. The blending ratio of the anti-aging agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the solid content (resin content) in the resin emulsion.
Examples of the filler include one or more of the exemplified fillers. The blending ratio of the filler is preferably 10 parts by mass or less per 100 parts by mass of the resin component in the resin emulsion.

分散剤としては、前記例示の陰イオン系界面活性剤等の1種または2種以上が挙げられる。前記分散剤の配合割合は、分散対象である成分の総量の0.3質量部以上、1質量部以下であるのが好ましい。
安定剤としては、前記のように界面活性剤等の、浸漬液の泡立ちを助ける機能を有する種々の安定剤が使用可能である。前記安定剤は省略しても良いが、配合する場合は、形成する多孔質膜の気泡含有率、平均気泡径、および気泡の連通率に応じて、その配合割合を適宜設定すればよい。
As a dispersing agent, 1 type (s) or 2 or more types, such as the anionic surfactant of the said illustration, are mentioned. The blending ratio of the dispersant is preferably 0.3 parts by mass or more and 1 part by mass or less of the total amount of components to be dispersed.
As the stabilizer, as described above, various stabilizers having a function of assisting foaming of the immersion liquid, such as a surfactant, can be used. The stabilizer may be omitted, but when blended, the blending ratio may be appropriately set according to the bubble content, average bubble diameter, and bubble communication rate of the porous film to be formed.

また樹脂がウレタン系樹脂等の熱硬化性樹脂である場合は、さらに当該樹脂の架橋剤、硬化剤等を、前記浸漬液中に、適宜の割合で配合してもよい。
本発明の手袋は、前記多孔質膜のみを有する単層構造であってもよいが、前記手袋に適度な強度や不透水性等を付与するために、他の層との2層以上の積層構造に形成するのが好ましい。
When the resin is a thermosetting resin such as a urethane resin, a crosslinking agent, a curing agent, or the like of the resin may be further blended in the immersion liquid at an appropriate ratio.
The glove of the present invention may have a single-layer structure having only the porous membrane, but in order to give the glove appropriate strength, water impermeability, etc., two or more layers with other layers are laminated. It is preferable to form the structure.

積層構造を有する手袋において、多孔質膜の厚みは、前記手袋に適度な強度と良好な吸湿性とを付与しながら、なおかつその全体をできるだけ薄肉化して指先の細かい作業等に適用できるようにすることを考慮すると0.07mm以上、特に0.1mm以上であるのが好ましく、2.0mm以下、中でも1.5mm以下、特に1.0mm以下であるのが好ましい。   In a glove having a laminated structure, the thickness of the porous membrane allows the glove to have an appropriate strength and good hygroscopicity while being thinned as much as possible so that it can be applied to fine work on a fingertip. Considering this, it is preferably 0.07 mm or more, particularly 0.1 mm or more, and is preferably 2.0 mm or less, more preferably 1.5 mm or less, and particularly preferably 1.0 mm or less.

前記多孔質膜とともに積層構造を有する手袋を構成する他の層は種々の構造、材料によって形成することができるが、特に薄肉で指先の細かい作業等に適した手袋を構成することを考慮すると、例えばポリウレタン、シリコーンゴム、セルロースアセテート、エチルセルロース、およびポリビニルアルコールからなる群より選ばれた少なくとも1種のポリマ、または前記ポリマと、前記多孔質膜のもとになるゴムまたは樹脂との混合物等からなる薄膜が好ましい。   The other layers constituting the glove having a laminated structure together with the porous film can be formed by various structures and materials, but considering that the glove is particularly suitable for thin-walled work with fine fingertips, etc. For example, it comprises at least one polymer selected from the group consisting of polyurethane, silicone rubber, cellulose acetate, ethyl cellulose, and polyvinyl alcohol, or a mixture of the polymer and rubber or resin that forms the porous membrane. A thin film is preferred.

特に、薄膜に良好な不透水性と透湿性とを付与することを考慮すると、前記薄膜はポリウレタン、または前記ポリウレタンと、前記多孔質膜のもとになるゴムまたは樹脂との混合物によって形成するのが好ましい。
前記薄膜は不透水性でかつ透湿性を有しており、当該薄膜を手袋の外側、多孔質膜を手袋の内側に設けることで、外部から手袋内への水の侵入を確実に防止しながら、多孔質膜で吸湿した湿気を効果的に手袋外へ逃がすことができ、手袋の蒸れ感をより一層大幅に軽減することができる。
In particular, in consideration of imparting good water impermeability and moisture permeability to the thin film, the thin film is formed of polyurethane or a mixture of the polyurethane and a rubber or resin that is the basis of the porous film. Is preferred.
The thin film is water-impermeable and moisture-permeable. By providing the thin film on the outside of the glove and the porous film on the inside of the glove, it is possible to reliably prevent water from entering the glove from the outside. The moisture absorbed by the porous membrane can be effectively released to the outside of the glove, and the greasy feeling of the glove can be further greatly reduced.

前記薄膜の厚みは5μm以上、特に10μm以上であるのが好ましく、200μm以下、中でも100μm以下、特に50μm以下であるのが好ましい。
厚みが前記範囲未満では、多孔質膜の片面に、良好な不透水性を有する連続した薄膜を形成できないため、外部から水が侵入するのを確実に防止できないおそれがある。
一方、厚みが前記範囲を超える場合には、薄膜に十分な透湿性を付与できないため、手袋を長時間装着した際に汗によって手が蒸れたりべたついたりしやすくなるおそれがある。
The thickness of the thin film is preferably 5 μm or more, particularly preferably 10 μm or more, and is preferably 200 μm or less, more preferably 100 μm or less, particularly preferably 50 μm or less.
If the thickness is less than the above range, a continuous thin film having good water impermeability cannot be formed on one surface of the porous membrane, so that it may not be possible to reliably prevent water from entering from the outside.
On the other hand, when the thickness exceeds the above range, sufficient moisture permeability cannot be imparted to the thin film, so that when the gloves are worn for a long time, the hands may be easily stuffy or sticky due to sweat.

さらに前記薄膜は、良好な不透水性を確保するために、非多孔質膜であるのが好ましい。
前記薄膜は、そのもとになる、前記ポリマ等を含む塗布液を調製し、前記塗布液を、例えば浸漬法、スプレー法等の任意の塗布方法によって、先に形成した多孔質膜の表面に塗布したのち乾燥させることによって形成できる。
Further, the thin film is preferably a non-porous film in order to ensure good water impermeability.
The thin film is prepared by preparing a coating solution containing the polymer and the like, and the coating solution is applied to the surface of the porous film previously formed by any coating method such as dipping or spraying. It can be formed by applying and then drying.

また、前記ポリマがポリウレタンやシリコーンゴム等の架橋性のポリマである場合、前記浸漬液中には、当該ポリマの架橋剤、硬化剤等を、適宜の割合で配合しておき、前記乾燥と同時に、あるいは乾燥後に加熱する等してポリマを架橋反応させればよい。
また前記薄膜は、例えば浸漬法によって、多孔質膜と一体に形成することもできる。
例えば、凝固剤で処理したのちラテックスフォームに浸漬する前の型を、前記薄膜のもとになるポリマ等を含む浸漬液に、一定時間に亘って浸漬したのち引き上げて、型の表面に前記浸漬液を付着させ、次いでラテックスフォームに一定時間に亘って浸漬したのち引き上げて、ラテックスフォームを付着させる。
Further, when the polymer is a crosslinkable polymer such as polyurethane or silicone rubber, a crosslinking agent, a curing agent, etc. of the polymer are blended in an appropriate ratio in the immersion liquid, and simultaneously with the drying. Alternatively, the polymer may be crosslinked by heating after drying.
The thin film can also be formed integrally with the porous film by, for example, an immersion method.
For example, after being treated with a coagulant and before being immersed in latex foam, the mold is immersed in an immersion liquid containing a polymer or the like that forms the thin film for a certain period of time and then pulled up, and then immersed in the surface of the mold. The liquid is attached, and then dipped in the latex foam for a certain time and then pulled up to attach the latex foam.

そして乾燥させるとともにゴムを加硫、もしくは樹脂を硬化反応させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫、または樹脂を硬化反応させることによって、多孔質膜と薄膜とを一体に形成することができる。なお浸漬の順序は逆であってもよい。   Then, the porous film and the thin film are integrated by drying and vulcanizing the rubber or curing the resin, or once drying and heating the mold together to cure the rubber or curing the resin. Can be formed. The order of immersion may be reversed.

〈実施例1〉
(多孔質膜用の浸漬液の調製)
NBRラテックス〔日本ゼオン(株)製のNIPOL(登録商標)LX550〕に、当該NBRラテックス中のゴム分(乾燥ベース)100質量部あたり、加硫剤としての硫黄1質量部、加硫促進剤BZ(ジブチルジチオカルバミン酸亜鉛)1質量部、および加硫促進助剤としての亜鉛華2質量部を配合したのちかく拌しながら30℃で48時間前加硫させた。
<Example 1>
(Preparation of immersion liquid for porous membrane)
In NBR latex [NIPOL (registered trademark) LX550 manufactured by Nippon Zeon Co., Ltd.], 1 part by mass of sulfur as a vulcanizing agent and vulcanization accelerator BZ per 100 parts by mass of rubber (dry base) in the NBR latex After blending 1 part by mass (zinc dibutyldithiocarbamate) and 2 parts by mass of zinc white as a vulcanization acceleration aid, the mixture was prevulcanized at 30 ° C. for 48 hours with stirring.

次いでかく拌器を用いて高速かく拌することで泡立たせて、多孔質膜用の浸漬液を調製した。
(多孔質膜の形成)
型としては、陶器製で手袋の形状に対応するものを用意した。
前記型を、まず25%硝酸カルシウム水溶液に浸漬し、引き上げたのち乾燥させることで、前記型の表面を凝固剤としての硝酸カルシウムによって処理した。
Subsequently, it was made to foam by stirring at high speed using a stirrer, and the immersion liquid for porous membranes was prepared.
(Formation of porous film)
As the mold, we prepared ceramics that correspond to the shape of the gloves.
The mold was first immersed in a 25% calcium nitrate aqueous solution, pulled up, and dried to treat the surface of the mold with calcium nitrate as a coagulant.

次いで前記型を、液温を25℃に保持した先の多孔質膜用の浸漬液に一定の速度で浸漬し、30秒間保持したのち一定の速度で引き上げることで、前記型の表面に浸漬液を付着させた。
そして引き上げた型ごと100℃に加熱したオーブン中に入れて30分間加熱して浸漬液を乾燥させるとともにゴムを加硫させて、手袋の全体を構成する、NBRからなる単層構造の、厚み0.4mmの多孔質膜を形成した。
Next, the mold is immersed in a previous porous membrane immersion liquid whose liquid temperature is maintained at 25 ° C. at a constant speed, held for 30 seconds, and then pulled up at a constant speed, so that the immersion liquid is placed on the surface of the mold. Was attached.
Then, the raised mold is placed in an oven heated to 100 ° C. and heated for 30 minutes to dry the immersion liquid and vulcanize the rubber to form a single-layer structure composed of NBR, which constitutes the entire glove. A 4 mm porous membrane was formed.

(薄膜用の塗布液の調製)
ポリウレタン系の水性コート剤〔DIC(株)製のハイドラン(登録商標)WLS−208〕に、前記水性コート剤中のポリウレタン100質量部あたり4質量部の架橋剤〔DIC(株)製のハイドラン アシスタCS−7〕を配合して、薄膜用の塗布液を調製した。
(手袋の製造)
先に型の表面に形成した多孔質膜の表面に、前記薄膜用の塗布液を、乾燥後の厚みが0.2mmとなるように塗布して乾燥させるとともにポリウレタンを架橋反応させて薄膜を形成したのち脱型して、前記多孔質膜と薄膜の2層構造からなる手袋を製造した。
(Preparation of coating solution for thin film)
A polyurethane-based aqueous coating agent [Hydran (registered trademark) WLS-208 manufactured by DIC Corporation] is added to 4 parts by mass of a crosslinking agent [Hydran Assista manufactured by DIC Corporation] per 100 parts by mass of polyurethane in the aqueous coating agent. CS-7] was blended to prepare a coating solution for a thin film.
(Manufacture of gloves)
The thin film is formed by applying the coating liquid for the thin film on the surface of the porous film previously formed on the surface of the mold so that the thickness after drying is 0.2 mm and drying and cross-linking polyurethane. Thereafter, the mold was removed to produce a glove having a two-layer structure of the porous film and the thin film.

(多孔質膜の構造)
前記多孔質膜の気泡含有率、平均気泡径、および気泡の連通率を、それぞれ先に説明した方法によって測定したところ、気泡含有率は41体積%、平均気泡径は60μmで、かつ気泡の連通率は65%であった。
〈実施例2〜5、比較例1〜5〉
浸漬液の泡立たせ方、型の浸漬条件、乾燥、加硫条件等を調整したこと以外は実施例1と同様にして、NBRからなり、後述する表1に示す気泡含有率、平均気泡径、および気泡の連通率を有する単層構造の多孔質膜と、ポリウレタンからなる薄膜の2層構造からなる手袋を製造した。
(Porous membrane structure)
When the bubble content, average bubble diameter, and bubble communication rate of the porous membrane were measured by the methods described above, the bubble content was 41% by volume, the average bubble size was 60 μm, and the bubble communication was The rate was 65%.
<Examples 2-5, Comparative Examples 1-5>
Except for adjusting the foaming method of the immersion liquid, mold immersion conditions, drying, vulcanization conditions, and the like, it was made of NBR in the same manner as in Example 1, and the bubble content, average bubble diameter shown in Table 1 described later, In addition, a glove having a two-layer structure of a single-layer porous film having a bubble communication rate and a polyurethane thin film was manufactured.

〈官能試験〉
前記実施例1〜5、比較例1〜5で製造した手袋を10名の被験者に装着してもらい、装着10分後の装着感を下記の5段階で評価してもらった。なお比較例4、5は、装着して使用中に破れたため、官能試験は中止した。
A:蒸れは全く感じられなかった。非常に快適。
<Sensory test>
Gloves manufactured in Examples 1 to 5 and Comparative Examples 1 to 5 were worn by 10 test subjects, and the wearing feeling after 10 minutes of wearing was evaluated in the following five stages. Since Comparative Examples 4 and 5 were worn and worn during use, the sensory test was stopped.
A: No stuffiness was felt. Very comfortable.

B:蒸れは殆ど感じられなかった。快適。
C:蒸れが僅かに感じられたものの、実用レベル。
D:蒸れが感じられた。不快。
E:蒸れが強く感じられた。非常に不快。
以上の結果を表1に示す。
B: Little stuffiness was felt. comfortable.
C: Practical level although slight stuffiness was felt.
D: Steaming was felt. Uncomfortable.
E: Steaming was felt strongly. Very uncomfortable.
The results are shown in Table 1.

Figure 2013100629
Figure 2013100629

表1の比較例1の結果より、多孔質膜の気泡の連通率が30%未満では、吸湿に寄与しない独立気孔構造の割合が多くなるため多孔質膜の吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないことが判った。
また比較例2の結果より、多孔質膜の平均気泡径が150μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため吸湿性が低下して、やはり手袋の蒸れ感を軽減する効果が得られないことが判った。
From the results of Comparative Example 1 in Table 1, when the bubble communication rate of the porous membrane is less than 30%, the proportion of the independent pore structure that does not contribute to moisture absorption increases, so the hygroscopicity of the porous membrane becomes insufficient, It was found that the effect of reducing the stuffiness could not be obtained.
Further, from the result of Comparative Example 2, when the average bubble diameter of the porous membrane exceeds 150 μm, the surface area inside each bubble is reduced even with the same amount of bubbles, so that the hygroscopicity is lowered, and the feeling of stuffiness of the glove is also produced. It turns out that the effect to reduce cannot be acquired.

また比較例3の結果より、多孔質膜の気泡含有率が20体積%未満では、気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られないことが判った。
また比較例4の結果より、多孔質膜の気泡含有率が60体積%を超える場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなることが判った。
さらに比較例5の結果より、多孔質膜の気泡の連通率が80%を超える場合には、やはり多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなることが判った。
Moreover, from the result of Comparative Example 3, when the bubble content of the porous film is less than 20% by volume, the total volume of the bubbles is insufficient, the hygroscopicity is insufficient, and the effect of reducing the feeling of stuffy gloves cannot be obtained. understood.
Further, from the results of Comparative Example 4, it was found that when the bubble content of the porous membrane exceeds 60% by volume, the strength of the porous membrane, and hence the glove, is lowered and easily broken during use. .
Furthermore, from the result of Comparative Example 5, it is found that when the bubble communication rate of the porous membrane exceeds 80%, the strength of the porous membrane, and hence the glove, is lowered, and it is easily broken during use. It was.

これに対し実施例1〜5の結果より、多孔質膜の気泡含有率、平均気泡径、および気泡の連通率を、それぞれ規定した範囲内とすることにより、多孔質膜を、主に連続気孔構造を有し、しかも気泡総体積が大きく吸湿性に優れたものとして、手袋の蒸れ感を大幅に軽減できることが判った。
また実施例1〜5の結果より、手袋の蒸れ感をさらに軽減すること等を考慮すると、多孔質膜の気泡含有率は35体積%以上、平均気泡径は70μm以下、気泡の連通率は50%以上であるのが好ましいことが判った。
On the other hand, from the results of Examples 1 to 5, by setting the bubble content, the average bubble diameter, and the bubble communication rate of the porous membrane within the specified ranges, the porous membrane is mainly continuous pores. It has been found that the feeling of stuffiness of gloves can be greatly reduced because it has a structure and has a large total volume of bubbles and excellent hygroscopicity.
Further, from the results of Examples 1 to 5, considering that the feeling of stuffiness of gloves is further reduced, the bubble content of the porous membrane is 35% by volume or more, the average bubble diameter is 70 μm or less, and the bubble communication rate is 50%. % Was found to be preferable.

前記課題を解決するため、発明者は、多孔質膜の構造と、前記多孔質膜を備えた手袋の吸湿性、および蒸れ感との関係について鋭意検討した。
その結果、多孔質膜の、気泡総体積の指標としての気泡含有率を20体積%以上、60体積%以下、個々の気泡の大きさを示す平均気泡径を10μm以上、150μm以下、そして連続気孔構造の比率を示す気泡の連通率を30%以上、80%以下に規定することにより、当該多孔質膜を、主に連続気孔構造を有し、しかも気泡総体積が大きく吸湿性に優れたものとして、手袋の蒸れ感を大幅に軽減できることを見出し、本発明を完成するに至った。
In order to solve the above-mentioned problems, the inventor diligently studied the relationship between the structure of the porous membrane, the hygroscopicity of the gloves equipped with the porous membrane, and the feeling of stuffiness.
As a result, the bubble content of the porous membrane as an index of the total bubble volume is 20% by volume or more and 60% by volume or less, the average bubble size indicating the size of each bubble is 10 μm or more, 150 μm or less, and continuous pores By defining the communication rate of bubbles indicating the ratio of the structure to 30% or more and 80% or less, the porous membrane has mainly a continuous pore structure, and has a large bubble total volume and excellent hygroscopicity. As a result, it was found that the feeling of stuffiness of gloves can be greatly reduced, and the present invention has been completed.

すなわち本発明は、ゴムまたは樹脂の多孔質膜を含む手袋であって、前記多孔質膜は、気泡含有率が20体積%以上、60体積%以下、平均気泡径が10μm以上、150μm以下で、かつ気泡の連通率が30%以上、80%以下であることを特徴とするものである。
本発明において、多孔質膜の単位体積あたりに含まれる気泡の総体積の割合を示す前記気泡含有率が前記範囲に限定されるのは、下記の理由による。
That is, the present invention is a glove comprising a rubber or resin porous membrane, wherein the porous membrane has a bubble content of 20% by volume or more and 60% by volume or less, an average cell diameter of 10 μm or more and 150 μm or less, In addition, the communication rate of bubbles is 30% or more and 80% or less.
In the present invention, the bubble content indicating the ratio of the total volume of bubbles contained per unit volume of the porous membrane is limited to the above range for the following reason.

すなわち平均気泡径が10μm未満では多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保する効果が得られず、150μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
これに対し、多孔質膜の平均気泡径を10μm以上、150μm以下の範囲とすれば、多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保しながら、気泡内部の表面積を増やすことができるため、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
That is, if the average bubble diameter is less than 10 μm, the effect of ensuring a sufficient hygroscopicity by sufficiently increasing the total bubble volume of the porous membrane cannot be obtained . Since the surface area is small, the hygroscopicity is lowered, and there is a problem that moisture cannot be absorbed efficiently.
In contrast, if the average bubble diameter of the porous membrane is in the range of 10 μm or more and 150 μm or less, the total volume of the bubbles in the porous membrane is sufficiently increased to ensure good hygroscopicity, and the surface area inside the bubbles is reduced. Since it can be increased, the moisture absorption of the porous membrane can be improved, moisture can be absorbed more efficiently, and the feeling of stuffiness of gloves can be greatly reduced.

なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記平均気泡径は、前記範囲内でも50μm以上とするのが好ましく、70μm以下とするのが好ましい。
さらに、連続気孔構造の比率を示す気泡の連通率が前記範囲に限定されるのは、下記の理由による。
すなわち気泡の連通率が30%未満では、吸湿に寄与しない独立気孔構造の割合が多くなるため多孔質膜の吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
In consideration of further improving this effect and further reducing the stuffiness of the glove, the average bubble diameter is preferably 50 μm or more, and preferably 70 μm or less, even within the above range.
Furthermore, the reason why the communication rate of bubbles indicating the ratio of the continuous pore structure is limited to the above range is as follows.
That is, when the bubble communication rate is less than 30%, the proportion of the independent pore structure that does not contribute to moisture absorption increases, so that the hygroscopicity of the porous membrane becomes insufficient, and the effect of reducing the feeling of stuffiness of the gloves cannot be obtained.

ただし連通率が高すぎる場合には、多孔質膜の、ひいては手袋の強度が低下して、使用時に破れたりしやすくなる。そのため前記連通率は、前記範囲内でも80%以下に限定される。
なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記連通率は、前記範囲内でも50%以上とするのが好ましい。
また前記多孔質膜の外側には、不透水性でかつ透湿性の薄膜が積層されているのが好ましい。
これにより手袋に、適度な強度や不透水性、良好な吸湿性等を付与することができる。
However, if the communication rate is too high, the strength of the porous membrane, and thus the glove, is reduced, and it is easily broken during use. Therefore, the communication rate is limited to 80% or less even within the above range.
In consideration of further improving this effect and further reducing the feeling of stuffiness of the glove, the communication rate is preferably 50% or more even within the above range.
Moreover, it is preferable that a water-impermeable and moisture-permeable thin film is laminated on the outside of the porous film.
Thereby, moderate intensity | strength, water impermeability, favorable hygroscopicity, etc. can be provided to a glove.

本発明は、ゴムまたは樹脂の多孔質膜を含む手袋であって、前記多孔質膜は、気泡含有率が20体積%以上、60体積%以下、平均気泡径が10μm以上、150μm以下で、かつ気泡の連通率が30%以上、80%以下であることを特徴とするものである。
前記多孔質膜の気泡含有率が前記範囲に限定されるのは、下記の理由による。
すなわち気泡含有率が20体積%未満では、多孔質膜中の気泡総体積が不足して吸湿性が不十分となり、手袋の蒸れ感を軽減する効果が得られない。
The present invention is a glove comprising a rubber or resin porous membrane, wherein the porous membrane has a bubble content of 20% by volume to 60% by volume, an average cell diameter of 10 μm to 150 μm, and The communication rate of bubbles is 30% or more and 80% or less.
The reason why the bubble content of the porous film is limited to the above range is as follows.
That is, when the bubble content is less than 20% by volume, the total volume of bubbles in the porous membrane is insufficient, the hygroscopicity becomes insufficient, and the effect of reducing the feeling of stuffiness of the glove cannot be obtained.

すなわち平均気泡径が10μm未満では多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保する効果が得られず、150μmを超える場合には、同じ気泡量でも個々の気泡内部の表面積が小さくなるため、吸湿性が低下して、湿気を効率的に吸収できないという問題を生じる。
これに対し、多孔質膜の平均気泡径を10μm以上、150μm以下の範囲とすれば、多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保しながら、気泡内部の表面積を増やすことができるため、当該多孔質膜の吸湿性を向上し、湿気をより効率的に吸収できるようにして、手袋の蒸れ感を大幅に軽減することが可能となる。
That is, if the average bubble diameter is less than 10 μm, the effect of ensuring a sufficient hygroscopicity by sufficiently increasing the total bubble volume of the porous membrane cannot be obtained . Since the surface area is small, the hygroscopicity is lowered, and there is a problem that moisture cannot be absorbed efficiently.
In contrast, if the average bubble diameter of the porous membrane is in the range of 10 μm or more and 150 μm or less, the total volume of the bubbles in the porous membrane is sufficiently increased to ensure good hygroscopicity, and the surface area inside the bubbles is reduced. Since it can be increased, the moisture absorption of the porous membrane can be improved, moisture can be absorbed more efficiently, and the feeling of stuffiness of gloves can be greatly reduced.

なお、かかる効果をより一層向上して、手袋の蒸れ感をさらに軽減することを考慮すると、前記平均気泡径は、前記範囲内でも70μm以下とするのが好ましい。
また、多孔質膜の気泡総体積を十分に大きくして良好な吸湿性を確保することを考慮すると、前記平均気泡径は、前記範囲内でも50μm以上とするのが好ましい。
In consideration of further improving this effect and further reducing the feeling of stuffiness of gloves, the average bubble diameter is preferably 70 μm or less even within the above range.
Further, considering that the total bubble volume of the porous film is sufficiently increased to ensure good hygroscopicity, the average bubble diameter is preferably 50 μm or more even within the above range.

Claims (3)

ゴムまたは樹脂の多孔質膜を含む手袋であって、前記多孔質膜は、気泡含有率が20体積%以上、60体積%以下、平均気泡径が150μm以下で、かつ気泡の連通率が30%以上、80%以下であることを特徴とする手袋。   A glove comprising a porous membrane of rubber or resin, wherein the porous membrane has a bubble content of 20% by volume or more and 60% by volume or less, an average bubble diameter of 150 μm or less, and a bubble communication rate of 30%. Above, the glove characterized by being below 80%. 前記多孔質膜は、気泡含有率が35体積%以上である請求項1に記載の手袋。   The glove according to claim 1, wherein the porous film has a bubble content of 35% by volume or more. 前記多孔質膜は、平均気泡径が70μm以下、気泡の連通率が50%以上である請求項1または2に記載の手袋。   The glove according to claim 1 or 2, wherein the porous membrane has an average bubble diameter of 70 µm or less and a bubble communication rate of 50% or more.
JP2012142165A 2011-10-14 2012-06-25 gloves Expired - Fee Related JP5323968B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012142165A JP5323968B2 (en) 2011-10-14 2012-06-25 gloves
PCT/JP2012/075714 WO2013054721A1 (en) 2011-10-14 2012-10-03 Gloves
MYPI2014000685A MY157554A (en) 2011-10-14 2012-10-03 Glove
CN201280050485.4A CN103857304B (en) 2011-10-14 2012-10-03 Gloves

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011226851 2011-10-14
JP2011226851 2011-10-14
JP2012142165A JP5323968B2 (en) 2011-10-14 2012-06-25 gloves

Publications (2)

Publication Number Publication Date
JP2013100629A true JP2013100629A (en) 2013-05-23
JP5323968B2 JP5323968B2 (en) 2013-10-23

Family

ID=48081778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142165A Expired - Fee Related JP5323968B2 (en) 2011-10-14 2012-06-25 gloves

Country Status (4)

Country Link
JP (1) JP5323968B2 (en)
CN (1) CN103857304B (en)
MY (1) MY157554A (en)
WO (1) WO2013054721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064694A1 (en) * 2020-09-28 2022-03-31 雅則 鈴木 Glove

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440775B (en) * 2018-02-22 2021-09-21 山东星宇手套有限公司 Preparation method of natural rubber gloves free of blooming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020916A (en) * 2000-07-11 2002-01-23 Japan Gore Tex Inc Film glove and composite glove using the same
JP2011063923A (en) * 2009-08-19 2011-03-31 Showa Glove Kk Glove

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514388B2 (en) * 1987-12-02 1996-07-10 日東電工株式会社 Reinforced porous sheet for gloves
JPH0633303A (en) * 1992-07-15 1994-02-08 Japan Gore Tex Inc Stretchable, moisture-permeable and waterproof glove
JP2008038303A (en) * 2006-08-09 2008-02-21 Showa Glove Kk Glove and method of producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020916A (en) * 2000-07-11 2002-01-23 Japan Gore Tex Inc Film glove and composite glove using the same
JP2011063923A (en) * 2009-08-19 2011-03-31 Showa Glove Kk Glove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064694A1 (en) * 2020-09-28 2022-03-31 雅則 鈴木 Glove

Also Published As

Publication number Publication date
JP5323968B2 (en) 2013-10-23
MY157554A (en) 2016-06-30
CN103857304A (en) 2014-06-11
WO2013054721A1 (en) 2013-04-18
CN103857304B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
BRPI0912179B1 (en) synthetic polyisoprene latex condoms and method for making a synthetic polyisoprene condom
JP2009215691A (en) Glove
KR100988075B1 (en) Foam Polyurethane Water Dispersion coated gloves those show a special water repellent quality and preparation method thereof
US20150157072A1 (en) Glove having foam lining for sweat management
CN210117348U (en) Polymeric article and condom
JP5323968B2 (en) gloves
CN108433217B (en) Preparation method of butyronitrile wig bubble anti-slip gloves
JP2011001662A (en) Glove and method for manufacturing the same
JP6021198B2 (en) Manufacturing method of rubber gloves
JP3146413B2 (en) Method for producing rubber gloves with excellent adhesion
CN111421729B (en) Preparation method of butyronitrile microporous breathable foamed gloves
JP5481529B2 (en) Manufacturing method of gloves
CN110313662B (en) Preparation method of butyronitrile anti-skid glove
JP5490190B2 (en) Gloves and manufacturing method thereof
KR100687899B1 (en) Foam polyurethane water dispersion coated gloves and preparation method thereof
JP2018003210A (en) Glove
JP2002020913A (en) Glove and method for producing the same
JP2013087374A (en) Glove
JPH03161501A (en) Production of glove having electrical insulation property
JP2004190164A (en) Glove
JP2005120549A (en) Method for producing rubber gloves
CN114318892B (en) Full-soaking gloves with moisture absorption and sweat releasing functions
KR20080041776A (en) Waterborne polymer coated glove and preparation method thereof
JP2012107360A (en) Glove
JP2024026615A (en) anti-slip shoe covers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees