JP2013100570A - Electronics copper alloy, method for production thereof, electronics copper alloy plastic-forming material, and electronics component - Google Patents

Electronics copper alloy, method for production thereof, electronics copper alloy plastic-forming material, and electronics component Download PDF

Info

Publication number
JP2013100570A
JP2013100570A JP2011243870A JP2011243870A JP2013100570A JP 2013100570 A JP2013100570 A JP 2013100570A JP 2011243870 A JP2011243870 A JP 2011243870A JP 2011243870 A JP2011243870 A JP 2011243870A JP 2013100570 A JP2013100570 A JP 2013100570A
Authority
JP
Japan
Prior art keywords
copper alloy
atomic
less
range
electronic devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243870A
Other languages
Japanese (ja)
Other versions
JP5903839B2 (en
Inventor
Kazumasa Maki
一誠 牧
Yuki Ito
優樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011243870A priority Critical patent/JP5903839B2/en
Priority to US14/119,025 priority patent/US20140096877A1/en
Priority to CN201280022058.5A priority patent/CN103502487B/en
Priority to PCT/JP2012/063933 priority patent/WO2012169405A1/en
Priority to TW101119749A priority patent/TWI513833B/en
Publication of JP2013100570A publication Critical patent/JP2013100570A/en
Application granted granted Critical
Publication of JP5903839B2 publication Critical patent/JP5903839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electronics copper alloy having low Youngs modulus, high proof strength, high electrical conductivity, excellent stress relaxation resistance and excellent bendability, and suitable for electronics components such as a terminal, connector and relay; and to provide a method for production thereof, an electronics copper alloy plastic-forming material, and an electronics component.SOLUTION: The electronics copper alloy contains 3.3-6.9 atom% Mg, 0.001-0.15 atom% at least one of Cr and Zr, and the balance of substantially Cu with inevitable impurities. An electrical conductivity σ (%IACS) is made to be σ≤1.7241/(-0.0347×X+0.6569×X+1.7)×100 when the concentration of Mg is refined as X atom%, and a stress relaxation rate at 150°C for 1,000 hr is ≤50%. Further, in the observation by a scanning electron microscope, the average number of intermetallic compounds including Cu and Mg having a grain size of ≥0.1 μm as the main components is made to be ≤1 piece/μm.

Description

本発明は、例えば端子、コネクタ、リレー、リードフレーム等の電子機器用部品に適した電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品に関するものである。   The present invention relates to a copper alloy for electronic devices suitable for electronic device components such as terminals, connectors, relays, lead frames, etc., a method for producing a copper alloy for electronic devices, a copper alloy plastic working material for electronic devices, and an electronic device component It is about.

従来、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される端子、コネクタ、リレー、リードフレーム等の電子機器用部品の小型化および薄肉化が図られている。このため、電子機器用部品を構成する材料として、ばね性、強度、導電率の優れた銅合金が要求されている。特に、非特許文献1に記載されているように、端子、コネクタ、リレー、リードフレーム等の電子機器用部品として使用される銅合金としては、耐力が高く、かつ、ヤング率が低いものが望ましい。   2. Description of the Related Art Conventionally, along with downsizing of electronic devices and electrical devices, electronic device parts such as terminals, connectors, relays, and lead frames used in these electronic devices and electrical devices have been reduced in size and thickness. . For this reason, a copper alloy excellent in springiness, strength, and electrical conductivity is required as a material constituting electronic device parts. In particular, as described in Non-Patent Document 1, a copper alloy used as an electronic device component such as a terminal, a connector, a relay, or a lead frame preferably has a high yield strength and a low Young's modulus. .

ここで、端子、コネクタ、リレー、リードフレーム等の電子機器用部品として使用される銅合金として、例えば特許文献1に示すように、SnとPとを含有するリン青銅が広く使用されている。
また、例えば特許文献2には、Cu−Ni−Si系合金(いわゆるコルソン合金)が提供されている。このコルソン合金は、NiSi析出物を分散させる析出硬化型合金であり、比較的高い導電率と強度、耐応力緩和特性を有するものである。このため、自動車用端子や信号系小型端子用途として多用されており、近年、活発に開発が進んでいる。
さらに、その他の合金として、非特許文献2に記載されているCu−Mg合金、や、特許文献3に記載されているCu−Mg−Zn−B合金等が開発されている。
Here, as a copper alloy used as an electronic device component such as a terminal, a connector, a relay, or a lead frame, for example, as shown in Patent Document 1, phosphor bronze containing Sn and P is widely used.
For example, Patent Document 2 provides a Cu—Ni—Si alloy (so-called Corson alloy). This Corson alloy is a precipitation hardening type alloy in which Ni 2 Si precipitates are dispersed, and has relatively high electrical conductivity, strength, and stress relaxation resistance. For this reason, it is widely used as a terminal for automobiles and signal system small terminals, and has been actively developed in recent years.
Further, as other alloys, a Cu—Mg alloy described in Non-Patent Document 2, a Cu—Mg—Zn—B alloy described in Patent Document 3, and the like have been developed.

特開平01−107943号公報Japanese Patent Laid-Open No. 01-107943 特開平11−036055号公報Japanese Patent Laid-Open No. 11-036055 特開平07−018354号公報Japanese Patent Laid-Open No. 07-018354

野村幸矢、「コネクタ用高性能銅合金条の技術動向と当社の開発戦略」、神戸製鋼技報Vol.54No.1(2004)p.2−8Yukiya Nomura, “Technical Trends of High Performance Copper Alloy Strips for Connectors and Our Development Strategy”, Kobe Steel Technical Report Vol. 54No. 1 (2004) p. 2-8 掘茂徳、他2名、「Cu−Mg合金における粒界型析出」、伸銅技術研究会誌Vol.19(1980)p.115−124M. Motokori and two others, “Grain boundary type precipitation in Cu—Mg alloys”, Vol. 19 (1980) p. 115-124

しかしながら、特許文献1に記載されたりん青銅においては、高温での応力緩和率が高くなる傾向にある。ここで、オスタブがメスのばね接触部を押し上げて挿入される構造のコネクタにおいては、高温での応力緩和率が高いと、高温環境下での使用中に接圧低下が起こり、通電不良が発生するおそれがある。このため、自動車のエンジンルームの周辺等の高温環境下で使用することができなかった。   However, the phosphor bronze described in Patent Document 1 tends to have a high stress relaxation rate at high temperatures. Here, in a connector with a structure in which a male tab pushes up a female spring contact portion, if the stress relaxation rate at high temperature is high, the contact pressure decreases during use in a high temperature environment, resulting in poor conduction. There is a risk. For this reason, it could not be used in a high temperature environment such as around the engine room of an automobile.

また、特許文献2に開示されたコルソン合金では、ヤング率が125−135GPaと比較的高い。ここで、オスタブがメスのばね接触部を押し上げて挿入される構造のコネクタにおいては、コネクタを構成する材料のヤング率が高いと、挿入時の接圧変動が激しいうえに、容易に弾性限界を超えて、塑性変形するおそれがあり好ましくない。   The Corson alloy disclosed in Patent Document 2 has a relatively high Young's modulus of 125-135 GPa. Here, in a connector with a structure in which a male tab pushes up a female spring contact portion and the Young's modulus of the material constituting the connector is high, the contact pressure fluctuation at the time of insertion is severe, and the elastic limit is easily set. This is not preferable because it may cause plastic deformation.

さらに、非特許文献2および特許文献3に記載されたCu−Mg系合金では、コルソン合金と同様に金属間化合物を析出させていることから、ヤング率が高い傾向にあり、上述のように、コネクタとして好ましくないものであった。
さらに、母相中に多くの粗大なCuとMgを主成分とする金属間化合物が分散されていることから、曲げ加工時にこれらのCuとMgを主成分とする金属間化合物が起点となって割れ等が発生しやすいため、複雑な形状の電子機器用部品を成形することができないといった問題があった。
Furthermore, in the Cu-Mg based alloy described in Non-Patent Document 2 and Patent Document 3, since the intermetallic compound is precipitated in the same manner as the Corson alloy, the Young's modulus tends to be high. It was not preferable as a connector.
Further, since many coarse intermetallic compounds containing Cu and Mg as main components are dispersed in the matrix, these intermetallic compounds containing Cu and Mg as main components are used as starting points during bending. Since cracks and the like are likely to occur, there is a problem that electronic parts having complicated shapes cannot be formed.

この発明は、前述した事情に鑑みてなされたものであって、低ヤング率、高耐力、高導電性、優れた耐応力緩和特性、優れた曲げ加工性を有し、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に適した電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器部品を提供することを目的とする。   This invention has been made in view of the above-described circumstances, and has a low Young's modulus, high yield strength, high conductivity, excellent stress relaxation characteristics, excellent bending workability, terminals, connectors, relays, An object of the present invention is to provide a copper alloy for electronic equipment suitable for electronic equipment parts such as a lead frame, a method for producing a copper alloy for electronic equipment, a copper alloy plastic working material for electronic equipment, and an electronic equipment part.

この課題を解決するために、本発明者らは鋭意研究を行った結果、Cu−Mg合金を溶体化後に急冷することによって作製したCu−Mg過飽和固溶体の加工硬化型銅合金においては、低ヤング率、高耐力、高導電性、および、優れた曲げ加工性を有するとの知見を得た。また、このCu−Mg過飽和固溶体からなる銅合金において、仕上加工後に適切な熱処理を実施することによって、耐応力緩和特性を向上させることが可能であるとの知見を得た。さらに、CrおよびZrを適量添加することにより、結晶粒径を微細化でき、強度の向上を図ることが可能であるとの知見を得た。   In order to solve this problem, the present inventors have conducted intensive research. As a result, in a work-hardening type copper alloy of a Cu—Mg supersaturated solid solution prepared by quenching a Cu—Mg alloy after forming a solution, a low Young It has been found that it has a high rate, high yield strength, high conductivity, and excellent bending workability. Moreover, in the copper alloy which consists of this Cu-Mg supersaturated solid solution, the knowledge that it was possible to improve a stress relaxation-proof characteristic was acquired by implementing appropriate heat processing after finishing. Furthermore, it has been found that by adding appropriate amounts of Cr and Zr, the crystal grain size can be refined and the strength can be improved.

本発明は、かかる知見に基いてなされたものであって、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内とされ、応力緩和率が150℃、1000時間で50%以下であることを特徴としている。
The present invention has been made on the basis of such knowledge, and the copper alloy for electronic equipment of the present invention contains Mg in a range of 3.3 atomic% to 6.9 atomic%, and further includes at least Cr and 1 type or 2 types or more of Zr are included in the range of 0.001 atomic% or more and 0.15 atomic% or less, respectively, and the balance is substantially Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg concentration X atom%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
And the stress relaxation rate is 50% or less at 1000C for 1000 hours.

また、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされ、応力緩和率が150℃、1000時間で50%以下であることを特徴としている。 The copper alloy for electronic equipment of the present invention contains Mg in the range of 3.3 atomic% to 6.9 atomic%, and further contains at least one of Cr and Zr or two or more of 0.001 respectively. In the range of atomic% to 0.15 atomic%, with the balance being substantially Cu and inevitable impurities, in a scanning electron microscope observation, between the metals mainly composed of Cu and Mg having a particle size of 0.1 μm or more The average number of compounds is 1 / μm 2 or less, and the stress relaxation rate is 50 ° C. or less at 150 ° C. and 1000 hours.

さらに、本発明の電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内とされており、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされ、応力緩和率が150℃、1000時間で50%以下であることを特徴としている。
Furthermore, the copper alloy for electronic devices of the present invention contains Mg in the range of 3.3 atomic% to 6.9 atomic%, and further contains at least one or more of Cr and Zr in an amount of 0.001 respectively. Including in the range of atomic% or more and 0.15 atomic% or less, and the balance is substantially Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg concentration X atom%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
In the observation with a scanning electron microscope, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle diameter of 0.1 μm or more is 1 / μm 2 or less, and the stress relaxation rate Is 50% or less at 1000C for 1000 hours.

上述の構成とされた電子機器用銅合金においては、Mgを固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含有しており、かつ、導電率σが、Mgの含有量をX原子%としたときに、上記式の範囲内に設定されていることから、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされていることになる。
あるいは、Mgを、固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含有しており、かつ、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされていることから、CuとMgを主成分とする金属間化合物の析出が抑制されており、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされていることになる。
In the copper alloy for electronic equipment having the above-described configuration, Mg is contained in the range of 3.3 atomic% to 6.9 atomic% of the solid solution limit or more, and the conductivity σ is Mg. When the content is set to X atomic%, it is set within the range of the above formula, so that the Mg—super-saturated solid solution in which the Mg is supersaturated in the matrix phase.
Alternatively, Mg is contained in the range of 3.3 atomic% or more and 6.9 atomic% or less above the solid solution limit, and in observation with a scanning electron microscope, Cu and Mg having a particle diameter of 0.1 μm or more are contained. Since the average number of intermetallic compounds having main components is 1 / μm 2 or less, precipitation of intermetallic compounds having Cu and Mg as main components is suppressed, and Mg is contained in the matrix. This is a Cu-Mg supersaturated solid solution in a supersaturated solid solution.

なお、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数は、電界放出型走査電子顕微鏡を用いて、倍率:5万倍、視野:約4.8μmで10視野の観察を行って算出する。
また、CuとMgを主成分とする金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
The average number of intermetallic compounds mainly composed of Cu and Mg having a particle size of 0.1 μm or more was 10 × at a magnification of 50,000 times and a field of view of about 4.8 μm 2 using a field emission scanning electron microscope. Calculate by observing the visual field.
In addition, the particle size of the intermetallic compound containing Cu and Mg as the main components is the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain under the condition of not contacting the grain boundary in the middle) and the minor axis (major axis and It is defined as an average value of the length of a straight line that can be drawn longest in a direction that intersects at right angles and does not contact the grain boundary in the middle.

このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。   In a copper alloy composed of such a Cu-Mg supersaturated solid solution, the Young's modulus tends to be low. For example, even if the male tab is applied to a connector inserted by pushing up a female spring contact portion, the contact pressure at the time of insertion Since the fluctuation is suppressed and the elastic limit is wide, there is no risk of plastic deformation easily. Therefore, it is particularly suitable for electronic device parts such as terminals, connectors, relays, and lead frames.

また、Mgが過飽和に固溶していることから、母相中には、割れの起点となる粗大なCuとMgを主成分とする金属間化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状の端子、コネクタ、リレー、リードフレーム等の電子機器用部品等を成形することが可能となる。
さらに、Mgを過飽和に固溶させていることから、加工硬化によって強度を向上させることが可能となる。
In addition, since Mg is supersaturated, the matrix phase is not dispersed with a large amount of coarse intermetallic compounds mainly composed of Cu and Mg, which are the starting points of cracking, and bending workability is improved. Will improve. Therefore, it is possible to mold electronic parts such as terminals, connectors, relays, and lead frames having complicated shapes.
Further, since Mg is supersaturated, the strength can be improved by work hardening.

また、本発明の電子機器用銅合金においては、少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含んでいるので、結晶粒径が微細化されることになり、導電率を大きく低下させることなく機械的強度を向上させることが可能となる。
そして、本発明の電子機器用銅合金においては、応力緩和率が150℃、1000時間で50%以下とされていることから、高温環境下でも使用した場合であっても接圧低下による通電不良の発生を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することができる。
In addition, the copper alloy for electronic equipment of the present invention contains at least one or more of Cr and Zr in a range of 0.001 atomic% to 0.15 atomic%, respectively. As a result, the mechanical strength can be improved without greatly reducing the electrical conductivity.
And in the copper alloy for electronic devices of this invention, since the stress relaxation rate is made into 50% or less in 150 degreeC and 1000 hours, even if it is a case where it is used also in a high temperature environment, it does not carry out electricity supply by a contact pressure fall. Can be suppressed. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.

ここで、上述の電子機器用銅合金においては、ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上、とされていることが好ましい。
ヤング率Eが125GPa以下、かつ、0.2%耐力σ0.2が400MPa以上である場合には、弾性エネルギー係数(σ0.2 /2E)が高くなり、容易に塑性変形しなくなるため、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。
Here, in the copper alloy for electronic devices described above, it is preferable that the Young's modulus E is 125 GPa or less and the 0.2% proof stress σ 0.2 is 400 MPa or more.
If the Young's modulus E is 125 GPa or less and the 0.2% proof stress σ 0.2 is 400 MPa or more, the elastic energy coefficient (σ 0.2 2 / 2E) increases, and plastic deformation does not easily occur. It is particularly suitable for electronic parts such as terminals, connectors, relays and lead frames.

本発明の電子機器用銅合金の製造方法は、上述の電子機器用銅合金を製出する電子機器用銅合金の製造方法であって、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされた組成の銅素材を所定の形状に圧延する仕上圧延工程と、この仕上圧延工程の後に熱処理を実施する仕上熱処理工程と、を備えていることを特徴としている。   The manufacturing method of the copper alloy for electronic devices of this invention is a manufacturing method of the copper alloy for electronic devices which produces the above-mentioned copper alloy for electronic devices, Comprising: Mg is 3.3 atomic% or more and 6.9 atomic% Included in the following range, further including at least one or more of Cr and Zr in a range of 0.001 atomic% to 0.15 atomic%, respectively, with the balance being substantially Cu and inevitable impurities. It is characterized by comprising a finish rolling step for rolling a copper material having a composition into a predetermined shape, and a finish heat treatment step for performing heat treatment after the finish rolling step.

この構成の電子機器用銅合金の製造方法によれば、上述の組成の銅素材を所定の形状に加工する仕上加工工程と、この仕上加工工程の後に熱処理を実施する仕上熱処理工程と、を備えているので、この仕上熱処理工程によって、耐応力緩和特性を向上させることができる。   According to this method of manufacturing a copper alloy for electronic equipment, a finishing process for processing the copper material having the above composition into a predetermined shape, and a finishing heat treatment process for performing a heat treatment after the finishing process are provided. Therefore, this finish heat treatment step can improve the stress relaxation resistance.

ここで、前記仕上熱処理工程では、200℃超え800℃以下の範囲で熱処理を実施することが好ましい。さらに、加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却することが好ましい。
この場合、仕上熱処理工程によって、耐応力緩和特性を向上させることができ、応力緩和率を150℃、1000時間で50%以下とすることができる。
Here, in the finish heat treatment step, it is preferable to perform the heat treatment in a range of 200 ° C. to 800 ° C. Furthermore, it is preferable to cool the heated copper material to 200 ° C. or less at a cooling rate of 200 ° C./min or more.
In this case, the stress relaxation resistance can be improved by the finish heat treatment step, and the stress relaxation rate can be reduced to 50% or less at 150 ° C. for 1000 hours.

本発明の電子機器用銅合金塑性加工材は、上述の電子機器用銅合金からなり、圧延方向に平行な方向におけるヤング率Eが125GPa以下、圧延方向に平行な方向における0.2%耐力σ0.2が400MPa以上とされていることを特徴としている。
この構成の電子機器用銅合金塑性加工材によれば、弾性エネルギー係数(σ0.2 /2E)が高く、容易に塑性変形しない。
なお、この明細書において塑性加工材とは、いずれかの製造工程において、塑性加工が施された銅合金をいうものとする。
The copper alloy plastic working material for electronic equipment of the present invention is made of the above-described copper alloy for electronic equipment, and has a Young's modulus E of 125 GPa or less in the direction parallel to the rolling direction and 0.2% proof stress σ in the direction parallel to the rolling direction. 0.2 is 400 MPa or more.
According to the copper alloy plastic working material for electronic equipment having this configuration, the elastic energy coefficient (σ 0.2 2 / 2E) is high and plastic deformation does not easily occur.
In this specification, the plastic working material refers to a copper alloy that has undergone plastic working in any manufacturing process.

また、上述の電子機器用銅合金塑性加工材は、端子、コネクタ、リレー、リードフレーム等の電子機器用部品を構成する銅素材として使用されることが好ましい。   Moreover, it is preferable that the above-mentioned copper alloy plastic working material for electronic devices is used as a copper material constituting components for electronic devices such as terminals, connectors, relays, and lead frames.

さらに、本発明の電子機器用部品は、上述の電子機器用銅合金からなることを特徴としている。
この構成の電子機器用部品(例えば端子、コネクタ、リレー、リードフレーム)は、ヤング率が低く、かつ、耐応力緩和特性に優れているので、高温環境下でおいても使用することができる。
Furthermore, the electronic device component of the present invention is characterized by comprising the above-described copper alloy for electronic devices.
The electronic device parts (for example, terminals, connectors, relays, and lead frames) having this configuration have a low Young's modulus and excellent stress relaxation resistance, and can be used even in a high temperature environment.

本発明によれば、低ヤング率、高耐力、高導電性、優れた耐応力緩和特性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子機器用部品に適した電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品を提供することができる。   According to the present invention, it has a low Young's modulus, a high yield strength, a high conductivity, an excellent stress relaxation property, an excellent bending workability, and is suitable for electronic equipment components such as terminals, connectors and relays. A copper alloy, a method for producing a copper alloy for electronic equipment, a copper alloy plastic working material for electronic equipment, and a component for electronic equipment can be provided.

Cu−Mg系状態図である。It is a Cu-Mg system phase diagram. 本実施形態である電子機器用銅合金の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper alloy for electronic devices which is this embodiment. 本発明例3の析出物を観察した結果を示す図である。It is a figure which shows the result of having observed the deposit of the example 3 of this invention. 本発明例8の析出物を観察した結果を示す図である。It is a figure which shows the result of having observed the deposit of the example 8 of this invention.

以下に、本発明の実施形態である電子機器用銅合金について説明する。
本実施形態である電子機器用銅合金の成分組成は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部がCuおよび不可避不純物とされている。
そして、本実施形態である電子機器用銅合金は、導電率σ(%IACS)が、Mgの含有量をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内とされている。
また、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされている。
Below, the copper alloy for electronic devices which is embodiment of this invention is demonstrated.
The component composition of the copper alloy for electronic devices according to this embodiment includes Mg in the range of 3.3 atomic% to 6.9 atomic%, and further contains at least one of Cr and Zr in an amount of 0.001. It is included in the range of atomic% to 0.15 atomic%, with the remainder being Cu and inevitable impurities.
And the copper alloy for electronic devices which is this embodiment WHEREIN: When electrical conductivity (sigma) (% IACS) makes Mg content X atomic%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
It is within the range.
In the observation with a scanning electron microscope, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle diameter of 0.1 μm or more is set to 1 piece / μm 2 or less.

そして、応力緩和率が150℃、1000時間で50%以下とされている。ここで、応力緩和率は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法で応力を負荷して測定した。
また、この電子機器用銅合金は、ヤング率Eが125GPa以下とされ、0.2%耐力σ0.2が400MPa以上とされている。
The stress relaxation rate is set to 50% or less at 1000C for 1000 hours. Here, the stress relaxation rate was measured by applying stress by a method according to the cantilevered screw type of Japan Technical Standard JCBA-T309: 2004.
The copper alloy for electronic devices has a Young's modulus E of 125 GPa or less and a 0.2% proof stress σ 0.2 of 400 MPa or more.

(組成)
Mgは、導電率を大きく低下させることなく、強度を向上させるとともに再結晶温度を上昇させる作用効果を有する元素である。また、Mgを母相中に固溶させることにより、ヤング率が低く抑えられ、かつ、優れた曲げ加工性が得られる。
ここで、Mgの含有量が3.3原子%未満では、その作用効果を奏功せしめることはできない。一方、Mgの含有量が6.9原子%を超えると、溶体化のために熱処理を行った際に、CuとMgを主成分とする金属間化合物が残存してしまい、その後の加工等で割れが発生してしまうおそれがある。
このような理由から、Mgの含有量を、3.3原子%以上6.9原子%以下に設定している。
(composition)
Mg is an element that has the effect of improving the strength and raising the recrystallization temperature without greatly reducing the electrical conductivity. Further, by dissolving Mg in the matrix, the Young's modulus can be kept low and excellent bending workability can be obtained.
Here, if the content of Mg is less than 3.3 atomic%, the effect cannot be achieved. On the other hand, if the Mg content exceeds 6.9 atomic%, an intermetallic compound containing Cu and Mg as main components remains when heat treatment is performed for solution treatment. There is a risk of cracking.
For these reasons, the Mg content is set to 3.3 atomic% or more and 6.9 atomic% or less.

さらに、Mgの含有量が少ないと、強度が十分に向上せず、かつ、ヤング率を十分に低く抑えることができない。また、Mgは活性元素であることから、過剰に添加されることによって、溶解鋳造時に、酸素と反応して生成されたMg酸化物を巻きこむおそれがある。したがって、Mgの含有量を、3.7原子%以上6.3原子%以下の範囲とすることが、さらに好ましい。   Furthermore, if the content of Mg is small, the strength is not sufficiently improved and the Young's modulus cannot be sufficiently reduced. Moreover, since Mg is an active element, when it is added excessively, there is a possibility that Mg oxide generated by reacting with oxygen is involved during melt casting. Therefore, it is more preferable that the Mg content is in the range of 3.7 atomic% to 6.3 atomic%.

CrおよびZrは、中間熱処理後の結晶粒径を容易に微細化させる効果を有する元素である。これは、CrおよびZrを含む第二相粒子が母相内に分散しており、この第二相粒子が熱処理中の母相の結晶粒の成長を抑制する効果があるためと推測される。この結晶粒微細化の効果は、中間加工→中間熱処理を繰り返すことでさらに顕著となる。また、このような微細な第二相粒子が分散されること、および、結晶粒の微細化により、導電率を大きく低下させることなく強度を更に向上させる効果を有する。   Cr and Zr are elements having an effect of easily refining the crystal grain size after the intermediate heat treatment. This is presumably because the second phase particles containing Cr and Zr are dispersed in the parent phase, and the second phase particles have an effect of suppressing the growth of crystal grains of the parent phase during the heat treatment. The effect of crystal grain refinement becomes more remarkable by repeating intermediate processing → intermediate heat treatment. Further, the dispersion of such fine second phase particles and the refinement of crystal grains have the effect of further improving the strength without greatly reducing the electrical conductivity.

ここで、CrおよびZrの含有量が0.001原子%未満では、その作用効果を奏功せしめることはできない。一方、CrおよびZrの含有量が0.15原子%を超えると、圧延時に耳割れが発生するおそれがある。
このような理由から、CrおよびZrの含有量を、それぞれ0.001原子%以上0.15原子%以下に設定している。
さらに、CrおよびZrの含有量が少ないと、強度向上や結晶粒の微細化の効果を確実に奏功せしめることができないおそれがある。また、CrおよびZrの含有量が多いと、圧延性や曲げ加工性に悪影響を及ぼす。
したがって、CrおよびZrの含有量を、それぞれ0.005原子%以上0.12原子%以下の範囲とすることが、さらに好ましい。
Here, if the content of Cr and Zr is less than 0.001 atomic%, the effect cannot be achieved. On the other hand, if the content of Cr and Zr exceeds 0.15 atomic%, there is a risk that ear cracks may occur during rolling.
For these reasons, the Cr and Zr contents are set to 0.001 atomic% or more and 0.15 atomic% or less, respectively.
Furthermore, if the contents of Cr and Zr are small, there is a possibility that the effect of improving the strength and refining the crystal grains cannot be achieved with certainty. Moreover, when there is much content of Cr and Zr, it will have a bad influence on rolling property and bending workability.
Therefore, it is more preferable that the contents of Cr and Zr are in the range of 0.005 atomic% or more and 0.12 atomic% or less, respectively.

なお、不可避不純物としては、Sn,Zn,Al,Ni,Fe,Co,Ag,Mn,B,P,Ca,Sr,Ba,Sc,Y,希土類元素,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Si,Ge,As,Sb,Ti,Tl,Pb,Bi,S,O,C,Be,N,H,Hg等が挙げられる。これらの不可避不純物は、総量で0.3質量%以下であることが望ましい。特に、Snは0.1質量%未満、Znは0.01質量%未満とすることが好ましい。これは、Snは0.1質量%以上添加されるとCuとMgを主成分とする金属間化合物の析出が起こりやすくなるためであり、Znは0.01質量%以上添加されると溶解鋳造工程においてヒュームが発生して炉やモールドの部材に付着して鋳塊の表面品質が劣化するとともに、耐応力腐食割れ性が劣化するためである。   Inevitable impurities include Sn, Zn, Al, Ni, Fe, Co, Ag, Mn, B, P, Ca, Sr, Ba, Sc, Y, rare earth elements, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Te, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Si, Ge, As, Sb, Ti, Tl, Pb, Bi, S, O, C, Be, N, H, Hg, etc. are mentioned. These inevitable impurities are desirably 0.3% by mass or less in total. In particular, Sn is preferably less than 0.1% by mass and Zn is preferably less than 0.01% by mass. This is because when Sn is added in an amount of 0.1% by mass or more, precipitation of an intermetallic compound mainly composed of Cu and Mg is likely to occur, and when Zn is added in an amount of 0.01% by mass or more, melt casting is performed. This is because fumes are generated in the process and adhere to the furnace and mold members to deteriorate the surface quality of the ingot and the stress corrosion cracking resistance.

(導電率σ)
導電率σが、Mgの含有量をX原子%としたとき、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内である場合には、CuとMgを主成分とする金属間化合物がほとんど存在しないことになる。
すなわち、導電率σが上記式を超える場合には、CuとMgを主成分とする金属間化合物が多量に存在し、サイズも比較的大きいことから、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物が生成し、かつ、Mgの固溶量が少ないことから、ヤング率も上昇してしまうことになる。よって、導電率σが、上記式の範囲内となるように、製造条件を調整することになる。
(Conductivity σ)
When the conductivity σ is Mg content X atom%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
If it is within the range, there will be almost no intermetallic compound mainly composed of Cu and Mg.
That is, when the electrical conductivity σ exceeds the above formula, a large amount of intermetallic compounds mainly composed of Cu and Mg are present and the size is relatively large, so that bending workability is greatly deteriorated. . In addition, since an intermetallic compound containing Cu and Mg as main components is generated and the amount of Mg solid solution is small, the Young's modulus is also increased. Therefore, the manufacturing conditions are adjusted so that the electrical conductivity σ is within the range of the above formula.

このCuとMgを主成分とする金属間化合物は、化学式MgCu、プロトタイプMgCu、ピアソン記号cF24、空間群番号Fd−3mで表される結晶構造を有するものである。
なお、上述の作用効果を確実に奏功せしめるためには、導電率σ(%IACS)を、
σ≦1.7241/(−0.0300×X+0.6763×X+1.7)×100
の範囲内とすることが好ましい。この場合、CuとMgを主成分とする金属間化合物がより少量であるために、曲げ加工性がさらに向上することになる。
上述の作用効果をさらに確実に奏功せしめるためには、導電率σ(%IACS)を、
σ≦1.7241/(−0.0292×X+0.6797×X+1.7)×100
の範囲内とすることがさらに好ましい。この場合、CuとMgを主成分とする金属間化合物がさらに少量であるために、曲げ加工性がさらに向上することになる。
This intermetallic compound containing Cu and Mg as main components has a crystal structure represented by the chemical formula MgCu 2 , prototype MgCu 2 , Pearson symbol cF24, and space group number Fd-3m.
In order to ensure that the above-described effects are achieved, the conductivity σ (% IACS) is
σ ≦ 1.7241 / (− 0.0300 × X 2 + 0.6763 × X + 1.7) × 100
It is preferable to be within the range. In this case, since the amount of the intermetallic compound mainly composed of Cu and Mg is smaller, the bending workability is further improved.
In order to achieve the above-mentioned effects more reliably, the conductivity σ (% IACS) is
σ ≦ 1.7241 / (− 0.0292 × X 2 + 0.6797 × X + 1.7) × 100
More preferably, it is within the range. In this case, since the amount of the intermetallic compound containing Cu and Mg as main components is smaller, bending workability is further improved.

(応力緩和率)
本実施形態である電子機器用銅合金においては、上述のように、応力緩和率が150℃、1000時間で50%以下とされている。
この条件における応力緩和率が低い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である電子機器用銅合金は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。
なお、応力緩和率は150℃、1000時間で30%以下とすることが好ましく、150℃、1000時間で20%以下とすることがさらに好ましい。
(Stress relaxation rate)
In the copper alloy for electronic devices according to this embodiment, as described above, the stress relaxation rate is 50% or less at 150 ° C. for 1000 hours.
When the stress relaxation rate under these conditions is low, permanent deformation can be suppressed to a small level even when used in a high temperature environment, and a decrease in contact pressure can be suppressed. Therefore, the copper alloy for electronic devices according to the present embodiment can be applied as a terminal used in a high temperature environment such as around the engine room of an automobile.
The stress relaxation rate is preferably 30% or less at 150 ° C. and 1000 hours, and more preferably 20% or less at 150 ° C. and 1000 hours.

(組織)
本実施形態である電子機器用銅合金においては、走査型電子顕微鏡で観察した結果、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされている。すなわち、CuとMgを主成分とする金属間化合物がほとんど析出しておらず、Mgが母相中に固溶しているのである。
ここで、溶体化が不完全であったり、溶体化後にCuとMgを主成分とする金属間化合物が析出することにより、サイズの大きいCuとMgを主成分とする金属間化合物が多量に存在すると、これらのCuとMgを主成分とする金属間化合物が割れの起点となり、加工時に割れが発生したり、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物の量が多いと、ヤング率が上昇することになるため、好ましくない。
(Organization)
In the copper alloy for electronic devices according to this embodiment, as a result of observation with a scanning electron microscope, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle diameter of 0.1 μm or more is 1 / μm 2. It is as follows. That is, almost no intermetallic compound mainly composed of Cu and Mg is precipitated, and Mg is dissolved in the matrix.
Here, a large amount of intermetallic compounds mainly composed of Cu and Mg are present due to incomplete solution treatment or precipitation of intermetallic compounds mainly composed of Cu and Mg after solution treatment. Then, these intermetallic compounds containing Cu and Mg as main components become the starting point of cracking, and cracking occurs during processing or bending workability is greatly deteriorated. Further, if the amount of the intermetallic compound containing Cu and Mg as main components is large, the Young's modulus increases, which is not preferable.

組織を調査した結果、粒径0.1μm以上のCuとMgを主成分とする金属間化合物が合金中に1個/μm以下の場合、すなわち、CuとMgを主成分とする金属間化合物が存在しないあるいは少量である場合、良好な曲げ加工性、低いヤング率が得られることになる。
さらに、上述の作用効果を確実に奏功せしめるためには、粒径0.05μm以上のCuとMgを主成分とする金属間化合物の個数が合金中に1個/μm以下であることが、より好ましい。
As a result of investigating the structure, when the intermetallic compound containing Cu and Mg as main components having a particle size of 0.1 μm or more is 1 / μm 2 or less in the alloy, that is, the intermetallic compound containing Cu and Mg as main components. When there is no or a small amount, good bending workability and low Young's modulus can be obtained.
Furthermore, in order to ensure that the above-described effects are achieved, the number of intermetallic compounds mainly composed of Cu and Mg having a particle diameter of 0.05 μm or more is 1 / μm 2 or less in the alloy. More preferred.

なお、CuとMgを主成分とする金属間化合物の平均個数は、電界放出型走査電子顕微鏡を用いて、倍率:5万倍、視野:約4.8μmで10視野の観察を行い、その平均値を算出する。
また、CuとMgを主成分とする金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
The average number of intermetallic compounds mainly composed of Cu and Mg was observed using a field emission scanning electron microscope with 10 fields of view at a magnification of 50,000 times and a field of view of about 4.8 μm 2. The average value is calculated.
In addition, the particle size of the intermetallic compound containing Cu and Mg as the main components is the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain under the condition of not contacting the grain boundary in the middle) and the minor axis (major axis and It is defined as an average value of the length of a straight line that can be drawn longest in a direction that intersects at right angles and does not contact the grain boundary in the middle.

(結晶粒径)
結晶粒径は、耐応力緩和特性に大きな影響を与える因子であり、結晶粒径が必要以上に小さい場合には耐応力緩和特性が劣化することになる。また、結晶粒径が必要以上に大きい場合には曲げ加工性に悪影響を与えることになる。このため、平均結晶粒径は0.5μm以上100μm以下の範囲内とすることが好ましい。なお、平均結晶粒径は0.7μm以上50μm以下の範囲内とすることがより好ましく、さらに0.7μm以上30μm以下の範囲内とすることが好ましい。
(Crystal grain size)
The crystal grain size is a factor that greatly affects the stress relaxation resistance. When the crystal grain size is smaller than necessary, the stress relaxation resistance is deteriorated. In addition, when the crystal grain size is larger than necessary, the bending workability is adversely affected. For this reason, the average crystal grain size is preferably in the range of 0.5 μm to 100 μm. The average crystal grain size is more preferably in the range of 0.7 to 50 μm, and further preferably in the range of 0.7 to 30 μm.

なお、後述する仕上加工工程S06の加工率が高い場合には、加工組織となって結晶粒径を測定できなくなることがある。そこで、仕上加工工程S06の前(中間熱処理工程S05後)の段階での平均結晶粒径について、上述の範囲内とすることが好ましい。
ここで、結晶粒径が10μmを超える場合には、光学顕微鏡を用いて平均結晶粒径を測定することが好ましい。一方、結晶粒径が10μm以下である場合には、SEM−EBSD(Electron Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定することが好ましい。
In addition, when the processing rate of finishing process S06 mentioned later is high, it may become a process structure and it may become impossible to measure a crystal grain size. Therefore, it is preferable that the average crystal grain size at the stage before the finish processing step S06 (after the intermediate heat treatment step S05) be within the above range.
Here, when the crystal grain size exceeds 10 μm, it is preferable to measure the average crystal grain size using an optical microscope. On the other hand, when the crystal grain size is 10 μm or less, it is preferable to measure the average crystal grain size using an SEM-EBSD (Electron Backscatter Diffraction Patterns) measuring device.

次に、このような構成とされた本実施形態である電子機器用銅合金の製造方法について、図2に示すフロー図を参照して説明する。
なお、下記の製造方法において、加工工程として圧延を用いる場合、加工率は圧延率に相当する。
Next, the manufacturing method of the copper alloy for electronic devices which is this embodiment configured as above will be described with reference to the flowchart shown in FIG.
In the following manufacturing method, when rolling is used as the processing step, the processing rate corresponds to the rolling rate.

(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、Mgの添加には、Mg単体やCu−Mg母合金等を用いることができる。また、Mgを含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。
ここで、銅溶湯は、純度が99.99質量%以上とされたいわゆる4NCuとすることが好ましい。また、溶解工程では、Mgの酸化を抑制するために、真空炉、あるいは、不活性ガス雰囲気または還元性雰囲気とされた雰囲気炉を用いることが好ましい。
そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
(Melting / Casting Process S01)
First, the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy. In addition, Mg simple substance, Cu-Mg master alloy, etc. can be used for addition of Mg. Moreover, the raw material containing Mg may be dissolved together with the copper raw material. Moreover, you may use the recycling material and scrap material of this alloy.
Here, the molten copper is preferably so-called 4NCu having a purity of 99.99% by mass or more. Further, in the melting step, it is preferable to use a vacuum furnace or an atmosphere furnace having an inert gas atmosphere or a reducing atmosphere in order to suppress oxidation of Mg.
Then, the copper alloy molten metal whose components are adjusted is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use a continuous casting method or a semi-continuous casting method.

(加熱工程S02)
次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することになる。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を400℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりするのである。なお、この加熱工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
ここで、加熱温度が400℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を400℃以上900℃以下の範囲に設定している。より好ましくは500℃以上850℃以下、更に好ましくは520℃以上800℃以下とする。
(Heating step S02)
Next, heat treatment is performed for homogenization and solution of the obtained ingot. Inside the ingot, there are intermetallic compounds and the like mainly composed of Cu and Mg generated by the concentration of Mg by segregation during the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, etc., heat treatment is performed to heat the ingot to 400 ° C. or more and 900 ° C. or less, so that Mg can be uniformly diffused in the ingot. Mg is dissolved in the matrix. The heating step S02 is preferably performed in a non-oxidizing or reducing atmosphere.
Here, when the heating temperature is less than 400 ° C., solutionization is incomplete, and a large amount of intermetallic compounds mainly containing Cu and Mg may remain in the matrix phase. On the other hand, when the heating temperature exceeds 900 ° C., a part of the copper material becomes a liquid phase, and the structure and the surface state may become non-uniform. Therefore, the heating temperature is set in the range of 400 ° C. or higher and 900 ° C. or lower. More preferably, it is 500 degreeC or more and 850 degrees C or less, More preferably, you may be 520 degreeC or more and 800 degrees C or less.

(急冷工程S03)
そして、加熱工程S02において400℃以上900℃以下にまで加熱された銅素材を、200℃以下の温度にまで、200℃/min以上の冷却速度で冷却する。この急冷工程S03により、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することを抑制し、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数を1個/μm以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。
なお、粗加工の効率化と組織の均一化のために、前述の加熱工程S02の後に熱間加工を実施し、この熱間加工の後に上述の急冷工程S03を実施する構成としてもよい。この場合、加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延等、バルク形状の場合には鍛造やプレス、を採用することができる。
(Rapid cooling step S03)
And the copper raw material heated to 400 degreeC or more and 900 degrees C or less in heating process S02 is cooled by the cooling rate of 200 degrees C / min or more to the temperature of 200 degrees C or less. This quenching step S03 suppresses precipitation of Mg dissolved in the matrix as an intermetallic compound containing Cu and Mg as main components. In observation with a scanning electron microscope, Cu having a particle size of 0.1 μm or more The average number of intermetallic compounds containing Mg as a main component can be 1 / μm 2 or less. That is, the copper material can be a Cu—Mg supersaturated solid solution.
In addition, in order to increase the efficiency of roughing and make the structure uniform, it is possible to perform a hot working after the heating step S02 and perform the rapid cooling step S03 after the hot working. In this case, there is no particular limitation on the processing method, for example, rolling when the final form is a plate or strip, drawing, extruding, groove rolling, etc. for a wire or bar, forging or pressing for a bulk shape. Can be adopted.

(中間加工工程S04)
加熱工程S02および急冷工程S03を経た銅素材を必要に応じて切断するとともに、加熱工程S02および急冷工程S03等で生成された酸化膜等を除去するために必要に応じて表面研削を行う。そして、所定の形状へと塑性加工を行う。
なお、この中間加工工程S04における温度条件は特に限定はないが、冷間または温間加工となる−200℃から200℃の範囲内とすることが好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、最終形状を得るまでの中間熱処理工程S05の回数を減らすためには、20%以上とすることが好ましい。また、加工率を30%以上とすることがより好ましい。塑性加工方法は特に限定されないが、最終形状が板、条の場合は圧延を採用することが好ましい。線や棒の場合には押出や溝圧延、バルク形状の場合には鍛造やプレスを採用することが好ましい。さらに、溶体化の徹底のために、S02〜S04を繰り返しても良い。
(Intermediate processing step S04)
The copper material that has undergone the heating step S02 and the rapid cooling step S03 is cut as necessary, and surface grinding is performed as necessary to remove the oxide film and the like generated in the heating step S02, the rapid cooling step S03, and the like. Then, plastic working is performed into a predetermined shape.
In addition, the temperature condition in the intermediate processing step S04 is not particularly limited, but it is preferable to be within a range of −200 ° C. to 200 ° C. which is cold or warm processing. The processing rate is appropriately selected so as to approximate the final shape. However, in order to reduce the number of intermediate heat treatment steps S05 until the final shape is obtained, the processing rate is preferably set to 20% or more. Moreover, it is more preferable that the processing rate is 30% or more. The plastic working method is not particularly limited, but when the final shape is a plate or strip, it is preferable to employ rolling. It is preferable to employ extrusion or groove rolling in the case of a wire or bar, and forging or pressing in the case of a bulk shape. Further, S02 to S04 may be repeated for thorough solution.

(中間熱処理工程S05)
中間加工工程S04後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。
熱処理の方法は特に限定はないが、好ましくは400℃以上900℃以下の条件で、非酸化雰囲気または還元性雰囲気中で熱処理を行う。より好ましくは500℃以上850℃以下、さらに好ましくは520℃以上800℃以下とする。
なお、中間加工工程S04及び中間熱処理工程S05は、繰り返し実施してもよい。
(Intermediate heat treatment step S05)
After the intermediate processing step S04, heat treatment is performed for the purpose of thorough solution, recrystallization structure, or softening for improving workability.
The heat treatment method is not particularly limited, but the heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere under conditions of 400 ° C. to 900 ° C. More preferably, it is 500 degreeC or more and 850 degrees C or less, More preferably, you may be 520 degreeC or more and 800 degrees C or less.
Note that the intermediate processing step S04 and the intermediate heat treatment step S05 may be repeatedly performed.

ここで、中間熱処理工程S05においては、400℃以上900℃以下にまで加熱された銅素材を、200℃以下の温度にまで、200℃/min以上の冷却速度で冷却する。このように急冷することによって、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することが抑制されることになり、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。 Here, in the intermediate heat treatment step S05, the copper material heated to 400 ° C. or more and 900 ° C. or less is cooled to a temperature of 200 ° C. or less at a cooling rate of 200 ° C./min or more. Such rapid cooling suppresses the precipitation of Mg dissolved in the matrix as an intermetallic compound containing Cu and Mg as main components. The average number of intermetallic compounds mainly composed of Cu and Mg of 1 μm or more can be 1 / μm 2 or less. That is, the copper material can be a Cu—Mg supersaturated solid solution.

(仕上加工工程S06)
中間熱処理工程S05後の銅素材を所定の形状に仕上加工を行う。なお、この仕上加工工程S06における温度条件は特に限定はないが、常温で行うことが好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、加工硬化によって強度を向上させるためには、20%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を30%以上とすることがより好ましい。この塑性加工方法は特に限定されないが、最終形状が板、条の場合は圧延を採用することが好ましい。線や棒の場合には押出や溝圧延、バルク形状の場合には鍛造やプレスを採用することが好ましい。
(Finishing process S06)
The copper material after the intermediate heat treatment step S05 is finished into a predetermined shape. The temperature condition in the finishing process S06 is not particularly limited, but it is preferably performed at room temperature. The processing rate is appropriately selected so as to approximate the final shape, but is preferably 20% or more in order to improve the strength by work hardening. Also. In order to further improve the strength, the processing rate is more preferably 30% or more. This plastic working method is not particularly limited, but when the final shape is a plate or strip, it is preferable to employ rolling. It is preferable to employ extrusion or groove rolling in the case of a wire or bar, and forging or pressing in the case of a bulk shape.

(仕上熱処理工程S07)
次に、仕上加工工程S06によって得られた加工材に対して、耐応力緩和特性の向上、および、低温焼鈍硬化を行うために、または、残留ひずみの除去のために、仕上熱処理を実施する。
熱処理温度は、200℃超え800℃以下の範囲内とすることが好ましい。なお、この仕上熱処理工程S07においては、溶体化されたMgが析出しないように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば250℃で10秒〜24時間程度、300℃で5秒〜4時間程度、500℃で0.1秒〜60秒程度とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
(Finish heat treatment step S07)
Next, a finishing heat treatment is performed on the workpiece obtained in the finishing step S06 in order to improve stress relaxation resistance and perform low-temperature annealing hardening, or to remove residual strain.
The heat treatment temperature is preferably in the range of 200 ° C to 800 ° C. In the finish heat treatment step S07, it is necessary to set heat treatment conditions (temperature, time, cooling rate) so that solutionized Mg does not precipitate. For example, it is preferable to set at 250 ° C. for about 10 seconds to 24 hours, 300 ° C. for about 5 seconds to 4 hours, and 500 ° C. for about 0.1 seconds to 60 seconds. This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.

また、冷却方法は、水焼入など、加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却することが好ましい。このように急冷することにより、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することが抑制されることになり、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。
さらに、上述の仕上加工工程S06と仕上熱処理工程S07とを、繰り返し実施してもよい。なお、中間熱処理工程と仕上熱処理工程とは、中間加工工程又は仕上加工工程における塑性加工後の組織を再結晶化することを目的とするか否かによって区別することができる。
Moreover, it is preferable that a cooling method cools the said copper raw material heated, such as water quenching, to 200 degrees C or less with the cooling rate of 200 degrees C / min or more. Such rapid cooling suppresses the precipitation of Mg dissolved in the matrix as an intermetallic compound containing Cu and Mg as main components. The average number of intermetallic compounds mainly composed of Cu and Mg of 1 μm or more can be 1 / μm 2 or less. That is, the copper material can be a Cu—Mg supersaturated solid solution.
Furthermore, the above-described finishing processing step S06 and finishing heat treatment step S07 may be repeated. The intermediate heat treatment step and the finish heat treatment step can be distinguished by whether or not the purpose is to recrystallize the structure after plastic working in the intermediate processing step or the finishing step.

このようにして、本実施形態である電子機器用銅合金が製出されることになる。そして、本実施形態である電子機器用銅合金は、そのヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上とされている。
また、導電率σ(%IACS)は、Mgの含有量をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内に設定されることになる。
さらに、仕上熱処理工程S07によって、本実施形態である電子機器用銅合金は、応力緩和率が150℃、1000時間で50%以下とされている。
Thus, the copper alloy for electronic devices which is this embodiment is produced. And as for the copper alloy for electronic devices which is this embodiment, the Young's modulus E shall be 125 GPa or less, and 0.2% yield strength (sigma) 0.2 shall be 400 Mpa or more.
In addition, the conductivity σ (% IACS) is determined when the Mg content is X atom%.
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
It will be set within the range.
Furthermore, according to the finish heat treatment step S07, the copper alloy for electronic devices according to the present embodiment has a stress relaxation rate of 50% or less at 150 ° C. for 1000 hours.

以上のような構成とされた本実施形態である電子機器用銅合金によれば、Mgを、固溶限度以上の3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、かつ、導電率σ(%IACS)が、Mgの含有量をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内に設定されている。さらに、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm以下とされている。
According to the copper alloy for electronic equipment of the present embodiment configured as described above, Mg is contained in a range of 3.3 atomic% to 6.9 atomic% above the solid solution limit, and at least Cr. And one or more of Zr in the range of 0.001 atomic% or more and 0.15 atomic% or less, respectively, and the conductivity σ (% IACS) is set so that the Mg content is X atomic%. sometimes,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
It is set within the range. Furthermore, in the observation with a scanning electron microscope, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle diameter of 0.1 μm or more is set to 1 / μm 2 or less.

すなわち、本実施形態である電子機器用銅合金は、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされているのである。
このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。
That is, the copper alloy for electronic devices according to this embodiment is a Cu—Mg supersaturated solid solution in which Mg is supersaturated in the matrix.
In a copper alloy composed of such a Cu-Mg supersaturated solid solution, the Young's modulus tends to be low. For example, even if the male tab is applied to a connector inserted by pushing up a female spring contact portion, the contact pressure at the time of insertion Since the fluctuation is suppressed and the elastic limit is wide, there is no risk of plastic deformation easily. Therefore, it is particularly suitable for electronic device parts such as terminals, connectors, relays, and lead frames.

また、Mgが過飽和に固溶していることから、母相中には、割れの起点となる粗大なCuとMgを主成分とする金属間化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状の端子、コネクタ、リレー、リードフレーム等の電子機器用部品を成形することが可能となる。
さらに、Mgを過飽和に固溶させていることから、加工硬化させることで、強度が向上することになり、比較的高い強度を有することが可能となる。
In addition, since Mg is supersaturated, the matrix phase is not dispersed with a large amount of coarse intermetallic compounds mainly composed of Cu and Mg, which are the starting points of cracking, and bending workability is improved. Will improve. Therefore, it is possible to mold electronic device parts such as terminals, connectors, relays, and lead frames having complicated shapes.
Furthermore, since Mg is super-saturated, the strength is improved by work hardening, and a relatively high strength can be obtained.

また、本実施形態である電子機器用銅合金は、少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含んでいるので、結晶粒径が微細化されることになり、導電率を大きく低下させることなく機械的強度を向上させることが可能となる。   In addition, the copper alloy for electronic devices according to the present embodiment contains at least one or more of Cr and Zr in a range of 0.001 atomic% to 0.15 atomic%, respectively. The diameter becomes finer, and the mechanical strength can be improved without greatly reducing the conductivity.

そして、本実施形態である電子機器用銅合金においては、応力緩和率が150℃、1000時間で50%以下とされているので、高温環境下でも使用した場合であっても接圧低下による通電不良の発生を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することができる。   And in the copper alloy for electronic devices which is this embodiment, since the stress relaxation rate shall be 50% or less in 1000 degreeC and 1000 hours, even if it is a case where it is used also in a high temperature environment, it supplies with electricity by a contact pressure fall. The occurrence of defects can be suppressed. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.

また、本実施形態である電子機器用銅合金においては、ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上、とされていることから、弾性エネルギー係数(σ0.2 /2E)が高くなって容易に塑性変形しなくなるため、端子、コネクタ、リレー、リードフレームの電子機器用部品に特に適している。 In the copper alloy for electronic devices according to this embodiment, the Young's modulus E is 125 GPa or less, and the 0.2% proof stress σ 0.2 is 400 MPa or more. Therefore, the elastic energy coefficient (σ 0.2 Since 2 / 2E) is high and plastic deformation does not easily occur, it is particularly suitable for electronic device parts such as terminals, connectors, relays, and lead frames.

本実施形態である電子機器用銅合金の製造方法によれば、上述の組成の鋳塊または加工材を400℃以上900℃以下の温度にまで加熱する加熱工程S02により、Mgの溶体化を行うことができる。
また、加熱工程S02によって400℃以上900℃以下にまで加熱された鋳塊または加工材を、200℃/min以上の冷却速度で200℃以下にまで冷却する急冷工程S03を備えているので、冷却の過程でCuとMgを主成分とする金属間化合物が析出することを抑制することが可能となり、急冷後の鋳塊または加工材をCu−Mg過飽和固溶体とすることができる。
According to the method for producing a copper alloy for electronic devices according to this embodiment, the ingot of the above-described composition or processed material is heated to 400 ° C. or higher and 900 ° C. or lower to heat Mg to form a solution. be able to.
In addition, since the ingot or work material heated to 400 ° C. or more and 900 ° C. or less in the heating step S02 is provided with a rapid cooling step S03 that cools to 200 ° C. or less at a cooling rate of 200 ° C./min or more, cooling It is possible to suppress the precipitation of an intermetallic compound mainly composed of Cu and Mg in the process, and the ingot or processed material after quenching can be made into a Cu-Mg supersaturated solid solution.

さらに、急冷材(Cu−Mg過飽和固溶体)に対して塑性加工を行う中間加工工程S04を備えているので、最終形状に近い形状を容易に得ることができる。
また、中間加工工程S04の後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として中間熱処理工程S05を備えているので、特性の向上および加工性の向上を図ることができる。
また、中間熱処理工程S05においては、400℃以上900℃以下にまで加熱された銅素材を、200℃/min以上の冷却速度で200℃以下にまで冷却するので、冷却の過程でCuとMgを主成分とする金属間化合物が析出することを抑制することが可能となり、急冷後の銅素材をCu−Mg過飽和固溶体とすることができる。
Furthermore, since the intermediate processing step S04 for performing plastic working on the quenching material (Cu—Mg supersaturated solid solution) is provided, a shape close to the final shape can be easily obtained.
In addition, since the intermediate heat treatment step S05 is provided after the intermediate processing step S04 for the purpose of thorough solution, recrystallization structure or softening for improving the workability, the characteristics and workability should be improved. Can do.
In addition, in the intermediate heat treatment step S05, the copper material heated to 400 ° C. or more and 900 ° C. or less is cooled to 200 ° C. or less at a cooling rate of 200 ° C./min or more. It becomes possible to suppress precipitation of the intermetallic compound as a main component, and the copper material after quenching can be made into a Cu-Mg supersaturated solid solution.

そして、本実施形態である電子機器用銅合金の製造方法においては、加工硬化による強度向上および所定の形状に加工するための仕上加工工程S06の後に、耐応力緩和特性の向上および低温焼鈍硬化を行うために、または、残留ひずみの除去のために熱処理を実施する仕上熱処理工程S07を備えているので、応力緩和率を150℃、1000時間で50%以下とすることができる。また、さらなる機械特性の向上を図ることが可能となる。   And in the manufacturing method of the copper alloy for electronic devices which is this embodiment, after the finishing process S06 for processing the strength improvement by work hardening and processing into a predetermined shape, improvement in stress relaxation resistance and low temperature annealing hardening are performed. In order to perform this or to provide a finishing heat treatment step S07 for heat treatment for removing residual strain, the stress relaxation rate can be reduced to 50% or less at 1000C for 1000 hours. Further, it is possible to further improve the mechanical characteristics.

ここで、応力緩和率は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法で応力を負荷して測定した。
また、この電子機器用銅合金は、ヤング率Eが125GPa以下とされ、0.2%耐力σ0.2が400MPa以上とされている。
Here, the stress relaxation rate was measured by applying stress by a method according to the cantilevered screw type of Japan Technical Standard JCBA-T309: 2004.
The copper alloy for electronic devices has a Young's modulus E of 125 GPa or less and a 0.2% proof stress σ 0.2 of 400 MPa or more.

以上、本発明の実施形態である電子機器用銅合金について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子機器用銅合金の製造方法の一例について説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
As mentioned above, although the copper alloy for electronic devices which is embodiment of this invention was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for manufacturing a copper alloy for electronic devices has been described. However, the manufacturing method is not limited to this embodiment, and an existing manufacturing method may be selected as appropriate. Good.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1、2に示す成分組成に調製し、カーボン鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約20mm×幅約20mm×長さ約100〜120mmとした。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99% by mass or more was prepared, charged in a high-purity graphite crucible, and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere. . Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Tables 1 and 2, and poured into a carbon mold to produce an ingot. The size of the ingot was about 20 mm thick x about 20 mm wide x about 100 to 120 mm long.

得られた鋳塊に対して、Arガス雰囲気中において、表1、2に記載の温度条件で4時間の加熱を行う加熱工程を実施し、その後、水焼き入れを実施した。   The obtained ingot was subjected to a heating process in which heating was performed for 4 hours under the temperature conditions shown in Tables 1 and 2 in an Ar gas atmosphere, and then water quenching was performed.

熱処理後の鋳塊を切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表1、2に記載された圧延率で中間圧延を実施した。そして、得られた条材に対して、表1、2に記載された温度の条件でソルトバス中で中間熱処理を実施した。その後、水焼入れを実施した。   The ingot after the heat treatment was cut and surface grinding was performed to remove the oxide film. Thereafter, intermediate rolling was performed at room temperature at a rolling rate described in Tables 1 and 2. And the intermediate heat processing was implemented with respect to the obtained strip material in the salt bath on the conditions of the temperature described in Table 1,2. Thereafter, water quenching was performed.

次に、表1、2に示す圧延率で仕上圧延を実施し、厚さ0.25mm、幅約20mmの条材を製出した。
そして、仕上圧延後に、表に示す条件でソルトバス中で仕上熱処理を実施し、その後、水焼入れを実施し、特性評価用条材を作成した。
Next, finish rolling was performed at the rolling rates shown in Tables 1 and 2 to produce strips having a thickness of 0.25 mm and a width of about 20 mm.
And after finishing rolling, finishing heat processing was implemented in the salt bath on the conditions shown in the table | surface, and then water quenching was implemented and the strip for characteristic evaluation was created.

(中間熱処理後の結晶粒径)
表1、2に示す中間熱処理を行った後の試料について結晶粒径の測定を行った。各試料において、鏡面研磨およびエッチングを行い、光学顕微鏡にて、圧延面を撮影し、1000倍の視野(約300μm×200μm)で観察を行った。つぎに結晶粒径をJIS H 0501の切断法にしたがい、写真縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を結晶粒径とした。
(Crystal grain size after intermediate heat treatment)
The crystal grain size was measured for the samples after the intermediate heat treatment shown in Tables 1 and 2. Each sample was mirror-polished and etched, and the rolled surface was photographed with an optical microscope and observed with a 1000 × field of view (about 300 μm × 200 μm). Next, according to the cutting method of JIS H 0501, the crystal grain size is drawn in 5 vertical and horizontal line segments, counting the number of crystal grains to be completely cut, and the average value of the cutting length is calculated. The crystal grain size was used.

また、平均結晶粒径10μm以下の場合は、SEM−EBSD(Electron Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定した。耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を大角粒界とし、15°以下を小角粒界とした。大角粒界を用いて、結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。   When the average crystal grain size was 10 μm or less, the average crystal grain size was measured with an SEM-EBSD (Electron Backscatter Diffraction Patterns) measuring device. After mechanical polishing using water-resistant abrasive paper and diamond abrasive grains, final polishing was performed using a colloidal silica solution. Then, using a scanning electron microscope, each measurement point (pixel) within the measurement range of the sample surface is irradiated with an electron beam, and an azimuth difference between adjacent measurement points is found by orientation analysis by backscattered electron diffraction. A large-angle grain boundary was defined between the measurement points at 15 ° or more, and a small-angle grain boundary was defined as 15 ° or less. Create a grain boundary map using large-angle grain boundaries, conform to the cutting method of JIS H 0501, draw 5 vertical and horizontal line segments at a time from the grain boundary map. The number of crystal grains to be cut was counted, and the average value of the cutting lengths was defined as the average crystal grain size.

(加工性評価)
加工性の評価として、前述の冷間圧延時における耳割れの有無を観察した。目視で耳割れが全くあるいはほとんど認められなかったものを◎、長さ1mm未満の小さな耳割れが発生したものを○、長さ1mm以上3mm未満の耳割れが発生したものを△、長さ3mm以上の大きな耳割れが発生したものを×、耳割れに起因して圧延途中で破断したものを××とした。
なお、耳割れの長さとは、特性評価用条材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
(Processability evaluation)
As an evaluation of workability, the presence or absence of ear cracks during the cold rolling described above was observed. The case where no or almost no ear cracks were visually observed was ◎, the case where a small ear crack of less than 1 mm in length occurred was ○, the case where an ear crack of 1 mm or more and less than 3 mm occurred was Δ, and a length of 3 mm The case where the above-mentioned big ear crack generate | occur | produced was made into x, and what was fractured | ruptured in the middle of rolling due to the ear crack was made into xx.
In addition, the length of an ear crack is the length of the ear crack which goes to the width direction center part from the width direction edge part of the strip for characteristic evaluation.

また、前述の特性評価用条材を用いて、機械的特性および導電率を測定した、
(機械的特性)
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力σ0.2を測定した。なお、試験片は、圧延方向に平行な方向で採取した。
ヤング率Eは、前述の試験片にひずみゲージを貼り付け、荷重−伸び曲線の勾配から求めた。
In addition, using the above-mentioned strip for property evaluation, the mechanical properties and conductivity were measured,
(Mechanical properties)
A No. 13B test piece defined in JIS Z 2201 was taken from the strip for characteristic evaluation, and 0.2% proof stress σ 0.2 was measured by an offset method of JIS Z 2241. The test piece was collected in a direction parallel to the rolling direction.
The Young's modulus E was determined from the gradient of the load-elongation curve by attaching a strain gauge to the above-mentioned test piece.

(導電率)
特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
(conductivity)
A test piece having a width of 10 mm and a length of 60 mm was taken from the strip for characteristic evaluation, and the electrical resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract | collected so that the longitudinal direction might become parallel with the rolling direction of the strip for characteristic evaluation.

(耐応力緩和特性)
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で所定時間保持後の残留応力率を測定した。
試験片(幅10mm)は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ/L
ただし、
E:たわみ係数(MPa)
t:試料の厚み(t=0.25mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、応力緩和率を評価した。なお応力緩和率は次式を用いて算出した。
応力緩和率(%)=(δ/δ)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
(Stress relaxation characteristics)
In the stress relaxation resistance test, stress was applied by a method according to the cantilever screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and the residual stress ratio after holding at a temperature of 150 ° C. for a predetermined time was measured. .
The test piece (width 10 mm) was sampled so that its longitudinal direction was parallel to the rolling direction of the strip for property evaluation.
The initial deflection displacement was set to 2 mm and the span length was adjusted so that the maximum surface stress of the test piece was 80% of the proof stress. The maximum surface stress is determined by the following equation.
Maximum surface stress (MPa) = 1.5 Etδ 0 / L S 2
However,
E: Deflection coefficient (MPa)
t: sample thickness (t = 0.25 mm)
δ 0 : Initial deflection displacement (2 mm)
L s : Span length (mm)
It is.
The residual stress rate was measured from the bending habit after holding for 1000 hours at a temperature of 150 ° C., and the stress relaxation rate was evaluated. The stress relaxation rate was calculated using the following formula.
Stress relaxation rate (%) = (δ t / δ 0 ) × 100
However,
δ t : Permanent deflection displacement after holding for 1000 h at 150 ° C. (mm) −Permanent deflection displacement after holding for 24 h at room temperature (mm)
δ 0 : Initial deflection displacement (mm)
It is.

(組織観察)
各試料の圧延面に対して、鏡面研磨、イオンエッチングを行った。CuとMgを主成分とする金属間化合物の析出状態を確認するため、FE−SEM(電界放出型走査電子顕微鏡)を用い、1万倍の視野(約120μm/視野)で観察を行った。
次に、CuとMgを主成分とする金属間化合物の密度(個/μm)を調査するために、金属間化合物の析出状態が特異ではない1万倍の視野(約120μm/視野)を選び、その領域で、5万倍で連続した10視野(約4.8μm/視野)の撮影を行った。金属間化合物の粒径については、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とした。そして、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の密度(個/μm)を求めた。
(Tissue observation)
Mirror polishing and ion etching were performed on the rolled surface of each sample. In order to confirm the precipitation state of the intermetallic compound containing Cu and Mg as main components, the observation was performed using a FE-SEM (Field Emission Scanning Electron Microscope) with a 10,000 × field of view (about 120 μm 2 / field of view). .
Next, in order to investigate the density of intermetallic compounds mainly composed of Cu and Mg (pieces / μm 2 ), a 10,000 times field of view (about 120 μm 2 / field of view) where the precipitation state of intermetallic compounds is not unique In this region, 10 fields of view (about 4.8 μm 2 / field of view) were taken at a magnification of 50,000 times. As for the particle size of the intermetallic compound, the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contact with the grain boundary in the middle) and the minor axis (in the direction perpendicular to the major axis, the grain in the middle The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the boundary). And the density (piece / micrometer < 2 >) of the intermetallic compound which has Cu and Mg as a main component with a particle size of 0.1 micrometer or more was calculated | required.

(曲げ加工性)
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。
圧延方向と試験片の長手方向が平行になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.25mmのW型の治具を用い、W曲げ試験を行った。
そして、曲げ部の外周部を目視で確認し、破断した場合は×、一部のみ破断が起きた場合は△、破断が起きず微細な割れのみが生じた場合は○、破断や微細な割れを確認できない場合を◎として判定を行った。
(Bending workability)
Bending was performed in accordance with four test methods of Japan Copper and Brass Association Technical Standard JCBA-T307: 2007.
A plurality of test pieces having a width of 10 mm and a length of 30 mm are taken from the strip for characteristic evaluation so that the rolling direction and the longitudinal direction of the test piece are parallel to each other, and a W type having a bending angle of 90 degrees and a bending radius of 0.25 mm. The W-bending test was performed using the jig.
Then, visually check the outer periphery of the bent portion, x if it breaks, △ if only a portion breaks, ◯ if it does not break and only a minute crack occurs, rupture or a minute crack Judgment was made as ◎ when the case could not be confirmed.

条件、評価結果について、表1、2、3、4に示す。   The conditions and evaluation results are shown in Tables 1, 2, 3, and 4.

Mgの含有量が本発明の範囲よりも低い比較例1、2においては0.2%耐力が低く、ヤング率も127、128GPaと比較的高いままであった。Mgの含有量が本発明の範囲よりも高い比較例3、4においては中間圧延時に大きな耳割れが発生し、その後の特性評価を実施することが不可能であった。
また、組成が本発明の範囲であるが、仕上圧延後の最終熱処理を実施しなかった比較例5においては、応力緩和率が54%となった。
さらに、組成が本発明の範囲であるが、導電率およびCuとMgを主成分とする金属間化合物の個数が本発明の範囲から外れた比較例6においては、耐力が低くなっていることが確認される。また、比較例6においては、曲げ加工性が劣っていることが確認される。
In Comparative Examples 1 and 2 in which the Mg content was lower than the range of the present invention, the 0.2% proof stress was low, and the Young's modulus remained relatively high at 127 and 128 GPa. In Comparative Examples 3 and 4 in which the Mg content is higher than the range of the present invention, large ear cracks occurred during intermediate rolling, and it was impossible to perform subsequent characteristic evaluation.
Moreover, although the composition is in the range of the present invention, in Comparative Example 5 in which the final heat treatment after finish rolling was not performed, the stress relaxation rate was 54%.
Furthermore, although the composition is within the scope of the present invention, the proof stress is low in Comparative Example 6 in which the conductivity and the number of intermetallic compounds mainly composed of Cu and Mg are out of the scope of the present invention. It is confirmed. Moreover, in the comparative example 6, it is confirmed that bending workability is inferior.

CrおよびZrの含有量が本発明の範囲よりも高い比較例7、8においては中間圧延時に大きな耳割れが発生し、その後の特性評価を実施することが不可能であった。
さらに、Sn、Pを含有する銅合金、いわゆるりん青銅とされた従来例1、2においては、導電率が低く、かつ、応力緩和率が50%を超えていた。
In Comparative Examples 7 and 8 in which the contents of Cr and Zr are higher than the range of the present invention, large ear cracks occurred during intermediate rolling, and it was impossible to perform subsequent characteristic evaluation.
Furthermore, in the conventional examples 1 and 2 made of copper alloys containing Sn and P, so-called phosphor bronze, the electrical conductivity was low and the stress relaxation rate exceeded 50%.

これに対して、本発明例1−13においては、いずれもヤング率が116GPa以下と低く、0.2%耐力も550MPa以上とされており、弾力性に優れている。また、応力緩和率も48%以下と低くなっている。さらに、中間熱処理後の結晶粒径が15μm以下とされており、CrおよびZrの添加によって結晶粒径の微細化が図られている。   On the other hand, in each of Invention Examples 1-13, the Young's modulus is as low as 116 GPa or less and the 0.2% proof stress is 550 MPa or more, which is excellent in elasticity. Also, the stress relaxation rate is as low as 48% or less. Furthermore, the crystal grain size after the intermediate heat treatment is set to 15 μm or less, and the crystal grain size is refined by the addition of Cr and Zr.

ここで、図3に示すように、Crを含有する本発明例3においては、Crの析出物粒子が確認され、CuとMgを主成分とする金属間化合物は観察されない。
また、図4に示すように、Zrを含有する本発明例8においては、Zrを含む析出物粒子が確認されるものの、CuとMgを主成分とする金属間化合物は観察されない。
Here, as shown in FIG. 3, in the present invention example 3 containing Cr, Cr precipitate particles are confirmed, and an intermetallic compound containing Cu and Mg as main components is not observed.
Moreover, as shown in FIG. 4, in the present invention example 8 containing Zr, although precipitate particles containing Zr are confirmed, an intermetallic compound containing Cu and Mg as main components is not observed.

以上のことから、本発明例によれば、低ヤング率、高耐力、高導電性、優れた耐応力緩和特性、優れた曲げ加工性を有し、端子、コネクタやリレー等の電子機器用部品に適した電子機器用銅合金を提供することができることが確認された。   From the above, according to the present invention example, it has a low Young's modulus, high proof stress, high conductivity, excellent stress relaxation property, excellent bending workability, and components for electronic equipment such as terminals, connectors and relays. It was confirmed that a copper alloy suitable for electronic equipment can be provided.

Claims (9)

Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内とされ、
応力緩和率が150℃、1000時間で50%以下であることを特徴とする電子機器用銅合金。
Mg is included in the range of 3.3 atomic% to 6.9 atomic%, and at least one or more of Cr and Zr are included in the range of 0.001 atomic% to 0.15 atomic%, respectively. Including the balance being substantially Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg concentration X atom%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
Within the range of
A copper alloy for electronic equipment, wherein a stress relaxation rate is 50% or less at 1000C for 1000 hours.
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、
走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされ、
応力緩和率が150℃、1000時間で50%以下であることを特徴とする電子機器用銅合金。
Mg is included in the range of 3.3 atomic% to 6.9 atomic%, and at least one or more of Cr and Zr are included in the range of 0.001 atomic% to 0.15 atomic%, respectively. Including the balance being substantially Cu and inevitable impurities,
In the scanning electron microscope observation, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle size of 0.1 μm or more is 1 / μm 2 or less,
A copper alloy for electronic equipment, wherein a stress relaxation rate is 50% or less at 1000C for 1000 hours.
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされ、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X+0.6569×X+1.7)×100
の範囲内とされており、
走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm以下とされ、
応力緩和率が150℃、1000時間で50%以下であることを特徴とする電子機器用銅合金。
Mg is included in the range of 3.3 atomic% to 6.9 atomic%, and at least one or more of Cr and Zr are included in the range of 0.001 atomic% to 0.15 atomic%, respectively. Including the balance being substantially Cu and inevitable impurities,
When the electrical conductivity σ (% IACS) is Mg concentration X atom%,
σ ≦ 1.7241 / (− 0.0347 × X 2 + 0.6569 × X + 1.7) × 100
Is within the scope of
In the scanning electron microscope observation, the average number of intermetallic compounds mainly composed of Cu and Mg having a particle size of 0.1 μm or more is 1 / μm 2 or less,
A copper alloy for electronic equipment, wherein a stress relaxation rate is 50% or less at 1000C for 1000 hours.
請求項1から請求項3のいずれか一項に記載の電子機器用銅合金において、
ヤング率が125GPa以下、0.2%耐力σ0.2が400MPa以上とされていることを特徴とする電子機器用銅合金。
In the copper alloy for electronic devices as described in any one of Claims 1-3,
A copper alloy for electronic equipment, wherein Young's modulus is 125 GPa or less and 0.2% proof stress σ 0.2 is 400 MPa or more.
請求項1から請求項4のいずれか一項に記載の電子機器用銅合金を製出する電子機器用銅合金の製造方法であって、
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、さらに少なくともCrおよびZrの1種または2種以上を、それぞれ0.001原子%以上0.15原子%以下の範囲で含み、残部が実質的にCuおよび不可避不純物とされた組成の銅素材を所定の形状に圧延する仕上圧延工程と、この仕上圧延工程の後に熱処理を実施する仕上熱処理工程と、を備えていることを特徴とする電子機器用銅合金の製造方法。
It is a manufacturing method of the copper alloy for electronic devices which produces the copper alloy for electronic devices as described in any one of Claims 1-4,
Mg is included in the range of 3.3 atomic% to 6.9 atomic%, and at least one or more of Cr and Zr are included in the range of 0.001 atomic% to 0.15 atomic%, respectively. Including a finish rolling step of rolling a copper material having a composition substantially including Cu and inevitable impurities into a predetermined shape, and a finish heat treatment step of performing a heat treatment after the finish rolling step. The manufacturing method of the copper alloy for electronic devices characterized by these.
請求項5に記載の電子機器用銅合金の製造方法において、
前記仕上熱処理工程では、200℃超え800℃以下の範囲で熱処理を実施し、
その後に、加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却することを特徴とする電子機器用銅合金の製造方法。
In the manufacturing method of the copper alloy for electronic devices of Claim 5,
In the finish heat treatment step, heat treatment is performed in a range of 200 ° C to 800 ° C,
Thereafter, the heated copper material is cooled to 200 ° C. or less at a cooling rate of 200 ° C./min or more.
請求項1から請求項4のいずれか一項に記載の電子機器用銅合金からなり、圧延方向に平行な方向におけるヤング率Eが125GPa以下、圧延方向に平行な方向における0.2%耐力σ0.2が400MPa以上とされていることを特徴とする電子機器用銅合金塑性加工材。 It consists of the copper alloy for electronic devices as described in any one of Claim 1 to 4, Young's modulus E in the direction parallel to a rolling direction is 125 GPa or less, 0.2% yield strength in the direction parallel to a rolling direction (sigma) A copper alloy plastic working material for electronic equipment, wherein 0.2 is 400 MPa or more. 請求項1から請求項4のいずれか一項に記載の電子機器用銅合金からなり、
端子、コネクタ、リレー、リードフレーム等の電子機器用部品を構成する銅素材として使用されることを特徴とする電子機器用銅合金塑性加工材。
It consists of the copper alloy for electronic devices as described in any one of Claims 1-4,
A copper alloy plastic working material for electronic equipment, characterized in that it is used as a copper material constituting electronic equipment parts such as terminals, connectors, relays, and lead frames.
請求項1から請求項4のいずれか一項に記載の電子機器用銅合金からなること特徴とする電子機器用部品。   An electronic device component comprising the copper alloy for electronic devices according to any one of claims 1 to 4.
JP2011243870A 2011-06-06 2011-11-07 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts Active JP5903839B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011243870A JP5903839B2 (en) 2011-11-07 2011-11-07 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
US14/119,025 US20140096877A1 (en) 2011-06-06 2012-05-30 Copper alloy for electronic devices, method for producing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
CN201280022058.5A CN103502487B (en) 2011-06-06 2012-05-30 The manufacture method of copper alloy for electronic apparatus, copper alloy for electronic apparatus, copper alloy for electronic apparatus plastic working material and electronics assembly
PCT/JP2012/063933 WO2012169405A1 (en) 2011-06-06 2012-05-30 Copper alloy for electronic devices, method for producing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
TW101119749A TWI513833B (en) 2011-06-06 2012-06-01 Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243870A JP5903839B2 (en) 2011-11-07 2011-11-07 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts

Publications (2)

Publication Number Publication Date
JP2013100570A true JP2013100570A (en) 2013-05-23
JP5903839B2 JP5903839B2 (en) 2016-04-13

Family

ID=48621424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243870A Active JP5903839B2 (en) 2011-06-06 2011-11-07 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts

Country Status (1)

Country Link
JP (1) JP5903839B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016218A1 (en) * 2013-07-31 2015-02-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
JP2015030863A (en) * 2013-07-31 2015-02-16 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy plastic working material for electronic/electric equipment, and component and terminal for electronic/electric equipment
US10157694B2 (en) 2013-12-11 2018-12-18 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251226A (en) * 2011-06-06 2012-12-20 Mitsubishi Materials Corp Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251226A (en) * 2011-06-06 2012-12-20 Mitsubishi Materials Corp Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016218A1 (en) * 2013-07-31 2015-02-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
JP2015030863A (en) * 2013-07-31 2015-02-16 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy plastic working material for electronic/electric equipment, and component and terminal for electronic/electric equipment
JP2015045083A (en) * 2013-07-31 2015-03-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical apparatuses, copper alloy plastic processing material for electronic and electrical apparatuses, part for electronic and electrical apparatuses and terminal
US10294547B2 (en) 2013-07-31 2019-05-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
US10157694B2 (en) 2013-12-11 2018-12-18 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Also Published As

Publication number Publication date
JP5903839B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5903838B2 (en) Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5045784B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5045783B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5903832B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5962707B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
JP5712585B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
WO2011142450A1 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP5903839B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP5983589B2 (en) Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2019178398A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP2015014020A (en) Copper alloy for electronic and electrical apparatus, copper alloy thin sheet for electronic and electrical apparatus, and part and terminal for electronic and electrical apparatus
JP5910004B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP5703975B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP6221471B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP6248388B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP5045782B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP6248389B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2013104095A (en) Copper alloy for electronic equipment, method of manufacturing copper alloy for electronic equipment, plastically worked material of copper alloy for electronic equipment, and component for electronic equipment
JP6248386B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2013104096A (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment, and part for electronic equipment
JP7172089B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP6248387B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2019173093A (en) Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, conductive component and terminal for electronic and electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150608

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5903839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150