JP2013099727A - Method for controlling co2 chemical absorption system - Google Patents

Method for controlling co2 chemical absorption system Download PDF

Info

Publication number
JP2013099727A
JP2013099727A JP2011245399A JP2011245399A JP2013099727A JP 2013099727 A JP2013099727 A JP 2013099727A JP 2011245399 A JP2011245399 A JP 2011245399A JP 2011245399 A JP2011245399 A JP 2011245399A JP 2013099727 A JP2013099727 A JP 2013099727A
Authority
JP
Japan
Prior art keywords
reclaimer
steam
regeneration tower
absorption
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011245399A
Other languages
Japanese (ja)
Other versions
JP5762253B2 (en
Inventor
Hideaki Higashi
秀昭 東
Jun Shimamura
潤 島村
Masaharu Kuramoto
正治 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011245399A priority Critical patent/JP5762253B2/en
Publication of JP2013099727A publication Critical patent/JP2013099727A/en
Application granted granted Critical
Publication of JP5762253B2 publication Critical patent/JP5762253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce additional steam consumption for reclaimer operation in a COchemical absorption system.SOLUTION: The COchemical absorption system has a steam system reclaimer 70 in which a heat-stable salt (HSS) accummulated in a COabsorption liquid is removed by a distillation method and then produced vapor of the COabsorption liquid is supplied to a regeneration tower 40. A method for controlling the COchemical absorption system is characterized in that HSS concentration in the COabsorption liquid extracted from the regeneration tower 40 is measured and when the concentration exceeds a prescribed value, steam supply from a steam supply line 73 to the reclaimer 70 is started and in keeping with the start, steam supply to a reboiler 60 is reduced.

Description

本発明は、CO2化学吸収システムの制御方法に係り、特に蒸留式リクレーマを運用する場合に、蒸留式リクレーマの運転開始・停止及びリボイラ運転を連動させる制御方法に関するものである。 The present invention relates to a control method for a CO 2 chemical absorption system, and particularly to a control method for interlocking start / stop of a distillation reclaimer and reboiler operation when a distillation reclaimer is used.

近年、火力発電設備やボイラ設備では、多量の石炭及び重油等を燃料として用いており、大気汚染、地球温暖化の見地から、これらの燃料を燃焼させたときに発生する二酸化炭素(CO2)の大気への大量排出が問題になっており、CO2排出抑制について世界的に検討されている。排ガス中のCO2の分離回収技術のひとつとして、アルカノールアミン水溶液をCO2の吸収液に用いる化学吸収法が広く知られている。 In recent years, thermal power generation facilities and boiler facilities use a large amount of coal, heavy oil, etc. as fuel, and from the viewpoint of air pollution and global warming, carbon dioxide (CO 2 ) generated when these fuels are burned Mass emission into the atmosphere has become a problem, and CO 2 emission control is being studied worldwide. As one of the techniques for separating and recovering CO 2 in exhaust gas, a chemical absorption method using an alkanolamine aqueous solution as a CO 2 absorbing solution is widely known.

従来のCO2化学吸収システムを含む発電プラントの一例を図3に示す。この発電プラントは、主にボイラ1、脱硝装置2、エアヒータ3、電気集塵装置4、脱硫装置5、プレスクラバー10、CO2吸収塔20、再生塔40、リボイラ60等から構成される。ボイラ1から排出される、石炭等の化石燃料の燃焼排ガスは脱硝装置2で窒素酸化物を除去した後、エアヒータ3で熱交換され、例えば120〜170℃に冷却される。エアヒータ3を通過した排ガスは電気集塵機4で排ガス中のばいじん除去され、さらに脱硫装置5で硫黄酸化物(SO2)が除去される。脱硫装置5出口排ガス中には数十ppm程度のSO2が残存するのが通例であるが、残存SO2によりCO2吸収塔20内のCO2吸収液が劣化するのを防止するため、CO2化学吸収設備の前処理設備としてプレスクラバー10が設置され、残存SO2を極力低減(例えば10ppm以下)するのが一般的である。 An example of a power plant including a conventional CO 2 chemical absorption system is shown in FIG. This power plant is mainly composed of a boiler 1, a denitration device 2, an air heater 3, an electrostatic precipitator 4, a desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, a regeneration tower 40, a reboiler 60, and the like. The combustion exhaust gas of fossil fuel such as coal discharged from the boiler 1 is subjected to heat exchange with the air heater 3 after removing nitrogen oxide by the denitration device 2 and cooled to 120 to 170 ° C., for example. The exhaust gas that has passed through the air heater 3 is subjected to removal of soot and dust in the exhaust gas by the electric dust collector 4, and sulfur oxide (SO 2 ) is further removed by the desulfurization device 5. While SO 2 of about several tens ppm during the desulfurization unit 5 outlet exhaust gas is customary to remain, for the remaining SO 2 CO 2 absorbing solution in the CO 2 absorber 20 is prevented from deteriorating, CO 2. A press clubber 10 is generally installed as a pretreatment facility for chemical absorption facilities, and the remaining SO 2 is generally reduced as much as possible (for example, 10 ppm or less).

CO2吸収塔20は、主に充填層21と吸収液供給部22、水洗部24、水洗水供給部25、デミスタ26、水洗水溜め部27、冷却器28、水洗ポンプ29で構成される。排ガス中に含まれるCO2は、充填層21において、CO2吸収塔20上部の吸収液供給部22から供給されるCO2吸収液との気液接触により、CO2吸収液中へ吸収される。水洗部24では、吸収反応時の発熱により温度が上昇した脱CO2ガスの冷却及びガスに同伴するミストを除去する。また、冷却器28によって冷却された水洗水は、水洗ポンプ29によって循環使用される。水洗部24上部に設置されたデミスタ26により、ガス中に同伴されたミストを再度除去されたガスは、処理ガス37(脱CO2ガス)として排出される。 The CO 2 absorption tower 20 mainly includes a packed bed 21, an absorbing liquid supply unit 22, a washing unit 24, a washing water supply unit 25, a demister 26, a washing water reservoir 27, a cooler 28, and a washing pump 29. CO 2 contained in the exhaust gas is absorbed into the CO 2 absorbing liquid in the packed bed 21 by gas-liquid contact with the CO 2 absorbing liquid supplied from the absorbing liquid supply unit 22 at the upper part of the CO 2 absorption tower 20. . The water washing section 24 cools the de-CO 2 gas whose temperature has risen due to heat generation during the absorption reaction and removes mist accompanying the gas. Further, the flush water cooled by the cooler 28 is circulated and used by the flush pump 29. The gas from which the mist accompanying the gas has been removed again by the demister 26 installed in the upper part of the water washing section 24 is discharged as a processing gas 37 (de-CO 2 gas).

CO2を吸収した吸収液は、吸収塔20下部の液溜めから吸収塔抜出しポンプ33により抜き出され、熱交換器34によって昇温後、再生塔40に送液される。再生塔40内では、供給部42からCO2をリッチに含む吸収液が、充填層41に供給される。一方、再生塔40底部には、リボイラ60から吸収液蒸気供給配管65を介して蒸気が供給される。充填層41において、CO2をリッチに含む吸収液が底部より上昇してくる蒸気と気液接触することにより、吸収液中から気相中へCO2が脱気される。脱気したCO2ガス中には、一部吸収液ミストが同伴されるが、水洗部43で該ミストが除去される。水洗部43上部にはデミスタ45が設置され、ガス中に同伴されたミストを再度除去した後、CO2ガス46として再生塔40上部より排出される。その後、CO2ガスは冷却器47によって冷却され、CO2分離器48でガスと凝縮水に分離され、CO2ガスは(図に示していない)CO2液化設備へ導入され、凝縮した水はドレンポンプ50によって水洗スプレ部44に供給される。 The absorption liquid that has absorbed CO 2 is extracted from the liquid reservoir at the lower part of the absorption tower 20 by the absorption tower extraction pump 33, heated by the heat exchanger 34, and then sent to the regeneration tower 40. In the regeneration tower 40, an absorbing solution rich in CO 2 is supplied from the supply unit 42 to the packed bed 41. On the other hand, steam is supplied from the reboiler 60 to the bottom of the regeneration tower 40 via the absorbent vapor supply pipe 65. In the packed bed 41, the absorbing liquid rich in CO 2 comes into gas-liquid contact with the vapor rising from the bottom, whereby CO 2 is degassed from the absorbing liquid into the gas phase. In the degassed CO 2 gas, a part of the absorbing liquid mist is accompanied, but the mist is removed by the water washing section 43. A demister 45 is installed in the upper part of the water washing part 43, and after removing the mist accompanying the gas again, it is discharged as CO 2 gas 46 from the upper part of the regeneration tower 40. Thereafter, the CO 2 gas is cooled by a cooler 47, separated into gas and condensed water by a CO 2 separator 48, CO 2 gas is introduced into a CO 2 liquefaction facility (not shown), and the condensed water is The water is supplied to the washing spray unit 44 by the drain pump 50.

一方、CO2を脱気したCO2吸収液は、再生塔液溜め部51に溜められた後、リボイラ液供給配管52を通ってリボイラ60に送液される。リボイラ60内部には伝熱管等が設置されており、CO2吸収液が蒸気供給配管を介して供給される蒸気62で間接加熱されることにより、リボイラ60内部では吸収液蒸気が発生し、該吸収液蒸気が吸収液蒸気供給配管65を通って、再生塔40に供給される。リボイラ60にて使用した蒸気は伝熱管中でドレンとなり回収される。再生塔40底部の液溜め部に溜められたCO2吸収液は、再生塔液抜出し配管66を介して、熱交換器34及び冷却器30によって減温された後、CO2吸収塔22に供給される。 On the other hand, the CO 2 absorption liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52. A heat transfer tube or the like is installed inside the reboiler 60, and when the CO 2 absorbing liquid is indirectly heated by the steam 62 supplied through the steam supply pipe, the absorbing liquid vapor is generated inside the reboiler 60. The absorption liquid vapor is supplied to the regeneration tower 40 through the absorption liquid vapor supply pipe 65. The steam used in the reboiler 60 is recovered as drainage in the heat transfer tube. The CO 2 absorption liquid stored in the liquid reservoir at the bottom of the regeneration tower 40 is reduced in temperature by the heat exchanger 34 and the cooler 30 through the regeneration tower liquid extraction pipe 66, and then supplied to the CO 2 absorption tower 22. Is done.

一方、吸収塔20に供給される排ガスに僅かに混入するSO2のほとんどはCO2吸収液と反応し、熱安定性塩(Heat Stable Salt、以下 HSSと略す)を形成する。HSSは吸収液に溶存するが、これにより吸収液のCO2との反応性が失われ、かつこの反応は不可逆である。したがって、HSSの濃度が上昇すればするほどアミンとCO2の平衡関係が崩れるため、CO2再生エネルギーが増加していく。そこで、このHSSを除去するため、リクレーマシステムが使用される。例えば蒸留式リクレーマを設置する場合、HSSを含んだCO2吸収液の一部はリクレーマ70に供給され、その過程において中和剤を添加することでHSSはアミンと中和塩に分離される。さらに蒸気73の供給に伴う加熱により、再生されたCO2吸収液は蒸発し、再生塔40へ戻され、残余物はタンク81に排出される。 On the other hand, most of the SO 2 slightly mixed in the exhaust gas supplied to the absorption tower 20 reacts with the CO 2 absorbing solution to form a heat stable salt (hereinafter abbreviated as HSS). Although HSS is dissolved in the absorbing solution, this loses the reactivity of the absorbing solution with CO 2 and this reaction is irreversible. Therefore, the higher the concentration of HSS, the more the CO 2 regeneration energy increases because the equilibrium relationship between amine and CO 2 breaks down. Therefore, a reclaimer system is used to remove this HSS. For example, when a distillation type reclaimer is installed, a part of the CO 2 absorbing solution containing HSS is supplied to the reclaimer 70, and by adding a neutralizing agent in the process, the HSS is separated into an amine and a neutralized salt. Furthermore, the regenerated CO 2 absorbent is evaporated by heating accompanying the supply of the steam 73, returned to the regeneration tower 40, and the residue is discharged to the tank 81.

従来のリクレーマ70の運転は、例えばCO2吸収液循環ライン67に設けられた計測座90においてHSS濃度を測定し、その濃度が基準値(例えばSO4 2-が2wt%)以上となった場合、リボイラ60とは別にリクレーマ70に蒸気を供給することで運転開始していた。またリクレーマ70の停止も同様にHSS濃度が基準値(例えばSO4 2-が1wt%)以下となった場合に停止していた。 The operation of the conventional reclaimer 70 is, for example, when the HSS concentration is measured at the measuring seat 90 provided in the CO 2 absorbent circulation line 67 and the concentration exceeds the reference value (for example, SO 4 2- is 2 wt%) or more. The operation was started by supplying steam to the reclaimer 70 separately from the reboiler 60. Similarly, the reclaimer 70 was stopped when the HSS concentration became a reference value (for example, SO 4 2- was 1 wt%) or less.

上記従来技術では、CO2吸収液中のHSS濃度の低減のためリクレーマを運転する際、リボイラへの蒸気供給とは別にリクレーマに追加的に蒸気を供給しており、プラント全体の蒸気使用量が増大するため、結果としてプラントのエネルギー損失を増大させていた。 In the above prior art, when the reclaimer is operated to reduce the HSS concentration in the CO 2 absorbent, steam is additionally supplied to the reclaimer separately from the supply of steam to the reboiler, and the amount of steam used in the entire plant is reduced. As a result, the energy loss of the plant was increased.

本発明の課題は、上記従来技術の問題を解決し、リクレーマ運転のための追加的な蒸気消費量を削減するCO2化学吸収システムの制御方法を提供することである。 It is an object of the present invention to provide a method for controlling a CO 2 chemical absorption system that solves the above-described problems of the prior art and reduces additional steam consumption for reclaimer operation.

上述した課題は、上記CO2化学吸収システムにおけるリクレーマ運転と連動してリボイラへの蒸気供給量を調節することで、蒸気消費量の増減を抑えることによって達成される。すなわち、本願で特許請求される発明は以下のとおりである。
(1)化石燃料の燃焼装置から排出される排ガス中の硫黄酸化物を排煙脱硫装置で除去した後、二酸化炭素(CO2)吸収塔内でCO2吸収液と接触させて排ガス中のCO2を吸収し、次いで該CO2を吸収した吸収液を再生塔内で加熱してCO2を離脱させ、該CO2離脱後の排ガスを冷却して凝縮水を分離し、分離した凝縮水を前記再生塔に循環させる一方、該CO2離脱後の吸収液をリボイラを介して昇温した後、再生塔に循環すると共に、再生塔から抜き出したCO2吸収液を該再生塔に供給するCO2吸収液と熱交換した後、前記吸収塔に循環するCO2化学吸収設備と、該再生塔からCO2吸収液を抜き出し、該CO2吸収液中に蓄積した熱安定性塩(HSS)を蒸留法によって除去した後、発生したCO2吸収液の蒸気を前記再生塔に供給する蒸気式リクレーマとを有するCO2化学吸収システムの制御方法であって、前記再生塔から抜き出されたCO2吸収液中のHSS濃度を測定し、該濃度が所定値を越えたときに、前記リクレーマへの吸収液の供給を開始し、そして蒸気供給ラインから前記リクレーマ内への蒸気供給を開始し、CO2吸収液蒸気出口ラインから前記再生塔へ蒸気を供給し、これに伴いリクレーマから再生塔への供給熱量を基準とした分、リボイラから再生塔への供給熱量を低下させるように、リボイラへの供給蒸気量を減少させることを特徴とするCO2化学吸収システムの制御方法。
(2)CO2吸収液中のHSS濃度が所定値以下になったときに、リクレーマへのCO2吸収液および蒸気の供給を停止し、これと連動してリボイラへの蒸気供給量を元の量に回復することを特徴とする(1)に記載の方法。
(3)前記CO2吸収液中のHSS濃度の代りにCO2吸収液のpHを測定し、予め求められた吸収液中のHSS濃度と吸収液のpH値との相関関係から該pHの測定値に基づいて前記の操作を行なうことを特徴とする(1)または(2)に記載の方法。
The above-described problem is achieved by suppressing the increase and decrease in steam consumption by adjusting the steam supply amount to the reboiler in conjunction with the reclaimer operation in the CO 2 chemical absorption system. That is, the invention claimed in the present application is as follows.
(1) After removing sulfur oxides in the exhaust gas discharged from the fossil fuel combustion device with the flue gas desulfurization device, it is brought into contact with the CO 2 absorbent in the carbon dioxide (CO 2 ) absorption tower, and the CO in the exhaust gas 2 to absorb and then heating the absorbent solution that has absorbed the CO 2 in a regeneration tower by releasing the CO 2, to cool the exhaust gas after the CO 2 leaving the condensed water is separated, the separated condensed water While circulating to the regeneration tower, the absorption liquid after the CO 2 separation is heated through a reboiler, and then circulated to the regeneration tower, and the CO 2 absorbent extracted from the regeneration tower is supplied to the regeneration tower. after the heat exchanger 2 absorbent, and CO 2 chemical absorption equipment circulating the absorption tower, extracting the CO 2 absorbing solution from the regeneration tower, thermal stability salts accumulated in the CO 2 absorbing solution (HSS) after removal by distillation, CO 2 reduction and a steam jet reclaimer supplying steam generated CO 2 absorbing solution in the regeneration tower A method of controlling the absorption system, the HSS concentration of CO 2 absorbing liquid withdrawn from the regenerator is measured, when the concentration exceeds a predetermined value, starting the supply of absorption liquid to the reclaimer Then, steam supply from the steam supply line into the reclaimer is started, steam is supplied to the regeneration tower from the CO 2 absorbing liquid steam outlet line, and accordingly, the amount of heat supplied from the reclaimer to the regeneration tower is used as a reference. A control method for a CO 2 chemical absorption system, characterized in that the amount of steam supplied to the reboiler is reduced so that the amount of heat supplied from the reboiler to the regeneration tower is reduced.
(2) When the HSS concentration in the CO 2 absorption liquid falls below the specified value, the supply of the CO 2 absorption liquid and steam to the reclaimer is stopped, and in conjunction with this, the steam supply amount to the reboiler is reduced to the original. The method according to (1), wherein the amount is recovered.
(3) the pH of the CO 2 absorbing solution in place of the HSS concentration of the CO 2 absorbing solution was measured and the measurement of the pH from the correlation between the HSS concentration of the absorbing solution previously obtained with pH value of the absorbing liquid The method according to (1) or (2), wherein the operation is performed based on a value.

本発明では、CO2吸収液中のHSS濃度が一定以上となった場合、リクレーマへCO2吸収液および蒸気の供給が開始され、これに連動してリボイラへの蒸気供給量を低減することで、リクレーマ運転の際のCO2化学吸収設備全体としての追加的蒸気消費量を低減する。また、CO2吸収液中のHSS濃度が一定以下となった場合、リクレーマへのCO2吸収液および蒸気の供給が停止され、これに連動してリボイラへの蒸気供給量を回復させる。以上の作用によりリクレーマの運転中のCO2化学吸収設備全体としての蒸気消費量について、本発明実施後は、実施前より低減可能である。 In the present invention, when the HSS concentration in the CO 2 absorbing solution becomes a certain level or more, supply of the CO 2 absorbing solution and steam to the reclaimer is started, and in conjunction with this, the amount of steam supplied to the reboiler is reduced. Reduce the additional steam consumption of the entire CO 2 chemical absorption facility during reclaimer operation. Further, when the HSS concentration in the CO 2 absorbing solution becomes below a certain level, the supply of the CO 2 absorbing solution and the steam to the reclaimer is stopped, and the steam supply amount to the reboiler is recovered in conjunction with this. With the above operation, the steam consumption of the entire CO 2 chemical absorption facility during operation of the reclaimer can be reduced after implementation of the present invention from before implementation.

本発明によれば、リクレーマ運転に伴うCO2化学吸収システムへの蒸気供給量の増大を抑制することができ、エネルギー消費量削減につながる。またCO2化学吸収設備への蒸気供給元であるボイラ・タービン・発電システムの負荷変動を抑えることができるため、結果としてプラントの安定的な運転に寄与する。また、pH計測によってリクレーマの運転開始及び停止に伴う一連のシステム制御を自動で行うことができるため、労働力の削減に伴う人件費削減が図れ、さらにHSS濃度の連続的な監視に伴うHSS濃度過剰を防ぐことによる性能信頼性向上の効果がある。 According to the present invention, it is possible to suppress an increase in the amount of steam supplied to the CO 2 chemical absorption system associated with the reclaimer operation, leading to a reduction in energy consumption. In addition, load fluctuations in the boiler, turbine, and power generation system, which are the steam supply sources for the CO 2 chemical absorption equipment, can be suppressed, resulting in stable plant operation. In addition, a series of system control that accompanies the start and stop of the reclaimer operation can be performed automatically by pH measurement, so labor costs can be reduced due to labor reduction, and HSS concentration associated with continuous monitoring of HSS concentration. There is an effect of improving performance reliability by preventing excess.

本発明の実施例を示すCO2化学吸収システムの系統図。System diagram of a CO 2 chemical absorption system according to the embodiment of the present invention. 本発明の他の実施例を示すCO2化学吸収システムの系統図。System diagram of a CO 2 chemical absorption system showing another embodiment of the present invention. 従来のCO2化学吸収システムの系統図。System diagram of a conventional CO 2 chemical absorption system. CO2化学吸収システム設備運転時間の経過に伴う、CO2吸収液中のHSS濃度と、CO2吸収液中のpHの挙動を表した図。CO over the course of a 2 chemical absorption system equipment operation time, expressed the HSS concentration of CO 2 absorbing solution, the pH of the behavior of the CO 2 absorbing solution in FIG. 本発明を実施した場合の、リボイラから再生塔への吸収液蒸気の供給量と、リクレーマから再生塔への吸収液蒸気の供給量の時間的変化を模式的に表した図。The figure which represented typically the time change of the supply amount of the absorption liquid vapor | steam from a reboiler to a regeneration tower, and the supply amount of the absorption liquid vapor | steam from a reclaimer to the regeneration tower at the time of implementing this invention.

本発明による実施例を図1に示す。本発明は、システム構成としては従来技術と同様であるが、リクレーマ70およびリボイラ60の制御を連動させていることが従来技術と異なる。   An embodiment according to the present invention is shown in FIG. The present invention is similar in system configuration to the prior art, but differs from the prior art in that the control of the reclaimer 70 and the reboiler 60 are linked.

CO2吸収液循環ライン67に設けられた計測座90においてHSS濃度を測定し、CO2吸収液中のHSS濃度が基準値(例えば2wt%等)以上に達すると制御盤93のスイッチを作動させる。制御盤93からの信号により、リクレーマ70へのCO2吸収液供給ライン71の弁74が開放され、リクレーマ70に吸収液が供給される。次にリクレーマ70内の液位がリクレーマ伝熱面を十分に含浸させる位置以上になったとき、液位計76の信号により蒸気供給ライン73の弁77が開き、蒸気がリクレーマ70に供給され、加熱が開始される。CO2吸収液の蒸発によりリクレーマ70から再生塔40へのライン72に設けられた圧力計80の指示値が再生塔40内圧力と同じになったとき、リクレーマ70から再生塔40へのラインに設けられた弁79の開度が調整され、吸収液蒸気が再生塔40に供給される。次に図5に示すように、リクレーマ70から再生塔40への吸収液蒸気供給量が定常的になった時には、リボイラ60とリクレーマ70から再生塔40への供給熱量がバランスするように、リボイラ60への蒸気配管62に設けられた弁91の開度を調整してリボイラへの蒸気供給量を低下させることにより、リボイラ60から再生塔40への吸収液蒸気供給量を制御する。 The HSS concentration is measured at the measuring seat 90 provided in the CO 2 absorbent circulation line 67, and the switch of the control panel 93 is activated when the HSS concentration in the CO 2 absorbent reaches a reference value (eg 2 wt%) or more. . In response to a signal from the control panel 93, the valve 74 of the CO 2 absorbent supply line 71 to the reclaimer 70 is opened, and the absorbent is supplied to the reclaimer 70. Next, when the liquid level in the reclaimer 70 reaches or exceeds the position where the reclaimer heat transfer surface is sufficiently impregnated, the valve 77 of the steam supply line 73 is opened by a signal from the liquid level gauge 76, and steam is supplied to the reclaimer 70. Heating is started. When the indicated value of the pressure gauge 80 provided in the line 72 from the reclaimer 70 to the regeneration tower 40 becomes equal to the pressure in the regeneration tower 40 due to evaporation of the CO 2 absorption liquid, the line from the reclaimer 70 to the regeneration tower 40 is changed. The opening degree of the provided valve 79 is adjusted, and the absorption liquid vapor is supplied to the regeneration tower 40. Next, as shown in FIG. 5, when the absorption liquid vapor supply amount from the reclaimer 70 to the regeneration tower 40 becomes steady, the reboiler 60 and the reboiler 70 are rebalanced so that the supply heat amounts from the reclaimer 70 to the regeneration tower 40 are balanced. By adjusting the opening of the valve 91 provided in the steam pipe 62 to the 60 to reduce the amount of steam supplied to the reboiler, the amount of absorbed liquid vapor supplied from the reboiler 60 to the regeneration tower 40 is controlled.

リクレーマ70の運転によりCO2吸収液中のHSS濃度が低下して一定値(例えば1wt%等)に達すると、制御盤93からの信号により、弁91の開度を大きくすることにより、リボイラ60への蒸気供給量をリクレーマ70運転前の状態まで回復させる。これに伴い、リクレーマ70への蒸気供給ライン73の弁77が閉まり、またリクレーマ70へのCO2吸収液供給ライン71の弁74が閉まる。またリクレーマ70に設けられた温度計82の指示値が例えば60℃以下になると、リクレーマ70から再生塔40への供給ライン72に設けられた弁79が閉まる。 When the HSS concentration in the CO 2 absorbent decreases and reaches a certain value (for example, 1 wt%) by the operation of the reclaimer 70, the reboiler 60 is increased by increasing the opening degree of the valve 91 by a signal from the control panel 93. The amount of steam supplied to is restored to the state before the reclaimer 70 is operated. Along with this, the valve 77 of the steam supply line 73 to the reclaimer 70 is closed, and the valve 74 of the CO 2 absorbent supply line 71 to the reclaimer 70 is closed. When the indicated value of the thermometer 82 provided in the reclaimer 70 becomes, for example, 60 ° C. or less, the valve 79 provided in the supply line 72 from the reclaimer 70 to the regeneration tower 40 is closed.

本発明による他の実施例を図2に示す。
図2に示した実施例は、図1に示した本発明の実施例と比較して、pH測定器94をCO2吸収液循環ライン67に設置しており、図4に示すようなCO2吸収液中のHSS濃度とpHの関係性を利用してHSS濃度を把握し、このpH値を制御盤93に送信することでリクレーマ70およびリボイラ60の運転を自動的に行うようにしたものである。pH測定は、システム内のCO2吸収液のどの部分で実施してもかまわない。
Another embodiment according to the present invention is shown in FIG.
Embodiment shown in FIG. 2, compared to the embodiment of the invention shown in FIG. 1, has established the pH meter 94 in the CO 2 absorbing solution circulation line 67, CO 2 as shown in FIG. 4 Using the relationship between the HSS concentration in the absorbent and the pH, the HSS concentration is ascertained and this pH value is sent to the control panel 93 to automatically operate the reclaimer 70 and reboiler 60. is there. The pH measurement may be performed at any part of the CO 2 absorbent in the system.

1 ボイラ
2 脱硝装置
3 エアヒータ
4 電気集塵装置
5 脱硫装置
10 プレスクラバー
20 CO2吸収塔
34 熱交換器
40 再生塔
60 リボイラ
70 リクレーマ
72 リクレーマから再生塔への吸収液蒸気供給ライン
73 リクレーマへの水蒸気供給ライン
1 boiler
2 Denitration equipment
3 Air heater
4 Electric dust collector
5 Desulfurization equipment
10 Press clubber
20 CO 2 absorption tower
34 Heat exchanger
40 regeneration tower
60 Reboiler
70 reclaimer
72 Absorption liquid vapor supply line from reclaimer to regeneration tower
73 Steam supply line to reclaimer

Claims (3)

化石燃料の燃焼装置から排出される排ガス中の硫黄酸化物を排煙脱硫装置で除去した後、二酸化炭素(CO2)吸収塔内でCO2吸収液と接触させて排ガス中のCO2を吸収し、次いで該CO2を吸収した吸収液を再生塔内で加熱してCO2を離脱させ、該CO2離脱後の排ガスを冷却して凝縮水を分離し、分離した凝縮水を前記再生塔に循環させる一方、該CO2離脱後の吸収液をリボイラを介して昇温した後、再生塔に循環すると共に、再生塔から抜き出したCO2吸収液を該再生塔に供給するCO2吸収液と熱交換した後、前記吸収塔に循環するCO2化学吸収設備と、該再生塔からCO2吸収液を抜き出し、該CO2吸収液中に蓄積した熱安定性塩(HSS)を蒸留法によって除去した後、発生したCO2吸収液の蒸気を前記再生塔に供給する蒸気式リクレーマとを有するCO2化学吸収システムの制御方法であって、前記再生塔から抜き出されたCO2吸収液中のHSS濃度を測定し、該濃度が所定値を越えたときに、前記リクレーマへの吸収液の供給を開始し、そして蒸気供給ラインから前記リクレーマ内への蒸気供給を開始し、CO2吸収液蒸気出口ラインから前記再生塔へ蒸気を供給し、これに伴いリクレーマから再生塔への供給熱量を基準とした分、リボイラから再生塔への供給熱量を低下させるように、リボイラへの供給蒸気量を減少させることを特徴とするCO2化学吸収システムの制御方法。 After removing sulfur oxides in the exhaust gas discharged from the fossil fuel combustion device with the flue gas desulfurization device, it is brought into contact with the CO 2 absorbent in the carbon dioxide (CO 2 ) absorption tower to absorb the CO 2 in the exhaust gas. Then, the absorption liquid that has absorbed the CO 2 is heated in a regeneration tower to separate CO 2 , the exhaust gas after the separation of CO 2 is cooled to separate condensed water, and the separated condensed water is separated from the regeneration tower. while circulating, after the absorption solution after the CO 2 leaving the temperature was raised through the reboiler, the circulating regenerator, the CO 2 absorbing liquid supplied to the CO 2 absorbing liquid extracted from the regeneration tower in the regeneration tower and after heat exchange, and CO 2 chemical absorption equipment circulating the absorption tower, extracting the CO 2 absorbing solution from the regeneration tower, the distillation the CO 2 absorbing solution storage thermostability salt in (HSS) after removal, CO 2 chemical absorption with a steam jet reclaimer supplying steam generated CO 2 absorbing solution in the regeneration tower A stem control method, the HSS concentration of CO 2 absorbing liquid withdrawn from the regenerator is measured, when the concentration exceeds a predetermined value, starting the supply of absorption liquid to the reclaimer Then, steam supply from the steam supply line into the reclaimer is started, steam is supplied from the CO 2 absorbent vapor outlet line to the regeneration tower, and the amount of heat supplied from the reclaimer to the regeneration tower as a reference. A control method for a CO 2 chemical absorption system, characterized in that the amount of steam supplied to the reboiler is reduced so as to reduce the amount of heat supplied from the reboiler to the regeneration tower. CO2吸収液中のHSS濃度が所定値以下になったときに、リクレーマへのCO2吸収液および蒸気の供給を停止し、これと連動してリボイラへの蒸気供給量を元の量に回復することを特徴とする請求項1に記載の方法。 When the HSS concentration in the CO 2 absorbent drops below the specified value, the supply of the CO 2 absorbent and steam to the reclaimer is stopped, and the steam supply to the reboiler is restored to the original amount in conjunction with this. The method according to claim 1, wherein: 前記CO2吸収液中のHSS濃度の代りにCO2吸収液のpHを測定し、予め求められた吸収液中のHSS濃度と吸収液のpH値との相関関係から該pHの測定値に基づいて前記の操作を行なうことを特徴とする請求項1または2に記載の方法。 The CO 2 the pH of the CO 2 absorbing solution in place of the HSS concentration of the absorbing solution was measured, based on the correlation relationship between the HSS concentration of the absorbing solution previously obtained with pH value of the absorption liquid on the measurement of the pH The method according to claim 1, wherein the operation is performed.
JP2011245399A 2011-11-09 2011-11-09 Control method for CO2 chemical absorption system Active JP5762253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245399A JP5762253B2 (en) 2011-11-09 2011-11-09 Control method for CO2 chemical absorption system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245399A JP5762253B2 (en) 2011-11-09 2011-11-09 Control method for CO2 chemical absorption system

Publications (2)

Publication Number Publication Date
JP2013099727A true JP2013099727A (en) 2013-05-23
JP5762253B2 JP5762253B2 (en) 2015-08-12

Family

ID=48620923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245399A Active JP5762253B2 (en) 2011-11-09 2011-11-09 Control method for CO2 chemical absorption system

Country Status (1)

Country Link
JP (1) JP5762253B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097982A (en) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 Reclaiming method
WO2019078156A1 (en) 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Acidic gas removal apparatus and acidic gas removal method
WO2019078168A1 (en) 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Reclaiming device and reclaiming method
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
JP2020138184A (en) * 2019-03-01 2020-09-03 月島機械株式会社 Organic sludge treatment equipment and method
KR20200132552A (en) * 2019-05-17 2020-11-25 한국전력공사 Automatic control apparatus for acid gas capture and operating method of thereof
CN113101686A (en) * 2021-05-28 2021-07-13 河北精致科技有限公司 Purification process and system for desulfurized amine liquid
JPWO2020075541A1 (en) * 2018-10-10 2021-09-24 三菱重工エンジニアリング株式会社 Reclaiming device, CO2 recovery device equipped with this, and reclaiming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889756A (en) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The Treatment of carbon dioxide in gas to be treated and liquid absorbent
JP2009521314A (en) * 2005-12-23 2009-06-04 プラクスエア・テクノロジー・インコーポレイテッド Reuse of amines for carbon dioxide recovery
JP2009521313A (en) * 2005-12-23 2009-06-04 プラクスエア・テクノロジー・インコーポレイテッド Recovery of carbon dioxide from exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889756A (en) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The Treatment of carbon dioxide in gas to be treated and liquid absorbent
JP2009521314A (en) * 2005-12-23 2009-06-04 プラクスエア・テクノロジー・インコーポレイテッド Reuse of amines for carbon dioxide recovery
JP2009521313A (en) * 2005-12-23 2009-06-04 プラクスエア・テクノロジー・インコーポレイテッド Recovery of carbon dioxide from exhaust gas

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097982A (en) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 Reclaiming method
EP3646937A4 (en) * 2017-10-20 2020-07-01 Mitsubishi Heavy Industries Engineering, Ltd. Acidic gas removal apparatus and acidic gas removal method
WO2019078168A1 (en) 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Reclaiming device and reclaiming method
JP2019076810A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Acidic gas removal device and acidic gas removal method
JP2019076809A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Reclaiming apparatus and reclaiming method
AU2018352740B2 (en) * 2017-10-20 2021-04-01 Mitsubishi Heavy Industries, Ltd. Acidic gas removal apparatus and acidic gas removal method
EP3646936A4 (en) * 2017-10-20 2020-08-19 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming device and reclaiming method
JP6998174B2 (en) 2017-10-20 2022-01-18 三菱重工エンジニアリング株式会社 Acid gas removal device and acid gas removal method
US11148095B2 (en) 2017-10-20 2021-10-19 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming apparatus and method for reclaiming
WO2019078156A1 (en) 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Acidic gas removal apparatus and acidic gas removal method
US10874976B2 (en) 2017-10-20 2020-12-29 Mitsubishi Heavy Industries Engineering, Ltd. Acid gas removal apparatus and acid gas removal method
AU2018352750B2 (en) * 2017-10-20 2021-04-01 Mitsubishi Heavy Industries, Ltd. Reclaiming device and reclaiming method
JP2019081121A (en) * 2017-10-27 2019-05-30 株式会社東芝 Carbon dioxide separation recovery system and method for operation of carbon dioxide separation recovery system
JPWO2020075541A1 (en) * 2018-10-10 2021-09-24 三菱重工エンジニアリング株式会社 Reclaiming device, CO2 recovery device equipped with this, and reclaiming method
JP7167176B2 (en) 2018-10-10 2022-11-08 三菱重工エンジニアリング株式会社 Reclaiming device, CO2 recovery device provided with the same, and reclaiming method
WO2020179105A1 (en) * 2019-03-01 2020-09-10 月島機械株式会社 Facility and method for treating organic sludge
JP2020138184A (en) * 2019-03-01 2020-09-03 月島機械株式会社 Organic sludge treatment equipment and method
KR20200132552A (en) * 2019-05-17 2020-11-25 한국전력공사 Automatic control apparatus for acid gas capture and operating method of thereof
KR102325364B1 (en) 2019-05-17 2021-11-11 한국전력공사 Automatic control apparatus for acid gas capture
CN113101686A (en) * 2021-05-28 2021-07-13 河北精致科技有限公司 Purification process and system for desulfurized amine liquid

Also Published As

Publication number Publication date
JP5762253B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5762253B2 (en) Control method for CO2 chemical absorption system
JP5636306B2 (en) Control method for CO2 chemical absorption system
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP5868741B2 (en) Acid gas removal device
CN102325579B (en) Method and plant for amine emission control
JP5959882B2 (en) Carbon dioxide chemical absorption system in combustion exhaust gas
JP5639814B2 (en) Thermal power generation system with CO2 removal equipment
JP2011240321A (en) Exhaust gas treatment system having carbon dioxide removal device
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5855130B2 (en) Carbon dioxide chemical absorption system with steam recompression equipment
WO2012067101A1 (en) Method and device for controlling system for chemically absorbing carbon dioxide
JP2015199007A (en) Carbon dioxide recovery device and amine recovery method
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
JP2016159239A (en) Recovery device and recovery method of carbon dioxide
JP2014185913A (en) Method for analyzing amount of heat stable salt contained in absorbing solution and method for recovering carbon dioxide from gas to be treated
WO2012169192A1 (en) Carbon dioxide eliminating device
JP6305837B2 (en) Carbon dioxide recovery device and recovery method
JP5237204B2 (en) CO2 recovery apparatus and method
JP2016112482A (en) Carbon dioxide collection method and device
JP2011000528A (en) Co2 recovering device and co2 recovering method
JP2011005368A (en) Co2 recovering apparatus and method
JP2015097982A (en) Reclaiming method
JP2014205102A (en) Method and apparatus for recovering carbon dioxide in gas to be treated
JP2014091091A (en) Device and method for absorbing carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350