JP2013096961A - Earth fault detection device - Google Patents

Earth fault detection device Download PDF

Info

Publication number
JP2013096961A
JP2013096961A JP2011242944A JP2011242944A JP2013096961A JP 2013096961 A JP2013096961 A JP 2013096961A JP 2011242944 A JP2011242944 A JP 2011242944A JP 2011242944 A JP2011242944 A JP 2011242944A JP 2013096961 A JP2013096961 A JP 2013096961A
Authority
JP
Japan
Prior art keywords
detection
detection coil
fault
ground fault
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011242944A
Other languages
Japanese (ja)
Other versions
JP5851207B2 (en
Inventor
Masahito Shimizu
雅仁 清水
Koichi Kinoshita
浩一 木下
Hiroshi Tanaka
博 田中
Hiroshi Yonei
弘 米井
Takashi Kasahara
崇史 笠原
Masakatsu Arakane
昌克 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Chubu Electric Power Co Inc filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP2011242944A priority Critical patent/JP5851207B2/en
Publication of JP2013096961A publication Critical patent/JP2013096961A/en
Application granted granted Critical
Publication of JP5851207B2 publication Critical patent/JP5851207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PROBLEM TO BE SOLVED: To provide an earth fault detection device capable of identifying an earth-fault steel tower in an extra-high-voltage transmission system whose neutral point on a transmission side is directly grounded.SOLUTION: Surge absorbers 140 and 142 are provided with, besides a function for suppressing outputs of detecting coil parts 1 and 2 that have detected a fault current in earth fault, a function of reducing magnetic saturation of the first and second detecting coil parts 1 and 2, and are configured to have nonmagnetic air core parts between a core 7 and a coil 9 wound around the core 7. When the output waveforms of the first and second detecting coil parts 1 and 2 are distorted, the earth fault detection device improves the distortion of a fault current in the earth fault on the basis of the outputs of the nonmagnetic air core parts of the first and second detecting coil parts 1 and 2 so as to enable phase detection.

Description

本発明は、送電鉄塔の地絡故障の検出に関し、特に、超高圧送電系統における送電鉄塔の地絡故障を検出する地絡故障検出装置に関する。   The present invention relates to detection of a ground fault in a power transmission tower, and more particularly to a ground fault detection device that detects a ground fault in a power transmission tower in an ultra high voltage power transmission system.

送電鉄塔の地絡故障を検出するものとして、例えば本出願人が先に提案した特許文献1に記載の地絡故障点表示装置がある。このような特許文献1に記載の地絡故障点表示装置を、送電電圧が187kV以上の超高圧送電線路における送電鉄塔の地絡故障の検出に適用した場合、送電側の中性点が抵抗を介することなく直接接地されているため、地絡故障が発生した場合に数十kA以上の多大な故障電流が架空地線に分流し、地絡故障を検出するための回路を損傷するおそれがあるばかりでなく、地絡時の故障電流が極めて大きくなること、また、地絡故障用継電器の遮断タイミングによっては架空地線を流れる電流に直流成分が重畳することなどから、故障電流を検出した検出コイルの出力波形が歪み、地絡故障の検出が困難になるなどの問題を生じるおそれがあった。   As a device for detecting a ground fault in a power transmission tower, for example, there is a ground fault point display device described in Patent Document 1 previously proposed by the present applicant. When such a ground fault display device described in Patent Document 1 is applied to detection of a ground fault in a transmission tower in an ultrahigh voltage transmission line having a transmission voltage of 187 kV or higher, the neutral point on the transmission side has a resistance. Because it is directly grounded without any grounding, if a ground fault occurs, a large fault current of several tens of kA or more may be shunted to the overhead ground wire, which may damage the circuit for detecting the ground fault. Not only that, the fault current at the time of ground fault becomes extremely large, and depending on the interruption timing of the ground fault fault relay, the DC component is superimposed on the current flowing through the overhead ground wire, etc., detection that detected the fault current There is a risk that the output waveform of the coil is distorted, and it becomes difficult to detect a ground fault.

特許第3458123号公報Japanese Patent No. 3458123

このような特許文献1に記載の地絡故障点表示装置は、送電電圧が154kV以下の抵抗接地系の送電線路における地絡故障の検出には有効に機能するものであるが、山岳地などの地域に建設されることのある187kV以上の超高圧送電系統に対しては、上述したように、検出回路の損傷のおそれがあること、地絡故障時の故障電流が極めて大きくなること、架空地線を流れる電流に直流成分が重畳する場合があることなどから、検出出力の波形が歪んで地絡故障の検出ができなくなるという問題があった。   Such a ground fault point display device described in Patent Document 1 functions effectively for detecting a ground fault in a resistance grounding transmission line having a transmission voltage of 154 kV or less. As described above, there is a risk of damage to the detection circuit, the fault current at the time of the ground fault becomes extremely large, and the overhead ground Since a direct current component may be superimposed on the current flowing through the line, there has been a problem that the detection output waveform is distorted and a ground fault cannot be detected.

本発明は、このような観点に基づいてなされたものであり、多大な故障電流による検出回路の損傷の防止を図ることができると共に、地絡時の故障電流が多大になること、また、架空地線を流れる電流に直流成分が重畳することによる故障検出への支障を生じさせることなく、送電側の中性点が直接接地された超高圧送電系統の地絡鉄塔の特定が可能な地絡故障検出装置を提供することを目的とする。   The present invention has been made based on such a viewpoint, and can prevent the detection circuit from being damaged due to a large amount of fault current, increase the fault current during a ground fault, and A ground fault that can identify the ground fault tower of an ultra-high voltage transmission system with the neutral point of the transmission side directly grounded without causing any trouble in fault detection due to the DC component superimposed on the current flowing through the ground line An object is to provide a failure detection apparatus.

本発明においては、中性点が直接接地された超高圧送電線路の架空地線に送電鉄塔を挟んで夫々取り付けられ、地絡時に前記架空地線に分流する故障電流を検出する第1および第2の検出コイル部と、前記第1および第2の検出コイル部で検出された地絡時の故障電流の位相から地絡故障が発生した送電鉄塔を検出する検出手段とを備え、前記検出手段が、前記第1および第2の検出コイル部の夫々の出力側に酸化亜鉛素子からなるサージアブソーバを並列に挿入して前記第1および第2の検出コイル部の出力を直接入力し、地絡時の故障電流の位相を検出するように構成され、前記サージアブソーバに地絡電流検出時の検出コイルの出力を所定電圧に抑制する機能に加えて、前記第1および第2の検出コイル部の磁気飽和を低減する機能をもたせると共に、前記第1および第2の検出コイル部が、コアとこのコアに巻回されたコイルとの間に前記コアに加えて非磁性の空芯部分を有するように構成され、磁気飽和により前記第1および第2の検出コイル部の出力波形が歪んだ場合に、前記第1および第2の検出コイル部の前記非磁性の空芯部分による出力に基づいて地絡時の故障電流の歪みを改善し、位相検出が可能となるようにした地絡故障検出装置によって、上記目的を達成する。   In the present invention, a first and a first are provided for detecting a fault current that is attached to an overhead ground wire of an ultrahigh-voltage power transmission line with a neutral point directly grounded with a power transmission tower sandwiched between them and is shunted to the overhead ground wire in the event of a ground fault. Two detection coil units; and a detection unit that detects a power transmission tower in which a ground fault has occurred from a phase of a fault current detected at the time of the ground fault detected by the first and second detection coil units, and the detection unit However, a surge absorber made of a zinc oxide element is inserted in parallel on the output side of each of the first and second detection coil units, and the outputs of the first and second detection coil units are directly input, In addition to the function of suppressing the output of the detection coil at the time of ground fault current detection to a predetermined voltage, the first and second detection coil sections are configured to detect the phase of the fault current at the time. A function to reduce magnetic saturation And the first and second detection coil portions are configured to have a non-magnetic air-core portion in addition to the core between the core and the coil wound around the core. When the output waveforms of the first and second detection coil sections are distorted, the fault current is distorted during a ground fault based on the outputs of the nonmagnetic air core portions of the first and second detection coil sections. The above-mentioned object is achieved by a ground fault detection device that improves the above-mentioned and enables phase detection.

このような構成によれば、中性点が直接接地されているために地絡故障時に多大な故障電流が流れた場合でも、サージアブソーバによって所定電圧に抑えられ、検出回路の損傷等を防止することができる。   According to such a configuration, since a neutral point is directly grounded, even when a large fault current flows at the time of a ground fault, the surge absorber can suppress the voltage to a predetermined voltage and prevent damage to the detection circuit. be able to.

また、このような構成によれば、酸化亜鉛素子からなるサージアブソーバに第1および第2の検出コイル部のコアの磁気飽和を低減する機能をもたせている。即ち、架空地線を流れる故障電流からこれらの検出コイル部に誘起される電圧がサージアブソーバによって所定電圧に抑えられる。第1および第2の検出コイル部からの出力電圧を上述の所定電圧に維持するために、サージアブソーバには第1および第2の検出コイル部のコアの磁束を打消す方向に電流が多く流れ、これによって、第1および第2の検出コイル部の磁気飽和が低減され、これら検出コイル部の出力波形の歪みの改善を図ることができる。   Further, according to such a configuration, the surge absorber made of a zinc oxide element has a function of reducing the magnetic saturation of the cores of the first and second detection coil portions. That is, the voltage induced in these detection coil portions from the fault current flowing through the overhead ground wire is suppressed to a predetermined voltage by the surge absorber. In order to maintain the output voltage from the first and second detection coil portions at the above-mentioned predetermined voltage, a large amount of current flows in the surge absorber in the direction to cancel the magnetic flux of the core of the first and second detection coil portions. As a result, the magnetic saturation of the first and second detection coil portions is reduced, and the distortion of the output waveform of these detection coil portions can be improved.

また、上記構成によれば、地絡時の故障電流が多大になること、また、地絡故障用継電器の遮断タイミングによっては故障電流に直流成分が重畳することから、第1および第2の検出コイル部で検出した電流の波形に歪みを生じることとなるが、第1および第2の検出コイル部のコアが磁気飽和しても、コアとコイルとの間の非磁性の空芯部分を磁束が貫くこととなる。そのため、空芯部分は磁気飽和がないため、架空地線を流れる電流が大きくなればなるほど空芯部分から歪みのない出力が増えて第1および第2の検出コイル部の出力に重畳され、出力波形の歪みを改善して位相検出が可能になる。   Further, according to the above configuration, since the fault current at the time of the ground fault becomes large and the DC component is superimposed on the fault current depending on the interruption timing of the ground fault fault relay, the first and second detections Even if the cores of the first and second detection coil portions are magnetically saturated, the nonmagnetic air-core portion between the cores is magnetically fluxed. Will penetrate. For this reason, since the air core portion has no magnetic saturation, the larger the current flowing through the overhead ground wire, the greater the distortion-free output from the air core portion, which is superimposed on the outputs of the first and second detection coil units. Waveform distortion is improved and phase detection becomes possible.

また、本発明において、前記検出手段が、前記第1および第2の検出コイル部のコイルに並列に挿入された2つの前記サージアブソーバを含むサージアブソーバ回路と、前記サージアブソーバ回路に並列に挿入された直列接続の2つの双方向ツェナーダイオードを含む位相検出回路と、前記位相検出回路の出力を全波整流する整流回路とを含むように構成することができる。   Further, in the present invention, the detection means is inserted in parallel with the surge absorber circuit including the two surge absorbers inserted in parallel with the coils of the first and second detection coil sections, and the surge absorber circuit. The phase detection circuit includes two bidirectional Zener diodes connected in series, and a rectification circuit that full-wave rectifies the output of the phase detection circuit.

また、本発明において、前記検出手段が、更に、前記整流回路の全波整流出力を入力し、所定の定電流を与える定電流回路と、前記定電流回路によって定電流充電される充電回路と、前記充電回路の充電電圧が所定値以上になった場合に地絡故障を表す検出出力を与える検出回路とを有するように構成することができる。   Further, in the present invention, the detection means further inputs a full-wave rectified output of the rectifier circuit, gives a predetermined constant current, a charging circuit charged with a constant current by the constant current circuit, And a detection circuit that provides a detection output indicating a ground fault when the charging voltage of the charging circuit becomes equal to or higher than a predetermined value.

更に、本発明において、前記第1および第2の検出コイル部の前記コアに磁気ギャップを形成するように構成することができる。   Furthermore, in this invention, it can comprise so that a magnetic gap may be formed in the said core of the said 1st and 2nd detection coil part.

本発明によれば、中性点が直接接地された超高圧送電系統の地絡鉄塔の検出が可能で、極めて大きな地絡電流による検出回路の損傷を防止することができると共に、故障電流を検出した検出コイル部の出力波形の歪みを改善することができる。   According to the present invention, it is possible to detect a ground fault tower of an ultra high voltage power transmission system with a neutral point directly grounded, and it is possible to prevent damage to a detection circuit due to a very large ground fault current and to detect a fault current. Thus, distortion of the output waveform of the detection coil section can be improved.

また、本発明によれば、定電流充電を行うことにより商用周波数の半サイクル分と同じような電流波形をもつ雷に対して誤動作を防止することができると共に、直流成分により検出コイル部の出力波形が歪んだ場合でも定電流充電を行うことができる。   Further, according to the present invention, by performing constant current charging, it is possible to prevent malfunctioning with respect to lightning having a current waveform similar to that of a half cycle of a commercial frequency, and the output of the detection coil unit by a DC component. Even when the waveform is distorted, constant current charging can be performed.

図1は本発明による地絡故障検出装置の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of a ground fault detection apparatus according to the present invention. 図2は本発明による地絡故障検出装置の一実施例を示す図で、入力端子aおよびbが図1の同符号の出力端子aおよびbに接続される。FIG. 2 is a diagram showing an embodiment of the ground fault detection device according to the present invention. Input terminals a and b are connected to output terminals a and b having the same reference numerals in FIG. 図3は、送電側の中性点が直接接地された超高圧送電線路の送電鉄塔に取り付けられた本発明による地絡故障検出装置を示す図で、地絡故障を生じた超高圧送電線路の地絡鉄塔を示している。FIG. 3 is a diagram showing a ground fault detection device according to the present invention attached to a transmission tower of an ultra-high-voltage transmission line whose neutral point is directly grounded. It shows a ground fault tower. 図4は、地絡故障が発生した場合における、図3の地絡鉄塔に隣接した健全鉄塔の送電鉄塔の状態を示す図である。FIG. 4 is a diagram illustrating a state of the transmission tower of the healthy tower adjacent to the ground fault tower of FIG. 3 when a ground fault occurs. 図5は第1および第2の検出コイル部の構成を示す図である。FIG. 5 is a diagram showing the configuration of the first and second detection coil units. 図6は第1(第2)の検出コイル部とコアの磁気飽和との関係を示す実験結果で、磁気飽和状態の第1(第2)の検出コイル部の出力を示している。FIG. 6 is an experimental result showing the relationship between the first (second) detection coil unit and the magnetic saturation of the core, and shows the output of the first (second) detection coil unit in the magnetic saturation state. 図7は第1(第2)の検出コイル部とコアの磁気飽和との関係を示す実験結果で、サージアブソーバ回路および位相検出回路を通してピーク電圧が制限された第1(第2)の検出コイル部の出力を示している。FIG. 7 is an experimental result showing the relationship between the first (second) detection coil section and the magnetic saturation of the core, and the first (second) detection coil whose peak voltage is limited through the surge absorber circuit and the phase detection circuit. The output of the part is shown. 図8は第1(第2)の検出コイル部とコアの磁気飽和との関係を示す実験結果で、第1(第2)の検出コイル部の出力にコアの空芯部分による出力が重畳した場合を示している。FIG. 8 is an experimental result showing the relationship between the first (second) detection coil unit and the magnetic saturation of the core, and the output from the air core part of the core is superimposed on the output of the first (second) detection coil unit. Shows the case. 図9は第1(第2)の検出コイル部とコアの磁気飽和との関係を示す実験結果で、第1(第2)の検出コイル部の出力にコアの空芯部分による出力が更に重畳した場合を示している。FIG. 9 is an experimental result showing the relationship between the first (second) detection coil unit and the magnetic saturation of the core. The output from the air core part of the core is further superimposed on the output of the first (second) detection coil unit. Shows the case. 図10は架空地線に流れる電流に直流成分が重畳した場合の地絡故障検出装置の動作波形図の一例を示す実験結果である。FIG. 10 is an experimental result showing an example of an operation waveform diagram of the ground fault detector when a DC component is superimposed on the current flowing through the overhead ground wire.

本発明を実施するための形態として、以下に本発明の一実施例を説明する。   An embodiment of the present invention will be described below as a mode for carrying out the present invention.

図1および図2は本発明による地絡故障検出装置の一実施例を示す図で、図1の出力端子aおよびbは図2の同符号の入力端子aおよびbに接続される。   FIG. 1 and FIG. 2 are diagrams showing an embodiment of a ground fault detection device according to the present invention. Output terminals a and b in FIG. 1 are connected to input terminals a and b having the same reference numerals in FIG.

地絡故障検出装置は、図1および図2に示されるように、第1の検出コイル部1、第2の検出コイル部2、検出手段3および表示部4を備えている。そして、このような地絡故障検出装置は、次に述べるように超高圧送電線路の鉄塔に取り付けられる。   As shown in FIGS. 1 and 2, the ground fault detection device includes a first detection coil unit 1, a second detection coil unit 2, a detection unit 3, and a display unit 4. And such a ground fault detection device is attached to the tower of an ultra high voltage power transmission line as described below.

図3は、送電側の中性点が直接接地された超高圧送電線路の鉄塔に取り付けられた本発明による地絡故障検出装置を示す図で、超高圧送電系統における送電鉄塔5に地絡故障が発生した場合を示している。即ち、図3では、送電鉄塔5が地絡故障を発生した故障鉄塔である。   FIG. 3 is a diagram showing a ground fault detection device according to the present invention attached to a steel tower of an ultra high voltage transmission line with a neutral point directly grounded on the power transmission side. This shows the case where this occurs. That is, in FIG. 3, the power transmission tower 5 is a faulty tower in which a ground fault has occurred.

送電鉄塔5は、送電電圧が187kV以上の超高圧送電線路を形成する送電鉄塔のひとつを示す。送電電圧が154kV以下の抵抗接地系統の送電線路では、送電側の中性点が抵抗を介して接地されており、地絡時の故障電流が抵抗で調整されるようになっている。これに対し、超高圧送電線路は中性点が直接接地されているため、抵抗接地系統より大きな数十kA以上の故障電流が架空地線6に流れることとなる。   The power transmission tower 5 is one of the power transmission towers that form an ultrahigh-voltage power transmission line having a power transmission voltage of 187 kV or higher. In a transmission line of a resistance grounding system with a transmission voltage of 154 kV or less, the neutral point on the power transmission side is grounded via a resistor, and a fault current at the time of a ground fault is adjusted by the resistor. On the other hand, since the neutral point of the ultra high voltage transmission line is directly grounded, a fault current of several tens of kA or more larger than that of the resistance grounding system flows to the overhead ground wire 6.

図3において、第1および第2の検出コイル部1、2は、送電鉄塔5を挟む架空地線6の若番側と老番側に夫々取り付けられている。この送電鉄塔5に落雷や鳥獣などによって地絡故障が発生すると、大地に向かって流れる故障電流Iaと架空地線6に分流する故障電流Ib1、Ib2が流れる。架空地線6に分流する故障電流Ib1、Ib2は鉄塔5を中心として互いに逆方向に流れ、第1の検出コイル部1に架空地線6の一方の故障電流Ib1によって電流Ic1が誘起され、第2の検出コイル部2に他方の故障電流Ib2によって電流Ic1と同位相の電流Ic2が誘起される。検出手段3では、誘起された電流Ic1、Ic2が同位相であることから地絡故障が発生した送電鉄塔5が判別され、表示部4にその旨表示される。   In FIG. 3, the first and second detection coil units 1 and 2 are respectively attached to the young number side and the old number side of the aerial ground wire 6 that sandwiches the power transmission tower 5. When a ground fault occurs in the power transmission tower 5 due to lightning or birds and beasts, a fault current Ia that flows toward the ground and fault currents Ib1 and Ib2 that are shunted to the overhead ground wire 6 flow. The fault currents Ib1 and Ib2 diverted to the overhead ground wire 6 flow in opposite directions around the steel tower 5, and the current Ic1 is induced in the first detection coil unit 1 by one fault current Ib1 of the overhead ground wire 6. The current Ic2 having the same phase as the current Ic1 is induced in the two detection coil units 2 by the other fault current Ib2. In the detection means 3, since the induced currents Ic1 and Ic2 are in the same phase, the power transmission tower 5 in which the ground fault has occurred is determined and displayed on the display unit 4.

図4は、地絡故障が発生した場合の、図3の地絡鉄塔に隣接した健全鉄塔の送電鉄塔の状態を示す図である。即ち、図4では、送電鉄塔5が地絡故障を発生していない健全鉄塔である。他の送電鉄塔で地絡故障が発生した場合には、送電鉄塔5を挟んで架空地線6に地絡故障が発生した送電鉄塔から故障電流Ib1、Ib2が同一方向に流れる。第1の検出コイル部1には一方の故障電流Ib1によって電流Ic1が誘起され、第2の検出コイル部2には他方の故障電流Ib2によって電流Ic1と逆位相の電流Ic2が誘起される。検出手段3では、誘起された電流Ic1、Ic2が逆位相であることから相殺され、表示部4へ表示出力が与えられることはない。   FIG. 4 is a diagram illustrating a state of the transmission tower of the healthy tower adjacent to the ground fault tower of FIG. 3 when a ground fault occurs. That is, in FIG. 4, the power transmission tower 5 is a healthy tower in which no ground fault has occurred. When a ground fault occurs in another power transmission tower, fault currents Ib1 and Ib2 flow in the same direction from the power transmission tower in which the ground fault has occurred in the overhead ground wire 6 with the power transmission tower 5 interposed therebetween. A current Ic1 is induced in the first detection coil unit 1 by one fault current Ib1, and a current Ic2 having a phase opposite to that of the current Ic1 is induced in the second detection coil unit 2 by the other fault current Ib2. In the detection means 3, the induced currents Ic 1 and Ic 2 are canceled out because they are in opposite phases, and no display output is given to the display unit 4.

図5は第1および第2の検出コイル部の構成を示す図である。   FIG. 5 is a diagram showing the configuration of the first and second detection coil units.

第1および第2の検出コイル部1、2は、本例ではフェライトで形成されたI字状コア7およびU字状コア8を有している。第1および第2の検出コイル部1、2は、U字状コア8を上下動させるか又はU字状コア8の一側部8a又は8bを支点として回動させることなどにより、架空地線6と着脱自在に構成されている。   The 1st and 2nd detection coil parts 1 and 2 have the I-shaped core 7 and the U-shaped core 8 which were formed with the ferrite in this example. The first and second detection coil units 1 and 2 are used for the overhead ground wire by moving the U-shaped core 8 up and down or by rotating one side portion 8a or 8b of the U-shaped core 8 as a fulcrum. 6 is configured to be detachable.

I字状コア7は、コイル9との間の非磁性のボビン10、I字状コア7の外周囲を囲う非磁性のゴム部材11、ゴム部材11とボビン10との間およびゴム部材11とI字状コア7との間の空間部12などによって構成された非磁性の空芯部分を有している。このような非磁性の空芯部分は、後述するように、I字状コア7およびU字状コア8が磁気飽和して出力波形に歪みが生じても、このような非磁性の空芯部分は磁気飽和することなく、故障電流の増大に従って空芯部分から歪みのない出力が与えられて第1および第2の検出コイル部1、2の出力に重畳され、検出コイル部1、2の出力波形の歪みが改善される。   The I-shaped core 7 includes a non-magnetic bobbin 10 between the coil 9, a non-magnetic rubber member 11 surrounding the outer periphery of the I-shaped core 7, a space between the rubber member 11 and the bobbin 10, and a rubber member 11. It has a non-magnetic air core part constituted by a space part 12 between the I-shaped core 7 and the like. As will be described later, such a non-magnetic air core portion is such a non-magnetic air core portion even when the I-shaped core 7 and the U-shaped core 8 are magnetically saturated and the output waveform is distorted. Without magnetic saturation, a non-distorted output is given from the air core portion according to the increase of the fault current and is superimposed on the outputs of the first and second detection coil units 1 and 2, and the output of the detection coil units 1 and 2 Waveform distortion is improved.

更に、第1および第2の検出コイル部1、2は、I字状コア7とU字状コア8との間に本例では2つのギャップ13を有し、I字状コア7およびU字状コア8の磁気飽和が低減されるように構成されている。本例では、所望の厚さの非磁性部材、例えば真鍮の板をI字状コア7とU字状コア8との間に挿入することによって、ギャップ13の幅を調節できるようになっている。   Further, the first and second detection coil portions 1 and 2 have two gaps 13 in this example between the I-shaped core 7 and the U-shaped core 8. The magnetic saturation of the core 8 is reduced. In this example, the width of the gap 13 can be adjusted by inserting a nonmagnetic member having a desired thickness, such as a brass plate, between the I-shaped core 7 and the U-shaped core 8. .

図1および図2に戻り、検出手段3は、サージアブソーバ回路14、位相検出回路15、整流回路16、定電流回路17、充電回路18および検出回路19を有している。   Returning to FIG. 1 and FIG. 2, the detection means 3 includes a surge absorber circuit 14, a phase detection circuit 15, a rectifier circuit 16, a constant current circuit 17, a charging circuit 18 and a detection circuit 19.

サージアブソーバ回路14は、酸化亜鉛素子からなる2つのサージアブソーバ140、142を有している。一方のサージアブソーバ140は、第1の検出コイル部1の出力側に並列に挿入されて、第1の検出コイル部1の出力を他の素子を介在させることなく直接入力するように構成されている。同様に、他方のサージアブソーバ142は、第2の検出コイル部2の出力側に並列に挿入されて、第2の検出コイル部2の出力を他の素子を介在させることなく直接入力するように構成されている。更に、一方のサージアブソーバ140は、直列接続の双方向ツェナーダイオード150、151を有する位相検出回路15の一方の双方向ツェナーダイオード150に保護抵抗141を介して並列に接続され、他方のサージアブソーバ142は、他方の双方向ツェナーダイオード151に保護抵抗143を介して並列に接続されている。   The surge absorber circuit 14 has two surge absorbers 140 and 142 made of zinc oxide elements. One surge absorber 140 is inserted in parallel on the output side of the first detection coil unit 1 and is configured to directly input the output of the first detection coil unit 1 without interposing other elements. Yes. Similarly, the other surge absorber 142 is inserted in parallel on the output side of the second detection coil unit 2 so as to directly input the output of the second detection coil unit 2 without interposing other elements. It is configured. Further, one surge absorber 140 is connected in parallel to one bidirectional Zener diode 150 of the phase detection circuit 15 having serially connected bidirectional Zener diodes 150 and 151 via a protective resistor 141, and the other surge absorber 142. Is connected in parallel to the other bidirectional Zener diode 151 via a protective resistor 143.

このようなサージアブソーバ回路14により、中性点が直接接地された系統において地絡故障時に多大な故障電流が流れた場合でも、検出コイル部1、2からの出力は、サージアブソーバ140、142によって所定電圧に抑えられ、検出のための回路の損傷等を防止することができる。   Even when a large fault current flows in the system in which the neutral point is directly grounded by such a surge absorber circuit 14, the output from the detection coil units 1 and 2 is output by the surge absorbers 140 and 142. The voltage is suppressed to a predetermined voltage, and damage to a circuit for detection can be prevented.

本発明では、酸化亜鉛素子からなるサージアブソーバ140、142に第1および第2の検出コイル部1、2からの地絡時の出力を抑制する機能に加えて、第1および第2の検出コイル部1、2の磁気飽和を低減する機能をもたせている。即ち、架空地線6を流れる故障電流から第1および第2の検出コイル部1、2に誘起される電圧がサージアブソーバ140、142によって所定電圧に抑えられ、第1および第2の検出コイル部1、2からの検出出力をこの所定電圧に抑えるために、サージアブソーバ140、142には第1および第2の検出コイル部1、2のコア7、8の磁束を打消す方向に電流が多く流れ、これによって、第1および第2の検出コイル部1、2のコア7、8の磁気飽和が低減され、第1および第2の検出コイル部1、2の出力波形の歪みの防止を図ることができる。   In the present invention, the first and second detection coils in addition to the function of suppressing the output at the time of the ground fault from the first and second detection coil sections 1 and 2 to the surge absorbers 140 and 142 made of zinc oxide elements. A function of reducing the magnetic saturation of the parts 1 and 2 is provided. That is, the voltage induced in the first and second detection coil sections 1 and 2 from the fault current flowing through the overhead ground wire 6 is suppressed to a predetermined voltage by the surge absorbers 140 and 142, and the first and second detection coil sections In order to suppress the detection outputs from 1 and 2 to this predetermined voltage, the surge absorbers 140 and 142 have a large amount of current in a direction to cancel the magnetic fluxes of the cores 7 and 8 of the first and second detection coil portions 1 and 2. Thus, the magnetic saturation of the cores 7 and 8 of the first and second detection coil units 1 and 2 is reduced, and the distortion of the output waveforms of the first and second detection coil units 1 and 2 is prevented. be able to.

位相検出回路15の出力は整流回路16に与えられ、定格電流以上の電流の流入を防止する保護抵抗160を介してダイオード161〜164によって全波整流された後、図2の定電流回路17に与えられる。   The output of the phase detection circuit 15 is given to the rectifier circuit 16, and after full-wave rectification by the diodes 161 to 164 through the protective resistor 160 that prevents inflow of a current exceeding the rated current, the output to the constant current circuit 17 of FIG. Given.

定電流回路17は、整流回路16の整流出力を平滑するコンデンサ170、定電圧レギュレータ171、後段回路への電流値を決めるための抵抗172、およびレギュレータ171の発振に伴うノイズを防止するコンデンサ173を有し、所定の定電流を充電回路18に与える。このように定電流充電が行われることによって、継続時間がある値以下の電流に対しては動作しないように構成されており、商用周波数の半サイクル分と同じような電流波形をもつ雷に対して誤動作を防止することができる。これと共に、整流回路16からの整流出力を平滑コンデンサ170で平滑することで、整流出力の脈動を抑えるように構成されており、直流成分の重畳によって第1および第2の検出コイル部1、2の出力波形が歪んだ場合でも所定の定電流で充電することができる。   The constant current circuit 17 includes a capacitor 170 that smoothes the rectified output of the rectifier circuit 16, a constant voltage regulator 171, a resistor 172 that determines a current value to a subsequent circuit, and a capacitor 173 that prevents noise associated with oscillation of the regulator 171. And supplying a predetermined constant current to the charging circuit 18. In this way, constant current charging is performed so that it does not operate for currents with a duration less than a certain value, and for lightning with a current waveform similar to that of a half cycle of the commercial frequency. Malfunction can be prevented. At the same time, the smoothing capacitor 170 smoothes the rectified output from the rectifier circuit 16 so as to suppress the pulsation of the rectified output, and the first and second detection coil units 1 and 2 are superimposed by superimposing the DC component. Even when the output waveform is distorted, it can be charged with a predetermined constant current.

充電回路18は、充電用コンデンサ180とこれに並列挿入された抵抗181とを有し、充電用コンデンサ180が抵抗181との時定数に従って所定の定電流で充電される。検出回路19は、抵抗190とツェナーダイオード191とトリガ抵抗192との直列接続と、トリガ抵抗192に並列挿入されたノイズ防止用コンデンサ193と、サイリスタ194を有している。トリガ抵抗192はサイリスタ194のゲートにゲート電圧を与えるものであり、ノイズ防止用コンデンサ193はノイズによるの誤動作を防止するためのものである。このような構成の検出回路19は、充電回路18の充電電圧を監視し、充電電圧が所定値以上になることでサイリスタ194をオンさせ、表示部4に地絡故障を表す出力を与える。   The charging circuit 18 includes a charging capacitor 180 and a resistor 181 inserted in parallel thereto, and the charging capacitor 180 is charged with a predetermined constant current according to a time constant with the resistor 181. The detection circuit 19 includes a series connection of a resistor 190, a Zener diode 191, and a trigger resistor 192, a noise prevention capacitor 193 inserted in parallel with the trigger resistor 192, and a thyristor 194. The trigger resistor 192 applies a gate voltage to the gate of the thyristor 194, and the noise prevention capacitor 193 prevents malfunction due to noise. The detection circuit 19 having such a configuration monitors the charging voltage of the charging circuit 18 and turns on the thyristor 194 when the charging voltage becomes equal to or higher than a predetermined value, and gives an output indicating a ground fault to the display unit 4.

図6、図7、図8および図9は第1(第2)の検出コイル部1(2)とコア7、8の磁気飽和との関係を示す実験結果で、図6は磁気飽和状態の第1(第2)の検出コイル部1(2)の出力を示し、図7はサージアブソーバ回路14および位相検出回路15を通してピーク電圧が制限された第1(第2)の検出コイル部1(2)の出力を示し、図8は第1(第2)の検出コイル部1(2)の出力にI字状コア7の空芯部分による出力が重畳した場合を示し、図9は第1(第2)の検出コイル部1(2)の出力にI字状コア7の前述した空芯部分による出力が更に重畳した場合を示している。   6, 7, 8, and 9 are experimental results showing the relationship between the first (second) detection coil unit 1 (2) and the magnetic saturation of the cores 7 and 8. FIG. 6 shows the magnetic saturation state. FIG. 7 shows the output of the first (second) detection coil unit 1 (2), and FIG. 7 shows the first (second) detection coil unit 1 (with the peak voltage limited through the surge absorber circuit 14 and the phase detection circuit 15). FIG. 8 shows a case where the output of the air core portion of the I-shaped core 7 is superimposed on the output of the first (second) detection coil unit 1 (2), and FIG. The case where the output by the air core part of the I-shaped core 7 is further superimposed on the output of the (second) detection coil unit 1 (2) is shown.

送電電圧が187kV以上の超高圧送電線路は、送電側の中性点が直接接地されているので、地絡故障が発生した場合、数十kA以上の極めて大きな故障電流が流れる。酸化亜鉛素子からなるサージアブソーバ140、142により磁気飽和の低減が図られるが、架空地線6を流れる故障電流が大きく、第1および第2の検出コイル部1、2のI字状コア7およびU字状コア8が図6に示されるように磁気飽和状態になり、第1および第2の検出コイル部1、2の出力波形が歪むこととなる。   In the ultra high voltage transmission line having a transmission voltage of 187 kV or more, the neutral point on the power transmission side is directly grounded. Therefore, when a ground fault occurs, an extremely large failure current of several tens of kA or more flows. Although magnetic saturation is reduced by the surge absorbers 140 and 142 made of zinc oxide elements, the fault current flowing through the overhead ground wire 6 is large, and the I-shaped cores 7 of the first and second detection coil sections 1 and 2 and As shown in FIG. 6, the U-shaped core 8 is in a magnetic saturation state, and the output waveforms of the first and second detection coil units 1 and 2 are distorted.

サージアブソーバ140、142によるコア7、8の磁気飽和の低減は、次のように行われる。前述したように、架空地線6を流れる故障電流から第1および第2の検出コイル部1、2に誘起される電圧がサージアブソーバ140、142によって所定電圧に抑えられ、第1および第2の検出コイル部1、2からの検出出力を上述の所定電圧に維持するために、サージアブソーバ140、142には第1および第2の検出コイル部1、2のコア7、8の磁束を打消す方向の電流が多くなり、これによって、第1および第2の検出コイル部1、2のコア7、8の磁気飽和が低減され、図7に示されるように、第1および第2の検出コイル部1、2の出力波形が微分波のような歪み波形から方形波に近づいた波形になり、サージアブソーバ140、142が、第1および第2の検出コイル部1、2の出力波形の歪みを低減させる方向に作用することがわかる。   Reduction of magnetic saturation of the cores 7 and 8 by the surge absorbers 140 and 142 is performed as follows. As described above, the voltage induced in the first and second detection coil sections 1 and 2 from the fault current flowing in the overhead ground wire 6 is suppressed to a predetermined voltage by the surge absorbers 140 and 142, and the first and second In order to maintain the detection output from the detection coil units 1 and 2 at the above-mentioned predetermined voltage, the surge absorbers 140 and 142 cancel the magnetic fluxes of the cores 7 and 8 of the first and second detection coil units 1 and 2. The direction current increases, thereby reducing the magnetic saturation of the cores 7 and 8 of the first and second detection coil sections 1 and 2, and the first and second detection coils as shown in FIG. The output waveforms of the parts 1 and 2 become a waveform that approaches a square wave from a distorted waveform such as a differential wave, and the surge absorbers 140 and 142 cause distortion of the output waveforms of the first and second detection coil parts 1 and 2. Acting in the direction of reducing It can be seen.

架空地線6を流れる故障電流が更に増大して第1および第2の検出コイル部1、2のコア7、8が磁気飽和しても、I字状コア7とコイル9との間の非磁性の空芯部分、即ち、コイル9との間の非磁性のボビン10、I字状コア7の外周囲を囲う非磁性のゴム部材11、ゴム部材11とボビン10との間およびゴム部材11とI字状コア7との間の空間部12などによって構成された非磁性の空芯部分を磁束が貫き、空芯部分は磁気飽和しないので、図8および図9に示されるように、架空地線6を流れる故障電流が大きくなればなるほど空芯部分から歪みのない出力が増えて第1および第2の検出コイル部1、2の出力に重畳され、検出コイル部1、2の出力波形の歪みを改善して位相検出が可能になる。これにより本発明では、多大な故障電流が検出されて第1および第2の検出コイル部1、2のコア7、8の磁気飽和によって第1および第2の検出コイル部1、2の出力波形が歪んでも、故障電流の位相検出を行うことができる。   Even if the fault current flowing through the overhead ground wire 6 further increases and the cores 7 and 8 of the first and second detection coil units 1 and 2 are magnetically saturated, the non-contact between the I-shaped core 7 and the coil 9 is not achieved. Nonmagnetic bobbin 10 between the magnetic air core portion, that is, the coil 9, nonmagnetic rubber member 11 surrounding the outer periphery of the I-shaped core 7, between the rubber member 11 and the bobbin 10, and the rubber member 11 As shown in FIGS. 8 and 9, since the magnetic flux penetrates the non-magnetic air core portion formed by the space portion 12 between the I-shaped core 7 and the I-shaped core 7 and the air core portion is not magnetically saturated. As the fault current flowing through the ground wire 6 increases, the distortion-free output increases from the air core portion and is superimposed on the outputs of the first and second detection coil units 1 and 2, and the output waveforms of the detection coil units 1 and 2 The phase can be detected by improving the distortion. Thus, in the present invention, a large fault current is detected, and the output waveforms of the first and second detection coil units 1 and 2 are caused by the magnetic saturation of the cores 7 and 8 of the first and second detection coil units 1 and 2. Can be detected even if the current is distorted.

図10は架空地線6に流れる電流に直流成分が重畳した場合の地絡故障検出装置の動作波形図の一例を示す実験結果であり、(a)は直流成分が重畳した架空地線6を流れる電流を示し、(b)は直流成分が重畳した架空地線6の電流を検出した第1(第2)の検出コイル部1、2の出力波形を示し、(c)は定電流回路17の平滑コンデンサ170の電圧波形を示し、(d)は充電回路18の充電用コンデンサ181の電圧波形を示している。   FIG. 10 is an experimental result showing an example of an operation waveform diagram of the ground fault detector when a direct current component is superimposed on the current flowing in the overhead ground wire 6, and (a) shows an overhead ground wire 6 on which the direct current component is superimposed. (B) shows the output waveform of the 1st (2nd) detection coil part 1 and 2 which detected the electric current of the overhead ground wire 6 on which the DC component was superimposed, (c) shows the constant current circuit 17. The voltage waveform of the smoothing capacitor 170 is shown, and (d) shows the voltage waveform of the charging capacitor 181 of the charging circuit 18.

架空地線6を流れる電流が大きくなると、図10の(b)に示されるように、第1および第2の検出コイル部1、2のコア7、8が磁気飽和して第1および第2の検出コイル部1、2の出力波形が歪むこととなる。また、中性点が直接接地の超高圧送電線路では、故障電流の遮断タイミングによっては、故障電流に送電線路と大地との間のインダクタンスによる直流成分が重畳することがある。このとき、架空地線6に流れる故障電流は、図10の(a)に示されるように、0点を中心に変化しない電流波形となるため、コア7、8の磁気飽和によって検出コイル部1、2の出力波形は更に歪むことになる。しかしながら、コア7、8が磁気飽和しても、I字状コア7とコイル9との間の非磁性の空芯部分、即ち、コイル9との間の非磁性のボビン10、I字状コア7の外周囲を囲う非磁性のゴム部材11、ゴム部材11とボビン10との間およびゴム部材11とI字状コア7との間の空間部12によって構成された非磁性の空芯部分を磁束が貫くこととなる。これらの空芯部分は磁気飽和しないので、架空地線6を流れる故障電流が大きくなればなるほど空芯部分から歪みのない出力が増えて第1および第2の検出コイル部1、2の出力に重畳され、故障電流の波形の歪みを改善して位相検出が可能になる。これにより、本発明によれば、直流成分が重畳して第1および第2の検出コイル部1、2のコア7、8の磁気飽和によって第1および第2の検出コイル部1、2の出力波形が歪んでも、位相検出を行うことができる。なお、図10の(d)の時点Sは検出手段3の動作点である。   When the current flowing through the overhead ground wire 6 is increased, the cores 7 and 8 of the first and second detection coil units 1 and 2 are magnetically saturated as shown in FIG. The output waveforms of the detection coil units 1 and 2 are distorted. In addition, in an ultra-high-voltage transmission line whose neutral point is directly grounded, a DC component due to inductance between the transmission line and the ground may be superimposed on the failure current depending on the interruption timing of the failure current. At this time, as shown in FIG. 10A, the fault current flowing in the overhead ground wire 6 has a current waveform that does not change around the zero point. Therefore, the detection coil unit 1 is caused by the magnetic saturation of the cores 7 and 8. 2 will be further distorted. However, even if the cores 7 and 8 are magnetically saturated, the nonmagnetic air core part between the I-shaped core 7 and the coil 9, that is, the nonmagnetic bobbin 10 between the coil 9 and the I-shaped core. A nonmagnetic air core portion formed by a nonmagnetic rubber member 11 that surrounds the outer periphery of 7, a space portion 12 between the rubber member 11 and the bobbin 10, and between the rubber member 11 and the I-shaped core 7. Magnetic flux will penetrate. Since these air core portions are not magnetically saturated, as the fault current flowing through the overhead ground wire 6 increases, the output without distortion from the air core portion increases, and the outputs of the first and second detection coil units 1 and 2 are increased. The phase is detected by superimposing and improving the distortion of the waveform of the fault current. Thus, according to the present invention, the outputs of the first and second detection coil units 1 and 2 are superimposed by the magnetic saturation of the cores 7 and 8 of the first and second detection coil units 1 and 2 with the direct current component superimposed. Even if the waveform is distorted, phase detection can be performed. Note that time S in FIG. 10D is the operating point of the detection means 3.

本発明は、送電側の中性点が直接接地されている超高圧送電線路における送電鉄塔の地絡故障を検出する検出装置として有効に利用することができ、地絡故障時の多大な故障電流による回路の損傷を防止し、また、多大な故障電流の検出に伴う第1および第2の検出コイル部のコアの磁気飽和等に拘わらず故障電流の位相検出を行うことができ、超高圧送電線路の送電鉄塔の地絡故障を検出する検出装置として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used as a detection device for detecting a ground fault in a transmission tower in an ultra-high-voltage transmission line in which a neutral point on a power transmission side is directly grounded, and a large fault current at the time of a ground fault The circuit of the fault current can be prevented, and the phase detection of the fault current can be performed regardless of the magnetic saturation of the cores of the first and second detection coil sections accompanying the detection of a large fault current. The present invention can be used as a detection device for detecting a ground fault in a transmission tower on a track.

1 第1の検出コイル部
2 第2の検出コイル部
3 検出手段
5 送電鉄塔
6 架空地線
7 I字状コア
8 U字状コア
9 コイル
10 ボビン
11 ゴム部材
12 空間部
13 ギャップ
14 サージアブソーバ回路
15 位相検出回路
16 整流回路
17 定電流回路
18 充電回路
19 検出回路
140、142 サージアブソーバ
150、151 双方向ツェナーダイオード
DESCRIPTION OF SYMBOLS 1 1st detection coil part 2 2nd detection coil part 3 Detection means 5 Power transmission tower 6 Overhead ground wire 7 I-shaped core 8 U-shaped core 9 Coil 10 Bobbin 11 Rubber member 12 Space part 13 Gap 14 Surge absorber circuit DESCRIPTION OF SYMBOLS 15 Phase detection circuit 16 Rectifier circuit 17 Constant current circuit 18 Charging circuit 19 Detection circuit 140, 142 Surge absorber 150, 151 Bidirectional Zener diode

Claims (4)

中性点が直接接地された超高圧送電線路の架空地線に送電鉄塔を挟んで夫々取り付けられ、地絡時に前記架空地線に分流する故障電流を検出する第1および第2の検出コイル部と、
前記第1および第2の検出コイル部で検出された地絡時の故障電流の位相から地絡故障が発生した送電鉄塔を検出する検出手段とを備え、
前記検出手段が、前記第1および第2の検出コイル部の夫々の出力側に酸化亜鉛素子からなるサージアブソーバを並列に挿入して前記第1および第2の検出コイル部の出力を直接入力し、地絡時の故障電流の位相を検出するように構成され、前記サージアブソーバに前記検出コイル部からの出力を抑制する機能に加えて、前記第1および第2の検出コイル部の磁気飽和を低減する機能をもたせると共に、
前記第1および第2の検出コイル部が、コアとこのコアに巻回されたコイルとの間に非磁性の空芯部分を有するように構成され、
磁気飽和により前記第1および第2の検出コイル部の出力波形が歪んだ場合に、前記第1および第2の検出コイル部の前記非磁性の空芯部分による出力に基づいて地絡時の故障電流の歪みを改善し、位相検出が可能となるようにしたことを特徴とする地絡故障検出装置。
First and second detection coil portions that are respectively attached to an overhead ground wire of an ultra-high-voltage transmission line with a neutral point directly grounded with a transmission tower interposed therebetween and detect a fault current that is diverted to the overhead ground wire in the event of a ground fault When,
Detecting means for detecting a power transmission tower in which a ground fault has occurred from a phase of a fault current at the time of a ground fault detected by the first and second detection coil units;
The detection means inserts a surge absorber made of a zinc oxide element in parallel on the output side of each of the first and second detection coil units and directly inputs the outputs of the first and second detection coil units. In addition to the function of suppressing the output from the detection coil unit to the surge absorber, the magnetic saturation of the first and second detection coil units is detected. While having a function to reduce,
The first and second detection coil portions are configured to have a non-magnetic air core portion between a core and a coil wound around the core,
When the output waveforms of the first and second detection coil sections are distorted due to magnetic saturation, a fault at the time of a ground fault is based on the output from the nonmagnetic air core portion of the first and second detection coil sections. A ground fault detection apparatus characterized by improving current distortion and enabling phase detection.
前記検出手段が、
前記第1および第2の検出コイル部のコイルに並列に挿入された2つの前記サージアブソーバを含むサージアブソーバ回路と、
前記サージアブソーバ回路に並列に挿入された直列接続の2つの双方向ツェナーダイオードを含む位相検出回路と、
前記位相検出回路の出力を全波整流する整流回路とを含むことを特徴とする請求項1に記載の地絡故障検出装置。
The detection means is
A surge absorber circuit including two of the surge absorbers inserted in parallel to the coils of the first and second detection coil parts;
A phase detection circuit including two bidirectional Zener diodes connected in series inserted in parallel with the surge absorber circuit;
The ground fault detection device according to claim 1, further comprising: a rectifier circuit that full-wave rectifies the output of the phase detection circuit.
前記検出手段が、更に、
前記整流回路の全波整流出力を入力し、所定の定電流を与える定電流回路と、
前記定電流回路によって定電流充電される充電回路と、
前記充電回路の充電電圧が所定値以上になった場合に地絡故障を表す検出出力を与える検出回路とを有することを特徴とする請求項2に記載の地絡故障検出装置。
The detection means further comprises:
A constant current circuit for inputting a full-wave rectified output of the rectifier circuit and providing a predetermined constant current;
A charging circuit charged at a constant current by the constant current circuit;
The ground fault detection device according to claim 2, further comprising: a detection circuit that provides a detection output indicating a ground fault when a charging voltage of the charging circuit becomes equal to or higher than a predetermined value.
前記第1および第2の検出コイル部の前記コアに所定幅の磁気ギャップが形成されていることを特徴とする請求項1に記載の地絡故障検出装置。   The ground fault detection device according to claim 1, wherein a magnetic gap having a predetermined width is formed in the cores of the first and second detection coil portions.
JP2011242944A 2011-11-05 2011-11-05 Ground fault detection device Active JP5851207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011242944A JP5851207B2 (en) 2011-11-05 2011-11-05 Ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242944A JP5851207B2 (en) 2011-11-05 2011-11-05 Ground fault detection device

Publications (2)

Publication Number Publication Date
JP2013096961A true JP2013096961A (en) 2013-05-20
JP5851207B2 JP5851207B2 (en) 2016-02-03

Family

ID=48619016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242944A Active JP5851207B2 (en) 2011-11-05 2011-11-05 Ground fault detection device

Country Status (1)

Country Link
JP (1) JP5851207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459469A (en) * 2014-12-09 2015-03-25 国家电网公司 Fault detection technology for distribution circuit
CN110426601A (en) * 2019-08-22 2019-11-08 金华电力设计院有限公司 A kind of Fault Locating Method of earth-free photovoltaic system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746622A (en) * 1980-09-02 1982-03-17 Sumitomo Electric Industries Method and device for detecting flash accident iron tower
JPS5790171A (en) * 1980-11-27 1982-06-04 Sumitomo Electric Ind Ltd Dynamic current detector
JPH09115739A (en) * 1995-10-24 1997-05-02 Seikosha Co Ltd Electromagnetic device
JP2002082149A (en) * 2000-09-06 2002-03-22 Tdk Corp Element, and device for magnetic sensor and current sensor device
JP2008039549A (en) * 2006-08-04 2008-02-21 Chubu Electric Power Co Inc Ground-fault detector
JP2011166023A (en) * 2010-02-12 2011-08-25 Fuji Electric Co Ltd Inductor
JP2011181877A (en) * 2010-03-03 2011-09-15 M-System Co Ltd Lightning arrester

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746622A (en) * 1980-09-02 1982-03-17 Sumitomo Electric Industries Method and device for detecting flash accident iron tower
JPS5790171A (en) * 1980-11-27 1982-06-04 Sumitomo Electric Ind Ltd Dynamic current detector
JPH09115739A (en) * 1995-10-24 1997-05-02 Seikosha Co Ltd Electromagnetic device
JP2002082149A (en) * 2000-09-06 2002-03-22 Tdk Corp Element, and device for magnetic sensor and current sensor device
JP2008039549A (en) * 2006-08-04 2008-02-21 Chubu Electric Power Co Inc Ground-fault detector
JP2011166023A (en) * 2010-02-12 2011-08-25 Fuji Electric Co Ltd Inductor
JP2011181877A (en) * 2010-03-03 2011-09-15 M-System Co Ltd Lightning arrester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459469A (en) * 2014-12-09 2015-03-25 国家电网公司 Fault detection technology for distribution circuit
CN104459469B (en) * 2014-12-09 2017-09-12 国家电网公司 A kind of distribution line failure detection method
CN110426601A (en) * 2019-08-22 2019-11-08 金华电力设计院有限公司 A kind of Fault Locating Method of earth-free photovoltaic system

Also Published As

Publication number Publication date
JP5851207B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
US10008322B2 (en) Filter assembly and method
AU2013285296B2 (en) Differential protection device
CN109507520B (en) Transformer turn-to-turn fault detection method and device, storage medium and processor
CN202259980U (en) Plug with ground wire live protection mechanism
EP2977776A1 (en) Method and device for detecting a residual current in a charging cable and charging cable using said device
CN105518471A (en) Current sensor arrangement
EP2879152B1 (en) Relay welding detector, relay equipment incorporating the same, and relay welding detecting method
JP5851207B2 (en) Ground fault detection device
CN106856323B (en) Protection device for protecting transformer from influence of geomagnetic induction current
RU2549354C2 (en) Single-phase transformer winding failure protector
WO2014188662A1 (en) Coil structure
JP2013038047A (en) Earth leakage circuit breaker
JP2018072228A (en) Current detection device
KR101033699B1 (en) Circuit for preventing a earth leakage circuit breaker from miss-operating by high frequency
CN107871601B (en) Current transformer and direct current source based on same
CN103380566B (en) Power supply with AF panel and the method for operation power
JP2013526241A (en) Method for charging vehicle battery and structure of electrical conductor for charging vehicle battery
JP6701827B2 (en) Switching power supply
JP2013243890A (en) Contactless feeding apparatus
US9389619B2 (en) Transformer core flux control for power management
US10297383B2 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
RU2704127C1 (en) Device for protection of windings of single-phase transformer against electrical damages
US10325712B2 (en) Adjustable integrated combined common mode and differential mode three phase inductors with increased common mode inductance and methods of manufacture and use thereof
JP2014022526A (en) Transformer
JP7444706B2 (en) current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250