JP2013096790A - Method for detecting deterioration in lithium ion capacitor - Google Patents

Method for detecting deterioration in lithium ion capacitor Download PDF

Info

Publication number
JP2013096790A
JP2013096790A JP2011238705A JP2011238705A JP2013096790A JP 2013096790 A JP2013096790 A JP 2013096790A JP 2011238705 A JP2011238705 A JP 2011238705A JP 2011238705 A JP2011238705 A JP 2011238705A JP 2013096790 A JP2013096790 A JP 2013096790A
Authority
JP
Japan
Prior art keywords
lithium ion
ion capacitor
capacitance
deterioration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238705A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumura
祐宏 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011238705A priority Critical patent/JP2013096790A/en
Publication of JP2013096790A publication Critical patent/JP2013096790A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration detection method capable of quickly detecting deterioration compared with a method for detecting deterioration caused by high-rate discharge, on the basis of a change in a resistance value of a lithium ion capacitor.SOLUTION: The deterioration detection method includes steps of: calculating as a capacitance rate a ratio of an in-use capacitance value to an initial capacitance value in each of a first voltage area where a cell voltage of the lithium ion capacitor becomes 3 V or more during using the lithium ion capacitor and a second voltage area where the cell voltage of the lithium ion capacitor becomes less than 3 V; and comparing a difference value between the capacitance rate in the first voltage area and the capacitance rate in the second voltage area, with a preset threshold and detecting a timing when the deterioration of the lithium ion capacitor occurs.

Description

本発明は、リチウムイオンキャパシタの劣化検知方法であって、特に、リチウムイオンキャパシタのハイレート放電に伴って生じる劣化を検知する劣化検知方法に関する。   The present invention relates to a deterioration detection method for a lithium ion capacitor, and more particularly, to a deterioration detection method for detecting deterioration caused by high-rate discharge of a lithium ion capacitor.

環境問題がクローズアップされる中、ハイブリット自動車や燃料電池自動車等の開発が盛んに行われており、この開発に伴って、これら自動車の主電源ないし補助電源として搭載されるリチウムイオン電池の開発も行われている。   While environmental issues are being highlighted, hybrid vehicles and fuel cell vehicles are being actively developed, and along with this development, development of lithium-ion batteries to be used as the main power supply or auxiliary power supply for these vehicles is also underway. Has been done.

リチウムイオン電池は、該電池の容量に対して比較的大きな電流を流すことによって生じる、いわゆるハイレート放電が繰り返し行われると、該電池が劣化してしまうことから、このような劣化に対する対策を講じることが求められている。そこで、例えば、劣化を抑制する装置として、電池への充電電流値及び電池からの放電電流値を検出して記憶し、記憶した結果に基づいて、ハイレート放電に伴って生じる劣化の評価値を算出し、この算出した結果に基づいて、放電電力の値を制御する装置が知られている(特許文献1参照)。   Lithium-ion batteries are subject to deterioration when the so-called high-rate discharge, which is caused by flowing a relatively large current with respect to the capacity of the battery, is repeated. Is required. Therefore, for example, as a device that suppresses deterioration, the charging current value to the battery and the discharging current value from the battery are detected and stored, and an evaluation value of deterioration caused by high-rate discharge is calculated based on the stored result. And the apparatus which controls the value of discharge electric power based on this calculated result is known (refer to patent documents 1).

特開2010−60408号公報JP 2010-60408 A

近年、リチウムイオン電池と比べ、内部抵抗が小さく出力特性の点で優れるという理由から、リチウムイオンキャパシタの研究や開発が行われ始めている。リチウムイオンキャパシタは、一般に、正極活物質に活性炭、負極活物質にリチウムイオンを吸蔵または放出可能な炭素材が用いられており、正負極をセパレータを介して配置し、リチウム塩を含む電解液で浸潤した構成が採用されている。   In recent years, research and development of lithium ion capacitors have started to be performed because of their low internal resistance and superior output characteristics compared to lithium ion batteries. In general, a lithium ion capacitor uses activated carbon as a positive electrode active material and a carbon material capable of occluding or releasing lithium ions as a negative electrode active material. The positive and negative electrodes are arranged through a separator, and an electrolyte containing a lithium salt. An infiltrated configuration is adopted.

かかる構成を有するリチウムイオンキャパシタに対してハイレート放電が繰り返し行われると、電解液中のイオンが一方の電極から他方の電極に移動するため、電解液中におけるイオン濃度に偏りが生じ、電解液中の塩濃度のバランスが崩れる。電解液中の塩濃度のバランスが崩れると、電解液中の導電性が低下するため、電解液中のイオンが拡散し難くなり、結果として、リチウムイオンキャパシタの抵抗値が上昇してしまう。   When high-rate discharge is repeatedly performed on a lithium ion capacitor having such a configuration, ions in the electrolytic solution move from one electrode to the other electrode, resulting in a bias in ion concentration in the electrolytic solution, and in the electrolytic solution. The balance of salt concentration is lost. When the balance of the salt concentration in the electrolytic solution is lost, the conductivity in the electrolytic solution is reduced, so that ions in the electrolytic solution are difficult to diffuse, and as a result, the resistance value of the lithium ion capacitor is increased.

抵抗値が上昇すると、リチウムイオンキャパシタの電圧は、電解液の酸化/還元分解領域や、電極用のバインダの酸化/還元分解領域に到達してしまう可能性が高まるため、劣化の進行が加速する。しかも、電解液中のイオンが拡散し難くなると、電極の表面にイオンが到達できなくなり、静電容量の低下をも引き起こしてしまう。   When the resistance value increases, the voltage of the lithium ion capacitor is likely to reach the oxidation / reduction decomposition region of the electrolytic solution or the oxidation / reduction decomposition region of the binder for the electrode, so that the progress of deterioration accelerates. . In addition, if the ions in the electrolytic solution are difficult to diffuse, the ions cannot reach the surface of the electrode, causing a decrease in capacitance.

このように、ハイレート放電に伴って生じる劣化により、リチウムイオンキャパシタの寿命が短くなってしまうため、何らかの対策を講じる必要がある。上述した従来の技術のように、電圧降下の度合い、換言すれば抵抗上昇に基づいて劣化を検知することも可能である。しかしながら、急激な抵抗上昇が起きるリチウムイオンキャパシタの場合、抵抗上昇が起きてから劣化を検知するのではなく、より迅速な検知をすることが求められる。   As described above, since the life of the lithium ion capacitor is shortened due to the deterioration caused by the high rate discharge, it is necessary to take some measures. As in the conventional technique described above, it is also possible to detect deterioration based on the degree of voltage drop, in other words, resistance rise. However, in the case of a lithium ion capacitor in which a sudden increase in resistance occurs, it is required to detect more quickly rather than detecting deterioration after the increase in resistance occurs.

そこで本発明では、リチウムイオンキャパシタの抵抗値の変化に基づいてハイレート放電に伴って生じる劣化を検知する方法に比して、迅速に劣化を検知ことができるリチウムイオンキャパシタの劣化検知方法を提供することを目的とする。   Accordingly, the present invention provides a method for detecting deterioration of a lithium ion capacitor that can quickly detect deterioration as compared to a method for detecting deterioration caused by high-rate discharge based on a change in resistance value of the lithium ion capacitor. For the purpose.

上記課題を解決するために本発明に係るリチウムイオンキャパシタの劣化検知方法は、リチウムイオンキャパシタを使用中に、リチウムイオンキャパシタのセル電圧が3V以上となる第1電圧領域と、リチウムイオンキャパシタのセル電圧が3V未満となる第2電圧領域とのそれぞれにおいて、リチウムイオンキャパシタの使用中静電容量値を時系列的に算出する工程と、リチウムイオンキャパシタの使用前に、第1電圧領域と第2電圧領域とのそれぞれにおいて、リチウムイオンキャパシタの静電容量を初期静電容量値として取得する工程と、第1電圧領域と第2電圧領域とのそれぞれにおいて、初期静電容量値に対する使用中静電容量値の比を静電容量率として算出する工程と、第1電圧領域における静電容量率と第2電圧領域における静電容量率との差分値と、予め定められた閾値とを比較し、リチウムイオンキャパシタの劣化が発生するタイミングを検知する工程と、を有することを特徴とする。   In order to solve the above-described problems, a lithium ion capacitor deterioration detection method according to the present invention includes a first voltage region in which a cell voltage of the lithium ion capacitor is 3 V or more while the lithium ion capacitor is in use, In each of the second voltage regions in which the voltage is less than 3 V, a step of calculating the in-use capacitance value of the lithium ion capacitor in time series, and before using the lithium ion capacitor, the first voltage region and the second voltage region Obtaining a capacitance of the lithium ion capacitor as an initial capacitance value in each of the voltage regions, and in-use electrostatic capacity with respect to the initial capacitance value in each of the first voltage region and the second voltage region. A step of calculating a ratio of capacitance values as a capacitance ratio; and a capacitance ratio in the first voltage region and a second voltage region A difference value between the capacitance ratio, compared with the predetermined threshold value, characterized in that it and a step of detecting a timing at which the deterioration of the lithium ion capacitor is generated.

リチウムイオンキャパシタは、リチウムイオンキャパシタのセル電圧が3V以上となる第1電圧領域とリチウムイオンキャパシタのセル電圧が3V未満となる第2電圧領域とを境に、正極においてイオンの入れ替わりが生じるため、電解液中のイオン濃度に偏りが生じ、劣化が進行する。そこで、本発明におけるリチウムイオンキャパシタの劣化検知方法は、リチウムイオンキャパシタを使用中に、リチウムイオンキャパシタのセル電圧の3Vを境に、電解液中のイオン濃度の偏りに伴って減少していく静電容量値に着目し、第1電圧領域及び第2電圧領域において、リチウムイオンキャパシタの使用中における静電容量率を算出し、それらの差分値と予め定められた閾値とを比較し、リチウムイオンキャパシタの劣化が発生するタイミングの検知を可能としたものである。かかる差分値に基づく劣化検知方法は、リチウムイオンキャパシタの抵抗値の変化に基づく劣化検知方法に比して、リチウムイオンキャパシタの使用経過時間が比較的早い段階で劣化を検知できることが判明した。これにより、本発明における劣化検知方法は、リチウムイオンキャパシタの抵抗値の変化に基づく劣化検知方法に比して、迅速に劣化を検知できることを可能としている。   Since the lithium ion capacitor has a first voltage region in which the cell voltage of the lithium ion capacitor is 3 V or more and a second voltage region in which the cell voltage of the lithium ion capacitor is less than 3 V, ion exchange occurs at the positive electrode. The ion concentration in the electrolytic solution is biased and the deterioration proceeds. Therefore, the method for detecting deterioration of a lithium ion capacitor according to the present invention is a static ion that decreases with an uneven ion concentration in the electrolyte at the cell voltage of 3 V of the lithium ion capacitor as a boundary while using the lithium ion capacitor. Paying attention to the capacitance value, in the first voltage region and the second voltage region, the capacitance ratio during use of the lithium ion capacitor is calculated, the difference value thereof is compared with a predetermined threshold value, and the lithium ion It is possible to detect the timing at which deterioration of the capacitor occurs. It has been found that the deterioration detection method based on the difference value can detect the deterioration at a relatively early stage of the use time of the lithium ion capacitor as compared with the deterioration detection method based on the change in the resistance value of the lithium ion capacitor. As a result, the deterioration detection method according to the present invention can detect the deterioration more quickly than the deterioration detection method based on the change in the resistance value of the lithium ion capacitor.

本発明によれば、リチウムイオンキャパシタの抵抗値の変化に基づいてハイレート放電に伴って生じる劣化を検知する方法に比して、迅速に劣化を検知ことができる。   According to the present invention, it is possible to quickly detect deterioration as compared with a method of detecting deterioration caused by high-rate discharge based on a change in resistance value of a lithium ion capacitor.

本発明の一実施形態であるリチウムイオンキャパシタの単セルの外観を示す模式図である。It is a schematic diagram which shows the external appearance of the single cell of the lithium ion capacitor which is one Embodiment of this invention. 放充電を繰り返し行うサイクル試験時間において、静電容量値及びセル抵抗値を算出するための説明図である。It is explanatory drawing for calculating an electrostatic capacitance value and a cell resistance value in the cycle test time which repeatedly discharges / charges. 静電容量率とセル使用時間との関係を示すグラフである。It is a graph which shows the relationship between a capacitance rate and cell use time. 静電容量率の差分値とセル使用時間との関係を示すグラフである。It is a graph which shows the relationship between the difference value of an electrostatic capacitance rate, and cell use time. セル抵抗上昇率とセル使用時間との関係を示すグラフである。It is a graph which shows the relationship between a cell resistance increase rate and cell use time. 静電容量率の差分値に基づくグラフと、セル抵抗値に基づくグラフとを比較したグラフである。It is the graph which compared the graph based on the difference value of an electrostatic capacitance rate, and the graph based on a cell resistance value.

以下、添付図面を参照しながら本発明の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

図1は、本発明の一実施形態であるリチウムイオンキャパシタ1の単セル2の外観を示す模式図である。本実施形態のリチウムイオンキャパシタ1を構成する単セル(以下、単にセルという。)2は、外部取り出し電極3と本体4とから形成される。本体4は、正極、負極、セパレータ、電解液で構成されている(図示していない)。本実施形態で使用するリチウムイオンキャパシタ1は、幅W100mm、長さ100mm、奥行き5mmを有する角型セル、ラミネート型の電極構造、及び、100Fの静電容量を有する。また、本実施形態のリチウムイオンキャパシタ1は、正極には活性炭、負極にはリチウムイオンをプレドープした炭素材を使用し、電解液にはリチウム塩を有機溶媒に溶解した有機系電解液を使用する。   FIG. 1 is a schematic diagram showing an appearance of a single cell 2 of a lithium ion capacitor 1 according to an embodiment of the present invention. A single cell (hereinafter simply referred to as a cell) 2 constituting the lithium ion capacitor 1 of the present embodiment is formed of an external extraction electrode 3 and a main body 4. The main body 4 is composed of a positive electrode, a negative electrode, a separator, and an electrolytic solution (not shown). The lithium ion capacitor 1 used in the present embodiment has a square cell having a width W of 100 mm, a length of 100 mm, and a depth of 5 mm, a laminate-type electrode structure, and a capacitance of 100F. The lithium ion capacitor 1 of the present embodiment uses activated carbon for the positive electrode, a carbon material pre-doped with lithium ions for the negative electrode, and an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent. .

ここで、リチウムイオンキャパシタ1は、セル電圧Vが3Vを境にして、正極側では2種類のイオンが使用される。セル電圧Vが3V以上の領域A1(図2に図示)では、正極でアニオンが使用され、セル電圧Vが3V未満の領域A2(図2に図示)では、正極でリチウムイオンが使用される。このように、リチウムイオンキャパシタ1は、セル電圧Vが3Vを境に、正極においてイオンの入れ替わりが生じるため、電解液中のイオン濃度に偏りが生じ、劣化が進行する。   Here, in the lithium ion capacitor 1, two types of ions are used on the positive electrode side with the cell voltage V being 3V as a boundary. In the region A1 (shown in FIG. 2) where the cell voltage V is 3V or more, anions are used at the positive electrode, and in the region A2 (shown in FIG. 2) where the cell voltage V is less than 3V, lithium ions are used at the positive electrode. Thus, in the lithium ion capacitor 1, since the exchange of ions occurs at the positive electrode with the cell voltage V of 3V as a boundary, the ion concentration in the electrolytic solution is biased and the deterioration proceeds.

そこで、本実施形態のリチウムイオンキャパシタ1の劣化検知方法は、リチウムイオンキャパシタ1を使用中に、セル電圧Vが3Vを境に電解液中のイオン濃度の偏りに伴って減少していく静電容量値に着目し、3Vの前後領域において、使用中における静電容量率を時系列的に算出し、それらの差分値に基づいて劣化を検知するものである。リチウムイオンキャパシタ1を使用中に、3V以上の領域における静電容量値C1及びその静電容量率R1と、3V未満の領域における静電容量値C2及びその静電容量率R2とに基づいて、劣化が発生するタイミングを検知する。   Therefore, in the method for detecting deterioration of the lithium ion capacitor 1 according to the present embodiment, while the lithium ion capacitor 1 is being used, the cell voltage V decreases with the deviation of the ion concentration in the electrolyte at 3V. Focusing on the capacitance value, the capacitance ratio during use is calculated in time series in the region around 3V, and the deterioration is detected based on the difference value between them. While using the lithium ion capacitor 1, based on the capacitance value C1 and its capacitance ratio R1 in the region of 3V or more, and the capacitance value C2 and its capacitance rate R2 in the region of less than 3V, Detect the timing of deterioration.

具体的には、まず、本実施形態のリチウムイオンキャパシタ1を用いて放充電のサイクル試験を行い、サイクル試験中において、リチウムイオンキャパシタ1の使用中における、3V以上の領域A1での静電容量値C1と、3V未満の領域A2での静電容量値C2とをそれぞれ算出する。   Specifically, first, a charge / discharge cycle test is performed using the lithium ion capacitor 1 of the present embodiment, and the electrostatic capacity in the region A1 of 3 V or more during use of the lithium ion capacitor 1 during the cycle test. A value C1 and a capacitance value C2 in the region A2 of less than 3V are calculated.

セル電圧Vが3V以上の領域A1での静電容量値C1、3V未満の領域A2での静電容量値C2は、それぞれ、次式で示される。
C1=(Δt1/ΔV1)×A’
C2=(Δt2/ΔV2)×A’
図2に示すように、Δt1,Δt2はセルを使用している使用時間、ΔV1はΔt1時間での電圧降下値、ΔV2はΔt2時間での電圧降下値、A’はセルに流れる平均電流を示す。
The capacitance value C1 in the region A1 where the cell voltage V is 3V or more, and the capacitance value C2 in the region A2 where the cell voltage V is less than 3V are respectively expressed by the following equations.
C1 = (Δt1 / ΔV1) × A ′
C2 = (Δt2 / ΔV2) × A ′
As shown in FIG. 2, Δt1 and Δt2 are the usage time during which the cell is used, ΔV1 is a voltage drop value at Δt1 time, ΔV2 is a voltage drop value at Δt2 time, and A ′ is an average current flowing through the cell. .

次に、3V以上の領域A1での静電容量率R1と、3V未満の領域A2での静電容量率R2とを、それぞれ次式より求める。各領域A1,A2での静電容量率R1,R2は、使用中の静電容量値C1,C2が、取得した初期静電容量値C10,C20に対してどのくらいの静電容量を維持しているかという指標を示すものである。したがって、これらの静電容量率R1,R2が低ければ劣化の度合いが高いことを示す。
R1=C1/C10
R2=C2/C20
C10は、3V以上の領域A1における初期静電容量値であり、C20は、3V未満の領域A2における初期静電容量値である。
Next, the capacitance ratio R1 in the region A1 of 3V or more and the capacitance ratio R2 in the region A2 of less than 3V are obtained from the following equations, respectively. The capacitance ratios R1 and R2 in each of the areas A1 and A2 indicate how much the capacitance values C1 and C2 in use are maintained with respect to the acquired initial capacitance values C10 and C20. It shows the index of whether or not. Therefore, when these capacitance ratios R1 and R2 are low, the degree of deterioration is high.
R1 = C1 / C10
R2 = C2 / C20
C10 is an initial capacitance value in the region A1 of 3V or more, and C20 is an initial capacitance value in the region A2 of less than 3V.

このようにして求めた静電容量率R1,R2とセル使用時間tとの関係を示したグラフG1,G2を図3に示す。グラフG1は、静電容量率R1とセル使用時間tとの関係を示し、グラフG2は、静電容量率R2とセル使用時間tとの関係を示している。セル使用時間tが経過していくほど、静電容量率R1,R2が低下していくことが示されていることから、3V以上の領域A1と3V未満の領域A2とにおいて、それぞれの静電容量が減少していくことが確認され得る。   FIG. 3 shows graphs G1 and G2 showing the relationship between the capacitance ratios R1 and R2 thus determined and the cell usage time t. The graph G1 shows the relationship between the capacitance rate R1 and the cell usage time t, and the graph G2 shows the relationship between the capacitance rate R2 and the cell usage time t. It is shown that the capacitance ratios R1 and R2 decrease as the cell use time t elapses. Therefore, in each of the regions A1 of 3 V or more and the regions A2 of less than 3 V, the respective electrostatic capacitances R1 and R2 are reduced. It can be confirmed that the capacity is decreasing.

次に、3V以上の領域A1での静電容量率R1と3V未満の領域A2での静電容量率R2との差分を算出する。算出した差分による絶対値D(D=|R1−R2|,以下、単に差分値Dという。)とセル使用時間tとの関係を示したグラフG3を図4に示す。   Next, the difference between the capacitance rate R1 in the region A1 of 3V or more and the capacitance rate R2 in the region A2 of less than 3V is calculated. FIG. 4 shows a graph G3 showing the relationship between the absolute value D (D = | R1-R2 |, hereinafter simply referred to as difference value D) and the cell usage time t based on the calculated difference.

このグラフG3によれば、セル使用時間tが60時間以上経過の場合に差分値Dが急激に上昇していることから、電解液中のイオン濃度に大きな偏りが生じ始めていることが確認され得る。この結果により、セル使用時間tが60時間経過した場合の差分値Dを閾値Tとして設定することができる。   According to this graph G3, when the cell use time t is 60 hours or more, since the difference value D is rapidly increased, it can be confirmed that a large deviation in the ion concentration in the electrolytic solution has begun to occur. . As a result, the difference value D when the cell usage time t has passed 60 hours can be set as the threshold value T.

そして、3V以上の領域A1での静電容量率R1と、3V未満の領域A2での静電容量率R2との差分値Dが閾値Tを超えたとき(|R1−R2|>T)に、リチウムイオンキャパシタのハイレート放電に伴う劣化が生じている、と検知することができる。   When the difference value D between the capacitance ratio R1 in the region A1 of 3V or more and the capacitance ratio R2 in the region A2 of less than 3V exceeds the threshold T (| R1-R2 |> T). Therefore, it can be detected that deterioration due to high-rate discharge of the lithium ion capacitor has occurred.

かかる劣化の検知方法は、リチウムイオンキャパシタの劣化が発生するタイミングを、セル抵抗が上昇することで劣化を検知するよりも早く検知することができる。   Such a detection method of deterioration can detect the timing at which the deterioration of the lithium ion capacitor occurs earlier than detecting the deterioration by increasing the cell resistance.

ここで、セル抵抗値Rは、図2に示すように、次式により算出することができる。
R=ΔVr/A
ΔVrは、セル2の上限電圧の初期値Vmaxからセルの上限電圧の実測値Vxを引いた電圧降下値であり、Aはセル2に流れる電流値である。
Here, as shown in FIG. 2, the cell resistance value R can be calculated by the following equation.
R = ΔVr / A
ΔVr is a voltage drop value obtained by subtracting the measured value Vx of the upper limit voltage of the cell from the initial value Vmax of the upper limit voltage of the cell 2, and A is the current value flowing through the cell 2.

セル抵抗値Rは、セル使用時間tの経過に応じて適宜算出し、セル抵抗の初期値に対する上昇率rを算出する。そうして算出されたセル抵抗の上昇率rとセル使用時間tとの関係を示したグラフG4を図5に示す。   The cell resistance value R is appropriately calculated according to the passage of the cell usage time t, and the rate of increase r with respect to the initial value of the cell resistance is calculated. FIG. 5 shows a graph G4 showing the relationship between the cell resistance increase rate r thus calculated and the cell usage time t.

このグラフG4によれば、セル使用時間tが85時間以上経過した場合に、セル抵抗の上昇率rが急激に上昇していることから、電解液中のイオン濃度に大きな偏りが生じ始めていることが確認され得る。   According to this graph G4, when the cell usage time t has passed 85 hours or more, the cell resistance increase rate r has increased rapidly, so that a large deviation in ion concentration in the electrolytic solution has begun to occur. Can be confirmed.

図6に示すように、差分値Dとセル使用時間tとの関係を示したグラフと、セル抵抗の上昇率rとセル使用時間tとの関係を示したグラフとを重ね合わせて、両者を比較してみると、差分値Dに基づいて劣化を検知する方がセル抵抗の上昇率の変化に基づいて劣化を検知するよりも前に劣化を検知することができる、ということが確認できる。   As shown in FIG. 6, the graph showing the relationship between the difference value D and the cell usage time t and the graph showing the relationship between the cell resistance increase rate r and the cell usage time t are superimposed, In comparison, it can be confirmed that the detection of the deterioration based on the difference value D can detect the deterioration before the detection of the deterioration based on the change in the increase rate of the cell resistance.

1 リチウムイオンキャパシタ
2 セル
3 取り出し電極
4 本体
A1 3V以上の領域(第1電圧領域)
A2 3V未満の領域(第2電圧領域)
C1 3V以上の領域での使用中静電容量値
C10 3V以上の領域での初期静電容量値
C2 3V未満の領域での使用中静電容量値
C20 3V未満の領域での初期静電容量値
R1 3V以上の領域における静電容量率
R2 3V未満の領域における静電容量率
G1 静電容量率R1に基づくグラフ
G2 静電容量率R2に基づくグラフ
G3 差分値に基づくグラフ
G4 セル抵抗の上昇率に基づくグラフ
D 差分値(差分の絶対値)
T 閾値
V セル電圧
DESCRIPTION OF SYMBOLS 1 Lithium ion capacitor 2 Cell 3 Extraction electrode 4 Main body A1 3V or more area | region (1st voltage area)
A2 Area below 3V (second voltage area)
C1 In-use capacitance value in the region of 3V or more C10 Initial capacitance value in the region of 3V or more C2 In-use capacitance value in the region of less than 3V C20 Initial capacitance value in the region of less than 3V R1 Capacitance rate in the region of 3V or more R2 Capacitance rate in the region of less than 3V G1 Graph based on the capacitance rate R1 G2 Graph based on the capacitance rate R2 G3 Graph based on the difference value G4 Increase rate of the cell resistance Graph based on D D Difference value (absolute value of difference)
T threshold V cell voltage

Claims (1)

リチウムイオンキャパシタの劣化を検知する劣化検知方法であって、
前記リチウムイオンキャパシタを使用中に、前記リチウムイオンキャパシタのセル電圧が3V以上となる第1電圧領域と、前記リチウムイオンキャパシタのセル電圧が3V未満となる第2電圧領域とのそれぞれにおいて、前記リチウムイオンキャパシタの使用中静電容量値を時系列的に算出する工程と、
前記リチウムイオンキャパシタの使用前に、前記第1電圧領域と前記第2電圧領域とのそれぞれにおいて、前記リチウムイオンキャパシタの静電容量値を初期静電容量値として取得する工程と、
前記第1電圧領域と前記第2電圧領域とのそれぞれにおいて、前記初期静電容量値に対する前記使用中静電容量値の比を静電容量率として算出する工程と、
前記第1電圧領域における前記静電容量率と前記第2電圧領域における前記静電容量率との差分値と、予め定められた閾値とを比較し、前記リチウムイオンキャパシタの劣化が発生するタイミングを検知する工程と、
を有する、リチウムイオンキャパシタの劣化検知方法。
A deterioration detection method for detecting deterioration of a lithium ion capacitor,
While using the lithium ion capacitor, in each of the first voltage region in which the cell voltage of the lithium ion capacitor is 3 V or more and the second voltage region in which the cell voltage of the lithium ion capacitor is less than 3 V, Calculating the capacitance value of the ion capacitor during use in time series;
Obtaining a capacitance value of the lithium ion capacitor as an initial capacitance value in each of the first voltage region and the second voltage region before using the lithium ion capacitor;
Calculating a ratio of the in-use capacitance value to the initial capacitance value as a capacitance ratio in each of the first voltage region and the second voltage region;
The difference value between the capacitance ratio in the first voltage region and the capacitance ratio in the second voltage region is compared with a predetermined threshold, and the timing at which the deterioration of the lithium ion capacitor occurs is determined. Detecting process;
A method for detecting deterioration of a lithium ion capacitor.
JP2011238705A 2011-10-31 2011-10-31 Method for detecting deterioration in lithium ion capacitor Pending JP2013096790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238705A JP2013096790A (en) 2011-10-31 2011-10-31 Method for detecting deterioration in lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238705A JP2013096790A (en) 2011-10-31 2011-10-31 Method for detecting deterioration in lithium ion capacitor

Publications (1)

Publication Number Publication Date
JP2013096790A true JP2013096790A (en) 2013-05-20

Family

ID=48618883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238705A Pending JP2013096790A (en) 2011-10-31 2011-10-31 Method for detecting deterioration in lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP2013096790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093777A (en) * 2016-05-27 2016-11-09 宁德时代新能源科技股份有限公司 Detection method for lithium separation of lithium ion battery
JP2019145268A (en) * 2018-02-19 2019-08-29 旭化成株式会社 Capacity deterioration rate estimation method and capacity deterioration rate estimation device, system of nonaqueous lithium type power storage component
CN110609188A (en) * 2019-09-25 2019-12-24 潍柴动力股份有限公司 Method, device and equipment for detecting aging of oil quantity metering unit
CN113567771A (en) * 2020-04-29 2021-10-29 南通江海储能技术有限公司 Echelon screening method for lithium ion capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093777A (en) * 2016-05-27 2016-11-09 宁德时代新能源科技股份有限公司 Detection method for lithium separation of lithium ion battery
CN106093777B (en) * 2016-05-27 2018-11-23 宁德时代新能源科技股份有限公司 Detection method for lithium separation of lithium ion battery
JP2019145268A (en) * 2018-02-19 2019-08-29 旭化成株式会社 Capacity deterioration rate estimation method and capacity deterioration rate estimation device, system of nonaqueous lithium type power storage component
JP7096008B2 (en) 2018-02-19 2022-07-05 旭化成株式会社 Capacity deterioration rate estimation method for non-aqueous lithium-type power storage elements, capacity deterioration rate estimation device, and system
CN110609188A (en) * 2019-09-25 2019-12-24 潍柴动力股份有限公司 Method, device and equipment for detecting aging of oil quantity metering unit
CN113567771A (en) * 2020-04-29 2021-10-29 南通江海储能技术有限公司 Echelon screening method for lithium ion capacitor

Similar Documents

Publication Publication Date Title
Abdel-Monem et al. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries
Burke et al. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications
Xia et al. Fluorinated electrolyte for 4.5 V Li (Ni0. 4Mn0. 4Co0. 2) O2/graphite Li-ion cells
TW201727990A (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
US20150226811A1 (en) Apparatus and method for estimating internal resistance of battery pack
US11843272B2 (en) Electronic device and method for improving battery cycling performance
JP6176505B2 (en) Battery system
JP5930342B2 (en) Secondary battery short circuit inspection method
WO2013121466A1 (en) Cell system and method for evaluating degradation
JP2012085452A (en) Control device for lithium ion battery
JP7043944B2 (en) Power storage device
KR102117316B1 (en) Device for Estimating Usable Capacity of Secondary Battery by Using CC/CV Ratio
JP2016515195A (en) Method and system for estimating the total capacity of a lithium battery system and the capacity of individual electrodes
JP2012003863A (en) Method and device for detecting lithium dendrite precipitation
JP2013171691A (en) Power storage system
CN111024008B (en) Method and device for detecting dislocation size of laminated energy storage device
JP2014002009A (en) Method of inspecting secondary battery
JP2013096790A (en) Method for detecting deterioration in lithium ion capacitor
WO2014133009A1 (en) Storage battery, storage battery control method, control device, and control method
JP6797438B2 (en) Battery charging method and battery charging device
JP2017511566A (en) How to determine battery temperature
CN105785270B (en) A kind of battery pack string energy state traffic coverage measurement method
JP4954791B2 (en) Voltage prediction method for power storage devices
JP2016070902A (en) Electricity storage module, deterioration determination device of the same, and deterioration determination method of the same
Reema et al. Comparative analysis of CC-CV/CC charging and charge redistribution in supercapacitors