JP2013094893A - Surface coated tool excellent in oxidation resistance and wear resistance - Google Patents

Surface coated tool excellent in oxidation resistance and wear resistance Download PDF

Info

Publication number
JP2013094893A
JP2013094893A JP2011239217A JP2011239217A JP2013094893A JP 2013094893 A JP2013094893 A JP 2013094893A JP 2011239217 A JP2011239217 A JP 2011239217A JP 2011239217 A JP2011239217 A JP 2011239217A JP 2013094893 A JP2013094893 A JP 2013094893A
Authority
JP
Japan
Prior art keywords
drill
layer
region
coated
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239217A
Other languages
Japanese (ja)
Other versions
JP5861983B2 (en
Inventor
Koichi Tanaka
耕一 田中
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011239217A priority Critical patent/JP5861983B2/en
Publication of JP2013094893A publication Critical patent/JP2013094893A/en
Application granted granted Critical
Publication of JP5861983B2 publication Critical patent/JP5861983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated drill keeping high wear resistance over a long period of time even under wet and high-speed drilling conditions for a deep hole.SOLUTION: The surface-coated drill is obtained by forming a hard coating layer which includes a (Ti-Al)(N-O) component system as a particle size composition control layer and has a 0.3-5.0 μm thickness directly on a drill base including a cemented carbide sintered compact or high-speed steel or on an outermost surface thereof while interposing an intermediate layer therebetween and satisfies the following conditions. The condition (a) is that Al content ratio x in a film cross section of the particle size composition control layer of a margin part of the drill exists within the range of 0.1-0.6, and a layered high Ti content area in which x is not more than 0.2 and a layered high Al content area in which x is not less than 0.3 exist. The condition (b) is that the aspect ratios A of crystalline grains in the high Ti content area are within 1-5. The condition (c) is that the aspect ratios B of crystalline grains in the high Al content area are 10-70.

Description

本発明は、表面被覆工具に関し、さらに詳しくは、ドリル本体の先端部外周に切屑排出溝が形成されるとともに、この切屑排出溝のドリル回転方向を向く内周面の先端に切刃が設けられ、主として炭素鋼(S55C)よりなる加工物に乾式高速切削または湿式穴明け加工をするのに用いられる長期間に亘りすぐれた耐酸化性と耐摩耗性を維持する表面被覆切削工具および表面被覆ドリルに関するものである。   The present invention relates to a surface-coated tool, and more specifically, a chip discharge groove is formed on the outer periphery of the tip of the drill body, and a cutting edge is provided at the tip of the inner peripheral surface of the chip discharge groove facing the drill rotation direction. A surface-coated cutting tool and a surface-coated drill that maintain excellent oxidation resistance and wear resistance over a long period of time, which are used for dry high-speed cutting or wet drilling of workpieces mainly made of carbon steel (S55C) It is about.

このようなドリルとしては、軸線を中心として該軸線回りにドリル回転方向に回転される概略円柱状のドリル本体の先端側が切刃部とされ、この切刃部の外周に一対の切屑排出溝が、軸線に関して互いに対称となるように、該切刃部の先端面、すなわちドリル本体の先端逃げ面から後端側に向かうに従い軸線回りにドリル回転方向の後方側に捩れる螺旋状に形成され、これらの切屑排出溝の内周面のうちドリル回転方向を向く部分の先端側の前記先端逃げ面との交差稜線部に切刃が形成された、いわゆる2枚刃のソリッドドリルが知られている。従って、このようなソリッドドリルでは、前記切屑排出溝内周面のドリル回転方向を向く部分の先端側がこの切刃のすくい面となり、切刃によって生成された切屑は、このすくい面から切屑排出溝の内周面を摺接しつつ、該切屑排出溝の捩れによって後端側に送り出されて排出されることとなる。そして、さらにこのようなドリルでは、ドリル本体の耐摩耗性の向上のために種々の方法が採用されている。   As such a drill, the tip side of a substantially cylindrical drill body rotated about the axis in the rotation direction of the drill is a cutting blade portion, and a pair of chip discharge grooves are formed on the outer periphery of the cutting blade portion. In order to be symmetrical with respect to the axis, the tip of the cutting edge, that is, a spiral that twists toward the rear side in the drill rotation direction around the axis as it goes from the tip flank of the drill body toward the rear end, A so-called two-blade solid drill is known in which a cutting edge is formed at an intersecting ridge line portion with the tip flank on the tip side of the inner circumferential surface of these chip discharge grooves facing the rotation direction of the drill. . Therefore, in such a solid drill, the tip side of the inner peripheral surface of the chip discharge groove facing the drill rotation direction is the rake face of the cutting blade, and the chips generated by the cutting blade are transferred from the rake face to the chip discharge groove. While being in sliding contact with the inner peripheral surface of the metal, it is sent to the rear end side by the twist of the chip discharge groove and discharged. Further, in such a drill, various methods are employed for improving the wear resistance of the drill body.

例えば、特許文献1においては、厚さ方向にAl最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点からAl最低含有点、前記Al最低含有点からAl最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有する硬質被覆層を形成することによって、耐摩耗性を向上させた表面被覆ドリルが開示されている。   For example, in Patent Document 1, an Al highest content point (Ti lowest content point) and an Al lowest content point (Ti highest content point) are alternately present at predetermined intervals in the thickness direction, and the Al highest content point is present. By forming a hard coating layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the content point to the Al minimum content point and from the Al minimum content point to the Al maximum content point, wear resistance is improved. An improved surface coated drill is disclosed.

また、特許文献2においては、硬質被膜を切刃の外周端から後端側に向けて切刃の外径Dに対して3×D以内の長さMの範囲までに被覆したことによって、切屑詰りの発生を防いで折損等の生じることのない表面被覆ドリルが開示されている。   Further, in Patent Document 2, the hard coating is coated from the outer peripheral end of the cutting blade toward the rear end side to a length M within 3 × D with respect to the outer diameter D of the cutting blade. A surface-coated drill that prevents clogging and does not break or break is disclosed.

また、特許文献3においては、切屑排出溝の内周面には硬質被膜を被覆した後にポリッシュ加工を施したことによって、切屑詰りの発生を防いで折損等の生じることのない表面被覆ドリルが開示されている。   Patent Document 3 discloses a surface-coated drill that prevents the occurrence of chip clogging and does not cause breakage or the like by applying a polishing process after coating the inner peripheral surface of the chip discharge groove with a hard coating. Has been.

また、特許文献4においては、基材表面に最外層と内層とからなる被覆層を備え、最外層は、窒化アルミニウム又は炭窒化アルミニウムからなり、最外層中に塩素を0超0.5原子%以下含有することによって、すぐれた潤滑性を有して使用寿命が長い表面被覆ドリルが開示されている。   Further, in Patent Document 4, a coating layer comprising an outermost layer and an inner layer is provided on the surface of the substrate, the outermost layer is made of aluminum nitride or aluminum carbonitride, and chlorine is contained in the outermost layer in an amount of more than 0 and 0.5 atomic%. A surface-coated drill having excellent lubricity and a long service life is disclosed by containing the following.

また、特許文献5においては、最表層がCrOy(原子比で0.3≦y≦1.5)で構成され、その膜厚が0.01〜2.0μmである硬質被覆層を備えたことにより耐凝着性又は耐溶着性を向上させた表面被覆ドリルが開示されている。   Moreover, in patent document 5, the outermost layer was comprised by CrOy (atomic ratio 0.3 <= y <= 1.5), and the film thickness was provided with the hard coating layer which is 0.01-2.0 micrometers. Discloses a surface-coated drill with improved adhesion resistance or welding resistance.

また、特許文献6においては、工具基体の表面に、0.8〜5.0μmの層厚のCrとAlの複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、該硬質被覆層は、CrとAlの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.1〜2μmの層厚を有し、さらに、前記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、前記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具、および前記CrとAlの複合窒化物は、組成式:(Cr1−XAl)Nで表した場合に、0.55≦X≦0.75(但し、Xは原子比)を満足することを特徴とする表面被覆工具が開示されている。 Further, in Patent Document 6, in a surface-coated cutting tool in which a hard coating layer made of a composite nitride of Cr and Al having a layer thickness of 0.8 to 5.0 μm is deposited on the surface of a tool base, The coating layer is configured as an alternately laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Cr and Al and a thin layer B composed of a columnar crystal structure, and each of the thin layer A and the thin layer B is 0.1 The average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal grain size of the columnar crystals constituting the thin layer B is 50 to 500 nm. When the surface-coated cutting tool and the composite nitride of Cr and Al are expressed by a composition formula: (Cr 1−X Al X ) N, 0.55 ≦ X ≦ 0.75 ( However, a surface-coated tool characterized by satisfying X is an atomic ratio) It is shown.

特開2003−326402号公報JP 2003-326402 A 特開2003−275909号公報JP 2003-275909 A 特開2003−275910号公報JP 2003-275910 A 特開2005−297144号公報JP 2005-297144 A 特開平8−132310号公報JP-A-8-132310 特開2010−94744号公報JP 2010-94744 A

近年のドリル加工装置のFA化はめざましく、加えてドリル加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の深穴用ドリル加工が要求される傾向にあるが、前記従来表面被覆ドリルにおいては、各種の鋼や鋳鉄を通常条件下でドリル加工した場合に特段の問題は生じないが、潤滑性とともに耐酸化性と耐摩耗性が必要とされるとともに切屑がドリルの切屑排出溝につまり易い湿式高速の深穴用ドリル加工に用いた場合には、切屑排出溝に切屑がつまり易く、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a dramatic increase in the use of FA for drilling equipment, and in addition, there is a strong demand for labor saving, energy saving, cost reduction, and efficiency for drilling. Although there is a tendency to require drilling, the conventional surface-coated drill does not cause any particular problems when various types of steel and cast iron are drilled under normal conditions. When it is used for wet high-speed deep hole drilling, where wear is required and chips are easily clogged into the drill chip discharge groove, chips are easily clogged in the chip discharge groove, which causes a relatively short period of time. At present, the service life is reached.

そこで、本発明者らは、前述のような観点から、湿式高速の深穴用ドリル加工に用いられた場合にも長期間に亘りすぐれた潤滑性と耐摩耗性を維持する表面被覆ドリルを提供すべく、ドリルの最表面層に粒径組成制御層として(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層が存在する表面被覆ドリルの粒径組成制御層の構造に着目し鋭意研究を行った結果、次のような知見を得た。 In view of the above, the present inventors provide a surface-coated drill that maintains excellent lubricity and wear resistance over a long period of time even when used in wet high-speed deep hole drilling. Therefore, a hard coating layer having a layer thickness of 0.3 to 5.0 μm made of a component system of (Ti 1-x Al x ) (N 1-y O y ) is provided on the outermost surface layer of the drill as a particle size composition control layer. As a result of earnest research focusing on the structure of the particle size composition control layer of the existing surface-coated drill, the following findings were obtained.

(a)粒径組成制御層の膜断面でのAlの含有割合xが、xの値が0.1から0.6の範囲に存在し、xの値が0.2以下となる層状のTi高含有領域とxの値が0.3以上となる層状のAl高含有領域が、前記粒径組成制御層の中に各々少なくとも一層以上含まれ、かつ
(b)Ti高含有領域における結晶粒のアスペクト比Aが1〜5であり、
(c)Al高含有領域における結晶粒のアスペクト比Bが10〜70であり、かつ、
(d)酸素含有割合yが0〜0.08の間に存在し、かつ、
(e)前記Al高含有領域におけるyの最小値が0.04〜0.08であり、かつ、前記Ti高含有領域におけるyの最大値が0.03未満である場合、このような硬質被覆層を備えた表面被覆ドリルは、従来の表面被覆ドリルに比して、湿式高速の深穴加工において、すぐれた潤滑性と耐摩耗性を示すことを見出した。
また、中間層として、Ti、Al、Crの中から選ばれる1種類または2種類の元素の炭化物、窒化物、炭窒化物からなる層厚0.5〜2.0μmの硬質被膜層を備える場合には、ドリル深穴加工において、力学的負荷が高くまた同時に高い潤滑性、耐摩耗性が要求される場合であっても、長期に亘り高い潤滑性と耐摩耗性を維持することを見出した。
さらに、Ti高含有領域の厚みXTiが30〜200nmの範囲に存在し、かつ、Al高含有領域の厚みXAlが30〜200nmの範囲に存在し、かつ、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少するという構成を併せ持つことにより、すぐれた潤滑性を維持したまま耐酸化性および耐摩耗性が一層向上することを見出した。
(A) Layered Ti in which the Al content ratio x in the film cross section of the particle size composition control layer is in the range of x to 0.1 to 0.6, and x is 0.2 or less The high content region and the layered Al high content region where the value of x is 0.3 or more are each included in the grain size composition control layer, and (b) the crystal grains in the Ti high content region Aspect ratio A is 1-5,
(C) The aspect ratio B of the crystal grains in the high Al content region is 10 to 70, and
(D) the oxygen content ratio y is present between 0 and 0.08, and
(E) When the minimum value of y in the high Al content region is 0.04 to 0.08 and the maximum value of y in the high Ti content region is less than 0.03, such hard coating It has been found that a surface-coated drill with a layer exhibits superior lubricity and wear resistance in wet high-speed deep hole drilling compared to conventional surface-coated drills.
When the intermediate layer is provided with a hard coating layer having a layer thickness of 0.5 to 2.0 μm made of carbide, nitride, carbonitride of one or two elements selected from Ti, Al, and Cr Has found that in drilling deep holes, high lubricity and wear resistance can be maintained over a long period of time even when high mechanical load and high lubricity and wear resistance are required at the same time. .
Further, the thickness X Ti of Ti-rich region is present in the range of 30 to 200 nm, and the thickness X Al of Al-rich region is present in the range of 30 to 200 nm, and X Ti in the drill margin portion, A configuration in which X Al gradually increases in the region from the drill tip to the distance of 5 times the outer diameter of the drill, and X Al in the drill margin gradually decreases in the region from the drill tip to the distance of 5 times the outer diameter of the drill. It has been found that the combination of the two further improves oxidation resistance and wear resistance while maintaining excellent lubricity.

前述したような硬質被覆層は、図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体を装着し、工具基体温度を400〜430℃とした状態で、中間層として、
蒸発源1:金属Tiまたは金属Cr、
蒸発源1に対するプラズマガン放電電力:10kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:8kW、
反応ガス流入口1および2の反応ガス流量:窒素(N)ガス 100sccm
プラズマガン用放電ガス:アルゴン(Ar)ガス それぞれ40sccm、
工具基体に印加する直流バイアス電圧:−30V、
という条件のもと表2に示される特定の中間層の形成を行い、更に、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:8〜12kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:8〜9kW、
工具基体位置が蒸発源1近傍の時の反応ガス流入口1および2の反応ガス流量:窒素(N)ガス 100sccm、酸素(O)ガス 0sccm
工具基体位置が蒸発源2近傍の時の反応ガス流入口1の反応ガス流量:窒素(N)ガス 100sccm、
工具基体位置が蒸発源2近傍の時の反応ガス流入口2の反応ガス流量:窒素(N)ガス 80〜85sccm、酸素(O)ガス 5〜9sccm
プラズマガン用放電ガス:アルゴン(Ar)ガス それぞれ40sccm、
工具基体に印加する直流バイアス電圧:−15〜−12V、
という特定の条件下で成膜を行うことで作製することができ、この結果形成された硬質被覆層を備えた表面被覆ドリルは、従来の表面被覆ドリルに比して、湿式高速の深穴加工において、潤滑性を維持したまますぐれた耐酸化性と耐摩耗性を示すことを見出した。更に、上記の条件に加えて、工具基体の先端を回転中心に向けた方法で固定して、回転軸をハース積載面の法線から35〜55度傾けて回転させ、回転速度が、Tiのハースに最も接近する位置に最大、Alのハースに最も接近する位置で最小となる、三角波形状の速度制御パターンとし、Alのハースに近づいているときのみ酸素ガスを流入させることで、よりすぐれた潤滑特性および耐摩耗特性を示すことを見出した。
さらに、前記知見は、ドリルのみに限らず、他の切削工具、例えば、エンドミルにおいても適用可能であることも確認できた。
The hard coating layer as described above has a drill base mounted on an ion plating apparatus using a pressure gradient type Ar plasma gun, which is a kind of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. In the state of 400 to 430 ° C., as an intermediate layer,
Evaporation source 1: metal Ti or metal Cr,
Plasma gun discharge power for the evaporation source 1: 10 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 8 kW,
Reaction gas flow rate at reaction gas inlets 1 and 2: Nitrogen (N 2 ) gas 100 sccm
Plasma gun discharge gas: Argon (Ar) gas 40 sccm each,
DC bias voltage applied to the tool base: -30V,
The specific intermediate layer shown in Table 2 was formed under the conditions
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 8-12 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 8-9 kW,
Reaction gas flow rates at the reaction gas inlets 1 and 2 when the tool base is near the evaporation source 1: nitrogen (N 2 ) gas 100 sccm, oxygen (O 2 ) gas 0 sccm
Reaction gas flow rate at the reaction gas inlet 1 when the tool base is in the vicinity of the evaporation source 2: nitrogen (N 2 ) gas 100 sccm,
Reaction gas flow rate at the reaction gas inlet 2 when the tool base is near the evaporation source 2: Nitrogen (N 2 ) gas 80 to 85 sccm, Oxygen (O 2 ) gas 5 to 9 sccm
Plasma gun discharge gas: Argon (Ar) gas 40 sccm each,
DC bias voltage applied to the tool base: -15 to -12V,
The surface-coated drill with a hard coating layer formed as a result of this process can be manufactured by performing film formation under the specified conditions. The present inventors have found that excellent oxidation resistance and wear resistance are exhibited while maintaining lubricity. Further, in addition to the above conditions, the tip of the tool base is fixed by a method directed to the rotation center, the rotation shaft is rotated at an angle of 35 to 55 degrees from the normal of the hearth loading surface, and the rotation speed is Ti. Triangular wave-shaped speed control pattern that is maximum at a position closest to Hearth and minimum at a position closest to Hearth of Al, and oxygen gas is flowed only when approaching Hearth of Al, which is superior It has been found that it exhibits lubrication and wear resistance properties.
Furthermore, it has also been confirmed that the above knowledge is applicable not only to drills but also to other cutting tools such as end mills.

本発明は、前記知見に基づいてなされたものであって、
「(1) 超硬合金焼結体あるいは高速度鋼からなる工具基体の上に、直接または中間層を介し、最表面に粒径組成制御層として(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層が存在する表面被覆工具において、
(a)前記粒径組成制御層のAlの含有割合xの値が、
0.1以上0.6以下の範囲であり、xの値が0.2以下となる層状のTi高含有量域と、xの値が0.3以上となる層状のAl高含有量域が、前記粒径組成制御層の中に各々少なくとも一層以上含まれ、かつ、
(b)前記Ti高含有領域における結晶粒のアスペクト比Aが、1〜5であり、かつ、
(c)前記Al高含有領域における結晶粒のアスペクト比Bが、10〜70であり、かつ、
(d)酸素含有割合yが0〜0.08の間に存在し、かつ、
(e)前記Al高含有領域におけるyの最小値が0.04〜0.08であり、かつ、前記Ti高含有領域におけるyの最大値が0.03未満であることを特徴とする長期に亘り高い潤滑性と耐摩耗性を維持する表面被覆工具。
(2) 前記Ti高含有領域の厚みXTiが、30〜200nmの範囲に存在し、かつ、前記Al高含有領域の厚みXAlが、30〜200nmの範囲に存在することを特徴とする(1)に記載の表面被覆工具。
(3) 前記中間層が、Ti、Al、Crの中から選ばれる1種類または2種類の元素の炭化物、窒化物、炭窒化物からなる層厚0.5〜2.0μmの硬質被膜層であることを特徴とする(1)または(2)に記載の表面被覆工具。
(4) 前記工具基体がドリル基体であって、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少することを特徴とする(1)乃至(3)のいずれかに記載の表面被覆ドリル。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) (Ti 1−x Al x ) (N 1− ) as a particle size composition control layer on the outermost surface directly or via an intermediate layer on a tool base made of cemented carbide sintered body or high speed steel. In the surface coating tool in which a hard coating layer having a layer thickness of 0.3 to 5.0 μm composed of a component system of y O y ) exists,
(A) The value of the Al content ratio x in the particle size composition control layer is
A range of 0.1 to 0.6, and a layered high Ti content region in which the value of x is 0.2 or less, and a layered high Al content region in which the value of x is 0.3 or more , At least one layer in each of the particle size composition control layers, and
(B) The aspect ratio A of the crystal grains in the high Ti content region is 1 to 5, and
(C) The aspect ratio B of the crystal grains in the high Al content region is 10 to 70, and
(D) the oxygen content ratio y is present between 0 and 0.08, and
(E) The minimum value of y in the high Al content region is 0.04 to 0.08, and the maximum value of y in the high Ti content region is less than 0.03. A surface-coated tool that maintains high lubricity and wear resistance.
(2) The thickness XTi of the Ti- rich region is in the range of 30 to 200 nm, and the thickness XAl of the Al- rich region is in the range of 30 to 200 nm ( The surface-coated tool according to 1).
(3) The intermediate layer is a hard coating layer having a layer thickness of 0.5 to 2.0 μm made of carbide, nitride, or carbonitride of one or two kinds of elements selected from Ti, Al, and Cr. The surface-coated tool according to (1) or (2), characterized in that it exists.
(4) The tool base is a drill base, and X Ti in the drill margin portion gradually increases over a region from the tip of the drill to a distance five times the outer diameter of the drill, and X Al in the drill margin portion is The surface-coated drill according to any one of (1) to (3), wherein the surface-coated drill gradually decreases over a region from the drill tip to a distance of 5 times the outer diameter of the drill. "
It has the characteristics.

本発明について、以下に説明する。   The present invention will be described below.

本発明の表面被覆工具の工具基体の上に、直接または、中間層を介して、(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層を形成する。ここで、硬質被膜層の層厚が0.3μm未満では、所望の耐摩耗性が維持できず、一方、5.0μmを超えると皮膜のチッピングなどが生じる。したがって、硬質被覆層の層厚は0.3〜5.0μmと定めた。
また、硬質被覆層の組成(Ti1−xAl)(N1−y)において、Alの含有割合xの値が、0.1未満ではAlの耐摩耗性が十分でなく、0.6を超えると六方晶組織へと変化するためNaCl型結晶が持つ強度を維持できない。したがって、Alの含有割合xの値は0.1〜0.6と定めた。
また、硬質被覆層の組成(Ti1−xAl)(N1−y)において、酸素の含有割合yの値が、0.08を超えると、切削加工中に脆弱なTi酸化物の形成が促され皮膜の強度を維持できない。したがって、酸素の含有割合yの値は0〜0.08と定めた。また、Al高含有領域における酸素含有割合yの値が0.04未満であると安定なAl酸化物の形成を促すことが出来ず、また、Ti高含有領域におけるyの値が0.03以上であると、脆性なTi酸化物の形成が促され強度が低下するため、Al高含有領域における酸素含有割合yの値を0.04〜0.08、Ti高含有領域における酸素含有割合yの値を0.03未満と定めた。
On the tool base of the surface-coated tool of the present invention, a layer thickness of 0.3 to 5 comprising a component system of (Ti 1-x Al x ) (N 1-y O y ) directly or via an intermediate layer A hard coating layer of 0.0 μm is formed. Here, when the layer thickness of the hard coating layer is less than 0.3 μm, desired wear resistance cannot be maintained, while when it exceeds 5.0 μm, chipping of the coating occurs. Therefore, the layer thickness of the hard coating layer is determined to be 0.3 to 5.0 μm.
In the composition of the hard coating layer (Ti 1-x Al x ) (N 1-y O y ), if the value of the Al content ratio x is less than 0.1, the wear resistance of Al is not sufficient, and 0 If it exceeds .6, it changes to a hexagonal structure, so the strength of the NaCl-type crystal cannot be maintained. Therefore, the value of the Al content ratio x was set to 0.1 to 0.6.
Further, in the composition of the hard coating layer (Ti 1-x Al x ) (N 1-y O y ), if the value of the oxygen content ratio y exceeds 0.08, the brittle Ti oxide during cutting Formation of the film is promoted and the strength of the film cannot be maintained. Therefore, the value of the oxygen content ratio y is set to 0 to 0.08. Further, when the value of the oxygen content ratio y in the high Al content region is less than 0.04, it is not possible to promote the formation of a stable Al oxide, and the y value in the high Ti content region is 0.03 or more. In this case, since the formation of brittle Ti oxide is promoted and the strength is lowered, the value of the oxygen content ratio y in the high Al content region is 0.04 to 0.08, and the oxygen content ratio y in the Ti high content region is The value was determined to be less than 0.03.

また、Ti高含有領域における結晶粒のアスペクト比Aの値は、5を超えると粒状組織が持つ安定的な切削性能が実現できない。一方、アスペクト比Aの値は、長辺を短辺で除した値であるため、1未満にはならない。したがって、アスペクト比Aの値は、1〜5と定めた。
また、Al高含有領域における結晶粒のアスペクト比Bの値は、10未満では、柱状組織が持つ耐摩耗性が実現できない。一方、アスペクト比Bの値は、70を超えるとせん断力に対する抗折力が維持できない。したがって、アスペクト比Bの値は、10〜70と定めた。
なお、本発明でいう「アスペクト比」とは、個々の結晶粒の測定された最大径を示す線分である長辺の値を、長辺に対して垂直方向の最小径を示す短辺の値で除した値である。
Further, if the aspect ratio A of the crystal grains in the Ti-rich region exceeds 5, the stable cutting performance of the granular structure cannot be realized. On the other hand, the value of the aspect ratio A is a value obtained by dividing the long side by the short side, and therefore does not become less than 1. Accordingly, the value of the aspect ratio A is set to 1 to 5.
Further, if the value of the aspect ratio B of the crystal grains in the high Al content region is less than 10, the wear resistance of the columnar structure cannot be realized. On the other hand, if the value of aspect ratio B exceeds 70, the bending strength against shearing force cannot be maintained. Therefore, the value of the aspect ratio B is set to 10 to 70.
The “aspect ratio” as used in the present invention refers to the value of the long side, which is a line segment indicating the measured maximum diameter of each crystal grain, and the value of the short side indicating the minimum diameter in the direction perpendicular to the long side. The value divided by the value.

中間層の層厚が0.5μm以下では皮膜の耐摩耗性が十分でないばかりか、剥離の起点となりうる界面が増加するのみであるため工具の耐欠損性が向上せず、また、中間層の層厚が2.0μmを超えると、残留応力によるチッピングが生じやすくなるため工具の耐摩耗性が向上しない。したがって、中間層の層厚は0.5〜2.0μmと定めた。 When the thickness of the intermediate layer is 0.5 μm or less, not only the wear resistance of the film is not sufficient, but also the interface that can be the starting point of peeling is not increased, so the fracture resistance of the tool is not improved. When the layer thickness exceeds 2.0 μm, chipping due to residual stress is likely to occur, so the wear resistance of the tool is not improved. Therefore, the layer thickness of the intermediate layer is set to 0.5 to 2.0 μm.

Ti高含有領域の厚みXTiおよびAl高含有領域の厚みXAlの値は、30nmを下回るとそれぞれが持つ潤滑特性および耐酸化性、耐摩耗性が発揮できない。一方、XTiが200nmを超えると、Al高含有領域に比べて耐摩耗性の劣るTi高含有領域の割合が相対的に大きくなり、Ti高含有領域中での破壊が生じやすくなるために所望の工具性能を維持できず、また、XAlが200nmを超えると、Al高含有領域に導入された圧縮応力の積算値が大きくなりすぎ、皮膜のチッピングの原因となる。したがって、XTiおよびXAlの値は、30〜200nmと定めた。
さらに、工具基体がドリル基体である場合、すなわち、表面被覆工具が表面被覆ドリルである場合、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少するように構成することにより、湿式高速の深穴用ドリル加工条件においても、長期間に亘り高い耐摩耗性を維持するものである。
ここで、「ドリル先端から、ドリル外径の5倍の距離までの領域」とは、ドリルの中心軸と平行にドリル切れ刃部先端を起点に後方すなわちシャンクの方向へ計測して、ドリルの中心軸に垂直な平面内の最大直径の5倍の長さまでの領域をいう。
また、同一の測定領域に、膜厚方向に複数のTi高含有領域、あるいは複数のAl高含有領域が存在する場合は、それぞれの平均値をXTi、XAlとする。
When the value of the thickness X Ti of the Ti- rich region and the thickness X Al of the Ti- rich region is less than 30 nm, the respective lubricant properties, oxidation resistance, and wear resistance cannot be exhibited. On the other hand, when X Ti exceeds 200 nm, the ratio of the Ti high content region inferior in wear resistance as compared with the Al high content region is relatively large, and the destruction in the Ti high content region is likely to occur. It can not be maintained for tool performance, and if X Al exceeds 200 nm, the integrated value of the compressive stress introduced in the Al-rich region becomes too large, causing chipping of the coating. Therefore, the value of X Ti and X Al was determined to be 30 to 200 nm.
Further, when the tool base is a drill base, that is, when the surface-coated tool is a surface-coated drill, X Ti in the drill margin gradually increases over a region from the drill tip to a distance of 5 times the drill outer diameter. In addition, X Al in the drill margin portion is configured to gradually decrease over a region from the drill tip to a distance of 5 times the outer diameter of the drill. Thus, high wear resistance is maintained.
Here, “region from the tip of the drill to a distance of 5 times the outer diameter of the drill” is measured in the direction of the shank backward, that is, in the direction of the shank, starting from the tip of the drill cutting edge parallel to the center axis of the drill. An area up to five times the maximum diameter in a plane perpendicular to the central axis.
Moreover, when there are a plurality of Ti-rich regions or a plurality of Al-rich regions in the film thickness direction in the same measurement region, the average values are X Ti and X Al , respectively.

本発明の表面被覆工具は、超硬合金焼結体あるいは高速度鋼からなる工具基体の上に、直接または中間層を介し、最表面に粒径組成制御層として(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層が存在する表面被覆工具において、(a)粒径組成制御層の膜断面でのAlの含有割合xの値が、0.1以上0.6以下の範囲に存在し、xの値が0.2以下となる層状のTi高含有領域と、xの値が0.3以上となる層状のAl高含有領域が存在し、かつ、(b)前記Ti高含有領域における結晶粒のアスペクト比Aが、1〜5であり、かつ、(c)前記Al高含有領域における結晶粒のアスペクト比Bが、10〜70であることによって、長期に亘り高い潤滑特性、耐チッピング性および耐酸化性、耐摩耗性を維持する表面被覆工具に特徴を有するものである。
さらに、Ti高含有領域の厚みXTiが、30〜200nmの範囲に存在し、かつ、Al高含有領域の厚みXAlが、30〜200nmの範囲に存在するときに、耐酸化性と耐摩耗性をより一層向上させることができる。
また、工具基体がドリル基体である場合、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少するように形成することによって、耐摩耗性をより一層向上させることができる。
すなわち、一般的な深穴加工において、力学的負荷が高くまた同時に高い耐熱性が要求される先端部においては、高いAl含有割合を有するAl高含有領域をTi高含有領域に対して大きい割合で、柱状組織にて構成することにより、長期に亘り高い耐摩耗性を維持する。一方、力学的負荷よりも滑り特性や安定的な摩耗形態が要求される切屑排出溝やドリル後方のマージン部においては、TiNのもつ潤滑特性をさらに生かすために高いTi含有割合を有するTi高含有領域を、アスペクト比の低い粒状組織で構成することにより、最低限の耐摩耗性を維持したまま長期に亘り高い潤滑特性を維持することができる。また同時に、それらの領域が膜厚方向に層状に積層されていることで、主として柱状組織で構成されるAl高含有領域において発生した膜厚方向へ進展するクラックの進展方向がTi高含有領域の微細粒状組織により分散され、皮膜の耐衝撃性を向上させることが出来る。
さらに、XTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、XAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少することで、耐摩耗性が要求される先端部近傍から、潤滑特性が要求される工具後方にかけて、両者の効果をバランスよく発現し、更にこと工具寿命を延長することが出来る。
さらに、本発明によれば、膜厚方向へ組成比率とアスペクト比が連続的に変化する、あるいは、ドリル軸方向へXAl、XTiが漸次変化することで、ブラスト後処理やマスキングによる、不連続的に処理がなされた従来技術よりもきわめて安定的な切削を実現し、長寿命化を実現するものである。一般的な製造方法によれば、Alの含有割合xを変化させたとしても、粒状組織・柱状組織はAlの含有割合xにより被支配的に変化するものではないが、本製法によれば、基板回転機構およびTi蒸発源、Al蒸発源を極めて特異な配置とし、特定の成膜速度分布および、TiイオンやAlイオンの密度分布を実現することで、本発明の表面被覆ドリルを制御可能な状態で製造することが出来るものである。
The surface-coated tool of the present invention has a particle size composition control layer (Ti 1-x Al x ) on the outermost surface directly or via an intermediate layer on a tool base made of cemented carbide sintered body or high-speed steel. In a surface-coated tool having a hard coating layer having a layer thickness of 0.3 to 5.0 μm composed of a component system of (N 1-y O y ), (a) Al content in the film section of the particle size composition control layer The ratio x is present in the range of 0.1 to 0.6, and the layered Ti-rich region where the value of x is 0.2 or less, and the layered value of x is 0.3 or more (B) the aspect ratio A of the crystal grains in the high Ti content area is 1 to 5; and (c) the aspect ratio B of the crystal grains in the high Al content area. Is 10 to 70, so that it has high lubricating properties, chipping resistance and acid resistance over a long period of time. It is characterized by a surface-coated tool that maintains its chemical resistance and wear resistance.
Furthermore, when the thickness XTi of the Ti- rich region is in the range of 30 to 200 nm and the thickness XAl of the Al- rich region is in the range of 30 to 200 nm, the oxidation resistance and wear resistance The property can be further improved.
Also, if the tool substrate is a drill base, X Ti in the drill margin portion is gradually increased toward the area from the drill tip to five times the distance of the drill outer diameter, and, X Al in the drill margin portion, the drill tip The wear resistance can be further improved by forming so as to gradually decrease over a range from a distance of 5 to the outer diameter of the drill.
That is, in general deep hole processing, at the tip portion where mechanical load is high and high heat resistance is required at the same time, a high Al content region having a high Al content ratio is larger than a Ti high content region. By configuring with a columnar structure, high wear resistance is maintained over a long period of time. On the other hand, in the chip discharge groove and the margin part behind the drill where slip characteristics and stable wear form are required rather than mechanical load, high Ti content with a high Ti content ratio to further utilize the lubricating properties of TiN By configuring the region with a granular structure having a low aspect ratio, it is possible to maintain high lubrication characteristics over a long period while maintaining a minimum wear resistance. At the same time, by laminating these regions in the film thickness direction, the progress direction of cracks that progress in the film thickness direction generated in the Al-rich region mainly composed of a columnar structure is the Ti-rich region. Dispersed by the fine granular structure, the impact resistance of the film can be improved.
Furthermore, X Ti gradually increases from the drill tip to the region 5 times the outer diameter of the drill, and X Al gradually decreases from the drill tip to the region five times the outer diameter of the drill. From the vicinity of the tip where wear resistance is required to the rear of the tool where lubrication characteristics are required, the effects of both can be expressed in a balanced manner, and the tool life can be extended.
Furthermore, according to the present invention, the composition ratio and the aspect ratio change continuously in the film thickness direction, or X Al and X Ti gradually change in the drill axis direction. It achieves extremely stable cutting and longer life than the conventional technology that is continuously processed. According to a general production method, even if the Al content ratio x is changed, the granular structure / columnar structure does not change dominantly depending on the Al content ratio x. The surface-coated drill of the present invention can be controlled by arranging the substrate rotation mechanism, the Ti evaporation source, and the Al evaporation source in a very unique arrangement and realizing a specific film formation speed distribution and a density distribution of Ti ions and Al ions. It can be manufactured in a state.

本発明の表面被覆工具の硬質被覆層(粒径組成制御層)を蒸着形成するための圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の平面概略図を示す。The plane schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun for carrying out vapor deposition formation of the hard coating layer (particle size composition control layer) of the surface coating tool of the present invention is shown. 本発明の表面被覆工具の硬質被覆層(粒径組成制御層)の断面模式図を示す。The cross-sectional schematic diagram of the hard coating layer (particle size composition control layer) of the surface coating tool of this invention is shown. 従来被覆工具を蒸着形成するためのアークイオンプレーティング装置の平面外略図を表す。1 represents a schematic out-of-plane view of an arc ion plating apparatus for forming a conventional coated tool by vapor deposition.

つぎに、本発明の表面被覆工具を実施例により具体的に説明する。   Next, the surface-coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×80mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製のドリル基体D−1〜D−4と、同じく前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが6mm×48mmの寸法、並びにねじれ角30度、先端R3mmの2枚刃形状をもったWC基超硬合金製のエンドミル基体E−1〜E−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 1 is added to the compounding composition shown in FIG. 1, and a wax is further added, followed by ball mill mixing in acetone for 24 hours, drying under reduced pressure, and then press-molding into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round tool sintered body for forming the tool base is formed, and further, the diameter x length of the groove forming part is 10 mm x 80 mm and the helix angle is 30 degrees by grinding from the round bar sintered body. A WC-based cemented carbide drill with a two-blade shape From the bases D-1 to D-4 and the same round bar sintered body, the diameter of the groove forming part × length is 6 mm × 48 mm, the twist angle is 30 degrees, and the tip is 3 mm 2 by grinding. End mill substrates E-1 to E-4 made of a WC-base cemented carbide having a single-blade shape were produced.

ついで、これらのドリル基体D−1〜D−4およびエンドミル基体E−1〜E−4の切刃に、ホーニングを施し、ドリル基体D−1〜D−4とエンドミル基体E−1〜E−4をアセトン中で超音波洗浄し、乾燥した状態で、図1の概略図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、工具基体温度を400〜430℃とした状態で、中間層として、
蒸発源1:金属Tiまたは金属Cr、
蒸発源1に対するプラズマガン放電電力:10kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:8kW、
反応ガス流入口1および2の反応ガス流量:窒素(N)ガス 100sccm
プラズマガン用放電ガス:アルゴン(Ar)ガス それぞれ40sccm、
工具基体に印加する直流バイアス電圧:−30V、
という条件のもと表2に示される特定の中間層の形成を行い、更に、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:8〜12kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:8〜9kW、
工具基体位置が蒸発源1近傍の時の反応ガス流入口1および2の反応ガス流量:窒素(N)ガス 100sccm、酸素(O)ガス 0sccm
工具基体位置が蒸発源2近傍の時の反応ガス流入口1の反応ガス流量:窒素(N)ガス 100sccm、
工具基体位置が蒸発源2近傍の時の反応ガス流入口2の反応ガス流量:窒素(N)ガス 80〜85sccm、酸素(O)ガス 5〜9sccm
プラズマガン用放電ガス:アルゴン(Ar)ガス それぞれ40sccm、
工具基体に印加する直流バイアス電圧:−15〜−12V、
という表2に示される特定の条件下で成膜を行った。更に、前記の条件に加えて、ドリル基体の先端を回転中心に向けた方法で固定して、回転軸をハース積載面の法線から35〜55度傾けて回転させ、回転速度が、Tiのハースに最も接近する位置に最大、Alのハースに最も接近する位置で最小となる、三角波形状の速度制御パターンとし、Alのハースに近づいているときのみ酸素ガスを流入させる状態で反応性蒸着をして、表2に示される組成および表4、5に示される目標平均膜厚、平均アスペクト比を有する粒径組成制御層を形成した本発明表面被覆ドリル1〜30並びに表2に示される組成および表7に示される目標平均膜厚、平均アスペクト比を有する粒径組成制御層を形成した本発明表面被覆エンドミル1〜4をそれぞれ製造した。
Next, honing is applied to the cutting edges of these drill bases D-1 to D-4 and end mill bases E-1 to E-4, and drill bases D-1 to D-4 and end mill bases E-1 to E- 4 is ultrasonically cleaned in acetone and dried, and is attached to an ion plating apparatus using a pressure gradient type Ar plasma gun which is one of physical vapor deposition apparatuses shown in the schematic diagram of FIG. With the temperature set at 400 to 430 ° C., as an intermediate layer,
Evaporation source 1: metal Ti or metal Cr,
Plasma gun discharge power for the evaporation source 1: 10 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 8 kW,
Reaction gas flow rate at reaction gas inlets 1 and 2: Nitrogen (N 2 ) gas 100 sccm
Plasma gun discharge gas: Argon (Ar) gas 40 sccm each,
DC bias voltage applied to the tool base: -30V,
The specific intermediate layer shown in Table 2 was formed under the conditions
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 8-12 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 8-9 kW,
Reaction gas flow rates at the reaction gas inlets 1 and 2 when the tool base is near the evaporation source 1: nitrogen (N 2 ) gas 100 sccm, oxygen (O 2 ) gas 0 sccm
Reaction gas flow rate at the reaction gas inlet 1 when the tool base is in the vicinity of the evaporation source 2: nitrogen (N 2 ) gas 100 sccm,
Reaction gas flow rate at the reaction gas inlet 2 when the tool base is near the evaporation source 2: Nitrogen (N 2 ) gas 80 to 85 sccm, Oxygen (O 2 ) gas 5 to 9 sccm
Plasma gun discharge gas: Argon (Ar) gas 40 sccm each,
DC bias voltage applied to the tool base: -15 to -12V,
Film formation was performed under the specific conditions shown in Table 2. Further, in addition to the above-mentioned conditions, the tip of the drill base is fixed by a method directed to the rotation center, the rotation shaft is rotated at an angle of 35 to 55 degrees from the normal of the hearth loading surface, and the rotation speed is Ti. It is a triangular wave-shaped speed control pattern that is maximum at a position closest to Hearth and minimum at a position closest to Hearth of Al. Reactive deposition is performed with oxygen gas flowing only when approaching Hearth of Al. The present invention surface-coated drills 1 to 30 having the composition shown in Table 2 and the target particle thickness and average aspect ratio shown in Tables 4 and 5, and the composition shown in Table 2 were formed. And the surface covering end mills 1 to 4 of the present invention in which the particle size composition control layer having the target average film thickness and the average aspect ratio shown in Table 7 were formed, respectively.

また、比較の目的で、前記ドリル基体D−1〜D−4とエンドミル基体E−1〜E−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、
図3に示される、Ti−Al合金をターゲットとして取り付けたアークイオンプレーティング装置内にドリル基体を垂直方向に固定した状態で保持し自転させると同時に、該鉛直方向の軸を回転中心軸として公転させながら、工具基体温度を410〜430℃とした状態で、
ターゲット3:Ti−Al合金またはCr-Al合金
ターゲット3に対するアーク放電電流:130A、
チャンバー内のガス圧力:6Pa、
窒素(N)ガス割合:100%、
工具基体に印加する直流バイアス電圧:−50V、
という条件のもと表2に示される特定の中間層の形成を行い、更に、
ターゲット1:Ti−Al合金、
ターゲット1に対するアーク放電電流:50〜130A、
ターゲット2:Ti−Al合金、
ターゲット2に対するアーク放電電流:50〜110A、
チャンバー内のガス圧力:5〜8Pa、
うち、酸素(O)ガス割合:5〜10%、
窒素(N)ガス割合:残り
工具基体に印加する直流バイアス電圧:−25V、
という表3に示される特定の条件のもと、従来被覆層を蒸着形成して、ドリル基体D−1〜D−4の表面に、表3に示される組成、および、表6に示されるアスペクト比、平均膜厚を有する従来層を形成した比較表面被覆ドリル1〜8並びに表3に示される組成および表7に示される目標平均膜厚、平均アスペクト比を有する粒径組成制御層を形成した比較表面被覆エンドミル1〜4をそれぞれ製造した。
For the purpose of comparison, the surfaces of the drill bases D-1 to D-4 and the end mill bases E-1 to E-4 are subjected to honing, ultrasonically cleaned in acetone, and dried.
As shown in FIG. 3, the drill base is held and rotated in an arc ion plating apparatus attached with a Ti—Al alloy as a target while rotating in the vertical direction, and at the same time, the vertical axis is used as a rotation center axis. In the state where the tool base temperature is 410 to 430 ° C.,
Target 3: Ti—Al alloy or Cr—Al alloy Arc discharge current for target 3: 130 A,
Gas pressure in the chamber: 6 Pa,
Nitrogen (N 2 ) gas ratio: 100%,
DC bias voltage applied to the tool base: -50V,
The specific intermediate layer shown in Table 2 was formed under the conditions
Target 1: Ti-Al alloy,
Arc discharge current for target 1: 50-130A,
Target 2: Ti-Al alloy,
Arc discharge current for target 2: 50-110A,
Gas pressure in the chamber: 5-8 Pa,
Among them, oxygen (O 2 ) gas ratio: 5 to 10%,
Nitrogen (N 2 ) gas ratio: DC bias voltage applied to the remaining tool base: −25V,
Under the specific conditions shown in Table 3, the conventional coating layer is formed by vapor deposition, and the composition shown in Table 3 and the aspect shown in Table 6 are formed on the surfaces of the drill bases D-1 to D-4. Comparison, surface-coated drills 1 to 8 having a conventional layer having an average film thickness and a composition shown in Table 3 and a target average film thickness and a particle size composition control layer having an average aspect ratio shown in Table 7 were formed. Comparative surface-coated end mills 1 to 4 were produced, respectively.

つぎに、前記本発明表面被覆ドリル1〜30および比較表面被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:80mmの、JIS・S45C(HB260)の板材、
切削速度: 100m/min.、
送り: 0.30mm/rev.、
穴深さ: 50mm、
の条件での合金鋼の湿式高速深穴あけ切削加工試験(通常の、加工穴深さ5Dの切削速度および送りは、それぞれ、90m/min.および0.25mm/rev.)、
を行い、先端切刃面の逃げ面摩耗幅が0.3mmに至るまで、若しくは工具の欠損に至るまでの穴あけ加工数を測定した。この測定結果を表4、5、6にそれぞれ示した。
つぎに、前記本発明表面被覆エンドミル1〜4および比較表面被覆エンドミル1〜4について、
被削材−平面寸法:200mm×250mm、厚さ:100mmの、JIS・S45C(HB240)の板材、
切削速度: 280m/min.(工具回転数:15000回転)、
テーブル送り: 0.4mm/rev.、
深さ切り込み量:0.30mm
送り切り込み量:1.0mm
の条件での炭素鋼の湿式高速エンドミル切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、245m/min.(工具回転数13000回転)および0.3mm/rev.)を行い、先端切刃面の逃げ面摩耗幅が0.2mmに至るまで、若しくは工具の欠損に至るまでの切削長を測定した。この測定結果を表7にそれぞれ示した。
Next, for the surface-coated drills 1 to 30 and the comparative surface-coated drills 1 to 8 of the present invention,
Work material—planar dimensions: 100 mm × 250 mm, thickness: 80 mm, JIS S45C (HB260) plate material,
Cutting speed: 100 m / min. ,
Feed: 0.30 mm / rev. ,
Hole depth: 50mm,
Wet high-speed deep drilling cutting test of alloy steel under the conditions of (normal cutting speed and feed of drilling hole depth 5D are 90 m / min. And 0.25 mm / rev., Respectively),
Then, the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm, or until the tool chipped. The measurement results are shown in Tables 4, 5, and 6, respectively.
Next, for the surface-coated end mills 1 to 4 and the comparative surface-coated end mills 1 to 4 of the present invention,
Work material-planar dimensions: 200 mm × 250 mm, thickness: 100 mm, JIS S45C (HB240) plate material,
Cutting speed: 280 m / min. (Tool rotation speed: 15000 rotations),
Table feed: 0.4 mm / rev. ,
Depth cut depth: 0.30mm
Feed cut depth: 1.0mm
Wet high-speed end mill cutting test of carbon steel under the conditions (normal cutting speed and table feed are 245 m / min. (Tool rotation speed 13000 rotation) and 0.3 mm / rev., Respectively) The cutting length was measured until the flank wear width of the surface reached 0.2 mm or until the tool was broken. The measurement results are shown in Table 7, respectively.

この結果得られた本発明表面被覆ドリル1〜30、本発明表面被覆エンドミル1〜4の硬質被覆層を構成する改質粒径組成制御層、さらに、比較表面被覆ドリル1〜8、比較表面被覆エンドミル1〜4の硬質被覆層を構成する従来層の平均層厚を、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   As a result, the surface coating drills 1 to 30 of the present invention, the modified particle size composition control layer constituting the hard coating layer of the surface coating end mills 1 to 4 of the present invention, the comparative surface coating drills 1 to 8, the comparative surface coating When the average layer thickness of the conventional layers constituting the hard coating layers of the end mills 1 to 4 was measured with a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of five locations). showed that.

さらに、本発明表面被覆ドリル1〜30、比較表面被覆ドリル1〜8、本発明表面被覆エンドミル1〜4、比較表面被覆エンドミル1〜4を集束イオンビーム加工装置により、層厚方向に
高さ:層厚の2倍相当×幅:5μm×厚さ:100nm
の薄片に加工した後、透過型電子顕微鏡(JEM−2010F)を用いて、観察加速電圧200kVの条件のもと、本発明表面被覆ドリル1〜30の硬質被覆層を構成する改質粒径組成制御層、比較表面被覆ドリル1〜8の硬質被覆層を構成する従来層の粒径組織を観測したのち、薄片の幅方向における中心線と工具基体の交差点から、工具基体に略垂直に皮膜の表面の方向へ向かって、10nmの間隔で組成を測定し、各点での組成が表2、3に示す目標組成範囲と実質的に同じ組成範囲を有していることを確認するとともに、さらに、Alの含有割合xが0.1以上0.2以下となるTi高含有領域の平均厚みXTiおよび、Ti高含有領域に含まれる(Ti1−xAl)(N1−y)の成分系からなる結晶粒の長辺および短辺を測定し、アスペクト比Aを算出し、同じく、Alの含有割合xが0.3以上0.6以下となるAl高含有領域の平均厚みXAlおよび、Al高含有領域に含まれる(Ti1−xAl)(N1−y)の成分系からなる結晶粒の長辺および短辺を測定し、アスペクト比Bを算出し、それぞれの結果を表4、5、6、7に示した。なお、ここで言う長辺とは結晶粒中の最大の長さを示す線分の長さを表し、短辺とは、長辺に垂直な線分のうち最小の長さもつ線分の長さを表し、アスペクト比とは前記長辺を前記短辺で除した値である。
Further, the surface-coated drills 1 to 30 according to the present invention, the surface-coated drills 1 to 8 according to the present invention, the surface-coated end mills 1 to 4 according to the present invention, and the surface-coated end mills 1 to 4 with a focused ion beam processing apparatus are Equivalent to twice the layer thickness x width: 5 μm x thickness: 100 nm
The modified particle size composition constituting the hard coating layers of the surface-coated drills 1 to 30 of the present invention under the condition of an observation acceleration voltage of 200 kV using a transmission electron microscope (JEM-2010F) After observing the grain size structure of the conventional layer constituting the hard coating layer of the control layer and the comparative surface coating drills 1 to 8, the coating is formed substantially perpendicular to the tool substrate from the intersection of the center line in the width direction of the flake and the tool substrate. In the direction of the surface, the composition is measured at intervals of 10 nm, and it is confirmed that the composition at each point has substantially the same composition range as the target composition range shown in Tables 2 and 3. , the average thickness of the Ti-rich region content x of Al is 0.1 to 0.2 X Ti and, included in the Ti-rich region (Ti 1-x Al x) (N 1-y O y ) Long side of the crystal grains consisting of the component system and Sides was measured to calculate the aspect ratio A, also, the proportion x of Al is 0.3 or more 0.6 Al high average thickness X Al-containing region and equal to or less than, be included in the Al-rich region (Ti 1−x Al x ) (N 1−y O y ), the long and short sides of the crystal grains are measured, the aspect ratio B is calculated, and the results are shown in Tables 4, 5, 6, 7 It was shown to. In addition, the long side said here represents the length of the line segment which shows the maximum length in a crystal grain, and a short side is the length of the line segment with the minimum length among the line segments perpendicular to the long side. The aspect ratio is a value obtained by dividing the long side by the short side.

表2、4、5、7に示される結果から、本発明表面被覆ドリルおよび本発明表面被覆エンドミルは、最表面に(Ti1−xAl)(N1−y)の成分系からなる粒径組成制御層が形成されており、その層厚が0.3〜5.0μmであり、粒径組成制御層の膜断面でのAlの含有割合xが、0.1〜0.6の範囲に存在し、xの値が0.2以下となる層状のTi高含有領域とxの値が0.3以上となる層状のAl高含有領域が存在し、かつ、Ti高含有領域における結晶粒のアスペクト比Aが、1〜5であり、かつ、Al高含有領域における結晶粒のアスペクト比Bが、10〜70であり、Ti高含有領域の厚みXTiが、30〜200nmの範囲に存在し、かつ、Al高含有領域の厚みXAlが、30〜200nmの範囲に存在していることから、長期に亘りすぐれた耐酸化性と耐摩耗性を維持する表面被覆ドリルおよび表面被覆エンドミルが得られることが明らかである。
また、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少していることにより、長期に亘りすぐれた潤滑性と耐摩耗性を維持する表面被覆ドリルが得られることが明らかである。
これに対して、表3、6、7に示される結果から、硬質被覆層のTiとAlそれぞれの高含有領域がない、あるいは、TiとAlそれぞれの高含有領域のアスペクト比および層厚が所定の範囲内に制御されていない従来層を有する比較表面被覆ドリルおよび比較表面被覆エンドミルにおいては、耐酸化性および耐摩耗性が十分でないために、チッピング、欠損、剥離の発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 2, 4, 5, and 7, the surface-coated drill of the present invention and the surface-coated end mill of the present invention were formed from a component system of (Ti 1-x Al x ) (N 1-y O y ) on the outermost surface. The particle size composition control layer is formed, the layer thickness is 0.3 to 5.0 μm, and the Al content ratio x in the film cross section of the particle size composition control layer is 0.1 to 0.6. In the range, there is a layered high Ti content region where the value of x is 0.2 or less and a layered high Al content region where the value of x is 0.3 or more, and in the high Ti content region The aspect ratio A of the crystal grains is 1 to 5, the aspect ratio B of the crystal grains in the high Al content region is 10 to 70, and the thickness X Ti of the high Ti content region is in the range of 30 to 200 nm. It exists, and the thickness X Al of Al-rich region, lies in the range of 30~200nm Since that, it is clear that the surface coated drill and surface coating end mill to maintain the excellent oxidation resistance and wear resistance over a long time can be obtained.
Further, X Ti in the drill margin portion is gradually increased toward the area from the drill tip to five times the distance of the drill outer diameter, and, X Al in the drill margin portion, a distance from the drill tip five times the drill outer diameter It is clear that the gradual decrease over the region up to this yields a surface-coated drill that maintains excellent lubricity and wear resistance over time.
On the other hand, from the results shown in Tables 3, 6 and 7, there is no high content region of Ti and Al in the hard coating layer, or the aspect ratio and layer thickness of the high content region of Ti and Al are predetermined. In comparative surface-coated drills and comparative surface-coated end mills that have conventional layers that are not controlled within the range, the oxidation resistance and wear resistance are not sufficient, so that they are relatively short due to chipping, chipping, peeling, etc. It is clear that the service life is reached in time.

前述のように、本発明の表面被覆工具は、超硬合金焼結体あるいは高速度鋼からなる工具基体の上に、直接または中間層を介し、最表面に粒径組成制御層として(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層が存在し、粒径組成制御層の膜断面でのAlの含有割合xの値が、0.1以上0.6以下の範囲に存在し、xの値が0.2以下となる層状のTi高含有領域と、xの値が0.3以上となる層状のAl高含有領域が、粒径組成制御層の中に各々少なくとも一層以上含まれ、かつ、Ti高含有領域における結晶粒のアスペクト比Aが、1〜5であり、かつ、Al高含有領域における結晶粒のアスペクト比Bが、10〜70であることにより、すぐれた潤滑性とともにすぐれた耐酸化性を備えており、そして、このすぐれた耐酸化性は、湿式高速の深穴用ドリル加工条件においても、長期間に亘り高い耐摩耗性を維持するものである。 As described above, the surface-coated tool of the present invention has a particle size composition control layer (Ti 1) on the outermost surface directly or via an intermediate layer on a tool substrate made of cemented carbide sintered body or high-speed steel. -X Al x ) (N 1-y O y ) is a hard coating layer having a layer thickness of 0.3 to 5.0 μm, and the Al content ratio x in the film cross section of the particle size composition control layer Exists in a range of 0.1 to 0.6, and a layered Ti high content region in which the value of x is 0.2 or less, and a layered Al height in which the value of x is 0.3 or more. At least one or more of the contained regions are included in the grain size composition control layer, the aspect ratio A of the crystal grains in the Ti-rich region is 1 to 5, and the crystal grains in the Al-rich region are Aspect ratio B of 10 to 70 provides excellent lubricity and excellent oxidation resistance In addition, this excellent oxidation resistance maintains high wear resistance over a long period of time even in wet high speed deep hole drilling conditions.

Claims (4)

超硬合金焼結体あるいは高速度鋼からなるドリル基体の上に、直接または中間層を介し、最表面に粒径組成制御層として(Ti1−xAl)(N1−y)の成分系からなる層厚0.3〜5.0μmの硬質被覆層が存在する表面被覆工具において、
(a)前記粒径組成制御層のAlの含有割合xの値が、
0.1以上0.6以下の範囲であり、xの値が0.2以下となる層状のTi高含有量域と、xの値が0.3以上となる層状のAl高含有量域が、前記粒径組成制御層の中に各々少なくとも一層以上含まれ、かつ、
(b)前記Ti高含有領域における結晶粒のアスペクト比Aが、1〜5であり、かつ、
(c)前記Al高含有領域における結晶粒のアスペクト比Bが、10〜70であり、かつ、
(d)酸素含有割合yが0〜0.08の間に存在し、かつ、
(e)前記Al高含有領域におけるyの最小値が0.04〜0.08であり、かつ、前記Ti高含有領域におけるyの最大値が0.03未満であることを特徴とする長期に亘り高い耐酸化性と耐摩耗性を維持する表面被覆工具。
On the drill body consisting of a cemented carbide sintered body or high speed steel, directly or through an intermediate layer, as the particle size composition control layer on the outermost surface (Ti 1-x Al x) (N 1-y O y) In the surface coating tool in which a hard coating layer having a layer thickness of 0.3 to 5.0 μm consisting of the following components is present:
(A) The value of the Al content ratio x in the particle size composition control layer is
A range of 0.1 to 0.6, and a layered high Ti content region in which the value of x is 0.2 or less, and a layered high Al content region in which the value of x is 0.3 or more , At least one layer in each of the particle size composition control layers, and
(B) The aspect ratio A of the crystal grains in the high Ti content region is 1 to 5, and
(C) The aspect ratio B of the crystal grains in the high Al content region is 10 to 70, and
(D) the oxygen content ratio y is present between 0 and 0.08, and
(E) The minimum value of y in the high Al content region is 0.04 to 0.08, and the maximum value of y in the high Ti content region is less than 0.03. A surface-coated tool that maintains high oxidation resistance and wear resistance.
前記Ti高含有領域の厚みXTiが、30〜200nmの範囲に存在し、かつ、前記Al高含有領域の厚みXAlが、30〜200nmの範囲に存在することを特徴とする請求項1に記載の表面被覆工具。 The thickness XTi of the Ti- rich region is in a range of 30 to 200 nm, and the thickness XAl of the Al- rich region is in a range of 30 to 200 nm. The surface-coated tool described. 前記中間層が、Ti、Al、Crの中から選ばれる1種類または2種類の元素の炭化物、窒化物、炭窒化物からなる層厚0.5〜2.0μmの硬質被膜層であることを特徴とする請求項1または請求項2に記載の表面被覆工具。   The intermediate layer is a hard coating layer having a layer thickness of 0.5 to 2.0 μm made of carbide, nitride, or carbonitride of one or two elements selected from Ti, Al, and Cr. The surface-coated tool according to claim 1 or 2, characterized in that 前記工具基体がドリル基体であって、ドリルマージン部におけるXTiが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次増加し、かつ、ドリルマージン部におけるXAlが、ドリル先端からドリル外径の5倍の距離までの領域にかけて漸次減少することを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆ドリル。
The tool base is a drill base, and X Ti in the drill margin portion gradually increases from the drill tip to a region of 5 times the outer diameter of the drill, and X Al in the drill margin portion increases from the drill tip. The surface-coated drill according to any one of claims 1 to 3, wherein the surface-coated drill gradually decreases over a region up to a distance of 5 times the outer diameter of the drill.
JP2011239217A 2011-10-31 2011-10-31 Surface coated tool with excellent oxidation resistance and wear resistance Expired - Fee Related JP5861983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239217A JP5861983B2 (en) 2011-10-31 2011-10-31 Surface coated tool with excellent oxidation resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239217A JP5861983B2 (en) 2011-10-31 2011-10-31 Surface coated tool with excellent oxidation resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2013094893A true JP2013094893A (en) 2013-05-20
JP5861983B2 JP5861983B2 (en) 2016-02-16

Family

ID=48617400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239217A Expired - Fee Related JP5861983B2 (en) 2011-10-31 2011-10-31 Surface coated tool with excellent oxidation resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP5861983B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2004218049A (en) * 2003-01-17 2004-08-05 Mitsubishi Materials Kobe Tools Corp Method for forming hard coating layer which exhibits excellent abrasion resistance under high-speed cutting condition on surface of cutting tool
JP2010236092A (en) * 2010-04-22 2010-10-21 Kobe Steel Ltd Wear resistant member having hard film and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2004218049A (en) * 2003-01-17 2004-08-05 Mitsubishi Materials Kobe Tools Corp Method for forming hard coating layer which exhibits excellent abrasion resistance under high-speed cutting condition on surface of cutting tool
JP2010236092A (en) * 2010-04-22 2010-10-21 Kobe Steel Ltd Wear resistant member having hard film and method of manufacturing the same

Also Published As

Publication number Publication date
JP5861983B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5822997B2 (en) Cutting tools
JP5590331B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JPWO2013150603A1 (en) Hard coating for cutting tool and hard coating coated cutting tool
JP2013116551A (en) Surface-coated tool excellent in oxidation resistance and wear resistance
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5861983B2 (en) Surface coated tool with excellent oxidation resistance and wear resistance
JP5892331B2 (en) Surface coated drill with excellent lubrication and wear resistance
JP2015066644A (en) Surface-coated cutting tool with hard coating layer showing excellent wear resistance and chipping resistance in high-speed cutting work
JP5892329B2 (en) Surface-coated drill with excellent wear resistance and chip evacuation
JP6198002B2 (en) A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
JP5590332B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5672444B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2013006266A (en) Surface-coated drill excellent in lubricating property and wear resistance
JP2004338008A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2008260098A (en) Surface-coated cutting tool
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP2014087850A (en) Surface-coated cutting tool and surface-coated drill excellent in oxidation resistance and chip dischargeability
JP5892336B2 (en) Surface coated drill with excellent thermal conductivity and lubrication characteristics
JP5892334B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5565630B2 (en) Surface coated broach with excellent wear resistance and finished surface accuracy
JP5672441B2 (en) Surface coated broach with excellent wear resistance and finished surface accuracy
WO2017155096A1 (en) Surface-coated cutting tool with excellent chip resistance and abrasion resistance
WO2017150550A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151213

R150 Certificate of patent or registration of utility model

Ref document number: 5861983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees