JP2013094525A - Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility - Google Patents

Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility Download PDF

Info

Publication number
JP2013094525A
JP2013094525A JP2011242093A JP2011242093A JP2013094525A JP 2013094525 A JP2013094525 A JP 2013094525A JP 2011242093 A JP2011242093 A JP 2011242093A JP 2011242093 A JP2011242093 A JP 2011242093A JP 2013094525 A JP2013094525 A JP 2013094525A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
vitamin
mass
blood purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011242093A
Other languages
Japanese (ja)
Inventor
Haruhiko Kayama
晴彦 香山
Takayuki Yano
貴行 矢野
Takeshi Takasugi
健 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011242093A priority Critical patent/JP2013094525A/en
Publication of JP2013094525A publication Critical patent/JP2013094525A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for hollow fiber membrane for blood purification capable of effectively producing antioxidant effect of vitamin added to spinning dope.SOLUTION: In the manufacturing method for the hollow fiber membrane for blood purification including a process in which after simultaneously discharging the spinning dope and core liquid from an outside annular part and a main hole of a double pipe nozzle, they are made to pass through the coagulability fluid, to be solidified and cleaned, the spinning dope is made to contain 0.05-1.2 mass% of lipid soluble vitamin, preferably vitamin E and also contain 0.004-0.045 mass% of citric acid.

Description

本発明は、血液透析時に産生する活性酸素を消去することができる、生体適合性に優れた血液浄化用中空糸膜の製造方法に関するものである。   The present invention relates to a method for producing a hollow fiber membrane for blood purification excellent in biocompatibility that can eliminate active oxygen produced during hemodialysis.

腎不全治療などにおける血液浄化法では、血液中の尿毒素、老廃物を除去する目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート、セルローストリアセテート、合成高分子であるポリスルホン、ポリエーテルスルホン、ポリメチルメタクリレート、ポリアクリロニトリルなどの高分子を用いた透析膜や限外濾過膜を分離材として用いた血液透析器、血液濾過器あるいは血液透析濾過器などの血液浄化器が広く使用されている。特に中空糸型の膜を分離材として用いた血液浄化器は、体外循環にかかわる循環血液量の低減、血中の物質除去効率の高さ、さらに血液浄化器組立ての生産性などの利点から血液浄化分野での利用度が高い。   In blood purification methods such as for renal failure treatment, natural materials such as cellulose, its derivatives cellulose diacetate, cellulose triacetate, synthetic polymers such as polysulfone, and polysulfone are used to remove uremic toxins and waste products in the blood. Blood purifiers such as hemodialyzers, hemofilters or hemodialyzers using dialysis membranes or ultrafiltration membranes using polymers such as ether sulfone, polymethyl methacrylate, and polyacrylonitrile as separation materials are widely used. ing. In particular, blood purifiers that use hollow fiber membranes as separators have the advantage of advantages such as reduced circulating blood volume related to extracorporeal circulation, high substance removal efficiency in blood, and productivity of blood purifier assembly. High utilization in the purification field.

中空糸膜を用いた血液浄化器は、通常、中空糸膜の中空部に血液を流し、外側部に透析液を向流に流し、血液から透析液への拡散に基づく物質移動により尿素、クレアチニンなどの低分子量物質を血中から除くことを主眼としている。しかしながら、長期透析患者の増加に伴い、透析合併症が問題となり、近年では透析による除去対象物質は尿素、クレアチニンなどの低分子量物質のみでなく、分子量数千の中分子量から分子量1〜2万の高分子量の物質まで拡大し、これらの物質も除去できることが血液浄化膜に要求されている。特に分子量11700のβ2ミクログロブリンは、手根管症候群の原因物質であることがわかっており、除去ターゲットとなっている。このような高分子量物質除去の治療に用いられる膜はハイパフォーマンス膜と呼ばれている。近年、わが国においては、合成高分子が基材の主成分である非対称構造の中空糸膜がハイパフォーマンス膜として臨床で多く用いられている。   A blood purifier using a hollow fiber membrane usually causes blood to flow through the hollow part of the hollow fiber membrane, counterflowing dialysate to the outside, and urea and creatinine by mass transfer based on diffusion from blood to dialysate. The main aim is to remove low molecular weight substances such as However, with the increase in the number of long-term dialysis patients, dialysis complications have become a problem. In recent years, substances to be removed by dialysis are not only low molecular weight substances such as urea and creatinine, but also have a molecular weight of several thousand to a molecular weight of 1 to 20,000. Blood purification membranes are required to expand to high molecular weight substances and to remove these substances. In particular, β2 microglobulin having a molecular weight of 11700 has been found to be a causative substance of carpal tunnel syndrome and is a removal target. Membranes used for such high molecular weight substance removal treatment are called high performance membranes. In recent years, in Japan, a hollow fiber membrane having an asymmetric structure, in which a synthetic polymer is a main component of a base material, is often used as a high performance membrane in clinical practice.

しかしながら、生体構成物質ではない透析器および透析処置器材との血液接触により、血液中の白血球、血小板および補体等の活性化が生じることに由来すると思われる合併症等が併発し、透析患者のQOLが低下する一因となっている(例えば、非特許文献1、2参照)。さらに、長期間に渡って血液透析を行う場合には、血液中の血球成分の活性化時に活性酸素が産生され、その酸化ストレスの蓄積により、過酸化脂質の増加などが確認されており、それに起因すると思われる長期透析患者の動脈硬化性疾患等の合併症が増加している。   However, complications that may be caused by activation of white blood cells, platelets, and complements in blood due to blood contact with dialysis machines and dialysis treatment equipment that are not biological constituents occur. This contributes to a decrease in QOL (see Non-Patent Documents 1 and 2, for example). Furthermore, when hemodialysis is performed over a long period of time, active oxygen is produced when the blood cell component in the blood is activated, and accumulation of the oxidative stress has been confirmed to increase lipid peroxide. Complications such as arteriosclerotic disease of long-term dialysis patients that are thought to be increasing are increasing.

これらの問題を解決するため、生体内で抗酸化作用、膜安定化作用、血小板凝集抑制作用などの生理作用を発揮するビタミンEを透析膜の表面に被覆する人工臓器が提案、上市されている(例えば、非特許文献3、特許文献1〜4参照)。しかしながら、人工臓器の組み立て工程後にビタミンEのコートを行う場合には、引火性有機溶媒もしくはフロン系溶媒の使用が提案されており、透析器内に充填するのに要する溶媒量が多く環境リスクが高いこと、溶媒種によっては危険物としての対応が必要な溶媒であったり、オゾン層を破壊する物質に関するモントリオール議定書により使用不可の溶媒となっていることなどの問題があった。さらには、製造するにあたり、製膜・人工臓器組み立て後にビタミンEをコートするため製造コストがかかることや、表面コート層により細孔を通過する物質への透過阻害が懸念されること、透析膜内表層への蛋白吸着層によりビタミンEが被覆され、その効果が低減されるという問題があった。   In order to solve these problems, an artificial organ that coats the surface of dialysis membrane with vitamin E that exhibits physiological actions such as antioxidant action, membrane stabilization action, and platelet aggregation inhibitory action in vivo has been proposed and marketed. (For example, refer nonpatent literature 3, patent documents 1-4). However, when vitamin E is coated after the process of assembling the artificial organ, the use of a flammable organic solvent or a fluorocarbon solvent has been proposed, and the amount of solvent required to fill the dialyzer is large and there is an environmental risk. Depending on the type of solvent, there is a problem that it is a solvent that needs to be handled as a dangerous substance, or that it is an unusable solvent according to the Montreal Protocol concerning substances that destroy the ozone layer. Furthermore, in manufacturing, since vitamin E is coated after film formation / artificial organ assembly, production cost is high, and there is a concern that permeation of substances passing through the pores may be inhibited by the surface coating layer. There was a problem that vitamin E was covered with the protein adsorption layer on the surface layer and the effect was reduced.

さらに、人工臓器の製造過程において、最終的には放射線滅菌等の滅菌工程が必要となるが、膜が水分と共存したウェット状態での放射線滅菌を施された場合、放射線滅菌時に水が分解し、ラジカルが産生する。この現象を利用して、ウェット状態でラジカルを産生させ、添加親水性ポリマーの架橋を促進する方法が人工臓器に応用されている(例えば、非特許文献4参照)。産生するラジカルは接触物質と直ちに反応するため、当然、ビタミンEが産生ラジカルと接触すればビタミンEが直ちに酸化されることが想定される。ビタミンEが酸化されるとキノン構造を有する化合物(トコフェリルキノン)等に変化するが、この構造では期待する抗酸化性は発現しないばかりか、最小中毒量(TDLo:Toxic Dose Lowest)データから生体に与えるリスクについて、ビタミンEよりも高まることが懸念されるため、ビタミンEの活性を維持することは抗酸化性の効率、安全性確保の観点から重要である。   Furthermore, in the manufacturing process of artificial organs, a sterilization process such as radiation sterilization is ultimately required.However, when radiation sterilization is performed in a wet state where the membrane coexists with moisture, water is decomposed during radiation sterilization. , Radicals are produced. Utilizing this phenomenon, a method of generating radicals in a wet state and accelerating the crosslinking of the added hydrophilic polymer has been applied to an artificial organ (see, for example, Non-Patent Document 4). Since the produced radical reacts immediately with the contact substance, naturally, it is assumed that vitamin E is immediately oxidized when vitamin E comes into contact with the produced radical. When vitamin E is oxidized, it changes to a compound having a quinone structure (tocopheryl quinone), etc., but this structure does not exhibit the expected antioxidant property, and the biological data from the minimum dose (TDLo: Toxic Dose Lowest) data. Since there is a concern that the risk given to vitamin B may be higher than that of vitamin E, it is important to maintain the activity of vitamin E from the viewpoint of antioxidant efficiency and safety.

放射線滅菌時のラジカル生成を防ぐために、ドライ状態で放射線滅菌することで、ラジカルの産生量をコントロールし、保管時の安定性を改善するという方法が提案されているが(例えば、特許文献5)、ビタミンEの状態に関しては何ら考慮されていない。これら滅菌方法に加えて、一般にラジカルが連鎖反応を進めていく過程で、重金属が連鎖反応を加速することが知られており、製造・保管過程におけるラジカル産生量を抑制しつつ、かつラジカル連鎖反応を制御することが重要である。 In order to prevent radical generation during radiation sterilization, a method has been proposed in which radical sterilization is performed in a dry state to control the amount of radical production and improve stability during storage (for example, Patent Document 5). No consideration is given to vitamin E status. In addition to these sterilization methods, it is generally known that heavy metals accelerate the chain reaction in the process of radical chain reaction, and radical chain reaction while suppressing the amount of radical production in the manufacturing and storage process. It is important to control.

一方、ビタミンEのコーティング工程増設によるコスト増加・抗酸化性効率という問題点を解消すべく、紡糸原液にビタミンEを添加する方法が提案されている(例えば、特許文献6参照)。かかる方法は、簡便にコスト低減を達成できるという点では優れるが、製造工程での熱負荷や金属不純物によるビタミンEの酸化が懸念される。本文中にビタミンEの状態に関しては言及されておらず、製造工程におけるビタミンEの酸化を抑制することでビタミンEの抗酸化機能を十分に発現する抗酸化性膜を提案するには至っていない。   On the other hand, a method of adding vitamin E to a spinning dope has been proposed in order to solve the problems of cost increase and antioxidant efficiency due to the additional coating process of vitamin E (see, for example, Patent Document 6). This method is excellent in that it can easily achieve cost reduction, but there is a concern about oxidation of vitamin E due to heat load and metal impurities in the manufacturing process. This document does not mention the state of vitamin E, and has not yet proposed an antioxidant film that sufficiently exhibits the antioxidant function of vitamin E by suppressing the oxidation of vitamin E in the production process.

特許第3193819号公報Japanese Patent No. 3193919 特開平11−178919号公報Japanese Patent Laid-Open No. 11-178919 特許第3357262号公報Japanese Patent No. 3357262 特許第4038583号公報Japanese Patent No. 4038583 特許第3928910号公報Japanese Patent No. 3928910 特開平09−66225号公報JP 09-66225 A

人工臓器18巻5号,539−1546(1989)Artificial organ Vol.18, No.5, 539-1546 (1989) 腎と透析,15−19,別冊1998Kidney and dialysis, 15-19, separate volume 1998 透析会誌43(3),275−279(2010)Dialysis Journal 43 (3), 275-279 (2010) 腎と透析,26−31(2009)Kidney and dialysis, 26-31 (2009)

本発明は、かかる従来技術の問題を解消するためになされたものであり、その目的は、紡糸原液に添加される脂溶性ビタミンが膜全体に分布し、製造・保管時の脂溶性ビタミンの酸化を抑制することで、その抗酸化作用が有効に発揮できる血液浄化用中空糸膜の製造方法、並びにそれによって得られる中空糸膜、及びそれを使用した透析器を提供することにある。   The present invention has been made to solve the problems of the prior art, and its purpose is that the fat-soluble vitamin added to the spinning dope is distributed throughout the membrane, and the oxidation of the fat-soluble vitamin during production and storage is performed. It is in providing the manufacturing method of the hollow fiber membrane for blood purification which can exhibit the antioxidant effect | action effectively by suppressing, and the hollow fiber membrane obtained by it, and the dialyzer using the same.

本発明者らは、上記目的を達成するために紡糸原液に添加される脂溶性ビタミンの酸化抑制方法について鋭意検討した結果、特定範囲の量のクエン酸を紡糸原液に添加することによりクエン酸が金属イオンを安定化し、金属イオンによるラジカル連鎖反応を防ぐ結果、脂溶性ビタミンの酸化を抑制できることを見出し、本発明の完成に至った。   As a result of intensive studies on the method for inhibiting oxidation of fat-soluble vitamins added to the spinning dope to achieve the above object, the present inventors have added citric acid in a specific range to the spinning dope so that citric acid can be produced. As a result of stabilizing metal ions and preventing radical chain reaction due to metal ions, it was found that oxidation of fat-soluble vitamins can be suppressed, and the present invention has been completed.

即ち、本発明は、以下の(1)〜(6)の構成を有するものである。
(1)二重管ノズルの外側環状部と中心孔から紡糸原液と芯液をそれぞれ同時に吐出した後、凝固性液体中を通過させて凝固させ、洗浄する工程を含む血液浄化用中空糸膜の製造方法において、前記紡糸原液に脂溶性ビタミンを0.05〜1.2質量%含有させ、さらにクエン酸を0.004〜0.045質量%含有させることを特徴とする血液浄化用中空糸膜の製造方法。
(2)前記脂溶性ビタミンがビタミンEであることを特徴とする(1)に記載の血液浄化用中空糸膜の製造方法。
(3)前記ビタミンEがα−トコフェロール、酢酸−α−トコフェロール、コハク酸−α−トコフェロール、またはコハク酸トコフェロールカルシウムであることを特徴とする(1)または(2)に記載の血液浄化用中空糸膜の製造方法。
(4)(1)〜(3)のいずれかに記載の製造方法によって得られる血液浄化用中空糸膜であって、前記膜中の脂溶性ビタミン含有量が0.05〜1.2質量%であり、高速液体クロマトグラフィーの測定に基づく前記脂溶性ビタミン中の酸化物/非酸化物のピーク面積割合が30%以下であることを特徴とする血液浄化用中空糸膜。
(5)(4)に記載の血液浄化用中空糸膜を使用して構成されることを特徴とする中空糸膜型透析器。
(6)中空糸膜型透析器内部の空間をドライ状態で放射線および/または電子線で滅菌処理していることを特徴とする(5)に記載の中空糸膜型透析器。
That is, the present invention has the following configurations (1) to (6).
(1) A hollow fiber membrane for blood purification comprising the steps of simultaneously discharging a spinning solution and a core solution from an outer annular portion and a center hole of a double-tube nozzle, and then allowing the solution to pass through a coagulating liquid to coagulate and wash. In the production method, the spinning solution contains 0.05 to 1.2% by mass of a fat-soluble vitamin, and further 0.004 to 0.045% by mass of citric acid. Manufacturing method.
(2) The method for producing a hollow fiber membrane for blood purification according to (1), wherein the fat-soluble vitamin is vitamin E.
(3) The blood purification hollow according to (1) or (2), wherein the vitamin E is α-tocopherol, acetic acid-α-tocopherol, succinic acid-α-tocopherol, or calcium tocopherol succinate Yarn membrane manufacturing method.
(4) A hollow fiber membrane for blood purification obtained by the production method according to any one of (1) to (3), wherein the fat-soluble vitamin content in the membrane is 0.05 to 1.2% by mass A hollow fiber membrane for blood purification, wherein the peak area ratio of oxide / non-oxide in the fat-soluble vitamin based on measurement by high performance liquid chromatography is 30% or less.
(5) A hollow fiber membrane type dialyzer comprising the blood purification hollow fiber membrane according to (4).
(6) The hollow fiber membrane dialyzer according to (5), wherein the space inside the hollow fiber membrane dialyzer is sterilized with radiation and / or electron beam in a dry state.

本発明の方法によれば、紡糸原液に脂溶性ビタミンを含有させ、さらにそれを酸化から保護するクエン酸を適切な量で含有させているので、簡便かつ低コストな方法で脂溶性ビタミンが膜内に分散した抗酸化性を有する中空糸膜を製造することができる。特に、製造過程、滅菌過程での酸化を抑制することで、膜中に活性な脂溶性ビタミンを多く残存させることができ、この活性なビタミンにより透析時に産生する活性酸素を効果的に消去することができる。   According to the method of the present invention, the fat-soluble vitamin is contained in the spinning dope and further contains citric acid that protects it from oxidation in an appropriate amount. A hollow fiber membrane having antioxidation properties dispersed therein can be produced. In particular, by suppressing oxidation during the manufacturing process and sterilization process, a large amount of active fat-soluble vitamin can remain in the membrane, and the active oxygen produced during dialysis can be effectively eliminated by this active vitamin. Can do.

図1は、本発明の製造方法の一例を概略的に示したものである。FIG. 1 schematically shows an example of the production method of the present invention.

本発明の血液浄化用中空糸膜の製造方法は、図1に概略的に示されているように、基本的には、従来公知の方法からなり、二重管ノズルの外側環状部と中心孔から紡糸原液と芯液をそれぞれ同時に吐出した後、凝固浴の凝固性液体中を通過させて膜を形成し、それを洗浄する工程を含むものである。本発明の製造方法の特徴は、特に紡糸原液に特定範囲の量の脂溶性ビタミンとクエン酸を含有させることにある。紡糸原液に脂溶性ビタミンを含有させることにより、簡単な方法で抗酸化作用等を有する脂溶性ビタミンを膜内に均一に分散させることができ、さらにクエン酸を含有させることにより脂溶性ビタミンの酸化を効果的に抑制することができる。従って、本発明の中空糸膜及びそれを使用した透析器は、従来のものに比べて、透析過程において産生する活性酸素を効果的に消去することができ、活性酸素が原因とされている種々の疾患を軽減することができる。   The method for producing a hollow fiber membrane for blood purification according to the present invention basically comprises a conventionally known method as schematically shown in FIG. 1, and includes an outer annular portion and a center hole of a double tube nozzle. The method includes a step of discharging a spinning stock solution and a core solution simultaneously, forming a film by passing through a coagulating liquid in a coagulation bath, and washing the film. A feature of the production method of the present invention is that, in particular, a spinning stock solution contains a specific range of amounts of fat-soluble vitamins and citric acid. By including fat-soluble vitamins in the spinning dope, fat-soluble vitamins having anti-oxidation action and the like can be uniformly dispersed in the membrane by a simple method, and by adding citric acid, oxidation of fat-soluble vitamins Can be effectively suppressed. Therefore, the hollow fiber membrane of the present invention and the dialyzer using the membrane can effectively eliminate the active oxygen produced in the dialysis process as compared with the conventional one, and various kinds of active oxygen are caused. Can alleviate the disease.

紡糸原液は、ポリマーあるいは複数のポリマーの組合せと、溶媒、非溶媒を含み、さらに脂溶性ビタミン、クエン酸を含むことを特徴とする。紡糸原液中での総ポリマー質量割合は、安定した製膜・性能が担保できる範囲であれば問題はないが、15〜20質量%であることが好ましい。ポリマーの質量割合が低すぎると、紡糸原液の粘度が低くなるため可紡性が低くなるだけでなく、脂溶性ビタミンの膜内保持に関して好ましくない影響が出ることがある。一方、ポリマー質量割合が高すぎると中空糸膜の構造が密になりすぎ所期の膜性能を得ることができないことがある。   The stock solution for spinning contains a polymer or a combination of a plurality of polymers, a solvent and a non-solvent, and further contains a fat-soluble vitamin and citric acid. The total polymer mass ratio in the spinning dope is not a problem as long as stable film formation and performance can be ensured, but it is preferably 15 to 20% by mass. If the mass ratio of the polymer is too low, not only will the spinnability be reduced, but the spinnability will be lowered, and there may be an undesirable effect on the retention of fat-soluble vitamins in the membrane. On the other hand, if the polymer mass ratio is too high, the structure of the hollow fiber membrane may become too dense to obtain the desired membrane performance.

中空糸膜の素材となるポリマーは、セルロース系、ビニル系、芳香族系のいずれのものに限定されるものではないが、脂溶性ビタミンを均一に分散させるため、疎水性の高いセルローストリアセテート、セルロースジアセテート等のセルロースエステル、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロース混合エステル、芳香族ポリスルホン系ポリマー、芳香族ポリアミド系ポリマー、芳香族ポリイミド系ポリマー、芳香族ポリエーテル系ポリマー、芳香族ポリエステル系ポリマー、芳香族ポリケトン系ポリマー、芳香族ポリサルフェート系ポリマー等が好ましい。さらに中空糸加工性、製膜性、生体適合性の観点から、セルロースエステル、芳香族ポリスルホン系ポリマーが特に好ましい。なお、上記の芳香族ポリスルホン系ポリマーとは、分子中に芳香族官能基を有するポリスルホン系ポリマーであれば特に限定されるものではなく、例えば、芳香族ポリスルホン、芳香族ポリエーテルスルホン等が挙げられる。   The polymer used as the material for the hollow fiber membrane is not limited to any of cellulose, vinyl, and aromatic polymers. However, in order to uniformly disperse fat-soluble vitamins, cellulose triacetate and cellulose with high hydrophobicity are used. Cellulose ester such as diacetate, cellulose mixed ester such as cellulose acetate propionate, cellulose acetate butyrate, aromatic polysulfone polymer, aromatic polyamide polymer, aromatic polyimide polymer, aromatic polyether polymer, aromatic Polyester polymers, aromatic polyketone polymers, aromatic polysulfate polymers and the like are preferable. Furthermore, cellulose esters and aromatic polysulfone polymers are particularly preferred from the viewpoints of hollow fiber processability, film-forming properties, and biocompatibility. The aromatic polysulfone polymer is not particularly limited as long as it is a polysulfone polymer having an aromatic functional group in the molecule, and examples thereof include aromatic polysulfone and aromatic polyethersulfone. .

上記ポリマーには、必要に応じて、親水性ポリマーを添加することができる。親水性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリエチレンイミンおよびそれらの共重合体等からなる合成ポリマー、あるいは多糖類が挙げられる。この中でも上記疎水性との相溶性、製膜性等の観点からポリビニルピロリドンが特に好ましい。   A hydrophilic polymer can be added to the polymer as necessary. Examples of the hydrophilic polymer include synthetic polymers composed of polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polyethyleneimine, and copolymers thereof, and polysaccharides. Among these, polyvinylpyrrolidone is particularly preferable from the viewpoints of compatibility with the above hydrophobic property, film forming property, and the like.

紡糸原液中の総溶媒割合は50〜70質量%、総非溶媒割合は10〜30質量%であることが好ましい。脂溶性ビタミンの溶解を安定化するためにも、紡糸原液中の総溶媒割合は50質量%以上とすることが好ましい。溶媒としては、ポリマー及び脂溶性ビタミンを可溶化できる、いわゆる非プロトン性の極性溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトン、N−メチルピロリドンなどを単独または混合して用いることが好ましい。非溶媒としては、無機塩やアルコール類などが挙げられるが、グリセリン、エチレングリコール、トリエチレングリコール、ポリエチレングリコールなどのグリコール類を単独または混合して用いることが好ましい。   The total solvent ratio in the spinning dope is preferably 50 to 70% by mass, and the total non-solvent ratio is preferably 10 to 30% by mass. In order to stabilize the dissolution of the fat-soluble vitamin, the total solvent ratio in the spinning dope is preferably 50% by mass or more. As the solvent, a so-called aprotic polar solvent capable of solubilizing polymers and fat-soluble vitamins, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, N-methylpyrrolidone, etc. may be used alone or in combination. Are preferably used. Non-solvents include inorganic salts and alcohols, but glycols such as glycerin, ethylene glycol, triethylene glycol, and polyethylene glycol are preferably used alone or in combination.

本発明の製造方法では、紡糸原液に脂溶性ビタミンとクエン酸を含有させることが従来にない特徴である。紡糸原液中の脂溶性ビタミンの含有量は、0.05〜1.2質量%、好ましくは0.1〜1.0質量%である。脂溶性ビタミンの含有量が上記範囲未満では、脂溶性ビタミンの効果が十分ではなく、上記範囲を越えた場合も製造は可能であるが、原料費用増加により費用対効果の観点から不利である。脂溶性ビタミンとしては、ビタミンA、ビタミンD、ビタミンE、ビタミンK等が挙げられるが、耐熱性及び抗酸化機能の点からビタミンEが好ましい。ビタミンEとしては、α−トコフェロール、そしてビタミンE誘導体の酢酸−α−トコフェロール、コハク酸−α―トコフェロール、コハク酸トコフェロールカルシウムが挙げられる。これらビタミンE誘導体についても、血液と接触した際に血液成分により脱エステル化され、α−トコフェロールに変換されるため同様の効果が期待できる。   In the production method of the present invention, it is an unprecedented feature that the spinning dope contains fat-soluble vitamins and citric acid. The content of the fat-soluble vitamin in the spinning dope is 0.05 to 1.2% by mass, preferably 0.1 to 1.0% by mass. If the content of the fat-soluble vitamin is less than the above range, the effect of the fat-soluble vitamin is not sufficient, and if it exceeds the above range, the production is possible, but it is disadvantageous from the viewpoint of cost effectiveness due to the increase in raw material cost. Examples of the fat-soluble vitamin include vitamin A, vitamin D, vitamin E, vitamin K and the like, but vitamin E is preferred from the viewpoint of heat resistance and antioxidant function. Vitamin E includes α-tocopherol and vitamin E derivatives acetic acid-α-tocopherol, succinic acid-α-tocopherol, and calcium tocopherol succinate. These vitamin E derivatives can also be expected to have the same effect because they are deesterified by blood components when they are brought into contact with blood and converted to α-tocopherol.

製造過程において、原料および製造機台から、鉄やクロム等の重金属が混入することは避けられず、これら重金属は複数の酸化数をとることから、脂溶性ビタミンと酸化還元反応を引き起こし脂溶性ビタミンが変質することが知られている。そこで、紡糸原液にクエン酸を添加させることで、原料、製造機台からの重金属不純物とクエン酸が反応し、重金属を安定化させることで脂溶性ビタミンと重金属との反応を抑制することが可能となる。さらに、重金属はフェントン反応で代表されるように過酸化物量を増幅させることが知られており、予め重金属を安定化させておくことで、滅菌工程及び滅菌後の保管過程における過酸化物による脂溶性ビタミンの酸化を防ぐことが可能となる。紡糸原液中のクエン酸の含有量は0.004〜0.045質量%、好ましくは0.005〜0.04質量%である。クエン酸の含有量が上記範囲未満では、糸切れ抑制には効果は見られるが、金属不純物と脂溶性ビタミンとの反応を完全に抑制することができないため好ましくない。紡糸原液に含まれる金属不純物のモル量に対して、7倍から60倍相当添加する必要がある。一方、上記範囲を超えると過剰なクエン酸による酸性化が進行し、脂溶性ビタミンの酸化を誘起し、さらには製造機台の腐食を促進するため好ましくない。   In the manufacturing process, it is inevitable that heavy metals such as iron and chromium are mixed in from raw materials and manufacturing machines, and these heavy metals take multiple oxidation numbers, causing fat-soluble vitamins and oxidation-reduction reactions, resulting in fat-soluble vitamins. Is known to be altered. Therefore, by adding citric acid to the spinning dope, heavy metal impurities and citric acid from raw materials and production machine bases react, and by stabilizing heavy metals, it is possible to suppress the reaction between fat-soluble vitamins and heavy metals. It becomes. Furthermore, heavy metals are known to amplify the amount of peroxide as represented by the Fenton reaction. By stabilizing heavy metals in advance, fats caused by peroxides in the sterilization process and storage process after sterilization can be obtained. It becomes possible to prevent oxidation of soluble vitamins. The content of citric acid in the spinning dope is 0.004 to 0.045% by mass, preferably 0.005 to 0.04% by mass. If the citric acid content is less than the above range, an effect can be seen in suppressing yarn breakage, but it is not preferable because the reaction between metal impurities and fat-soluble vitamins cannot be completely suppressed. It is necessary to add 7 to 60 times the molar amount of metal impurities contained in the spinning dope. On the other hand, when the above range is exceeded, acidification with excess citric acid proceeds to induce oxidation of fat-soluble vitamins and further promote corrosion of the production machine base, which is not preferable.

上記のように調製された紡糸原液は、加熱され、ポリマー、脂溶性ビタミン、クエン酸が均一に溶解された状態を経て、濾過された後に、二重管ノズルの外側環状部(スリット)から押し出され、二重管ノズルの中心孔からは芯液(内液)が同時に突出される。芯液としては、疎水性ポリマーを溶解しない液体を用いることがよく、例えば、流動パラフィン、または不活性な液体を用いるのが好ましい。ノズルより押し出された紡糸原液は、乾式部を走行させた後、凝固性液体(凝固浴)中を通過させて凝固、相分離し、脂溶性ビタミンが膜全体に分布した膜構造が形成される。紡糸原液に添加したクエン酸は、凝固性液体(凝固浴)を通過した時点で大半が凝固性液体(凝固浴)に溶出していると推定されるが、紡糸原液の溶解過程においてすでに金属不純物を安定化しており何ら問題はない。凝固性液体としては、水、または水と紡糸原液で用いた溶媒並びに非溶媒の混合水溶液を使用することができる。必要に応じて、酸化防止剤や潤滑剤などの添加剤を加えることもできる。   The spinning dope prepared as described above is heated, filtered through a polymer, fat-soluble vitamin and citric acid uniformly dissolved, and then extruded from the outer annular portion (slit) of the double tube nozzle. Thus, the core liquid (inner liquid) is simultaneously projected from the center hole of the double tube nozzle. As the core liquid, a liquid that does not dissolve the hydrophobic polymer is preferably used. For example, liquid paraffin or an inert liquid is preferably used. The spinning dope extruded from the nozzle travels through the dry section and then passes through a coagulating liquid (coagulation bath) to coagulate and phase separate to form a membrane structure in which fat-soluble vitamins are distributed throughout the membrane. . It is estimated that most of the citric acid added to the spinning dope elutes in the coagulating liquid (coagulation bath) when it passes through the coagulating liquid (coagulation bath). There is no problem. As the coagulable liquid, water, or a solvent used in water and the stock solution for spinning and a non-solvent mixed aqueous solution can be used. If necessary, additives such as antioxidants and lubricants can be added.

凝固浴を経た中空糸膜は、洗浄工程において溶媒などの不要な成分を洗い流す。このときに用いる洗浄液は、脂溶性ビタミンを溶解させない溶媒が好ましく、例えば水が用いられる。上記洗浄液には、必要に応じて、還元水等の還元性水溶液やアスコルビン酸等の還元性物質を添加することができる。洗浄工程を経た中空糸膜は必要に応じてグリセリン処理を行う。例えば、セルロース系ポリマーからなる中空糸膜の場合はグリセリン水溶液の浴を通過させた後、乾燥工程を経て巻き取る。この場合、浴のグリセリン濃度は60〜90質量%が好ましい。グリセリン濃度が低すぎると、乾燥時に中空糸膜が縮み易く、保存安定性が悪くなることがある。さらには残存水分の懸念も高まり、滅菌工程において水由来のラジカルが産生され、脂溶性ビタミンの酸化を促進する可能性がある。また、グリセリン濃度が高すぎると、中空糸膜に余分なグリセリンが付着しやすく、血液浄化器に組み立てる時に中空糸膜端部の接着性が悪くなることがある。グリセリン浴の温度は、50℃以上80℃以下が好ましい。グリセリン浴の温度が低すぎると、グリセリン水溶液の粘度が高く、中空糸膜の細孔の隅々までグリセリン水溶液が行き渡らない可能性がある。グリセリン浴の温度が高すぎると、中空糸膜が熱で変性、変質してしまう可能性がある。   The hollow fiber membrane that has undergone the coagulation bath ishes away unnecessary components such as a solvent in the washing step. The cleaning liquid used at this time is preferably a solvent that does not dissolve fat-soluble vitamins, and water is used, for example. A reducing aqueous solution such as reducing water or a reducing substance such as ascorbic acid can be added to the cleaning liquid as necessary. The hollow fiber membrane which passed through the washing process is subjected to glycerin treatment as necessary. For example, in the case of a hollow fiber membrane made of a cellulose-based polymer, the membrane is wound through a drying step after passing through a bath of a glycerin aqueous solution. In this case, the glycerin concentration in the bath is preferably 60 to 90% by mass. If the glycerin concentration is too low, the hollow fiber membrane tends to shrink during drying, and storage stability may deteriorate. Furthermore, there is a growing concern about residual moisture, and water-derived radicals are produced in the sterilization process, which may promote the oxidation of fat-soluble vitamins. Also, if the glycerin concentration is too high, excess glycerin tends to adhere to the hollow fiber membrane, and the adhesiveness at the end of the hollow fiber membrane may deteriorate when assembled into a blood purifier. The temperature of the glycerin bath is preferably 50 ° C. or higher and 80 ° C. or lower. When the temperature of the glycerin bath is too low, the viscosity of the glycerin aqueous solution is high, and there is a possibility that the glycerin aqueous solution does not reach all the pores of the hollow fiber membrane. If the temperature of the glycerin bath is too high, the hollow fiber membrane may be denatured and altered by heat.

洗浄後の膜について、洗浄に用いた溶媒ならびにグリセリン処理工程で付与された水分を乾燥工程にて除去する。乾燥工程の温度は、40℃以上80℃以下が好ましい。乾燥温度が低すぎると、これら溶媒の除去が不十分になり、血液浄化器に組み立てる時に中空糸膜端部の接着性が悪くなることがある。さらには、残留水分が滅菌過程においてラジカルを生成させ、脂溶性ビタミンの酸化を促進する可能性がある。逆に乾燥温度が高すぎると、中空糸膜、さらには脂溶性ビタミンが熱で変性、変質してしまう可能性がある。   About the film | membrane after washing | cleaning, the water | moisture content provided at the solvent used for washing | cleaning and a glycerol treatment process is removed at a drying process. The temperature in the drying step is preferably 40 ° C. or higher and 80 ° C. or lower. If the drying temperature is too low, removal of these solvents may be insufficient, and the adhesiveness at the end of the hollow fiber membrane may deteriorate when assembled into a blood purifier. Furthermore, residual moisture can generate radicals during the sterilization process and promote the oxidation of fat-soluble vitamins. Conversely, if the drying temperature is too high, the hollow fiber membrane and the fat-soluble vitamin may be denatured and altered by heat.

これらの工程を経て、巻き取ることで、酸化が抑制された脂溶性ビタミンを含有せしめた中空糸膜を作製することができる。具体的には、本発明の製造方法によって得られた中空糸膜は、膜中の脂溶性ビタミン含有量が0.05〜1.2質量%であり、高速液クロマトグラフィーの測定に基づく前記脂溶性ビタミン中の酸化物/非酸化物のピーク面積割合が30%以下であることができる。30%以下に抑えることで、ビタミン酸化物の割合を数%に抑えることができ、ビタミンの効能を維持した膜とすることができる。これらの方法で製造された中空糸膜は、内径150〜300μm、膜厚み10〜70μmであることが好ましい。   A hollow fiber membrane containing a fat-soluble vitamin in which oxidation is suppressed can be produced by winding through these steps. Specifically, the hollow fiber membrane obtained by the production method of the present invention has a fat-soluble vitamin content in the membrane of 0.05 to 1.2% by mass, and the fat based on the measurement by high performance liquid chromatography. The peak area ratio of oxide / non-oxide in the soluble vitamin can be 30% or less. By limiting the amount to 30% or less, the ratio of vitamin oxide can be suppressed to several percent, and a film maintaining the efficacy of vitamins can be obtained. The hollow fiber membrane produced by these methods preferably has an inner diameter of 150 to 300 μm and a membrane thickness of 10 to 70 μm.

本発明の製造方法によって得られた中空糸膜は、透析器の血液浄化のために使用されることができる。膜表面に脂溶性ビタミンをコートした場合では、血液中の蛋白等に被覆され、ビタミンの効果が軽減されることが推定されるが、本発明では、脂溶性ビタミンが膜全体に分布していることで、先に記述した懸念もなく血液浄化時に産生する活性酸素を効率的に消去することが期待できる。かかる中空糸膜型透析器のモジュール化は、例えば中空糸膜束を透析器の容器へ挿入し、両束端にポリウレタン等のポッティング剤を注入して両端をシールした後、余分なポッティング剤を切断除去して中空糸膜端面を開口させ、ヘッダーを取り付けることにより行うことができる。   The hollow fiber membrane obtained by the production method of the present invention can be used for blood purification of a dialyzer. When the membrane surface is coated with fat-soluble vitamins, it is estimated that the effects of vitamins are reduced by coating with proteins in the blood, but in the present invention, fat-soluble vitamins are distributed throughout the membrane. Thus, it can be expected that the active oxygen produced during blood purification is efficiently erased without the concerns described above. The modularization of such a hollow fiber membrane type dialyzer is, for example, by inserting a hollow fiber membrane bundle into a container of a dialyzer, injecting a potting agent such as polyurethane into both ends of the bundle and sealing both ends, and then adding an extra potting agent. It can be performed by cutting and removing to open the end face of the hollow fiber membrane and attaching a header.

中空糸膜型透析器は、脱酸素剤と共に包装袋に密封し、透析器内部の空間をドライ状態で放射線および/または電子線で照射滅菌を行うのが好ましい。放射線または電子線としては、α線、β線、γ線、電子線などが挙げられるが、滅菌効率および取り扱い易さ等からγ線又は電子線が好適に用いられる。放射線または電子線の照射線量は、殺菌が可能な線量であれば特に限定はないが、一般には10〜30kGyが好適である。   The hollow fiber membrane type dialyzer is preferably sealed in a packaging bag together with an oxygen scavenger and sterilized by irradiation with radiation and / or electron beams in a dry state inside the dialyzer. Examples of the radiation or electron beam include α-rays, β-rays, γ-rays, and electron beams, and γ-rays or electron beams are preferably used from the viewpoint of sterilization efficiency and ease of handling. The irradiation dose of radiation or electron beam is not particularly limited as long as it can be sterilized, but generally 10 to 30 kGy is preferable.

以下、本発明の製造方法及びそれによって得られる中空糸膜の有効性を、実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、実施例における物性の評価方法は以下の通りである。   Hereinafter, the production method of the present invention and the effectiveness of the hollow fiber membrane obtained thereby will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation method of the physical property in an Example is as follows.

1.ビタミンE分析の前処理
中空糸膜20mgを少量のN−メチルピロリドン(NMP)に溶解し、エタノールを貧溶媒として再沈殿を行った。遠心分離により沈殿したポリマーを除去し、上澄みを分取し、一定量のエタノール溶液とした。この溶液を前処理液とした。
1. Pretreatment for vitamin E analysis 20 mg of hollow fiber membrane was dissolved in a small amount of N-methylpyrrolidone (NMP), and reprecipitation was performed using ethanol as a poor solvent. The precipitated polymer was removed by centrifugation, and the supernatant was separated to make a certain amount of ethanol solution. This solution was used as a pretreatment liquid.

2.ビタミンEの定量
前記前処理液を高速液体クロマトグラフィー装置(HPLC)に供し、ビタミンEの検出を行った。ビタミンEの定量については、ナカライテスク社製DL−α−トコフェロールを標品とし、適当な濃度となるようエタノール溶液で適宜希釈調整を行ったもので濃度を算出した。
[HPLC条件]
装置:Agilent1100
カラム:Imtakt Unison UK−C18
(内径2mm、カラム長100mm)
移動相:A 0.1%ギ酸、B イソプロパロール
0min(40%B)−15min(98%B)−25min(98%B)
流速:0.2ml/min
カラム温度:45℃
注入量:5μl
検出波長:291nm及び260nm
2. Determination of vitamin E The pretreatment solution was subjected to high performance liquid chromatography (HPLC) to detect vitamin E. For the quantification of vitamin E, the concentration was calculated using DL-α-tocopherol manufactured by Nacalai Tesque as a standard, and appropriately adjusted for dilution with an ethanol solution so as to obtain an appropriate concentration.
[HPLC conditions]
Device: Agilent 1100
Column: Imtakt Unison UK-C18
(Inner diameter 2mm, column length 100mm)
Mobile phase: A 0.1% formic acid, B isopropalol
0 min (40% B) -15 min (98% B) -25 min (98% B)
Flow rate: 0.2 ml / min
Column temperature: 45 ° C
Injection volume: 5 μl
Detection wavelength: 291 nm and 260 nm

3.ビタミンEの酸化物/非酸化物ピーク面積割合
前記前処理液を高速液体クロマトグラフィー装置(HPLC)に供し、非酸化ビタミンE(α−トコフェロール)及び酸化ビタミンE(α−トコフェリルキノン)の検出を行った。各々、最大吸収波長ならびに溶出時間が異なり、標品を用いて溶出時間を確認した。溶出時間については、装置、測定条件に応じて変わるので、測定の度に確認を行った。上記測定条件において非酸化ビタミンEについては、291nm検出波長で14.3分に溶出するピーク、酸化ビタミンEについては、260nm検出波長で13分に溶出するピークを検出し、下記式を用いて算定した。
ピーク面積割合(%)=酸化ビタミンE(260nm検出、13分)/
非酸化ビタミンE(291nm検出、14.3分)×100
3. Vitamin E oxide / non-oxide peak area ratio The pretreatment liquid is subjected to high performance liquid chromatography (HPLC) to detect non-oxidized vitamin E (α-tocopherol) and oxidized vitamin E (α-tocopherylquinone). Went. The maximum absorption wavelength and elution time were different for each, and the elution time was confirmed using a sample. Since the elution time varies depending on the apparatus and measurement conditions, confirmation was made at each measurement. Under the above measurement conditions, for non-oxidized vitamin E, a peak eluting at 291 nm detection wavelength at 14.3 minutes is detected, and for oxidized vitamin E, a peak eluting at 260 nm detection wavelength at 13 minutes is detected and calculated using the following formula: did.
Peak area ratio (%) = oxidized vitamin E (260 nm detection, 13 minutes) /
Non-oxidized vitamin E (291 nm detection, 14.3 minutes) × 100

(実施例1)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.015質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚17μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
Example 1
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.015% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 17 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例2)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.005質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径196μm、膜厚19μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Example 2)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.005% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 196 μm and a film thickness of 19 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例3)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.03質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが質量70%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚21μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Example 3)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.03% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 21 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例4)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.04質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径194μm、膜厚18μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
Example 4
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.04% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 194 μm and a film thickness of 18 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例5)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.015質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器全体を鉄粉系の汎用タイプの脱酸素剤とともに、外層がポリエステルフィルム、中間層がアルミ箔、内層がポリエチレンフィルムからなる包装袋に入れ真空包装を施し、25kGy線量のγ線を照射し滅菌処理を行った。滅菌後、血液浄化器を取り出し、解体後、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚17μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Example 5)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.015% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Then, after removing the core liquid and washing, the whole blood purifier is vacuum packed in a packaging bag consisting of a general-purpose iron powder-based oxygen scavenger, an outer layer made of polyester film, an intermediate layer made of aluminum foil, and an inner layer made of polyethylene film And was sterilized by irradiation with 25 kGy dose of γ-rays. After sterilization, the blood purifier was taken out, and after disassembly, the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 17 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例6)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール1.0質量%、クエン酸0.015質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径196μm、膜厚18μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Example 6)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 1.0% by mass, and citric acid 0.015% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 196 μm and a film thickness of 18 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(実施例7)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.10質量%、クエン酸0.015質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径194μm、膜厚18μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Example 7)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.10% by mass, and citric acid 0.015% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 194 μm and a film thickness of 18 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(比較例1)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.002質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚15μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Comparative Example 1)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.002% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 15 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(比較例2)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.5質量%、クエン酸0.05質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚15μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Comparative Example 2)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries) at 15.2% by mass, α-tocopherol 0.5% by mass, and citric acid 0.05% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 15 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope, the vitamin E content of the hollow fiber membrane, and the oxide / non-oxide peak area ratio of vitamin E.

(比較例3)
紡糸原液は、三酢酸セルロース(CTA)(ダイセル化学工業社)15.2質量%、α―トコフェロール0.025質量%、クエン酸0.015質量%となるようにN−メチル−2−ピロリドン及びトリエチレングリコール混合溶媒を用いて均一に溶解して作製した。混合溶媒中の溶媒比は、N−メチル−2−ピロリドンが70質量%、トリエチレングリコールが30質量%となるように調整した。得られた紡糸原液を加温した二重管ノズルの外側環状部より吐出し、同時に中心孔より流動パラフィンを芯液として吐出した。乾式部を走行させた後、凝固性液体中を通過させて凝固、相分離し、膜構造を形成させ、洗浄工程にて不要な成分を除去した。続いて、75質量%グリセリン浴を通過させ、40℃の雰囲気で乾燥後、中空糸を巻き取った。ポリカーボネート製のケースのなかに前記中空糸を約10000本挿入し、両端部をウレタン樹脂で固定するとともに切断開口させ、流入口を有するキャップを装着した。その後、芯液を除去、洗浄後、血液浄化器を解体し、中空糸を取り出した。得られた中空糸膜は、内径195μm、膜厚17μmであった。紡糸原液のビタミン含有量及びクエン酸含有量、並びに中空糸膜のビタミンE含有量を表1に示す。
(Comparative Example 3)
The spinning dope was N-methyl-2-pyrrolidone and cellulose triacetate (CTA) (Daicel Chemical Industries, Ltd.) 15.2% by mass, α-tocopherol 0.025% by mass, and citric acid 0.015% by mass. It was prepared by uniformly dissolving using a triethylene glycol mixed solvent. The solvent ratio in the mixed solvent was adjusted so that N-methyl-2-pyrrolidone was 70% by mass and triethylene glycol was 30% by mass. The obtained spinning dope was discharged from the outer annular portion of a heated double tube nozzle, and at the same time, liquid paraffin was discharged from the center hole as a core solution. After running the dry section, it was allowed to pass through a coagulable liquid to solidify and phase separate to form a membrane structure, and unnecessary components were removed in the washing step. Subsequently, after passing through a 75% by mass glycerin bath and drying in an atmosphere at 40 ° C., the hollow fiber was wound up. About 10,000 hollow fibers were inserted into a polycarbonate case, both ends were fixed with urethane resin, cut and opened, and caps having inflow ports were attached. Thereafter, the core liquid was removed and washed, the blood purifier was disassembled, and the hollow fiber was taken out. The obtained hollow fiber membrane had an inner diameter of 195 μm and a film thickness of 17 μm. Table 1 shows the vitamin content and citric acid content of the spinning dope and the vitamin E content of the hollow fiber membrane.

(比較例4)
市販されている脂溶性ビタミンをコーティングした透析器(旭ビタブレン、旭化成クラレメディカル製)について、透析器内の充填水を排水した後、透析器を解体し、中空糸を取り出した。そして、室温にて乾燥させた後、他の実施例と同様に評価した。中空糸膜のビタミンE含有量及びビタミンEの酸化物/非酸化物ピーク面積割合を表1に示す。
(Comparative Example 4)
Regarding a commercially available dialyzer coated with a fat-soluble vitamin (Asahi Vitablen, manufactured by Asahi Kasei Kuraray Medical Co., Ltd.), the filling water in the dialyzer was drained, the dialyzer was disassembled, and the hollow fiber was taken out. And after making it dry at room temperature, it evaluated similarly to the other Example. Table 1 shows the vitamin E content of the hollow fiber membrane and the oxide / non-oxide peak area ratio of vitamin E.

上記表1から明らかなように、実施例1〜7の中空糸膜は、いずれも酸化体ビタミンEのピーク面積割合が抑えられており、製造過程でのビタミンの酸化を抑制する効果が認められる。一方、比較例1,2の中空糸膜は、クエン酸による重金属の安定化が不足、あるいは過剰添加による酸性化により、いずれも酸化ビタミンEのピーク面積割合が高く、ビタミンEの酸化が進んでいる。比較例3については、ビタミン添加が不十分で、十分な効果が期待できない。比較例4については、ウェット状態での滅菌であり、滅菌時の産生ラジカルによりビタミン酸化が進んでいる。   As is clear from Table 1 above, the hollow fiber membranes of Examples 1 to 7 all have the peak area ratio of oxidant vitamin E suppressed, and the effect of suppressing vitamin oxidation during the production process is recognized. . On the other hand, in the hollow fiber membranes of Comparative Examples 1 and 2, the peak area ratio of oxidized vitamin E is high due to insufficient stabilization of heavy metal by citric acid or acidification by excessive addition, and oxidation of vitamin E proceeds. Yes. For Comparative Example 3, vitamin addition is insufficient and a sufficient effect cannot be expected. About the comparative example 4, it is sterilization in a wet state and vitamin oxidation has advanced by the radical produced at the time of sterilization.

本発明により、簡便かつ低コストに生体適合性に優れた中空糸膜型血液浄化器を製造することができる。さらに、放射線滅菌工程時などの脂溶性ビタミンの酸化を防ぐことから、効果的な抗酸化性能および高い安全性が期待できる。   According to the present invention, a hollow fiber membrane blood purifier having excellent biocompatibility can be produced simply and at low cost. Furthermore, since the oxidation of fat-soluble vitamins during the radiation sterilization process is prevented, effective antioxidant performance and high safety can be expected.

Claims (6)

二重管ノズルの外側環状部と中心孔から紡糸原液と芯液をそれぞれ同時に吐出した後、凝固性液体中を通過させて凝固させ、洗浄する工程を含む血液浄化用中空糸膜の製造方法において、前記紡糸原液に脂溶性ビタミンを0.05〜1.2質量%含有させ、さらにクエン酸を0.004〜0.045質量%含有させることを特徴とする血液浄化用中空糸膜の製造方法。   In a method for producing a hollow fiber membrane for blood purification, comprising a step of simultaneously discharging a spinning solution and a core solution from an outer annular portion and a center hole of a double tube nozzle, and then allowing the solution to pass through a coagulable liquid to be coagulated and washed. A method for producing a hollow fiber membrane for blood purification, wherein 0.05 to 1.2% by mass of a fat-soluble vitamin and 0.004 to 0.045% by mass of citric acid are further contained in the spinning solution. . 前記脂溶性ビタミンがビタミンEであることを特徴とする請求項1に記載の血液浄化用中空糸の製造方法。   The method for producing a hollow fiber for blood purification according to claim 1, wherein the fat-soluble vitamin is vitamin E. 前記ビタミンEがα−トコフェロール、酢酸−α−トコフェロール、コハク酸−α−トコフェロール、またはコハク酸トコフェロールカルシウムであることを特徴とする請求項1または2に記載の血液浄化用中空糸膜の製造方法。   The method for producing a hollow fiber membrane for blood purification according to claim 1 or 2, wherein the vitamin E is α-tocopherol, acetic acid-α-tocopherol, succinic acid-α-tocopherol, or tocopherol calcium succinate. . 請求項1〜3のいずれかに記載の製造方法によって得られる血液浄化用中空糸膜であって、前記膜中の脂溶性ビタミン含有量が0.05〜1.2質量%であり、高速液クロマトグラフィーの測定に基づく前記脂溶性ビタミン中の酸化物/非酸化物のピーク面積割合が30%以下であることを特徴とする血液浄化用中空糸膜。   A hollow fiber membrane for blood purification obtained by the production method according to claim 1, wherein the fat-soluble vitamin content in the membrane is 0.05 to 1.2% by mass, and a high-speed liquid A hollow fiber membrane for blood purification, wherein the peak area ratio of oxide / non-oxide in the fat-soluble vitamin based on chromatography is 30% or less. 請求項4に記載の血液浄化用中空糸膜を使用して構成されることを特徴とする中空糸膜型透析器。   A hollow fiber membrane dialyzer comprising the blood purification hollow fiber membrane according to claim 4. 中空糸膜型透析器内部の空間をドライ状態で放射線および/または電子線で滅菌処理していることを特徴とする請求項5に記載の中空糸膜型透析器。   6. The hollow fiber membrane dialyzer according to claim 5, wherein the space inside the hollow fiber membrane dialyzer is sterilized by radiation and / or electron beam in a dry state.
JP2011242093A 2011-11-04 2011-11-04 Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility Pending JP2013094525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011242093A JP2013094525A (en) 2011-11-04 2011-11-04 Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242093A JP2013094525A (en) 2011-11-04 2011-11-04 Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility

Publications (1)

Publication Number Publication Date
JP2013094525A true JP2013094525A (en) 2013-05-20

Family

ID=48617106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242093A Pending JP2013094525A (en) 2011-11-04 2011-11-04 Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility

Country Status (1)

Country Link
JP (1) JP2013094525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093493A1 (en) 2013-12-16 2015-06-25 旭化成メディカル株式会社 Hollow fiber membrane blood purification device
JP2016140616A (en) * 2015-02-03 2016-08-08 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier and method of manufacturing the same
KR20170009957A (en) 2014-09-29 2017-01-25 아사히 가세이 메디컬 가부시키가이샤 Hollow fiber membrane-type blood purification device
CN114504953A (en) * 2022-03-14 2022-05-17 上海翊科聚合物科技有限公司 Preparation method of hollow fiber hemodialysis membrane
WO2023080238A1 (en) * 2021-11-08 2023-05-11 旭化成メディカル株式会社 Hollow fiber membrane-type blood purifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966225A (en) * 1995-06-22 1997-03-11 Terumo Corp Production of hollow fiber membrane, hollow fiber membrane and dialyser
JP2005095270A (en) * 2003-09-24 2005-04-14 Nipro Corp Hollow thread type blood treatment device and its aseptic packaging method
JP2005342411A (en) * 2004-06-07 2005-12-15 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane and blood purifier
JP2006110164A (en) * 2004-10-15 2006-04-27 Toyobo Co Ltd Method for sterilization of blood purifier and blood purifier package body
JP2006296931A (en) * 2005-04-25 2006-11-02 Asahi Kasei Medical Co Ltd Hollow fiber type blood purifying device and its manufacturing method
JP2010518822A (en) * 2007-02-15 2010-06-03 ワイス エルエルシー Improved stability in vitamin and mineral supplements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966225A (en) * 1995-06-22 1997-03-11 Terumo Corp Production of hollow fiber membrane, hollow fiber membrane and dialyser
JP2005095270A (en) * 2003-09-24 2005-04-14 Nipro Corp Hollow thread type blood treatment device and its aseptic packaging method
JP2005342411A (en) * 2004-06-07 2005-12-15 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane and blood purifier
JP2006110164A (en) * 2004-10-15 2006-04-27 Toyobo Co Ltd Method for sterilization of blood purifier and blood purifier package body
JP2006296931A (en) * 2005-04-25 2006-11-02 Asahi Kasei Medical Co Ltd Hollow fiber type blood purifying device and its manufacturing method
JP2010518822A (en) * 2007-02-15 2010-06-03 ワイス エルエルシー Improved stability in vitamin and mineral supplements

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093493A1 (en) 2013-12-16 2015-06-25 旭化成メディカル株式会社 Hollow fiber membrane blood purification device
US10029216B2 (en) 2013-12-16 2018-07-24 Asahi Kasei Medical Co., Ltd. Hollow-fiber membrane blood purification device
KR20170009957A (en) 2014-09-29 2017-01-25 아사히 가세이 메디컬 가부시키가이샤 Hollow fiber membrane-type blood purification device
US10232320B2 (en) 2014-09-29 2019-03-19 Asahi Kasei Medical Co., Ltd. Hollow-fiber membrane blood purification device
JP2016140616A (en) * 2015-02-03 2016-08-08 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier and method of manufacturing the same
WO2023080238A1 (en) * 2021-11-08 2023-05-11 旭化成メディカル株式会社 Hollow fiber membrane-type blood purifier
CN114504953A (en) * 2022-03-14 2022-05-17 上海翊科聚合物科技有限公司 Preparation method of hollow fiber hemodialysis membrane
CN114504953B (en) * 2022-03-14 2023-06-16 上海翊科聚合物科技有限公司 Preparation method of hollow fiber hemodialysis membrane

Similar Documents

Publication Publication Date Title
RU2648027C1 (en) Hollow fiber membrane blood purification device
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
JP4889109B2 (en) Hollow fiber membrane blood purification device
TWI614038B (en) Hollow fiber membrane type blood purification device
CN102307603B (en) Hollow-fiber membrane, process for producing same, and blood purification module
JP6059040B2 (en) Blood treatment hollow fiber membrane, blood purifier comprising the blood treatment hollow fiber membrane, and method for producing the blood purification device
JP2013094525A (en) Manufacturing method for hollow fiber membrane for blood purification excellent in biocompatibility
TW201311343A (en) Hollow fiber membrane type blood purifier
JP5409816B2 (en) Hollow fiber membrane blood purification device
JP6078641B2 (en) Hollow fiber membrane for blood treatment and method for producing the hollow fiber membrane for blood treatment
JP4923902B2 (en) Hollow fiber membrane for blood purification and method for producing the same
JP6190714B2 (en) Hollow fiber membrane blood purification device
JP6383631B2 (en) Hollow fiber membrane blood purifier
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
JP5265884B2 (en) Polysulfone-based permselective membrane and method for producing the same
WO2023080238A1 (en) Hollow fiber membrane-type blood purifier
JP6502111B2 (en) Hollow fiber type blood purifier and method of manufacturing the same
JP4381022B2 (en) Hollow fiber blood purification membrane
WO2023080237A1 (en) Hollow fiber membrane blood purifier
JP2011041830A (en) Hollow fiber membrane for blood purification, and method of manufacturing the same
JP5408197B2 (en) Method for producing hollow fiber membrane for blood purification
JP2005074019A (en) Hollow fiber type blood purification membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201