JP5408197B2 - Method for producing hollow fiber membrane for blood purification - Google Patents

Method for producing hollow fiber membrane for blood purification Download PDF

Info

Publication number
JP5408197B2
JP5408197B2 JP2011164356A JP2011164356A JP5408197B2 JP 5408197 B2 JP5408197 B2 JP 5408197B2 JP 2011164356 A JP2011164356 A JP 2011164356A JP 2011164356 A JP2011164356 A JP 2011164356A JP 5408197 B2 JP5408197 B2 JP 5408197B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
blood
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011164356A
Other languages
Japanese (ja)
Other versions
JP2012005845A (en
Inventor
暁 足高
秀彦 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011164356A priority Critical patent/JP5408197B2/en
Publication of JP2012005845A publication Critical patent/JP2012005845A/en
Application granted granted Critical
Publication of JP5408197B2 publication Critical patent/JP5408197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、血液透析膜、血液濾過膜または血液透析濾過膜等として好適に用いることのできる血液浄化用中空糸膜及びその製造方法に関するものである。
本発明は、糸すべり性が高い血液浄化用中空糸膜であり、該中空糸膜の紡糸やモジュール作製歩留まりの高い中空糸膜に関するものである。
The present invention relates to a blood purification hollow fiber membrane that can be suitably used as a hemodialysis membrane, blood filtration membrane, hemodiafiltration membrane, or the like, and a method for producing the same.
The present invention relates to a hollow fiber membrane for blood purification having a high yarn slip property, and relates to a hollow fiber membrane having a high spinning yield and module production yield.

中空糸膜モジュールは、単位モジュール体積あたりの膜面積が大きく、ファウリングが少ないこと、洗浄が容易なことから、工業用・産業用の排水処理、水精製や、医療分野に幅広く使用されている。   Hollow fiber membrane modules are widely used in industrial and industrial wastewater treatment, water purification, and medical fields because of their large membrane area per unit module volume, low fouling, and easy cleaning. .

中空糸膜モジュールの一般的な作製方法は、紡糸された中空糸膜を、束状に捲取り、巻き取った中空糸膜束をモジュールケースに挿入し、ついで、ケースの端部をウレタンやエポキシなどの樹脂で、中空糸膜束とケースを液密に接着、その後、中空糸膜の内孔が開口するように接着部分を切断する。   A general method for producing a hollow fiber membrane module is to wind a spun hollow fiber membrane into a bundle, insert the wound hollow fiber membrane bundle into a module case, and then attach the end of the case to urethane or epoxy. The hollow fiber membrane bundle and the case are bonded in a liquid-tight manner with a resin such as, and then the bonded portion is cut so that the inner hole of the hollow fiber membrane is opened.

このとき、中空糸膜のすべり性は、モジュール製作時の歩留まりに大きく影響を与えることが知られている。つまり、中空糸膜を紡糸する際、膜のすべり性が不十分であると、糸走行時に接触するガイドやローラーとの摩擦に耐えられずに、糸切れを起こしてしまうことがある。また、巻き取った中空糸膜束をモジュールケースに挿入するときに、ケース内径と中空糸膜束径の差が小さいときに、ケース内面と中空糸膜あるいは中空糸膜同士がこすれて糸切れが発生することがある。   At this time, it is known that the slipperiness of the hollow fiber membrane greatly affects the yield at the time of module manufacture. That is, when the hollow fiber membrane is spun, if the membrane is not sufficiently slippery, it may not endure the friction with the guide or roller that is in contact with the yarn during running, and may cause yarn breakage. In addition, when the wound hollow fiber membrane bundle is inserted into the module case, when the difference between the case inner diameter and the hollow fiber membrane bundle diameter is small, the inner surface of the case and the hollow fiber membrane or the hollow fiber membranes are rubbed to break the yarn. May occur.

紡糸やモジュール作製の歩留まりを向上させるためには、膜形成時のポリマー濃度を高めたり、中空糸膜の膜厚を厚くして中空糸膜の強度を高める方法が一般的に取られる。しかし血液浄化に用いられる中空糸膜は、血液から有害物質を取り除く目的で使用されるため、物質透過性を高める必要があり、性能の低下を引き起こすために、必要以上に膜形成時のポリマー濃度を高めたり、膜厚を厚くすることができない。   In order to improve the yield of spinning and module production, a method of increasing the polymer concentration at the time of membrane formation or increasing the thickness of the hollow fiber membrane to increase the strength of the hollow fiber membrane is generally taken. However, since hollow fiber membranes used for blood purification are used for the purpose of removing harmful substances from blood, it is necessary to increase the substance permeability, and in order to cause a decrease in performance, the polymer concentration during membrane formation is more than necessary. Cannot be increased or the film thickness cannot be increased.

もちろん、産業用に用いられる糸の製造においては、油剤を用いて、糸のすべり性を高めることが古くからおこなわれているが、中空糸膜、特に医療用として血液と直接接触する血液浄化用の中空糸膜の製造には、安全上の問題から油剤を使用することはできず、本発明者らが調べたところでは、血液浄化用中空糸膜の糸すべり性を高める方法についての公知技術は存在しない。   Of course, in the production of yarn used for industrial use, it has long been practiced to improve the slipperiness of the yarn by using an oil agent. However, hollow fiber membranes, especially for blood purification that comes into direct contact with blood for medical use In the production of hollow fiber membranes, oils cannot be used due to safety problems, and the present inventors investigated that there is a known technique for increasing the thread slippage of blood purification hollow fiber membranes. Does not exist.

また、中空糸膜には、中空糸膜同士の密着を防ぐために、クリンプが付与されることがあるが、クリンプによる中空糸膜の蛇行も、中空糸膜同士がこすれるときに、摩擦抵抗の原因となり、中空糸膜に対してダメージを与えることがある。   The hollow fiber membrane may be crimped to prevent the hollow fiber membranes from sticking to each other, but the meandering of the hollow fiber membranes caused by crimp also causes frictional resistance when the hollow fiber membranes are rubbed together. This may damage the hollow fiber membrane.

従来、内面に平滑なスキン層を有し、外表面に微細な凹凸よりなる支持層を有する非対称性中空糸型分離膜が開示されている。(特許文献1参照)。該文献に開示されている技術は、分離膜の外表面に凹凸を有することにより、シール部材との相溶性がない場合でもシール部材が前記微細な凹凸に侵入することによるアンカー効果により物理的に十分な液密シールを可能とするものである。また、該文献には、具体的な凹凸の程度は一切開示されていないが、アンカー効果を得るための凹凸であることから非常に大きな凹凸を想定しているものと考えられる。   Conventionally, an asymmetric hollow fiber type separation membrane having a smooth skin layer on the inner surface and a support layer composed of fine irregularities on the outer surface has been disclosed. (See Patent Document 1). The technique disclosed in this document has an unevenness on the outer surface of the separation membrane, so that even when the seal member is not compatible, the seal member physically penetrates into the fine unevenness due to the anchor effect. A sufficient liquid tight seal is possible. In addition, this document does not disclose any specific degree of unevenness, but it is assumed that very large unevenness is assumed since it is unevenness for obtaining the anchor effect.

また、特許文献2には、膜内部が実質的に均一構造の膜を一定範囲内の薄さの膜厚とし、且つ、膜表面の平滑性を向上させることによって、膜の目詰まり及び血液側境膜での分極蛋白層の生成を抑制し、その結果限外濾過速度及び分離性能を向上させた血液浄化膜が開示されている。該文献には、膜表面が平滑であることが記載されているが、ここでは中空糸膜内表面の平滑性を指しており、外表面の凹凸度に関しては記載も示唆もない。また、中空糸膜のすべり性を向上させて中空糸膜の生産性やモジュールの生産性を高めるという技術課題を示唆する記述もみられない。   Further, Patent Document 2 discloses that a film having a substantially uniform structure inside the film has a thin film thickness within a certain range and improves the smoothness of the film surface. There has been disclosed a blood purification membrane that suppresses the formation of a polarized protein layer at the boundary membrane, thereby improving the ultrafiltration rate and separation performance. This document describes that the membrane surface is smooth, but here refers to the smoothness of the inner surface of the hollow fiber membrane, and there is no description or suggestion regarding the degree of unevenness of the outer surface. Further, there is no description suggesting a technical problem of improving the productivity of the hollow fiber membrane and the module by improving the slip property of the hollow fiber membrane.

さらに、特許文献3にも同様に中空糸膜表面の平滑性を向上させ、血液処理時の中空糸膜表面へのタンパク付着量を抑制し残血を減少する技術が開示されている。該文献に記載の技術も血液中のタンパクの膜表面への付着抑制に関するものであって、中空糸膜の生産性やモジュール組立性を向上するという技術課題を示唆する記述はみられないし、そのために外表面の凹凸度を制御するという技術思想についても記載も示唆もされていない。   Further, Patent Document 3 similarly discloses a technique for improving the smoothness of the hollow fiber membrane surface, suppressing the amount of protein attached to the hollow fiber membrane surface during blood treatment, and reducing residual blood. The technique described in this document is also related to the suppression of adhesion of proteins in blood to the membrane surface, and there is no description suggesting the technical problem of improving the productivity and module assembly of the hollow fiber membrane. Furthermore, there is no description or suggestion of the technical idea of controlling the degree of unevenness of the outer surface.

特開平9−290138号公報JP-A-9-290138 特開平9−154936号公報JP-A-9-154936 特開2000−126286号公報JP 2000-126286 A

本発明は上記の課題を解決しようとするものであり、その目的は、紡糸段階での糸切れ起因によるローラーでの巻きつきを防ぎ、束状に捲取られた中空糸膜束をモジュールケースに挿入する際の中空糸膜とモジュールケース内面とのこすれによる糸切れを防ぐために、中空糸膜の糸すべり性を高い状態で確保できる血液浄化用中空糸膜およびその製造方法を提供することにある。   The present invention is intended to solve the above-described problems, and its purpose is to prevent winding with a roller due to yarn breakage at the spinning stage, and to form a bundle of hollow fiber membranes that are collected in a bundle shape into a module case. An object of the present invention is to provide a blood purification hollow fiber membrane and a method for producing the same, which can ensure high thread slippage of the hollow fiber membrane in order to prevent thread breakage due to rubbing between the hollow fiber membrane and the inner surface of the module case during insertion.

本発明者等は、上記課題を解決するために鋭意検討を行なった結果、本発明に到達した。すなわち、本発明は以下の構成を有する。
(1)チューブインオリフィスノズルの外側環状部より吐出された製膜溶液を凝固浴に浸漬して凝固させ、引き続き水洗工程、グリセリン水溶液を含浸させる工程、乾燥工程を経てボビンに巻き取る中空糸膜の製造において、中空糸膜を温度が45℃以上110℃以下の乾燥工程を通過させた、温度が20℃〜30℃、湿度が45〜75%RHの気体を送風した冷却ゾーンを1秒〜5秒走行させるか、または温度が20℃〜30℃、湿度が45〜75%RHの雰囲気内を10秒〜60秒通過させることを特徴とする血液浄化用中空糸膜の製造方法。
(2)中空糸膜の内径が100〜300μm、膜厚が10〜100μmであることを特徴とする(1)に記載の血液浄化用中空糸膜の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention. That is, the present invention has the following configuration.
(1) A hollow fiber membrane in which a membrane-forming solution discharged from the outer annular portion of the tube-in orifice nozzle is immersed in a coagulation bath to be solidified, and subsequently wound around a bobbin through a water washing step, a step of impregnating a glycerin aqueous solution, and a drying step. In the manufacturing process, after passing the hollow fiber membrane through a drying process at a temperature of 45 ° C. or higher and 110 ° C. or lower, a cooling zone in which a gas having a temperature of 20 ° C. to 30 ° C. and a humidity of 45 to 75% RH is blown is 1 second. A method for producing a hollow fiber membrane for blood purification , which is allowed to run for ˜5 seconds or is allowed to pass through an atmosphere having a temperature of 20 ° C. to 30 ° C. and a humidity of 45 to 75% RH for 10 seconds to 60 seconds .
(2) The method for producing a hollow fiber membrane for blood purification according to (1), wherein the hollow fiber membrane has an inner diameter of 100 to 300 μm and a film thickness of 10 to 100 μm.

本発明の中空糸膜は、糸すべり性が高く、束状に捲取られた中空糸膜束をモジュールケースに挿入する際に中空糸膜同士のこすれによる糸切れが低減できる。また中空糸膜紡糸の際に、走行ローラーやガイドとのこすれによる糸切れを低減させることができる。さらに中空糸膜の糸すべり性を高い状態で確保できる製造方法を提供することができる。   The hollow fiber membrane of the present invention has high yarn slipperiness, and can reduce yarn breakage due to rubbing between the hollow fiber membranes when the bundle of hollow fiber membranes cut into a bundle is inserted into the module case. Further, yarn breakage due to rubbing with a running roller or a guide during hollow fiber membrane spinning can be reduced. Furthermore, the manufacturing method which can ensure the thread slip property of a hollow fiber membrane in a high state can be provided.

以下、本発明を詳細に説明する。
中空糸膜はモジュールに組み立てられる際に、中空糸膜束をケースに挿入する工程が取られる。このとき、中空糸膜同士が擦れあうことにより、中空糸膜が折れ、中空糸膜にダメージを与えており、中空糸膜対中空糸膜の摩擦係数がモジュール歩留まりに大きな影響を与えていることを見出し本発明に到達した。本発明の中空糸膜は「JIS L1015化学繊維ステープル試験方法」に準拠したレーダー式摩擦係数試験機における、中空糸膜対中空糸膜の摩擦係数が、静止摩擦係数0.05以上、1.70以下、動摩擦係数0.02以上0.40以下であることを特徴とする。
Hereinafter, the present invention will be described in detail.
When the hollow fiber membrane is assembled into a module, a step of inserting the hollow fiber membrane bundle into the case is taken. At this time, hollow fiber membranes are broken by rubbing each other, and the hollow fiber membranes are damaged, and the coefficient of friction between the hollow fiber membranes and the hollow fiber membranes has a great influence on the module yield. And reached the present invention. The hollow fiber membrane of the present invention is a radar type friction coefficient tester compliant with "JIS L1015 chemical fiber staple test method", the friction coefficient of the hollow fiber membrane to the hollow fiber membrane is a static friction coefficient of 0.05 or more, 1.70 or less, a dynamic friction coefficient It is 0.02 or more and 0.40 or less.

静止摩擦係数が1.70以下であれば、中空糸膜対中空糸膜が摩擦抵抗を受け、どちらかが動き出すときの摩擦力が小さく、中空糸膜に対してダメージを与えることが少なく好ましい。静止摩擦係数は、静止状態から動き出すときの摩擦力を現すので、この値が小さいほど、こすれあったときに滑り始めるときの力が小さく、中空糸膜に対するダメージは小さくなる。このため、静止摩擦係数は1.50以下がより好ましく、1.20以下がさらに好ましい。一方、静止摩擦係数の下限については特に存在せず、ゼロに近いことが好ましいことは容易に理解されうるものであるが、現実的には、膜表面の平滑性をどのように高めてもゼロにすることは困難であり、あえて範囲を記載するとすれば、0.05以上が理想状態であり、0.10以上が現在の技術では好ましい範囲となる。   If the static friction coefficient is 1.70 or less, the hollow fiber membrane versus the hollow fiber membrane is subjected to frictional resistance, the frictional force when one of them starts to move is small, and it is preferable that the hollow fiber membrane is not damaged. The coefficient of static friction represents the frictional force when starting to move from a stationary state, so that the smaller this value, the smaller the force when starting to slip when rubbed, and the less damage to the hollow fiber membrane. For this reason, the static friction coefficient is more preferably 1.50 or less, and further preferably 1.20 or less. On the other hand, there is no particular lower limit of the static friction coefficient, and it can be easily understood that it is preferably close to zero. However, in reality, no matter how high the smoothness of the film surface is, it is zero. Therefore, if the range is to be described, 0.05 or more is an ideal state, and 0.10 or more is a preferable range in the current technology.

本発明において動摩擦係数が0.40以下であれば、中空糸膜同士が擦れ合って、すべるときの摩擦力が小さく、中空糸膜に対してダメージを与えることが少なく好ましい。動摩擦係数は、動いている状態の摩擦力を表すので、この値が小さいほど、擦れ合ってすべるときに中空糸膜にかかる力が小さくなるので、0.35以下がより好ましく、0.30以下がさらに好ましい。静止摩擦係数と同様に、動摩擦係数の下限については特に存在せず、ゼロに近いことが好ましいことは容易に理解されうるものであるが、現実的には、膜表面の平滑性をどのように高めてもゼロにすることは困難であり、あえて範囲を記載するとすれば、0.02以上が理想状態であり、0.03以上が現在の技術では好ましい範囲となる。   In the present invention, if the dynamic friction coefficient is 0.40 or less, it is preferable that the hollow fiber membranes rub against each other and the frictional force when sliding is small, and the hollow fiber membrane is less damaged. The dynamic friction coefficient represents the frictional force in a moving state, and the smaller this value, the smaller the force applied to the hollow fiber membrane when sliding against each other, so 0.35 or less is more preferable, and 0.30 or less is even more preferable. As with the static friction coefficient, there is no particular lower limit for the dynamic friction coefficient, and it can be easily understood that it is preferable that the dynamic friction coefficient is close to zero. Even if it is raised, it is difficult to make it zero, and if a range is described, 0.02 or more is an ideal state, and 0.03 or more is a preferable range in the current technology.

本発明者らは、前記摩擦係数を適正化するための方策について鋭意検討した結果、製膜原液をノズルから吐出する際の吐出斑あるいは凝固工程における凝固斑に起因する外表面の凹凸、製膜工程での各部材と中空糸膜との接触により中空糸膜外表面に生ずる傷、乾燥時の収縮による皺の発生、粘性の高い孔径保持材の膜表面への滲み出しなどが摩擦係数を増大する原因であることを突き止めた。これらの中でも、特に中空糸膜外表面凹凸を適正化すること、粘性の高い孔径保持材の中空糸膜細孔からの滲み出しを抑制することが摩擦係数適正化に効果が大きいことから、さらに外表面凹凸の制御および孔径保持材の滲み出し抑制について検討を進め、ついに本願発明に到達した。以下さらに詳細に本願発明を説明する。   As a result of intensive studies on measures for optimizing the friction coefficient, the present inventors have found that irregularities on the outer surface due to ejection spots when the film-forming stock solution is ejected from the nozzle or coagulation spots in the coagulation process, film formation The friction coefficient increases due to scratches on the outer surface of the hollow fiber membrane due to contact between each member and the hollow fiber membrane in the process, generation of wrinkles due to shrinkage during drying, and oozing of a highly viscous pore diameter retaining material to the membrane surface. I found out that it was the cause. Among these, in particular, by optimizing the hollow fiber membrane outer surface irregularities, and suppressing the seepage from the hollow fiber membrane pores of the highly viscous pore diameter retaining material has a great effect on friction coefficient optimization, The study on the control of the outer surface unevenness and the suppression of the bleeding of the pore diameter maintaining material was advanced, and finally the present invention was reached. The present invention will be described in further detail below.

本発明における血液浄化用中空糸膜(以下、単に中空糸膜と称することがある。)の材質としては、再生セルロース、改質セルロース、酢酸セルロースなどのセルロース系ポリマー、ポリメタクリル酸メチル、ビニルアルコール−エチレン共重合体、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホンなどのポリスルホン系ポリマーなどが挙げられるが、タンパク吸着量が少なく、透水性、溶質透過性が優れる点でセルロース系の材質が好ましい。高い透水性を得ることができ、溶質分離特性に優れ、生体適合性にも優れることから、セルロースジアセテートやセルローストリアセテートがより好ましい。   Examples of the material for the blood purification hollow fiber membrane (hereinafter sometimes simply referred to as a hollow fiber membrane) in the present invention include cellulose polymers such as regenerated cellulose, modified cellulose, and cellulose acetate, polymethyl methacrylate, and vinyl alcohol. -Polysulfone-based polymers such as ethylene copolymer, polyacrylonitrile, polysulfone, and polyethersulfone are listed. Cellulose-based materials are preferable in that they have a low protein adsorption amount and excellent water permeability and solute permeability. Cellulose diacetate and cellulose triacetate are more preferable because high water permeability can be obtained, solute separation characteristics are excellent, and biocompatibility is also excellent.

本発明の血液浄化用中空糸膜の内径は100〜300μmであることが好ましい。内径が100μm未満の場合には中空糸膜の圧力損失が大きくなる為、血液を流した際に溶血することがある。したがって、中空糸膜の内径は130μm以上がより好ましく、150μm以上がさらに好ましい。逆に、中空糸膜の内径が300μmより大きい場合には中空糸膜内を流れる血液の剪断速度が小さく、濾過に伴いタンパク質などが膜の内面に堆積しやすくなる傾向がある。したがって、中空糸膜の内径は280μm以下がより好ましく、260μm以下がさらに好ましい。   The inner diameter of the hollow fiber membrane for blood purification of the present invention is preferably 100 to 300 μm. When the inner diameter is less than 100 μm, the pressure loss of the hollow fiber membrane increases, so that hemolysis may occur when blood is flowed. Therefore, the inner diameter of the hollow fiber membrane is more preferably 130 μm or more, and further preferably 150 μm or more. In contrast, when the inner diameter of the hollow fiber membrane is larger than 300 μm, the shear rate of blood flowing in the hollow fiber membrane is low, and proteins and the like tend to be deposited on the inner surface of the membrane with filtration. Therefore, the inner diameter of the hollow fiber membrane is more preferably 280 μm or less, and further preferably 260 μm or less.

本発明の血液浄化用中空糸膜の膜厚は10〜100μmであることが好ましい。膜厚が10μm未満の場合には中空糸膜の可紡性や血液浄化器の組み立て性が非常に悪くなる。したがって、中空糸膜の内径は11μm以上がより好ましく、12μm以上がさらに好ましい。逆に、中空糸膜の膜厚が100μmより大きい場合には透過性能が悪くなる傾向にあり、タンパク質などが膜に吸着しやすくなる傾向がある。したがって、中空糸膜の膜厚は50μm以下がより好ましく、30μm以下がさらに好ましい。   The thickness of the blood purification hollow fiber membrane of the present invention is preferably 10 to 100 μm. When the film thickness is less than 10 μm, the spinnability of the hollow fiber membrane and the assemblability of the blood purifier are very poor. Therefore, the inner diameter of the hollow fiber membrane is more preferably 11 μm or more, and further preferably 12 μm or more. On the contrary, when the film thickness of the hollow fiber membrane is larger than 100 μm, the permeation performance tends to deteriorate, and proteins and the like tend to be easily adsorbed on the membrane. Therefore, the film thickness of the hollow fiber membrane is more preferably 50 μm or less, and further preferably 30 μm or less.

本発明の血液浄化用中空糸膜の膜構造は、均質構造であることが好ましい。本発明において、膜構造が均質であるとは、SEMで膜断面を1000倍程度で観察しても支持層、スキン層など断面構造に不均一性が観察されず、また、ボイドやピンホール等も観察されないことを言う。
さらに、可視光領域の乱反射を起こす構造を持たないため、中空糸膜は透明である。また、疎水性が比較的強いセルロースアセテートを素材としているため、中空糸膜を濡らした場合にも、膜厚や中空糸膜内径、中空糸膜外径は変化しない。
The membrane structure of the blood purification hollow fiber membrane of the present invention is preferably a homogeneous structure. In the present invention, when the film structure is homogeneous, non-uniformity is not observed in the cross-sectional structure such as the support layer and the skin layer even when the cross section of the film is observed at about 1000 times by SEM, and voids, pinholes, etc. Also say that not observed.
Furthermore, since it does not have a structure that causes irregular reflection in the visible light region, the hollow fiber membrane is transparent. In addition, since cellulose acetate having a relatively strong hydrophobic property is used as a raw material, even when the hollow fiber membrane is wetted, the film thickness, the hollow fiber membrane inner diameter, and the hollow fiber membrane outer diameter do not change.

血液浄化器は、その使用に際し、生理食塩水を中空糸膜内外に流して洗浄および気泡の追い出し等を行う、いわゆるプライミング処理が実施される。一般的に、血液浄化用に使用される中空糸膜の構成材料は疎水性高分子であるため、水や血液と接触させても馴染まない(濡れない)という課題を有する。そのために、予め水に浸漬された状態で出荷されるウエットタイプ血液浄化器あるいは、乾燥中空糸膜にグリセリン、ポリビニルピロリドン等の親水化成分を含浸、付着、コート等されたドライタイプ血液浄化器の形態での展開がなされており、血液浄化使用前のプライミング処理が簡便に行なえるように工夫されている。これらの中で、ウエットタイプ血液浄化器は血液浄化器内に水が充填された状態で出荷されるためプライミング処理が行ないやすいが、雑菌が繁殖しやすいとか、重量増による輸送コストの高騰、寒冷地や空輸時に充填液の凍結により膜素材がダメージを受けるという問題がある。一方、ドライタイプ血液浄化器は、水との馴染み性が必ずしも充分でなく、該プライミング処理に時間を要したり、プライミング処理後十分に水となじんで性能が発現する迄に時間がかかるという課題を有する。そのために、短時間のプライミング処理で所定レベルの膜性能が発現するドライタイプ血液浄化器用に適した中空糸膜の開発が嘱望されている。   When the blood purifier is used, a so-called priming process is performed in which physiological saline is flowed into and out of the hollow fiber membrane to perform washing, expelling air bubbles, and the like. Generally, since the constituent material of the hollow fiber membrane used for blood purification is a hydrophobic polymer, there is a problem that it does not become familiar (does not get wet) even when it is brought into contact with water or blood. For this purpose, a wet type blood purifier shipped in a state of being pre-immersed in water or a dry type blood purifier in which a dry hollow fiber membrane is impregnated with, adhered to, or coated with a hydrophilic component such as glycerin or polyvinylpyrrolidone. Development in the form has been made, and it is devised so that the priming process before the use of blood purification can be easily performed. Among these, the wet type blood purifier is shipped with the water purifier filled with water, so it is easy to perform the priming process, but it is easy for bacteria to propagate, the increase in transportation cost due to weight increase, There is a problem that the membrane material is damaged due to freezing of the filling liquid at the time of ground transportation. On the other hand, dry type blood purifiers are not necessarily well-familiar with water, and it takes time for the priming process, or it takes time for the priming process to fully develop with water. Have Therefore, development of a hollow fiber membrane suitable for a dry type blood purifier that exhibits a predetermined level of membrane performance in a short-time priming process is desired.

本発明の中空糸膜は、該中空糸膜を用いて作製した血液浄化器のプライミング処理後1時間時点の純水の限外ろ過係数(UFR(1hr))とプライミング処理後24時間経過時の純水の限外ろ過係数 (UFR(24hr))が、2%≦UFR(24hr)/UFR(1hr)×100−100≦20%の関係を示すことが好ましい。この関係を有する中空糸膜は、水や血液と膜素材との親和性がよく、高い生体適合性を示すとともに、治療中およびプライミング後の放置時間による性能変動が少ないといった利点を持つ。この関係が20%を超える場合には、臨床使用中あるいはプライミング後の放置時間によって、膜緩みが発生してUFRが大幅に増大し性能が安定しないほか、膜緩みによってタンパク質の漏出量が増加することがある。したがって、上記関係は15%以下がより好ましく、9%以下がさらに好ましい。また、この関係が2%未満の場合には、水および血液と膜素材との親和性が低すぎることを示し、臨床使用中に血液中のタンパク質や血球成分が膜に付着しやすくなり、経時的な性能の低下や凝血や残血が発生することがある。したがって、該関係は3%以上がより好ましく、4%以上がさらに好ましい。   The hollow fiber membrane of the present invention is the ultrafiltration coefficient (UFR (1 hr)) of pure water at 1 hour after the priming treatment of the blood purifier produced using the hollow fiber membrane and the 24 hours after the priming treatment. It is preferable that the ultrafiltration coefficient (UFR (24 hr)) of pure water shows a relationship of 2% ≦ UFR (24 hr) / UFR (1 hr) × 100−100 ≦ 20%. The hollow fiber membrane having this relationship has advantages such as good affinity between water and blood and the membrane material, high biocompatibility, and little performance fluctuation due to the standing time after treatment and after priming. If this relationship exceeds 20%, the membrane will loosen during clinical use or after priming, resulting in a significant increase in UFR and unstable performance, as well as increased protein leakage due to membrane looseness. Sometimes. Therefore, the above relationship is more preferably 15% or less, and further preferably 9% or less. In addition, when this relationship is less than 2%, it indicates that the affinity between water and blood and the membrane material is too low, and proteins and blood cell components in the blood tend to adhere to the membrane during clinical use. Performance degradation and blood clots and residual blood may occur. Therefore, the relationship is more preferably 3% or more, and further preferably 4% or more.

本発明の中空糸膜は、上記血液浄化用中空糸膜を用いて作製した膜面積1.5m2(中空糸膜内径基準)の血液浄化器の血液接触側にヘマトクリット30%、総蛋白量6.5g/dl の新鮮牛血(ヘパリン処理血)を200ml/minの流量で灌流した際、30分後の血小板保持率が70〜98%であることが好ましい。血小板保持率がこの範囲よりも小さいと血小板の粘着量が多くなり、血栓ができやすくなったり、血液浄化機能が低下したりすることがある。また、この範囲よりも大きいと活性化された血小板までも血液中に放出されるため、生体内を循環する血球や血漿などの血液成分が刺激され、生体内の血液全体が活性化された状態となり、凝血傾向や、場合によっては塞栓を生じる危険性も否定できない。したがって、該30分後の血小板保持率は75〜98%であることがより好ましく、80〜98%であることがさらに好ましい。 The hollow fiber membrane of the present invention has a hematocrit of 30% and a total protein amount of 6.5 g on the blood contact side of a blood purifier having a membrane area of 1.5 m 2 (hollow fiber membrane inner diameter standard) produced using the blood purification hollow fiber membrane. It is preferable that the platelet retention after 30 minutes is 70 to 98% when perfusion of fresh cow blood (heparinized blood) at / dl is perfused at a flow rate of 200 ml / min. If the platelet retention rate is less than this range, the amount of platelet adhesion increases, and blood clots may be easily formed or the blood purification function may be reduced. In addition, if it is larger than this range, activated platelets are also released into the blood, so blood components such as blood cells and plasma circulating in the living body are stimulated, and the whole blood in the living body is activated Therefore, there is no denying the tendency to clot and in some cases the risk of embolization. Therefore, the platelet retention after 30 minutes is more preferably 75 to 98%, and further preferably 80 to 98%.

また、本発明の中空糸膜は、上記血液浄化器をプライミング処理し、室温で1時間および24時間静置した血液浄化器のそれぞれに、ヘマトクリット30%、総蛋白量6.5g/dl の新鮮牛血(ヘパリン処理血)を用いて、血液浄化器の中空糸膜内側に流量200ml/min 、濾過量が15ml/minで環流し、環流開始後1時間後の濾液中のタンパク質漏出量をそれぞれ(TPL(1hr))および(TPL(24hr))とした時に、下記式を満たすことが好ましい。
TPL(24hr)/TPL(1hr)=0.8〜1.4
TPL(24hr)/TPL(1hr)が小さすぎると、臨床使用中に血液中のタンパク質や血球成分が膜に付着しやすくなり、経時的な性能の低下や凝血や残血が発生することがある。したがって、TPL(24hr)/TPL(1hr)は0.85以上がより好ましく、0.90以上がさらに好ましい。また、TPL(24hr)/TPL(1hr)が大きすぎると、臨床使用中にたんぱく質の漏出量が増大し、生体内の血中タンパク質濃度が低くなり、低タンパク血症を引き起こす恐れがある。したがってTPL(24hr)/TPL(1hr)は1.35以下がより好ましく、1.30以下がさらに好ましい。
In addition, the hollow fiber membrane of the present invention is a fresh cow with 30% hematocrit and 6.5 g / dl total protein in each of the blood purifiers after priming the blood purifier and left at room temperature for 1 hour and 24 hours. Using blood (heparinized blood), circulate at a flow rate of 200 ml / min and a filtration rate of 15 ml / min inside the hollow fiber membrane of the blood purifier, and determine the amount of protein leakage in the filtrate 1 hour after the start of circulation ( When TPL (1 hr)) and (TPL (24 hr)) are satisfied, the following formula is preferably satisfied.
TPL (24hr) / TPL (1hr) = 0.8 to 1.4
If TPL (24hr) / TPL (1hr) is too small, proteins and blood cell components in the blood are likely to adhere to the membrane during clinical use, which may lead to deterioration in performance over time and blood clots and residual blood. . Therefore, TPL (24 hr) / TPL (1 hr) is more preferably 0.85 or more, and further preferably 0.90 or more. On the other hand, if TPL (24hr) / TPL (1hr) is too large, the amount of protein leakage increases during clinical use, the blood protein concentration in the living body may be lowered, and hypoproteinemia may be caused. Therefore, TPL (24 hr) / TPL (1 hr) is more preferably 1.35 or less, and further preferably 1.30 or less.

本発明の中空糸膜のUFRは3 ml/(m2・hr・mmHg)以上270 ml/(m2・hr・mmHg)以下が好ましい。UFRが3 ml/(m2・hr・mmHg)未満の場合は透析膜として必要な除水量を得られないことがある。したがって、UFRは4ml/(m2・hr・mmHg)以上がより好ましく、5ml/(m2・hr・mmHg)以上がさらに好ましい。また、UFRが260 ml/(m2・hr・mmHg)より大きい場合は、タンパク質の漏出を抑えきれないことがある。したがって、UFRは250ml/(m2・hr・mmHg)以下がより好ましく、200ml/(m2・hr・mmHg)以下がさらに好ましい。 The UFR of the hollow fiber membrane of the present invention is preferably 3 ml / (m 2 · hr · mmHg) or more and 270 ml / (m 2 · hr · mmHg) or less. If the UFR is less than 3 ml / (m 2 · hr · mmHg), the water removal amount required for the dialysis membrane may not be obtained. Therefore, the UFR is more preferably 4 ml / (m 2 · hr · mmHg) or more, and further preferably 5 ml / (m 2 · hr · mmHg) or more. Moreover, when UFR is larger than 260 ml / (m 2 · hr · mmHg), protein leakage may not be suppressed. Accordingly, the UFR is more preferably 250 ml / (m 2 · hr · mmHg) or less, and further preferably 200 ml / (m 2 · hr · mmHg) or less.

また、本発明の中空糸膜は、尿素クリアランスがモジュール1.5m2(中空糸膜内径基準)あたり158〜200mL/minの範囲であることが好ましい。本発明において、尿素クリアランスの測定はダイアライザー性能評価基準(昭和57年、日本人工臓器学会)に準じ、シングルパス方式を採用し、血液側は尿素100mg/dLを含有する生理食塩水溶液、透析液側は生理食塩水を用い、温度37±1℃でろ過を生じない条件で行った。なお、血液側流量は200mL/min、透析液側流量は500mL/minとする。尿素クリアランスが低過ぎると、臨床使用時、1回の透析治療にかかる時間が長くなり、患者への負担が大きくなる可能性がある。したがって、尿素クリアランスは1.5m2(中空糸膜内径基準)あたり163mL/min以上がより好ましく、168mL/min以上がさらに好ましい。血液側流量200mL/minの時のクリアランスの最大値は200mL/minである。 The hollow fiber membrane of the present invention preferably has a urea clearance in the range of 158 to 200 mL / min per module 1.5 m 2 (hollow fiber membrane inner diameter standard). In the present invention, urea clearance is measured in accordance with dialyzer performance evaluation criteria (1982, Japanese Society for Artificial Organs), adopting a single-pass method, blood side is physiological saline solution containing urea 100 mg / dL, dialysate side Was performed using physiological saline at a temperature of 37 ± 1 ° C. under conditions that did not cause filtration. The blood flow rate is 200 mL / min, and the dialysate flow rate is 500 mL / min. If the urea clearance is too low, the time required for a single dialysis treatment during clinical use may increase, and the burden on the patient may increase. Accordingly, the urea clearance is more preferably 163 mL / min or more per 1.5 m 2 (hollow fiber membrane inner diameter standard), and further preferably 168 mL / min or more. The maximum clearance when the blood flow rate is 200 mL / min is 200 mL / min.

本発明においては、中空糸膜は実質的に乾燥状態にあることが好ましい。実質的に乾燥状態にあるとは、中空糸膜乾燥重量に対する水の重量(含水率)が10重量%以下の場合をさす。含水率は小さい方が重量を軽くできるとか、雑菌の繁殖がないとか、輸送中の温度変化による結露を生じないなどの点で好ましい。特に、グリセリン等の水溶性の成分を含有する中空糸膜の場合、含水率が高すぎると、輸送中の温度変化等により中空糸膜からグリセリンが脱落しやすくなり、プライミング処理時中空糸膜全体が均一に濡れないとか、均一化に長時間を要するなどの問題が発生することがある。したがって、中空糸膜の含水率は9重量%以下がより好ましく、8重量%以下がさらに好ましい。しかし、含水率を小さくするために、中空糸膜の乾燥時間を長くしたり、乾燥温度を上げることは中空糸膜素材の劣化に繋がることがある。したがって、中空糸膜の含水率は1重量%以上がより好ましく、2重量%以上がさらに好ましい。   In the present invention, the hollow fiber membrane is preferably in a substantially dry state. The term “substantially in a dry state” means that the weight of water (water content) is 10% by weight or less with respect to the dry weight of the hollow fiber membrane. A smaller moisture content is preferable in that the weight can be reduced, there is no propagation of miscellaneous bacteria, or condensation does not occur due to temperature changes during transportation. In particular, in the case of a hollow fiber membrane containing a water-soluble component such as glycerin, if the water content is too high, glycerin tends to fall off the hollow fiber membrane due to temperature change during transportation, etc., and the entire hollow fiber membrane during priming treatment May cause problems such as not being evenly wetted or requiring a long time for homogenization. Therefore, the moisture content of the hollow fiber membrane is more preferably 9% by weight or less, and further preferably 8% by weight or less. However, increasing the drying time of the hollow fiber membrane or raising the drying temperature to reduce the moisture content may lead to deterioration of the hollow fiber membrane material. Therefore, the moisture content of the hollow fiber membrane is more preferably 1% by weight or more, and further preferably 2% by weight or more.

本発明において、中空糸膜外表面の凹凸度(PV値)が2.5μm以下であることが好ましい。PV値とは、膜表面の凹凸を測定した際の、基準点に対する全測定点の凹凸の最大値と最小値の差を表わす。また、これら膜表面の平滑性は、走査型白色干渉法を用いた3次元表面構造解析顕微鏡のような解析装置により得られ、測定値から算出することができるもので、測定装置は公知の装置が利用でき、例えば、試験片に対し、走査型白色干渉顕微鏡によって干渉対物レンズを光軸方向に走査しながら干渉像を収集し、デジタル化された干渉強度の情報をワークステーションで処理し、目的のPV値を得ることができる。PV値が大きすぎても小さすぎても、中空糸膜製造時の中空糸膜とガイドとの摩擦やモジュール組立時の中空糸膜同士の接触により、中空糸膜表面に傷がつきやすくなり、ひいてはすべり性の低下につながる。したがって、中空糸膜外表面のPV値は、0.01μm以上2.0μm以下がより好ましく、0.1μm以上1.5μm以下であることがさらに好ましく、0.3μm以上1.0μm以下であることがよりさらに好ましい。   In the present invention, the degree of unevenness (PV value) on the outer surface of the hollow fiber membrane is preferably 2.5 μm or less. The PV value represents the difference between the maximum value and the minimum value of the unevenness of all measurement points with respect to the reference point when the unevenness of the film surface is measured. Further, the smoothness of these film surfaces can be obtained from an analysis device such as a three-dimensional surface structure analysis microscope using a scanning white interference method, and can be calculated from measured values. For example, interference images are collected while scanning the interference objective lens in the optical axis direction with a scanning white interference microscope on the test piece, and the digitized interference intensity information is processed on the workstation. PV value can be obtained. Whether the PV value is too large or too small, the friction between the hollow fiber membrane and the guide at the time of hollow fiber membrane production and the contact between the hollow fiber membranes at the time of module assembly makes the hollow fiber membrane surface easily damaged, As a result, slipperiness is reduced. Therefore, the PV value of the outer surface of the hollow fiber membrane is more preferably 0.01 μm or more and 2.0 μm or less, further preferably 0.1 μm or more and 1.5 μm or less, and further preferably 0.3 μm or more and 1.0 μm or less.

中空糸膜の表面の凹凸度を小さくするためには、中空糸膜製造におけるガイドとの摩擦抵抗を低減することや乾燥時のミクロな皺(凹凸)の発生を抑制することが重要である。用いるガイドの素材としては、テフロン(登録商標)、ベークライト、ステンレス、プラスチックなどがあるが、表面を梨地加工したものが中空糸膜との摩擦を効果的に低減できるため好ましい。乾燥時の皺の発生を抑制するためには、例えばグリセリンなどを細孔に充填した後に乾燥することにより、中空糸膜の収縮を効果的に抑制することができる。また、中空糸膜製造工程において、紡糸原液をノズルから吐出させるときの吐出斑をできるだけ抑制することも重要である。紡糸原液の吐出斑を抑制するための具体的な方法としては、紡糸原液タンクから紡糸口金まで送液する経路の途中に設けた送液用ギアポンプの脈動を出来るだけ抑えることが好ましい実施態様である。該脈動を抑える手段としては、例えば、ギアポンプのギア数を多くするとか、ギア1回転あたりの吐出量を適性化することで達成できる。このとき、1回転あたりの吐出量がギア数変更前と変わらないように調製することが必要である。例えば、変更前ギア数が20で、1回転あたりの吐出量が0.1ml/revであった場合には、ギア数を倍の40に変更しても変更後の吐出量が0.1±0.01ml/revの範囲になるよう調整する。   In order to reduce the degree of unevenness on the surface of the hollow fiber membrane, it is important to reduce the frictional resistance with the guide in the production of the hollow fiber membrane and to suppress the occurrence of micro wrinkles (unevenness) during drying. The guide material to be used includes Teflon (registered trademark), bakelite, stainless steel, plastic, and the like, but a surface-finished surface is preferable because it can effectively reduce friction with the hollow fiber membrane. In order to suppress the generation of wrinkles during drying, for example, the shrinkage of the hollow fiber membrane can be effectively suppressed by drying after filling the pores with glycerin or the like. In the hollow fiber membrane manufacturing process, it is also important to suppress as much as possible the discharge spots when discharging the spinning dope from the nozzle. As a specific method for suppressing the discharge spots of the spinning dope, it is a preferable embodiment to suppress as much as possible the pulsation of the liquid feeding gear pump provided in the middle of the path for feeding from the spinning dope tank to the spinneret. . The means for suppressing the pulsation can be achieved, for example, by increasing the number of gears of the gear pump or by optimizing the discharge amount per one gear rotation. At this time, it is necessary to prepare so that the discharge amount per one rotation does not change before the number of gears is changed. For example, if the number of gears before change is 20 and the discharge amount per rotation is 0.1 ml / rev, the changed discharge amount is 0.1 ± 1 even if the number of gears is changed to 40. Adjust to the range of 0.01 ml / rev.

含水率が10重量%以下であれば、孔径保持剤や凍結防止剤、親水化剤等の他の液体、固体成分を含むことは本発明より排除されない。たとえば、このような液体、固体成分としてはグリセリン、トリエチレングリコール、ポリエチレングリコール、ポリビニルピロリドンなどを挙げることができる。本発明においては、プライミング処理によって速やかに洗浄除去が可能であり、人体にとって有害性の程度が低いグリセリンを用いるのが好ましい。   If the water content is 10% by weight or less, it is not excluded from the present invention that it contains other liquid and solid components such as a pore diameter retaining agent, an antifreezing agent, and a hydrophilizing agent. For example, examples of such liquid and solid components include glycerin, triethylene glycol, polyethylene glycol, and polyvinyl pyrrolidone. In the present invention, it is preferable to use glycerin that can be quickly removed by priming treatment and has a low degree of harm to the human body.

本発明の中空糸膜は、例えば、以下のように製造することができる。
セルロース系ポリマーおよびセルロース系ポリマーに対する溶媒、非溶媒を溶解して製膜溶液を調製し、得られた製膜溶液をチューブインオリフィスノズルの外側スリットから吐出すると同時に中心孔より中空形成材を吐出する。ノズルから吐出された製膜溶液は、空中走行部(エアギャップ)を通過させた後、凝固液に浸漬させ製膜溶液の凝固、相分離を行なわせる、いわゆる乾湿式紡糸法で製造するのが好ましい。得られた中空糸膜は、過剰の溶媒、非溶媒等を除去するために洗浄工程を経た後、中空糸膜に親水化剤や孔径保持剤を含浸させるための液体槽に浸漬させる。このようにして得られた湿潤中空糸膜を乾燥工程、冷却工程に通し、ボビン形状に巻き取る(ボビンの捲き厚は5〜30cm)。このボビンに加熱処理を実施し、血液浄化用中空糸膜が製造される。
The hollow fiber membrane of the present invention can be produced, for example, as follows.
Dissolve the cellulose-based polymer and the solvent and non-solvent for the cellulose-based polymer to prepare a film-forming solution, and discharge the obtained film-forming solution from the outer slit of the tube-in orifice nozzle and simultaneously discharge the hollow forming material from the center hole. . The film-forming solution discharged from the nozzle is manufactured by a so-called dry-wet spinning method in which the film-forming solution is allowed to pass through an air running part (air gap) and then immersed in a coagulation liquid to cause the film-forming solution to coagulate and phase-separate. preferable. The obtained hollow fiber membrane is subjected to a washing step in order to remove excess solvent, non-solvent, etc., and then immersed in a liquid tank for impregnating the hollow fiber membrane with a hydrophilizing agent or a pore diameter maintaining agent. The wet hollow fiber membrane thus obtained is passed through a drying step and a cooling step and wound into a bobbin shape (bobbin thickness is 5 to 30 cm). The bobbin is heat-treated to produce a blood purification hollow fiber membrane.

セルロース系ポリマーに対する溶媒としては、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられるが、セルロース系ポリマーの凝固および相分離のコントロールのしやすさ、作業安全性、廃棄処理の観点からN−メチル−2−ピロリドン、ジメチルアセトアミドを用いるのが好ましい。   Solvents for cellulosic polymers include N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc., but ease of control of coagulation and phase separation of cellulosic polymers, work safety, disposal From the viewpoint of treatment, N-methyl-2-pyrrolidone and dimethylacetamide are preferably used.

また、セルロース系ポリマーに対する非溶媒としては、グリセリン、エチレングリコール、トリエチレングリコール、ポリエチレングリコール等が好ましく用いられるが、溶媒との相溶性や洗浄除去性、安全性の観点からトリエチレングリコール、ポリエチレングリコールがより好ましい。ポリエチレングリコールとしては分子量200、400のものを用いるのが、室温で液体であり取り扱い性に優れる点より好ましい。
さらに、製膜溶液には、酸化防止剤や微孔形成剤などの添加剤を必要に応じて加えることができる。
As the non-solvent for the cellulose-based polymer, glycerin, ethylene glycol, triethylene glycol, polyethylene glycol, and the like are preferably used. From the viewpoints of compatibility with the solvent, washing removal property, and safety, triethylene glycol and polyethylene glycol. Is more preferable. Polyethylene glycol having a molecular weight of 200 or 400 is preferably used because it is liquid at room temperature and has excellent handleability.
Furthermore, additives such as an antioxidant and a micropore forming agent can be added to the film forming solution as necessary.

本発明において用いる中空形成材としては、セルロース系ポリマーに対して活性のある液体、不活性な液体および気体を用いることができる。活性のある液体としては、セルロース系ポリマーの溶媒および非溶媒と水との混合液、不活性な液体としては流動パラフィン、ミリスチン酸イソプロピルなど、不活性な気体としては窒素、アルゴンなどを用いることが可能である。中空形成材として活性のある液体を用いると、得られる中空糸膜は不均一構造となりやすく、また不活性な液体および気体を用いると得られる中空糸膜は均一構造となりやすい。グリセリン等の孔径保持剤を含有する中空糸膜の場合、細孔からの孔径保持剤の脱落防止の観点から均一構造の中空糸膜とするのが好ましく、本発明においては中空形成材として流動パラフィン、ミリスチン酸イソプロピルを用いるのが好ましい。   As the hollow forming material used in the present invention, an active liquid, an inactive liquid and a gas can be used for the cellulosic polymer. As the active liquid, a solvent of a cellulosic polymer and a mixed liquid of a non-solvent and water, as the inert liquid, liquid paraffin, isopropyl myristate, etc., as the inert gas, nitrogen, argon, etc. may be used. Is possible. When an active liquid is used as the hollow forming material, the obtained hollow fiber membrane tends to have a non-uniform structure, and when an inert liquid and gas are used, the obtained hollow fiber membrane tends to have a uniform structure. In the case of a hollow fiber membrane containing a pore diameter retaining agent such as glycerin, a hollow fiber membrane having a uniform structure is preferable from the viewpoint of preventing the pore diameter retaining agent from falling off the pores. In the present invention, liquid paraffin is used as the hollow forming material. Preferably, isopropyl myristate is used.

エアギャップを通過した製膜溶液は、凝固液槽に浸漬し、凝固および相分離を進行させる。ここで凝固液としては、製膜溶液の調製に用いた溶媒および非溶媒と水との混合液を用いるのが好ましい。凝固液組成により得られる中空糸膜の構造、特性が変化するため、溶媒、非溶媒、水の混合比率は目的とする膜構造、膜特性にあわせて試行錯誤により決定する必要がある。本発明において凝固液の調製に用いる溶媒、非溶媒は、製膜溶液の調製に用いたものと同じものを使用することが好ましく、さらに製膜時の経時的な組成変化を抑制するため製膜溶液中の溶媒、非溶媒比と同じにするのが好ましい。   The film-forming solution that has passed through the air gap is immersed in a coagulation liquid tank to proceed with coagulation and phase separation. Here, as the coagulation liquid, it is preferable to use the solvent used for the preparation of the film-forming solution and a mixed liquid of a non-solvent and water. Since the structure and characteristics of the hollow fiber membrane obtained by the coagulation liquid composition change, it is necessary to determine the mixing ratio of the solvent, non-solvent, and water by trial and error according to the target membrane structure and membrane characteristics. In the present invention, the solvent and non-solvent used for the preparation of the coagulation liquid are preferably the same as those used for the preparation of the film-forming solution, and in addition, the film-forming is performed in order to suppress the change in composition over time during film-forming. It is preferable to use the same solvent and non-solvent ratio in the solution.

洗浄工程は、中空糸膜製膜に用いた溶媒、非溶媒等を除去するためのものであり、洗浄装置の構成や用いる洗浄液については特に限定されるものではない。洗浄液については、溶媒、非溶媒と相溶性のあるものであればよく、水、アルコールなどを用いる事が可能であり、本発明においては洗浄液として、水を用いるのが好ましい。   The washing step is for removing the solvent, non-solvent, and the like used in the hollow fiber membrane production, and the constitution of the washing apparatus and the washing liquid to be used are not particularly limited. The cleaning liquid is not particularly limited as long as it is compatible with a solvent and a non-solvent, and water, alcohol, or the like can be used. In the present invention, water is preferably used as the cleaning liquid.

洗浄終了後の中空糸膜は、引き続き中空糸膜細孔に孔径保持剤等を含浸させるための工程に導かれる。本発明においては、孔径保持剤としてグリセリンを用いるのが好ましい。グリセリンは医薬品や化粧料の用途として用いられる安全性の高い物質であるが、室温における粘度が高いため、原液のままでは孔径保持剤として使用するのは困難である。したがって、本発明においてはグリセリンを水に溶解したものを100℃以下に加熱した後、中空糸膜と接触させることにより細孔内に含浸するようにしている。溶液中のグリセリン濃度や温度は、中空糸膜の細孔の大きさや数、分布状態によって適宜設定する必要があるが、本発明の中空糸膜のUFR範囲のものであれば、15〜90重量%のグリセリン水溶液を30〜80℃に加熱した後、中空糸膜と接触させる(中空糸膜細孔内に含浸させる)のが好ましい。グリセリン濃度が低過ぎると、中空糸膜細孔内への含浸性は高まるが乾燥によって細孔が収縮するため、所期の膜特性を得られない可能性がある。また、細孔の収縮による中空糸膜表面の皺の発生につながることもある。したがって、グリセリン濃度は18重量%以上がより好ましく、21重量%以上がさらに好ましい。また、グリセリン濃度が高過ぎると、細孔径の保持効果は高まるが、粘度が高まるため細孔内への含浸性が低下することがある。また、グリセリン水溶液の粘度を低下させるためには温度を上げれば良いが、そうするとグリセリン自体が熱酸化されたり、中空糸膜にダメージを与える可能性がある。したがって、グリセリン濃度は87重量%以下がより好ましく、84重量%以下がさらに好ましい。   The hollow fiber membrane after completion of the washing is subsequently led to a process for impregnating the pores of the hollow fiber membrane with a pore diameter retaining agent. In the present invention, it is preferable to use glycerin as the pore diameter retaining agent. Glycerin is a highly safe substance used for pharmaceuticals and cosmetics, but since it has a high viscosity at room temperature, it is difficult to use it as a pore size retaining agent as it is. Therefore, in the present invention, a solution in which glycerin is dissolved in water is heated to 100 ° C. or lower and then brought into contact with the hollow fiber membrane to impregnate the pores. The glycerin concentration and temperature in the solution need to be appropriately set depending on the size and number of pores of the hollow fiber membrane, and the distribution state, but if the hollow fiber membrane of the present invention is in the UFR range, 15 to 90 wt. % Aqueous glycerin solution is preferably heated to 30 to 80 ° C. and then brought into contact with the hollow fiber membrane (impregnated in the hollow fiber membrane pores). If the glycerin concentration is too low, the impregnation property into the hollow fiber membrane pores is enhanced, but the pores shrink due to drying, so that the desired membrane characteristics may not be obtained. Moreover, it may lead to generation of wrinkles on the surface of the hollow fiber membrane due to shrinkage of the pores. Accordingly, the glycerin concentration is more preferably 18% by weight or more, and further preferably 21% by weight or more. On the other hand, if the glycerin concentration is too high, the effect of maintaining the pore diameter is increased, but the viscosity is increased, so that the impregnation property into the pores may be lowered. In order to reduce the viscosity of the aqueous glycerin solution, the temperature may be increased. However, the glycerin itself may be thermally oxidized or the hollow fiber membrane may be damaged. Therefore, the glycerin concentration is more preferably 87% by weight or less, and still more preferably 84% by weight or less.

このようにして得られた中空糸膜は、次に乾燥工程にて乾燥される。乾燥温度は40〜120℃が好ましい。ここで、中空糸膜を乾燥させる目的としては、中空糸膜に含まれる水を蒸発させて中空糸膜の軽量化を行うだけでなく、血液浄化器の組立て性の確保(ポッティング剤が水と反応し接着不良を起こすことを防ぐ)、グリセリンの脱落防止(余剰の水を蒸発させることによりグリセリンの流動性を低下させる)、膜構造の固定化(その後の温度変化による細孔の拡大縮小を防ぐ)などが挙げられる。乾燥温度が低過ぎると瞬時に水を蒸発させることができず、グリセリンの脱落を招くことがある。したがって、乾燥温度は45℃以上がより好ましく、50℃以上がさらに好ましい。また、乾燥温度が高過ぎると、グリセリンが熱酸化を起こすことがある。したがって、乾燥温度は115℃以下がより好ましく、110℃以下がさらに好ましい。   The hollow fiber membrane thus obtained is then dried in a drying step. The drying temperature is preferably 40 to 120 ° C. Here, the purpose of drying the hollow fiber membrane is not only to reduce the weight of the hollow fiber membrane by evaporating the water contained in the hollow fiber membrane, but also to ensure the assembly of the blood purifier (potting agent is water and Prevents reaction to cause poor adhesion), prevents glycerin from falling off (evaporates excess water to reduce glycerin fluidity), and fixes membrane structure (subsequent changes in temperature due to changes in temperature) Prevent). If the drying temperature is too low, water cannot be instantly evaporated and glycerin may fall off. Therefore, the drying temperature is more preferably 45 ° C. or higher, and further preferably 50 ° C. or higher. Also, if the drying temperature is too high, glycerin may undergo thermal oxidation. Therefore, the drying temperature is more preferably 115 ° C. or less, and further preferably 110 ° C. or less.

続いて一旦乾燥された中空糸膜は冷却工程で冷却される。冷却条件の温度は15〜35℃、湿度は45〜75%が好ましい。ここで、中空糸膜を冷却させる目的としては、乾燥後の中空糸膜はボビンにチーズ状に巻き取られるが、中空糸膜の表面温度が高温状態で巻き取られると、経時的に温度が下がるにつれて中空糸膜が縮みボビンの捲き絞まりが起こる。捲き絞まりが起こると細孔に充填されたグリセリンが滲み出し、中空糸膜表面に滲み出したグリセリンの粘性が高いため中空糸膜の糸すべり性が低下し、血液浄化用中空糸膜モジュールの作製歩留まりが低下してしまう。また、冷却温度が低すぎても糸表面に結露が発生し細孔のグリセリンが滲み出すことで糸すべり性が低下する。したがって、冷却条件は温度17℃〜33℃、湿度47%〜72%がより好ましく、温度20℃〜30℃、湿度50%〜70%がさらに好ましい。
冷却工程は、調温調湿された気体を送風した冷却ゾーンに糸を走行させることや、調温調湿された雰囲気内を、一定時間走行させることなどが、実際例として挙げられる。気体を送風した冷却ゾーンを走行させる場合には、短時間で効率的に実施でき、紡糸速度によって冷却ゾーンの長さは異なるが、通過時間は1秒〜5秒の範囲で十分である。一方、調温調湿された雰囲気内を走行させる場合の通過時間は、10秒〜60秒の範囲が好ましい。
Subsequently, the hollow fiber membrane once dried is cooled in a cooling step. The temperature under cooling conditions is preferably 15 to 35 ° C., and the humidity is preferably 45 to 75%. Here, for the purpose of cooling the hollow fiber membrane, the hollow fiber membrane after drying is wound around the bobbin in a cheese shape, but when the surface temperature of the hollow fiber membrane is wound in a high temperature state, the temperature gradually increases over time. As it goes down, the hollow fiber membrane shrinks and the bobbins are squeezed. When squeezing occurs, the glycerin filled in the pores oozes out, and the viscosity of the glycerin oozed out to the surface of the hollow fiber membrane decreases, so that the fiber slipperiness of the hollow fiber membrane decreases, and a hollow fiber membrane module for blood purification is produced. Yield decreases. Even if the cooling temperature is too low, condensation occurs on the surface of the yarn and the glycerin in the pores oozes out, resulting in a decrease in yarn slipperiness. Therefore, the cooling conditions are more preferably a temperature of 17 ° C. to 33 ° C. and a humidity of 47% to 72%, and further preferably a temperature of 20 ° C. to 30 ° C. and a humidity of 50% to 70%.
Examples of the cooling process include running the yarn in a cooling zone that has blown the temperature-controlled humidity, and running the inside of the temperature-controlled atmosphere for a certain period of time. When traveling in a cooling zone in which gas is blown, it can be carried out efficiently in a short time, and the length of the cooling zone varies depending on the spinning speed, but the passage time is sufficient in the range of 1 to 5 seconds. On the other hand, the transit time when traveling in a temperature-controlled atmosphere is preferably in the range of 10 seconds to 60 seconds.

このようにして得られた中空糸膜は、ボビンにチーズ状に巻取る。ボビンに捲き取る際、中空糸膜は綾角2〜6°で捲き取るのが好ましい。また、チーズの幅は20〜60cmが好ましい。さらにチーズの厚みは5〜30cmが好ましい。このような厚みおよび幅、綾角で捲き取ることにより、中空糸膜同士の間隙が適度になり、後述する熱処理がチーズ状に巻き取られた中空糸膜全体に均一に作用するため好ましい。また、このような条件で巻き取られたチーズを熱処理することにより中空糸膜にクリンプが付与され、血液浄化に使用した際に、透析液の偏流を抑制できるという副次効果も得られる。本発明においてボビンに巻き取られた中空糸膜をチーズ厚み方向にほぼ3等分し、表層、中層、内層と称する。   The hollow fiber membrane thus obtained is wound around a bobbin in a cheese shape. When scraping off the bobbin, the hollow fiber membrane is preferably scraped at a twill angle of 2 to 6 °. Moreover, as for the width | variety of cheese, 20-60 cm is preferable. Furthermore, the thickness of cheese is preferably 5 to 30 cm. Such a thickness, width, and twill angle are preferable because the gap between the hollow fiber membranes becomes appropriate and the heat treatment described later acts uniformly on the entire hollow fiber membrane wound in a cheese shape. Moreover, when the cheese wound up on such conditions is heat-processed, a crimp is provided to the hollow fiber membrane, and when using it for blood purification, the secondary effect that the drift of a dialysate can be suppressed is also acquired. In the present invention, the hollow fiber membrane wound around the bobbin is divided into approximately three equal parts in the cheese thickness direction and is referred to as a surface layer, a middle layer, and an inner layer.

上記方法で巻き取られたボビンは、透湿量が0.1〜1.0mg/(cm2・hr)の袋で包装して熱処理を行なうのが好ましい。袋の透湿量は0.2〜0.9mg/(cm2・hr)がより好ましく、0.3〜0.8mg/(cm2・hr)がさらに好ましい。透湿量がこの範囲にある包装袋を用いることにより、中空糸膜より蒸発した水蒸気の蒸散がある程度抑制され、かつ該水蒸気の一部が袋を透過して系外に排出されることにより中空糸膜の含水率が最適化され(中空糸膜中の含水率1〜10重量%)、さらに中空糸膜の含水率をボビン全体で均一にすることができる。 The bobbin wound up by the above method is preferably packaged in a bag having a moisture permeability of 0.1 to 1.0 mg / (cm 2 · hr) and subjected to heat treatment. Toru wet weight is 0.2~0.9mg / (cm 2 · hr), more preferably of the bag, 0.3~0.8mg / (cm 2 · hr ) is more preferred. By using a packaging bag having a moisture permeability in this range, the evaporation of water vapor evaporated from the hollow fiber membrane is suppressed to some extent, and a part of the water vapor passes through the bag and is discharged out of the system. The moisture content of the yarn membrane is optimized (the moisture content in the hollow fiber membrane is 1 to 10% by weight), and the moisture content of the hollow fiber membrane can be made uniform throughout the bobbin.

一方、中空糸膜の熱処理時に、中空糸膜中の水分の蒸発が少なすぎると、膜中のポリマーは、水分を含んだ状態で固定される。このような場合、プライミング処理後にポリマーが水を吸収せずにポリマーと血液が直接接触することになるため、血液中のタンパク質や血球成分が膜に付着しやすくなり、凝血や残血が発生する原因になると考えられる。また、中空糸膜の熱処理時、中空糸膜中の水分が蒸発しすぎると、透水性の変化や生体適合性に悪影響を与えるだけでなく、中空糸膜の表面が荒れるなど表面状態が悪化(すべり性が低下)することがあり、生産効率にも悪影響を与えるという弊害が発生する可能性がある。そのため、このような透湿量の範囲の袋に包装して中空糸膜を熱処理する事により、膜中のポリマーから適度に水分を除いた状態で膜構造が固定でき、プライミング処理後の透水性の変化を一定範囲内に保つ事ができると考えられる。   On the other hand, if the evaporation of moisture in the hollow fiber membrane is too small during the heat treatment of the hollow fiber membrane, the polymer in the membrane is fixed in a state containing moisture. In such a case, after the priming treatment, the polymer does not absorb water, and the polymer and blood are in direct contact with each other, so that proteins and blood cell components in the blood are likely to adhere to the membrane, resulting in blood clots and residual blood. It is thought to cause. In addition, if the water content in the hollow fiber membrane evaporates too much during the heat treatment of the hollow fiber membrane, not only will the water permeability change and biocompatibility be adversely affected, but the surface condition of the hollow fiber membrane may be deteriorated, such as roughening the surface of the hollow fiber membrane (Slipability may be reduced), and there is a possibility of adverse effects on production efficiency. Therefore, the membrane structure can be fixed in a state in which moisture is appropriately removed from the polymer in the membrane by wrapping it in a bag having such a moisture permeability range and heat-treating the hollow fiber membrane. It is thought that the change of the can be kept within a certain range.

ボビン状態で熱処理を行う事から、ボビンの表層から内層までほぼ均等に熱が伝わる条件で範囲を設定する必要がある。好ましい熱処理温度は60〜90℃である。熱処理温度が高すぎると、ボビンの表層部位の温度が上がりすぎ、その結果中空糸膜中の含水率が低下し、ボビンの表層部分と内層部分の中空糸膜に含水率の差が生じることになる。そうすると、表層部分の中空糸膜を用いて作製した血液浄化器と内層部分の中空糸膜を用いて作製した血液浄化器との間で性能差や品質の違いが生じることになり工業的には好ましくない。また、熱処理温度が低すぎると、内層部に十分熱が伝わらず、前記熱処理温度が高すぎる場合と同様の性能や品質に関わる問題が生じるだけでなく、プライミング処理後の放置時間による膜の膨潤起因で中空糸膜の形状が変化し血液浄化器の透析液側流路の不均一化による偏流が発生し、小分子物質の透過性能が低下してしまうという問題が生じる可能性がある。したがって、より好ましい熱処理温度は60〜85℃、さらに好ましい熱処理温度は65〜85℃である。   Since heat treatment is performed in the bobbin state, it is necessary to set the range under conditions where heat is transmitted almost uniformly from the surface layer to the inner layer of the bobbin. A preferable heat treatment temperature is 60 to 90 ° C. If the heat treatment temperature is too high, the temperature of the surface layer portion of the bobbin is excessively increased, resulting in a decrease in the moisture content in the hollow fiber membrane, resulting in a difference in moisture content between the hollow fiber membrane of the bobbin surface layer portion and the inner layer portion. Become. In that case, there is a difference in performance and quality between the blood purifier manufactured using the hollow fiber membrane of the surface layer portion and the blood purifier manufactured using the hollow fiber membrane of the inner layer portion, which is industrially It is not preferable. In addition, if the heat treatment temperature is too low, heat is not sufficiently transferred to the inner layer portion, and not only the problems related to performance and quality similar to the case where the heat treatment temperature is too high, but also the swelling of the film due to the standing time after the priming treatment. As a result, the shape of the hollow fiber membrane changes, and a drift occurs due to the non-uniformity of the dialysate side flow path of the blood purifier, which may cause a problem that the permeation performance of the small molecule substance is deteriorated. Therefore, a more preferable heat treatment temperature is 60 to 85 ° C, and a more preferable heat treatment temperature is 65 to 85 ° C.

上記熱処理の処理時間は、15〜25時間が好ましい。15〜24時間がより好ましく、15〜23時間がさらに好ましい。15時間未満では熱処理効果が不十分となることがある。逆に、25時間を越えた場合は、熱処理中に蓄積した熱エネルギーにより膜素材や含浸させたグリセリン等が劣化し、品質の低下を招くことがある。   The treatment time for the heat treatment is preferably 15 to 25 hours. 15-24 hours are more preferable, and 15-23 hours are still more preferable. If it is less than 15 hours, the heat treatment effect may be insufficient. On the other hand, when the time exceeds 25 hours, the film material, impregnated glycerin, and the like may deteriorate due to the thermal energy accumulated during the heat treatment, leading to a reduction in quality.

上述したような製造方法の特徴を有することにより中空糸膜内表面の平滑性が達成され、前述のTPL(24hr)/TPL(1hr)や血小板保持率を好ましい範囲に維持することが可能となっているものと推測する。   By having the characteristics of the production method as described above, the smoothness of the inner surface of the hollow fiber membrane is achieved, and it becomes possible to maintain the above-mentioned TPL (24 hr) / TPL (1 hr) and platelet retention in a preferable range. I guess that.

以下、実施例により本発明の効果ならびに詳細な説明を加えるが、本発明は実施例によりなんら限定されるものではない。   Hereinafter, the effects and detailed description of the present invention will be added by examples, but the present invention is not limited to the examples.

(純水の限外濾過係数(UFR)の測定方法)
血液浄化器を使用し、膜の内外両面に純水を満たし、37℃に恒温した。膜の内側に通じる血液浄化器入口から圧力をかけて37度の純水を流し、膜の内側と外側の圧力差、すなわち膜間圧力差を生じせしめ、1分間に膜を通じて膜外側に出てくる純水の量を測定した。膜間圧力差(TMP)はTMP=(Pi+Po)/2とする。(Piは血液浄化器入口圧力、Poは血液浄化器出口圧力。)4点の異なった膜間圧力差において、1分間の透水量を測定し、膜間圧力差と透水量の2次元座標にプロットして、それらの近似直線の傾きを求めた。この数値に60をかけ、中空糸膜の内径基準膜面積で割って中空糸膜の純水の限外濾過係数(以下UFR)をもとめた。単位はml/(m2・hr・mmHg)である。
(Measurement method of ultrafiltration coefficient (UFR) of pure water)
Using a blood purifier, both the inner and outer surfaces of the membrane were filled with pure water and kept at a constant temperature of 37 ° C. 37 degree pure water is flowed by applying pressure from the blood purifier inlet that leads to the inside of the membrane, causing a pressure difference between the inside and outside of the membrane, that is, a pressure difference between the membranes. The amount of pure water coming was measured. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2. (Pi is the blood purifier inlet pressure, Po is the blood purifier outlet pressure.) At four different transmembrane pressure differences, the water permeation amount for 1 minute is measured, and the two-dimensional coordinates of the transmembrane pressure difference and the water permeation amount are measured. Plotting was performed to determine the slopes of these approximate lines. This value was multiplied by 60 and divided by the inner diameter reference membrane area of the hollow fiber membrane to obtain the ultrafiltration coefficient (hereinafter referred to as UFR) of pure water in the hollow fiber membrane. The unit is ml / (m 2 · hr · mmHg).

(中空糸膜内径の測定方法)
中空糸膜断面のサンプルは以下のようにして得る事ができる。測定には中空形成材を洗浄、除去した後、中空糸膜を乾燥させた状態で観察する事が好ましい。乾燥方法は特に問わないが乾燥により著しく形態が変化する場合には中空形成材を洗浄、除去した後、純水で完全に置換し、湿潤状態で形態を観察することが好ましい。乾燥後の中空糸膜を厚さ2mmのスライドガラスの中央に開けられたφ1mmの孔に適当数通し、スライドガラス上下面で剃刀によりカットし、中空部を露出させた断面サンプルを得る。得られたサンプルは投影機(Nikon-12A)を用いて、視野内の任意の5サンプルを無作為に抽出し、各中空糸膜断面内側の短径と長径をそれぞれ測定し、その算術平均値を中空糸膜1個の内径とした。さらに5サンプルの平均値をもって中空糸膜内径とした。
(Measurement method of hollow fiber membrane inner diameter)
A sample of the cross section of the hollow fiber membrane can be obtained as follows. For the measurement, it is preferable to observe the dried hollow fiber membrane after washing and removing the hollow forming material. The drying method is not particularly limited. However, when the shape is remarkably changed by drying, it is preferable to clean and remove the hollow forming material, completely replace with pure water, and observe the shape in a wet state. An appropriate number of the hollow fiber membranes after drying are passed through a 1 mm hole formed in the center of a 2 mm-thick slide glass and cut with a razor on the upper and lower surfaces of the slide glass to obtain a cross-sectional sample in which the hollow portion is exposed. Using the projector (Nikon-12A), the sample obtained was randomly extracted from any 5 samples in the field of view, and the short diameter and long diameter inside each hollow fiber membrane cross section were measured, and the arithmetic mean value thereof. Was the inner diameter of one hollow fiber membrane. Further, the average value of 5 samples was taken as the inner diameter of the hollow fiber membrane.

(尿素クリアランス(CLun)の測定)
膜面積1.5m2(中空糸膜内径基準)の血液浄化器を使用し、ダイアライザー性能評価基準(昭和57年、日本人工臓器学会)に準じ、シングルパス方式を採用し、血液側は尿素100mg/dL生理食塩水溶液、透析液は生理食塩水を用い、温度37±1℃でろ過を生じない条件で測定した。血液側流量200mL/minで透析液側流量500mL/min時の尿素クリアランス(CLun)を求める。
CLun(ml/min)=(血液側入口濃度×血液側入口流量−血液側出口濃度×血液側出口流量)/血液側入口濃度×100
(Measurement of urea clearance (CLun))
Using a blood purifier with a membrane area of 1.5 m 2 (inner diameter of hollow fiber membrane), adopting a single-pass method according to the dialyzer performance evaluation standard (1982, Japanese Society for Artificial Organs), blood side 100 mg urea Physiological saline was used as the dL physiological saline solution and the dialysate, and the measurement was performed at a temperature of 37 ± 1 ° C. under conditions where no filtration occurred. Obtain urea clearance (CLun) at a blood flow rate of 200 mL / min and a dialysate flow rate of 500 mL / min.
CLun (ml / min) = (blood side inlet concentration × blood side inlet flow rate−blood side outlet concentration × blood side outlet flow rate) / blood side inlet concentration × 100

(摩擦係数の測定)
JIS L1015 8.13に記載されているレーダー式摩擦係数試験機を用いて実施した。中空糸膜をハンドカードでよく解繊して均等なスライバとし、レーダー式摩擦係数試験機の外径8mmの円筒に、中空糸膜が円筒の軸と平行になるように巻きつける。次に、同一の中空糸膜から任意に1本の中空糸膜を採取し、その両端に初荷重(W:9.8×10-3 N)を取り付けたものを円筒スライバの中央にかけ。その一端をトーションバランスのフックに接続する。静摩擦係数(μs)の測定には、円筒スライバを停止させ、トーションバランスによって中空糸膜の両端のバランスが失われるときの荷重(m)を求める。動摩擦係数(μd)の測定には、円筒スライバを周速度180cm/minで回転させ、トーションバランスによって中空糸膜の両端がバランスする荷重を求める。n=20で測定し、次の式によって摩擦係数を算出し、平均を求める。
μsまたはμd=0.733log(W/(W−m))
(Measurement of friction coefficient)
It was carried out using a radar type friction coefficient tester described in JIS L1015 8.13. The hollow fiber membrane is defibrated well with a hand card to make an even sliver, and wound around a cylinder with a radar friction coefficient tester with an outer diameter of 8 mm so that the hollow fiber membrane is parallel to the axis of the cylinder. Next, one hollow fiber membrane is arbitrarily collected from the same hollow fiber membrane, and an initial load (W: 9.8 × 10 −3 N) attached to both ends is applied to the center of the cylindrical sliver. Connect one end to the torsion balance hook. For measurement of the coefficient of static friction (μs), the cylindrical sliver is stopped and the load (m) when the balance at both ends of the hollow fiber membrane is lost due to the torsion balance is obtained. For the measurement of the coefficient of dynamic friction (μd), a cylindrical sliver is rotated at a peripheral speed of 180 cm / min, and the load that balances the both ends of the hollow fiber membrane is obtained by torsion balance. Measure at n = 20, calculate the coefficient of friction by the following formula, and calculate the average.
μs or μd = 0.733log (W / (W−m))

(表面凹凸度の測定)
複数本の中空糸膜からなる束から、任意の中空糸膜を10本選び、それぞれの中空糸膜について、中空糸膜外表面の任意の1箇所について0.1mmずつ測定し、その平均の凹凸度を求めた。測定はZYGO社製走査型白色干渉顕微鏡(NewView100)を用い、20倍の対物レンズを用いてシステム倍率2倍の条件で測定しその平均値で表示した。測定はフイルターを用いずに行った。
(Measurement of surface roughness)
Ten arbitrary hollow fiber membranes are selected from a bundle of a plurality of hollow fiber membranes, and each hollow fiber membrane is measured 0.1 mm at an arbitrary position on the outer surface of the hollow fiber membrane, and the average unevenness thereof is measured. I asked for a degree. The measurement was performed using a scanning white interference microscope (NewView 100) manufactured by ZYGO, using a 20 × objective lens under the conditions of a system magnification of 2 times, and the average value was displayed. The measurement was performed without using a filter.

(袋の透湿量の測定方法)
一辺30cm四方の線を袋に書き、線の外側に沿ってヒートシーラーで3方をシールし、30cm四方の袋を作る。作製した袋に25℃の純水250mlを入れ、他3方と同様にシールする。このとき、袋と水の合計重量を測定する。
袋の一辺を一塊にまとめ、線の外側部分をたこ糸でしばり、60℃の定温乾燥器内で2hr吊り下げた状態で静置する。2hr後乾燥器から袋を取り出し袋と残った水の合計重量を測定し、透湿量は蒸発した水の重量を袋の表面積と時間の積で割る。
透湿量(mg/(cm2・hr))=(投入前重量−投入後重量)/(1800cm2×2hr)
(Measurement method of moisture permeability of bag)
Write a 30cm square line on the bag and seal 3 sides with a heat sealer along the outside of the line to make a 30cm square bag. Put 250 ml of pure water at 25 ° C into the produced bag and seal it like the other three. At this time, the total weight of the bag and water is measured.
Put one side of the bag into one lump, tie the outer part of the wire with a weft thread, and leave it in a 60 ° C constant temperature dryer for 2 hr. After 2 hours, the bag is taken out of the dryer, the total weight of the bag and the remaining water is measured, and the moisture permeability is obtained by dividing the weight of the evaporated water by the product of the bag surface area and time.
Moisture permeability (mg / (cm 2 · hr)) = (Weight before loading-Weight after loading) / (1800cm 2 × 2hr)

(血液中血小板数(PLT)変化率)
ヘマトクリット30%、総蛋白量6.5g/dl の新鮮牛血(ヘパリン処理血)を400ml準備し、膜面積1.5m2の血液浄化器を作製し、室温の生理用食塩水を使用してプライミング処理を行う。血液浄化器の中空糸膜内側に流量200ml/minで、牛血を30分環流する。測定は環流前の牛血中PLTと、環流後の牛血中PLTを測定し、測定方法は自動血球計算器法を用いる。
PLT変化率(%)=環流後のPLT/環流前のPLT×100
(Change rate of blood platelet count (PLT))
Prepare 400 ml of fresh bovine blood (heparinized blood) with 30% hematocrit and total protein content of 6.5 g / dl, create a blood purifier with a membrane area of 1.5 m 2 , and perform priming using physiological saline at room temperature I do. Circulate bovine blood for 30 minutes at a flow rate of 200 ml / min inside the hollow fiber membrane of the blood purifier. For measurement, bovine blood PLT before reflux and bovine blood PLT after reflux are measured, and an automatic hemocytometer method is used as the measurement method.
PLT change rate (%) = PLT after reflux / PLT before reflux x 100

(タンパク質漏出量(TPL)の測定)
ヘマトクリット30%、総蛋白量6.5g/dl の新鮮牛血(ヘパリン処理血)を用いて、血液浄化器の中空糸膜内側に200ml/min で送る。その際、出口側の圧力を調整して、濾過量が15ml/minかかるようにし、濾液は血液槽に戻す。プライミング後室温静置1時間と24時間の血液浄化器を使用して、環流開始後1時間後に濾液をサンプリングする。得られたサンプルをピロガロールレッド法によって分析し、各サンプル採取時間でのTPL濃度を求める。
(Measurement of protein leakage (TPL))
Using fresh bovine blood (heparinized blood) with a hematocrit of 30% and a total protein content of 6.5 g / dl, send it at 200 ml / min inside the hollow fiber membrane of the blood purifier. At that time, the pressure on the outlet side is adjusted so that the filtration amount is 15 ml / min, and the filtrate is returned to the blood tank. The filtrate is sampled 1 hour after the start of perfusion using a blood purifier at room temperature for 1 hour and 24 hours after priming. The obtained sample is analyzed by the pyrogallol red method to determine the TPL concentration at each sample collection time.

(中空糸膜中の含水率の測定)
中空糸膜を5〜10g採取し、採取時の重量を記録しておく。記録後、サンプルを105℃の定温乾燥機内に2hr静置する。サンプルを乾燥機から取り出したら、すばやくデシケータ内に移動し40〜60min放冷する(デシケータ内は乾燥雰囲気下状態である事が必要)。放冷後すばやくサンプルの重量を測り、含水率を求める。
中空糸膜中の含水率(重量%)=(乾燥前重量−乾燥後重量)/乾燥前重量×100
(Measurement of moisture content in hollow fiber membrane)
Collect 5-10 g of hollow fiber membrane and record the weight at the time of collection. After recording, the sample is left in a constant temperature dryer at 105 ° C. for 2 hours. Once the sample is removed from the dryer, it is quickly moved into the desiccator and allowed to cool for 40 to 60 minutes (the desiccator must be in a dry atmosphere). Weigh the sample immediately after standing to cool to determine the moisture content.
Moisture content (% by weight) in hollow fiber membrane = (weight before drying−weight after drying) / weight before drying × 100

(グリセリン付着率の測定)
中空糸膜に対する細孔保持剤の付着率は、以下のようにして測定した。
得られた中空糸膜を約10000本の束とし、長さ20cm程度に切り揃え、遠心脱液により中空糸膜内部の芯液を除去した後、完全に乾燥させ、重量Wを測定する。その後、中空糸膜束を40℃に加温した相当量の水に浸漬させ、十分に洗浄した後、120℃の乾熱オーブンで2時間乾燥させ、重量Pを測定する。次に下記式により中空糸膜に対する細孔保持剤の付着率G(重量%)を計算した。
G(重量%)=(W−P)÷W×100
(Measurement of glycerin adhesion rate)
The adhesion rate of the pore retention agent to the hollow fiber membrane was measured as follows.
The obtained hollow fiber membranes are made into bundles of about 10,000 pieces, cut to a length of about 20 cm, the core liquid inside the hollow fiber membranes is removed by centrifugal drainage, completely dried, and the weight W is measured. Thereafter, the hollow fiber membrane bundle is immersed in a considerable amount of water heated to 40 ° C., thoroughly washed, dried in a 120 ° C. dry heat oven for 2 hours, and the weight P is measured. Next, the adhesion rate G (% by weight) of the pore retention agent to the hollow fiber membrane was calculated by the following formula.
G (wt%) = (W-P) ÷ W x 100

(実施例1)
セルローストリアセテート(ダイセル化学社製)19.0重量%、N-メチルピロリドン(三菱化学社製)56.7重量%、トリエチレングリコール(三井化学社製)24.3重量%を145℃で溶解し製膜溶液を得た。120℃に加温したチューブインオリフィスノズルから中空形成材として流動パラフィンを用いて、製膜溶液を吐出、エアギャップを通過後、30℃の水中で凝固させた。その後、水洗し膜構造を安定化させた後、60℃、65重量%のグリセリン水溶液中を通過させ90℃の送風で乾燥し、30℃、62%RHの送風条件で冷却し、綾角4°、捲き厚12cmでボビンに巻き上げた。その後ボビンを70℃で20時間熱処理を行った。得られた中空糸膜の内径は200μm、膜厚は15μmであった。このようにして得られた中空糸膜を用い、膜面積1.5m2の血液浄化器を作製して評価を行った。結果を表1に示す。
結果、尿素クリアランスは良好で透析液の偏流は確認されず、摩擦係数も良好であった。
(Example 1)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 19.0% by weight, N-methylpyrrolidone (manufactured by Mitsubishi Chemical Corporation) 56.7% by weight, and triethylene glycol (manufactured by Mitsui Chemicals) 24.3% by weight were dissolved at 145 ° C. to obtain a film forming solution. . Using a liquid paraffin as a hollow forming material from a tube-in orifice nozzle heated to 120 ° C., the film-forming solution was discharged, passed through an air gap, and then coagulated in 30 ° C. water. Then, after washing with water to stabilize the membrane structure, the film was passed through a 60 ° C., 65% by weight glycerin aqueous solution, dried by blowing at 90 ° C., cooled under blowing conditions of 30 ° C., 62% RH, ° Rolled up on a bobbin with a thickness of 12 cm. The bobbin was then heat treated at 70 ° C. for 20 hours. The resulting hollow fiber membrane had an inner diameter of 200 μm and a film thickness of 15 μm. Using the hollow fiber membrane thus obtained, a blood purifier having a membrane area of 1.5 m 2 was produced and evaluated. The results are shown in Table 1.
As a result, urea clearance was good, no dialysis fluid drift was confirmed, and the coefficient of friction was also good.

(実施例2)
セルローストリアセテート(ダイセル化学社製)23.0重量%、N-メチルピロリドン(三菱化学社製)53.9重量%、トリエチレングリコール(三井化学社製)23.1重量%を170℃で溶解して製膜溶液を得た。140℃に加温したチューブインオリフィスノズルから中空形成材として、流動パラフィンを用いて製膜溶液を吐出、エアギャップを通過後、30℃の水中で凝固させた。その後、水洗し膜構造を安定化させた後、60℃、60重量%のグリセリン水溶液中を通過させ70℃の送風で乾燥し、27℃、55%RHの送風条件で冷却し、綾角4°、捲き厚12cmでボビンに巻き上げた。その後は実施例1と同様にして中空糸膜を作製した。
このようにして得られた中空糸膜から膜面積1.5m2の血液浄化器を作製して性能を評価したところ、良好な特性および性能を有する事が確認できた。結果を表1に示す。
結果、実施例1と同じく尿素クリアランスは良好で透析液の偏流は確認されず、摩擦係数も良好であった。
(Example 2)
Cellulose triacetate (Daicel Chemical) 23.0 wt%, N-methylpyrrolidone (Mitsubishi Chemical Corp.) 53.9 wt%, and triethylene glycol (Mitsui Chemicals) 23.1 wt% were dissolved at 170 ° C to obtain a film-forming solution. It was. A film-forming solution was discharged from a tube-in orifice nozzle heated to 140 ° C. using liquid paraffin as a hollow forming material, passed through an air gap, and then coagulated in water at 30 ° C. Then, after washing with water to stabilize the membrane structure, it was passed through a 60 ° C., 60% by weight glycerin aqueous solution, dried by blowing at 70 ° C., cooled under a blowing condition of 27 ° C., 55% RH, ° Rolled up on a bobbin with a thickness of 12 cm. Thereafter, a hollow fiber membrane was produced in the same manner as in Example 1.
A blood purifier having a membrane area of 1.5 m 2 was produced from the hollow fiber membrane thus obtained, and its performance was evaluated. It was confirmed that the membrane had good characteristics and performance. The results are shown in Table 1.
As a result, as in Example 1, the urea clearance was good, the drift of the dialysate was not confirmed, and the friction coefficient was also good.

(実施例3)
セルローストリアセテート(ダイセル化学社製)24.5重量%、N-メチルピロリドン(三菱化学社製)52.9重量%、トリエチレングリコール(三井化学社製)22.6重量%を140℃で溶解した製膜溶液を用い、凝固させた。その後、水洗し膜構造を安定化させた後、60℃、65重量%のグリセリン水溶液中を通過させ50℃の送風で乾燥し、20℃、50%RHの送風条件で冷却し、その後は実施例1と同様に中空糸膜を作製した。このようにして得られた中空糸膜から膜面積1.5m2の血液浄化器を作製して性能を評価したところ、良好な特性および性能を有する事が確認できた。結果を表1に示す。
結果、実施例1と同じく尿素クリアランスは良好で透析液の偏流は確認されず、摩擦係数も良好であった。
(Example 3)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 24.5% by weight, N-methylpyrrolidone (manufactured by Mitsubishi Chemical Corporation) 52.9% by weight, triethylene glycol (manufactured by Mitsui Chemicals) 22.6% by weight dissolved in a film at 140 ° C, Solidified. After washing with water and stabilizing the membrane structure, it was passed through a 60 ° C, 65% by weight glycerin aqueous solution, dried by blowing at 50 ° C, cooled under blowing conditions of 20 ° C, 50% RH, and then implemented. A hollow fiber membrane was prepared in the same manner as in Example 1. A blood purifier having a membrane area of 1.5 m 2 was produced from the hollow fiber membrane thus obtained, and its performance was evaluated. It was confirmed that the membrane had good characteristics and performance. The results are shown in Table 1.
As a result, as in Example 1, the urea clearance was good, the drift of the dialysate was not confirmed, and the friction coefficient was also good.

(比較例1)
セルローストリアセテート(ダイセル化学社製)19.0重量%、N-メチルピロリドン(三菱化学社製)56.7重量%、トリエチレングリコール(三井化学社製)24.3重量%を145℃で溶解し製膜溶液を得た。120℃に加温したチューブインオリフィスノズルから中空形成材として、流動パラフィンを用いて製膜溶液を吐出、エアギャップを通過後、30℃の水中で凝固させた。その後、水洗し膜構造を安定化させた後、60℃、65重量%のグリセリン水溶液中を通過させ70℃の送風で乾燥し、冷却工程無しの条件で、綾角4°、捲き厚12cmでボビンに巻き上げた。その後は実施例1と同様にして中空糸膜を作製した。このようにして得られた中空糸膜から膜面積1.5m2の血液浄化器を作製して性能の評価を行った。結果を表1に示す。
結果、ボビンの捲き絞まりの影響から、糸すべり性が低下し、摩擦係数が高くなり、モジュール作製歩留まりが低下した。
(Comparative Example 1)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 19.0% by weight, N-methylpyrrolidone (manufactured by Mitsubishi Chemical Corporation) 56.7% by weight, and triethylene glycol (manufactured by Mitsui Chemicals) 24.3% by weight were dissolved at 145 ° C. to obtain a film forming solution. . A film-forming solution was discharged from a tube-in orifice nozzle heated to 120 ° C. using liquid paraffin as a hollow forming material, passed through an air gap, and then coagulated in water at 30 ° C. Then, after washing with water to stabilize the membrane structure, it was passed through an aqueous solution of glycerin at 60 ° C and 65% by weight and dried by blowing at 70 ° C. With no cooling step, the twill angle was 4 ° and the thickness was 12cm. I rolled it up on a bobbin. Thereafter, a hollow fiber membrane was produced in the same manner as in Example 1. A blood purifier having a membrane area of 1.5 m 2 was produced from the hollow fiber membrane thus obtained, and its performance was evaluated. The results are shown in Table 1.
As a result, due to the influence of bobbing and squeezing, the thread slippage decreased, the friction coefficient increased, and the module manufacturing yield decreased.

(比較例2)
セルローストリアセテート(ダイセル化学社製)19.0重量%、N-メチルピロリドン(三菱化学社製)56.7重量%、トリエチレングリコール(三井化学社製)24.3重量%を145℃で溶解し製膜溶液を得た。その後は乾燥工程まで比較例1と同様にして、10℃、90%RHの送風条件で冷却し、綾角4°、捲き厚12cmでボビンに巻き上げた。その後は実施例1と同様にして中空糸膜を作製した。このようにして得られた中空糸膜から膜面積1.5m2の血液浄化器を作製して性能の評価を行った。結果を表1に示す。
結果、冷却温度が低すぎたことにより、中空糸膜表面に結露が発生し、この影響で中空糸膜中のグリセリンが膜表面に染み出し、その影響で摩擦係数が高くなり、モジュールの作製歩留まりが低下した。
(Comparative Example 2)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 19.0% by weight, N-methylpyrrolidone (manufactured by Mitsubishi Chemical Corporation) 56.7% by weight, and triethylene glycol (manufactured by Mitsui Chemicals) 24.3% by weight were dissolved at 145 ° C. to obtain a film forming solution. . Thereafter, it was cooled in the same manner as in Comparative Example 1 up to the drying step under air blowing conditions of 10 ° C. and 90% RH, and wound on a bobbin with a twill angle of 4 ° and a winding thickness of 12 cm. Thereafter, a hollow fiber membrane was produced in the same manner as in Example 1. A blood purifier having a membrane area of 1.5 m 2 was produced from the hollow fiber membrane thus obtained, and its performance was evaluated. The results are shown in Table 1.
As a result, when the cooling temperature is too low, dew condensation occurs on the surface of the hollow fiber membrane, which causes glycerin in the hollow fiber membrane to ooze out on the membrane surface, which increases the coefficient of friction and increases module production yield. Decreased.

本発明の血液浄化用中空糸膜は、摩擦係数を一定の範囲内で管理することでモジュール作製時の歩留まりを高い水準で維持することが出来る。このことから、本発明の血液浄化用中空糸膜の製造方法は、上記特性を有した血液浄化用中空糸膜を経済的に、かつ安定して製造することができるという利点を有する。従って、産業界に寄与することが大である。   The hollow fiber membrane for blood purification of the present invention can maintain the yield during module production at a high level by managing the friction coefficient within a certain range. Thus, the method for producing a blood purification hollow fiber membrane of the present invention has the advantage that the blood purification hollow fiber membrane having the above-mentioned characteristics can be produced economically and stably. Therefore, it is important to contribute to the industry.

Claims (2)

チューブインオリフィスノズルの外側環状部より吐出された製膜溶液を凝固浴に浸漬して凝固させ、引き続き水洗工程、グリセリン水溶液を含浸させる工程、乾燥工程を経てボビンに巻き取る中空糸膜の製造において、中空糸膜を温度が45℃以上110℃以下の乾燥工程を通過させた、温度が20℃〜30℃、湿度が45〜75%RHの気体を送風した冷却ゾーンを1秒〜5秒走行させるか、または温度が20℃〜30℃、湿度が45〜75%RHの雰囲気内を10秒〜60秒通過させることを特徴とする血液浄化用中空糸膜の製造方法。 In the manufacture of a hollow fiber membrane wound around a bobbin through a water-washing step, a step of impregnating a glycerin aqueous solution, and a drying step after the membrane-forming solution discharged from the outer annular portion of the tube-in orifice nozzle is immersed in a coagulation bath and solidified After passing the hollow fiber membrane through a drying process at a temperature of 45 ° C. or higher and 110 ° C. or lower, a cooling zone in which a gas having a temperature of 20 ° C. to 30 ° C. and a humidity of 45 to 75% RH is blown is 1 second to 5 seconds. A method for producing a hollow fiber membrane for blood purification, characterized by being allowed to run or passing through an atmosphere having a temperature of 20 ° C. to 30 ° C. and a humidity of 45 to 75% RH for 10 to 60 seconds . 中空糸膜の内径が100〜300μm、膜厚が10〜100μmであることを特徴とする請求項1に記載の血液浄化用中空糸膜の製造方法。
The method for producing a hollow fiber membrane for blood purification according to claim 1, wherein the hollow fiber membrane has an inner diameter of 100 to 300 µm and a film thickness of 10 to 100 µm.
JP2011164356A 2011-07-27 2011-07-27 Method for producing hollow fiber membrane for blood purification Active JP5408197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164356A JP5408197B2 (en) 2011-07-27 2011-07-27 Method for producing hollow fiber membrane for blood purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164356A JP5408197B2 (en) 2011-07-27 2011-07-27 Method for producing hollow fiber membrane for blood purification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006253716A Division JP4923902B2 (en) 2006-09-20 2006-09-20 Hollow fiber membrane for blood purification and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012005845A JP2012005845A (en) 2012-01-12
JP5408197B2 true JP5408197B2 (en) 2014-02-05

Family

ID=45537064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164356A Active JP5408197B2 (en) 2011-07-27 2011-07-27 Method for producing hollow fiber membrane for blood purification

Country Status (1)

Country Link
JP (1) JP5408197B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792556B2 (en) * 1994-12-16 1998-09-03 東洋紡績株式会社 Blood purification module, blood purification membrane and method for producing the same
JP2003033633A (en) * 2001-05-16 2003-02-04 Toyobo Co Ltd Method for producing hollow fiber membrane and hollow fiber membrane module
JP2003245345A (en) * 2002-02-25 2003-09-02 Asahi Medical Co Ltd Hollow yarn membrane and production method therefor
JP2004358433A (en) * 2003-06-09 2004-12-24 Toyobo Co Ltd Dry hollow fiber membrane and module
CN1285399C (en) * 2003-08-13 2006-11-22 天津膜天膜工程技术有限公司 Polyvinylidene fluoride hollow fiber membrane for hemodialysis

Also Published As

Publication number Publication date
JP2012005845A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5694298B2 (en) Method for preparing membranes with improved performance
US8827087B2 (en) Membranes having improved performance
EP2822676B1 (en) Low cut-off ultrafiltration membranes
AU2008303785B2 (en) Hydrophilic membranes with a non-ionic surfactant
JP5218044B2 (en) Hollow fiber membrane excellent in performance stability, blood purifier, and method for producing hollow fiber membrane
RU2667068C2 (en) Porous membrane, blood purifying module incorporating porous membrane and method for producing porous membrane
JP6768694B2 (en) Online drying of hollow fiber membranes
JP4923902B2 (en) Hollow fiber membrane for blood purification and method for producing the same
US10888823B2 (en) Membrane with improved permeability and selectivity
JP4992104B2 (en) Module for hemofiltration or hemodiafiltration
EP2253369A1 (en) Membranes having improved performance
WO2013129384A1 (en) Adsorption column
JP4599934B2 (en) Hollow fiber membrane module
JP6078641B2 (en) Hollow fiber membrane for blood treatment and method for producing the hollow fiber membrane for blood treatment
JP5408197B2 (en) Method for producing hollow fiber membrane for blood purification
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
JP2012019891A (en) Method for manufacturing hollow fiber membrane for blood processing
JP4093134B2 (en) Hollow fiber blood purification membrane
JP4843993B2 (en) Blood purifier
JP2011041830A (en) Hollow fiber membrane for blood purification, and method of manufacturing the same
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP4388302B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP4304611B2 (en) Permselective hollow fiber membrane with excellent blood compatibility
JP2005342415A (en) High water-permeable hollow-fiber membrane-type blood purification apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5408197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350