JP2013093521A - Differential transmission line and multilayer wiring board - Google Patents

Differential transmission line and multilayer wiring board Download PDF

Info

Publication number
JP2013093521A
JP2013093521A JP2011236106A JP2011236106A JP2013093521A JP 2013093521 A JP2013093521 A JP 2013093521A JP 2011236106 A JP2011236106 A JP 2011236106A JP 2011236106 A JP2011236106 A JP 2011236106A JP 2013093521 A JP2013093521 A JP 2013093521A
Authority
JP
Japan
Prior art keywords
conductor
wiring
transmission line
insulating layer
wiring conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236106A
Other languages
Japanese (ja)
Inventor
Hitoshi Tega
仁 手賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011236106A priority Critical patent/JP2013093521A/en
Publication of JP2013093521A publication Critical patent/JP2013093521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a differential transmission line capable of transmitting a high frequency signal efficiently by reducing the impact of external noise, and to provide a multilayer wiring board including the differential transmission line.SOLUTION: In a differential transmission line consisting of a pair of wiring conductors having a first wiring conductor 2 and a second wiring conductor 3 facing each other vertically with an insulation layer therebetween, the end of one first wiring conductor 2a and the end of the other first wiring conductor 2b are connected electrically via a first through conductor 4 provided to penetrate the insulation layer, the end of one second wiring conductor 3a and the end of the other second wiring conductor 3b are connected electrically via a second through conductor 5 provided to penetrate the insulation layer, and a ground through conductor 6 is provided between the first through conductor 4 and the second through conductor 5. Impact of external noise is reduced, and a high frequency signal can be transmitted efficiently.

Description

本発明は、絶縁層を挟んで対向する一対の配線導体により構成され、この一対の配線導体を通して電気信号を伝送する差動伝送線路に関するものである。   The present invention relates to a differential transmission line configured by a pair of wiring conductors facing each other with an insulating layer interposed therebetween, and transmitting an electric signal through the pair of wiring conductors.

高速で作動するIC、LSI等の半導体素子を実装封止したパッケージ実装部品や表面実装対応の電子部品の内部配線構造においては、高速の高周波信号を正確かつ効率よく伝播させることを目的として差動伝送線路構造が採用される。この差動伝送線路構造は、2本の信号線を用いて1つの信号を伝送する構造である。   In the internal wiring structure of package mounting parts and semiconductor parts that are mounted and sealed with semiconductor elements such as ICs and LSIs that operate at high speeds and surface mountable electronic parts, differential is intended to propagate high-speed high-frequency signals accurately and efficiently. A transmission line structure is adopted. This differential transmission line structure is a structure in which one signal is transmitted using two signal lines.

このような差動伝送線路構造には、複数の絶縁層を積層してなる絶縁基体の内部において、絶縁層を挟んで上下に対向するように一対の配線導体を配置した差動伝送線路構造があった。   In such a differential transmission line structure, there is a differential transmission line structure in which a pair of wiring conductors are arranged so as to face each other up and down across an insulating layer inside an insulating base formed by laminating a plurality of insulating layers. there were.

従来、このような差動伝送線路構造において、上層および下層の配線導体を分割し、貫通導体を介して上下で入れ替わる(交差する)ように電気的に接続するという構造が開示されていた(例えば、特許文献1を参照)。   Conventionally, in such a differential transmission line structure, there has been disclosed a structure in which upper and lower wiring conductors are divided and electrically connected so as to be switched up and down (intersect) via a through conductor (for example, , See Patent Document 1).

特開平7−95134号公報JP-A-7-95134

しかしながら、従来の差動伝送線路は、絶縁層の表面では、一対の信号用配線導体を伝送する信号は同じ向きであり差動伝送線路構造となっているものの、一対の貫通導体では、それぞれの貫通導体を伝送する信号が逆向きとなり、一対の貫通導体が、差動伝送線路構造にならないという現象がおきていた。その結果、一対の貫通導体においては、差動配線構造とならないためにノイズが貫通導体部から進入した場合には受信側で信号を合成した際にノイズがキャンセルされないため、高周波信号を効率よく伝送することが難しいという問題があった。   However, in the conventional differential transmission line, on the surface of the insulating layer, the signals transmitted through the pair of signal wiring conductors are in the same direction and have a differential transmission line structure. There has been a phenomenon that the signals transmitted through the through conductors are reversed and the pair of through conductors do not have a differential transmission line structure. As a result, the pair of through conductors does not have a differential wiring structure, so when noise enters from the through conductor, the noise is not canceled when the signal is synthesized on the receiving side, so high-frequency signals are transmitted efficiently. There was a problem that it was difficult to do.

本発明は上記問題点に鑑み完成されたものであり、その目的は、一対の貫通導体において、外部からのノイズの影響を低減し、高周波信号を効率よく伝送することができる差動伝送線路および該差動伝送線路を備えた多層配線基板を提供することにある。   The present invention has been completed in view of the above problems, and its purpose is to reduce the influence of external noise in a pair of through conductors and to efficiently transmit a high-frequency signal and An object of the present invention is to provide a multilayer wiring board provided with the differential transmission line.

本発明の差動伝送線路は、絶縁層を挟んで上下に対向する第1配線導体および第2配線導体を有する一対の配線導体からなる差動伝送線路において、前記第1配線導体は一方の第1配線導体と他方の第1配線導体とを有し、前記第2配線導体は一方の第2配線導体と他方の第2配線導体とを有しており、前記一方の第1配線導体と前記一方の第2配線導体とが前記絶縁層を挟んで上下に対向するとともに、前記他方の第1配線導体と前記他方の第2配線導体とが前記絶縁層を挟んで上下に対向しており、前記一方の第1配線導体の端部と前記他方の第1配線導体の端部とが前記絶縁層を貫通して設けられた第1貫通導体を介して電気的に接続され、前記一方の第2配線導体の端部と前記他方の第2配線導体の端部とが前記絶縁層を貫通して設けられた第2貫通導体を介して電気的に接続されており、前記第1貫通導体と前記第2貫通導体との間に接地貫通導体が設けられていることを特徴
とするものである。
The differential transmission line of the present invention is a differential transmission line comprising a pair of wiring conductors having a first wiring conductor and a second wiring conductor facing each other up and down across an insulating layer, wherein the first wiring conductor is one of the first wiring conductors. One wiring conductor and the other first wiring conductor, and the second wiring conductor has one second wiring conductor and the other second wiring conductor, and the one first wiring conductor and the first wiring conductor One second wiring conductor is vertically opposed across the insulating layer, and the other first wiring conductor and the other second wiring conductor are vertically opposed across the insulating layer, An end of the one first wiring conductor and an end of the other first wiring conductor are electrically connected via a first through conductor provided so as to penetrate the insulating layer, and the one first wiring conductor An end of the two wiring conductors and an end of the other second wiring conductor are provided through the insulating layer. Was are electrically connected via the second through conductor, it is characterized in that the ground through conductors are provided between the first through conductor and the second through-conductors.

また、本発明の多層配線基板は、複数の絶縁層が積層されてなる絶縁基体の内部に、上記構成の本発明の差動伝送線路を備え、前記絶縁基体の一方主面および他方主面に接地導体層が形成されているとともに、該接地導体層に前記接地貫通導体が接続されていることを特徴とするものである。   In addition, the multilayer wiring board of the present invention includes the differential transmission line of the present invention having the above-described configuration inside an insulating substrate formed by laminating a plurality of insulating layers, and is provided on one main surface and the other main surface of the insulating substrate. A ground conductor layer is formed, and the ground through conductor is connected to the ground conductor layer.

本発明の差動伝送線路によれば、一方の第1配線導体の端部と他方の第1配線導体の端部とが絶縁層を貫通して設けられた第1貫通導体を介して電気的に接続され、一方の第2配線導体の端部と他方の第2配線導体の端部とが絶縁層を貫通して設けられた第2貫通導体を介して電気的に接続されており、第1貫通導体と第2貫通導体との間に接地貫通導体が設けられていることから、第1貫通導体と第2貫通導体との間に発生する電磁界結合を弱めることができるので、第1貫通導体および第2貫通導体にノイズが乗り難くなり、その結果、外部からのノイズの影響を低減し、高周波信号を効率よく伝送することが可能となる。   According to the differential transmission line of the present invention, the end of one first wiring conductor and the end of the other first wiring conductor are electrically connected via the first through conductor provided through the insulating layer. And an end of one second wiring conductor and an end of the other second wiring conductor are electrically connected via a second through conductor provided through the insulating layer, Since the grounding through conductor is provided between the first through conductor and the second through conductor, the electromagnetic coupling generated between the first through conductor and the second through conductor can be weakened. It becomes difficult for noise to ride on the through conductor and the second through conductor. As a result, it is possible to reduce the influence of noise from the outside and efficiently transmit a high-frequency signal.

また、本発明の多層配線基板によれば、複数の絶縁層が積層されてなる絶縁基体の内部に、上記構成の本発明の差動伝送線路を備え、絶縁基体の一方主面および他方主面に接地導体層が形成されているとともに、該接地導体層に接地貫通導体が接続されていることから、接地貫通導体によって、第1貫通導体と第2貫通導体との間に発生する電磁界結合を弱めて、第1貫通導体および第2貫通導体にノイズを乗り難くするとともに、絶縁基体の一方主面および他方主面に形成された接地導体層によって外部からのノイズの影響を低減することができるので、高周波信号を効率よく伝送することが可能となる。   In addition, according to the multilayer wiring board of the present invention, the differential transmission line of the present invention having the above-described configuration is provided inside the insulating substrate formed by laminating a plurality of insulating layers, and one main surface and the other main surface of the insulating substrate. The ground conductor layer is formed on the ground conductor layer, and the ground through conductor is connected to the ground conductor layer, so that the electromagnetic field coupling generated between the first through conductor and the second through conductor by the ground through conductor. This makes it difficult for noise to ride on the first through conductor and the second through conductor, and reduces the influence of external noise by the ground conductor layer formed on one main surface and the other main surface of the insulating base. Therefore, it is possible to efficiently transmit a high frequency signal.

本発明の差動伝送線路および多層配線基板の実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment of the differential transmission line and multilayer wiring board of this invention. (a)は、本発明の差動伝送線路および多層配線基板の実施の形態の他の例を示す平面図であり、(b)は、(a)のX−X線における断面図である。(A) is a top view which shows the other example of embodiment of the differential transmission line of this invention, and a multilayer wiring board, (b) is sectional drawing in the XX of (a). (a)は、本発明の差動伝送線路および多層配線基板の実施の形態の他の例を示す平面図であり、(b)は、(a)のX−X線における断面図である。(A) is a top view which shows the other example of embodiment of the differential transmission line of this invention, and a multilayer wiring board, (b) is sectional drawing in the XX of (a). 本発明の差動伝送線路の実施の形態の他の例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows the other example of embodiment of the differential transmission line of this invention. 本発明の差動伝送線路の実施の形態の他の例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows the other example of embodiment of the differential transmission line of this invention. 本発明の差動伝送線路の実施の形態の他の例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows the other example of embodiment of the differential transmission line of this invention. 本発明の差動伝送線路および多層配線基板の実施の形態の他の例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of embodiment of the differential transmission line and multilayer wiring board of this invention.

本発明の差動伝送線路および多層配線基板について以下に詳細に説明する。   The differential transmission line and multilayer wiring board of the present invention will be described in detail below.

図1は、本発明の差動伝送線路および多層配線基板の実施の形態の一例を示す斜視図である。図2(a)は、図1に示す例の多層配線基板を上からみた上面図で、一対の配線導体は透視して示されている。図2(b)は、図2(a)のX−X線における断面図である。図1および図2(a),(b)においては、絶縁層が3層ある例を示しており、1aは第1絶縁層,1bは第2絶縁層,1cは第3絶縁層であり、これらを積層して絶縁基体1が形成される。2は第1配線導体,3は第2配線導体で、これら第1配線導体2および第2配線導体3は一対の配線導体で、差動伝送線路構造をなす。第1配線導体2のうち、2aは一方の第1配線導体,2bは他方の第1配線導体である。第2配線導体3のうち、3aは一方の第2配線導体,3bは他方の第2配線導体である。一方の第1配線導体2aと
一方の第2配線導体3aとは絶縁層を挟んで上下に対向して配置され、他方の第1配線導体2bと他方の第2配線導体3bとは絶縁層を挟んで上下に対向して配置されている。これらの配線導体の電気的接続について以下に説明する。
FIG. 1 is a perspective view showing an example of an embodiment of a differential transmission line and a multilayer wiring board according to the present invention. FIG. 2A is a top view of the multilayer wiring board of the example shown in FIG. 1 as viewed from above, and a pair of wiring conductors are shown through. FIG.2 (b) is sectional drawing in the XX line of Fig.2 (a). 1 and 2 (a) and 2 (b) show examples in which there are three insulating layers, 1a being a first insulating layer, 1b being a second insulating layer, and 1c being a third insulating layer, The insulating substrate 1 is formed by laminating these. Reference numeral 2 denotes a first wiring conductor, 3 denotes a second wiring conductor, and the first wiring conductor 2 and the second wiring conductor 3 are a pair of wiring conductors to form a differential transmission line structure. Among the first wiring conductors 2, 2 a is one first wiring conductor and 2 b is the other first wiring conductor. Of the second wiring conductor 3, 3a is one second wiring conductor, and 3b is the other second wiring conductor. One first wiring conductor 2a and one second wiring conductor 3a are vertically opposed to each other with an insulating layer interposed therebetween, and the other first wiring conductor 2b and the other second wiring conductor 3b are provided with an insulating layer. It is arranged facing the top and bottom across. The electrical connection of these wiring conductors will be described below.

一方の第1配線導体2aの端部と他方の第1配線導体2bの端部とは、絶縁層を貫通して設けられた第1貫通導体4を介して電気的に接続されており、また一方の第2配線導体3aの端部と他方の第2配線導体3bの端部とは、絶縁層を貫通して設けられた第2貫通導体5を介して電気的に接続されている。このように、絶縁層を挟んで上下に形成された第1配線導体2および第2配線導体3が、第1貫通導体4および第2貫通導体5を介して上下で入れ替わり、交差するように接続されている。6は接地貫通導体で、第1貫通導体4および第2貫通導体5との間に設けられている。   The end of one first wiring conductor 2a and the end of the other first wiring conductor 2b are electrically connected via a first through conductor 4 provided through the insulating layer, and The end of one second wiring conductor 3a and the end of the other second wiring conductor 3b are electrically connected via a second through conductor 5 provided so as to penetrate the insulating layer. In this way, the first wiring conductor 2 and the second wiring conductor 3 formed vertically with the insulating layer interposed therebetween are switched up and down via the first through conductor 4 and the second through conductor 5 so as to cross each other. Has been. Reference numeral 6 denotes a ground through conductor, which is provided between the first through conductor 4 and the second through conductor 5.

本発明の差動伝送線路は、図1および図2(a),(b)に示す例のように、絶縁層を挟んで上下に対向する第1配線導体2および第2配線導体3を有する一対の配線導体からなる差動伝送線路において、第1配線導体2は一方の第1配線導体2aと他方の第1配線導体2bとを有し、第2配線導体3は一方の第2配線導体3aと他方の第2配線導体3bとを有しており、一方の第1配線導体2aと一方の第2配線導体3aとが絶縁層を挟んで上下に対向するとともに、他方の第1配線導体2bと他方の第2配線導体3bとが絶縁層を挟んで上下に対向しており、一方の第1配線導体2aの端部と他方の第1配線導体2bの端部とが絶縁層を貫通して設けられた第1貫通導体4を介して電気的に接続され、一方の第2配線導体3aの端部と他方の第2配線導体3bの端部とが絶縁層を貫通して設けられた第2貫通導体5を介して電気的に接続されており、第1貫通導体4と第2貫通導体5との間に接地貫通導体6が設けられている。このような構成により、第1貫通導体4と第2貫通導体5との間に接地貫通導体6が設けられていることから、第1貫通導体4と第2貫通導体5との間に発生する電磁界結合を弱めることができ、その結果、第1貫通導体4および第2貫通導体5を伝送する信号が逆向きで差動伝送線路構造とならなくても、第1貫通導体および第2貫通導体にノイズが乗り難くなるため、外部からのノイズの影響を低減し、高周波信号を効率よく伝送することが可能となる。   The differential transmission line of the present invention has a first wiring conductor 2 and a second wiring conductor 3 which are opposed to each other with an insulating layer interposed therebetween, as in the examples shown in FIGS. 1 and 2A and 2B. In the differential transmission line composed of a pair of wiring conductors, the first wiring conductor 2 has one first wiring conductor 2a and the other first wiring conductor 2b, and the second wiring conductor 3 is one second wiring conductor. 3a and the other second wiring conductor 3b. One first wiring conductor 2a and one second wiring conductor 3a are vertically opposed to each other with an insulating layer interposed therebetween, and the other first wiring conductor. 2b and the other second wiring conductor 3b are vertically opposed to each other with an insulating layer interposed therebetween, and an end portion of one first wiring conductor 2a and an end portion of the other first wiring conductor 2b penetrate the insulating layer. Are electrically connected via the first through conductor 4 provided in the same manner, and the end of one second wiring conductor 3a and the other The second wiring conductor 3b is electrically connected to the end of the second wiring conductor 3b through a second through conductor 5 penetrating the insulating layer, and between the first through conductor 4 and the second through conductor 5. Is provided with a ground through conductor 6. With such a configuration, since the grounding through conductor 6 is provided between the first through conductor 4 and the second through conductor 5, it occurs between the first through conductor 4 and the second through conductor 5. Electromagnetic field coupling can be weakened. As a result, even if signals transmitted through the first through conductor 4 and the second through conductor 5 are in the reverse direction and do not have a differential transmission line structure, the first through conductor and the second through conductor Since it is difficult for noise to ride on the conductor, it is possible to reduce the influence of noise from the outside and efficiently transmit a high-frequency signal.

具体的には、第1貫通導体4および第2貫通導体5を伝送する信号の向きが逆向きとなることで、第1貫通導体4と第2貫通導体5との間に電磁界結合が発生してしまい、電磁界結合によってノイズが発生して、このノイズが第1貫通導体4および第2貫通導体5に乗ってしまうという不具合が生じる。この電磁界結合によって発生する電界分布の磁場の流れを断ち切って、第1貫通導体4と第2貫通導体5との間に発生する電磁界結合を弱めるために、第1貫通導体4と第2貫通導体5との間に接地貫通導体6を設けている。また、接地貫通導体6を設ける位置は、電界分布の磁場の流れに沿って接地貫通導体6を設けると効果的に電磁界結合の磁場を断ち切りやすくすることができるので好ましい。   Specifically, an electromagnetic field coupling occurs between the first through conductor 4 and the second through conductor 5 because the direction of the signal transmitted through the first through conductor 4 and the second through conductor 5 is reversed. As a result, noise is generated by electromagnetic field coupling, and this noise is ridden on the first through conductor 4 and the second through conductor 5. In order to cut off the magnetic field flow of the electric field distribution generated by the electromagnetic field coupling and weaken the electromagnetic field coupling generated between the first through conductor 4 and the second through conductor 5, the first through conductor 4 and the second A grounding through conductor 6 is provided between the through conductor 5. In addition, it is preferable to provide the grounding through conductor 6 in order to effectively cut off the magnetic field of electromagnetic coupling by providing the grounding through conductor 6 along the magnetic field flow of the electric field distribution.

本発明の差動伝送線路は、図2(a),(b)および図3(a),(b)に示す例のように、接地貫通導体6は、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上で、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置に設けられていることが好ましい。この場合、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上が最も電磁界結合が強いため、この部分に接地貫通導体6を設けることで効果的に電磁界結合を弱めることができる。その結果、外部からのノイズの影響を低減し、高周波信号をより効率よく伝送することができる。   In the differential transmission line according to the present invention, the grounding through conductor 6 is connected to the center of the first through conductor 4 and the first through conductor 4 as shown in FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b). It is preferable that the center of the first through conductor 4 and the center of the second through conductor 5 be provided at a position that bisects the straight line connecting the centers of the two through conductors 5. In this case, since the electromagnetic field coupling is strongest on the straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5, the electromagnetic field coupling can be effectively performed by providing the ground through conductor 6 in this portion. Can be weakened. As a result, the influence of external noise can be reduced and a high-frequency signal can be transmitted more efficiently.

さらに、接地貫通導体6は、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置に設けられていることで、第1貫通導体4,第2貫通導体5,接地貫通導体6のそれぞれの直径を同寸法とした場合に、接地貫通導体6の中心が、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置に設けられることとなり、接地貫通導体6と第1
貫通導体4との距離および接地貫通導体6と第2貫通導体5との距離が等しくなり、第1貫通導体4および第2貫通導体5のそれぞれの特性インピーダンスが同じ値となるので、特性インピーダンスの違いによるノイズの発生を抑制することができるので好ましい。
Furthermore, the grounding through conductor 6 is provided at a position that bisects the center of the first through conductor 4 and the center of the second through conductor 5, so that the first through conductor 4, the second through conductor 5, and the ground When the diameters of the through conductors 6 are the same, the center of the ground through conductor 6 is provided at a position that bisects the center of the first through conductor 4 and the center of the second through conductor 5. Ground through conductor 6 and first
Since the distance between the through conductor 4 and the distance between the ground through conductor 6 and the second through conductor 5 are equal, the characteristic impedances of the first through conductor 4 and the second through conductor 5 have the same value. This is preferable because the generation of noise due to the difference can be suppressed.

すなわち、接地貫通導体6と第1貫通導体4との距離および接地貫通導体6と第2貫通導体5との距離が異なると、第1貫通導体4および第2貫通導体5のそれぞれの特性インピーダンスが異なってしまい、この異なる特性インピーダンスによってノイズが発生して、このノイズが第1貫通導体4および第2貫通導体5に乗ってしまうこととなるため、これを抑制するために、本願発明は、接地貫通導体6を第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置に設けて、接地貫通導体6と第1貫通導体4との距離および接地貫通導体6と第2貫通導体5との距離を等しいものとしている。   That is, if the distance between the ground through conductor 6 and the first through conductor 4 and the distance between the ground through conductor 6 and the second through conductor 5 are different, the respective characteristic impedances of the first through conductor 4 and the second through conductor 5 are different. Since the noise is generated by the different characteristic impedance and this noise is on the first through conductor 4 and the second through conductor 5, in order to suppress this, the present invention The through conductor 6 is provided at a position that bisects the center of the first through conductor 4 and the center of the second through conductor 5, and the distance between the ground through conductor 6 and the first through conductor 4 and the ground through conductor 6 and the second through conductor 6. The distance to the through conductor 5 is made equal.

一例として、第1貫通導体4,第2貫通導体5,接地貫通導体6のそれぞれの直径を同じ寸法で0.2mmとし、絶縁層の材質を比誘電率が9.5である95%アルミナとし、接地貫通導体6と第1貫通導体4との中心間距離および接地貫通導体6と第2貫通導体5との中心間距離をそれぞれ0.46mmとした場合に、第1貫通導体4および第2貫通導体5のインピーダンスが、それぞれ約50Ωとなるので、第1配線導体および第2配線導体間の差動配線のインピーダンスをそれぞれ100Ωに設定して50Ωのインピーダンスの信号を伝送する場
合に、一対の配線導体のインピーダンスが50Ωで、貫通導体のインピーダンスも50Ωとなっているので、配線導体から貫通導体へ信号が伝送する際にインピーダンスの変化が無くなり、伝送特性の低下が少なくなるので好ましい。この場合、第1貫通導体4および第2貫通導体5の中心間の距離は9.2mmとなり、接地貫通導体6の中心は、第1貫通導体4
および第2貫通導体5の中心間を2分した位置に形成されたものとなる。
As an example, the diameter of each of the first through conductor 4, the second through conductor 5, and the ground through conductor 6 is 0.2 mm with the same dimensions, and the insulating layer is made of 95% alumina having a relative dielectric constant of 9.5. When the center-to-center distance between the conductor 6 and the first through conductor 4 and the center-to-center distance between the ground through conductor 6 and the second through conductor 5 are each 0.46 mm, the first through conductor 4 and the second through conductor 5 Since the impedance is about 50Ω respectively, the impedance of the pair of wiring conductors is set when the impedance of the differential wiring between the first wiring conductor and the second wiring conductor is set to 100Ω and a signal of 50Ω impedance is transmitted. Is 50Ω, and the impedance of the through conductor is also 50Ω. This is preferable because there is no change in impedance when a signal is transmitted from the wiring conductor to the through conductor, and the deterioration of transmission characteristics is reduced. There. In this case, the distance between the centers of the first through conductor 4 and the second through conductor 5 is 9.2 mm, and the center of the ground through conductor 6 is the first through conductor 4.
In addition, it is formed at a position where the center of the second through conductor 5 is divided into two.

本発明の差動伝送線路は、図4に示す例のように、接地貫通導体6は、第1貫通導体4および第2貫通導体5の内側の第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線と直交する方向に複数設けられていることが好ましい。この場合、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上で、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置を中心にして、同心円状に電界分布の磁場が形成されるので、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上の最も強い電磁界結合の磁場に加えて、その周囲に発生している電磁界結合の磁場をも接地貫通導体6でもって断ち切りやすくして、電磁界結合を弱めることができる。その結果、外部からのノイズの影響を低減し、高周波信号をより効率よく伝送することができる。   In the differential transmission line of the present invention, as in the example shown in FIG. 4, the grounding through conductor 6 includes the center of the first through conductor 4 and the second through conductor inside the first through conductor 4 and the second through conductor 5. It is preferable that a plurality are provided in a direction orthogonal to a straight line connecting the centers of the five. In this case, on the straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5, the center of the first through conductor 4 and the center of the second through conductor 5 are divided into two. Thus, a magnetic field of electric field distribution is formed concentrically, so that in addition to the strongest electromagnetic coupling magnetic field on the straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5, It is possible to easily cut off the electromagnetic field coupling magnetic field generated by the ground through conductor 6 and weaken the electromagnetic field coupling. As a result, the influence of external noise can be reduced and a high-frequency signal can be transmitted more efficiently.

本発明の差動伝送線路は、図5に示す例のように、接地貫通導体6は、第1貫通導体4および第2貫通導体5の外側の周囲に複数設けられていることが好ましい。この場合、第1貫通導体4および第2貫通導体5の外側の周囲に設けられた接地貫通導体6により、接地性を向上させ、第1貫通導体4および第2貫通導体5に外部からノイズが入ることを抑制し、高周波信号をより効率よく伝送することができる。接地貫通導体6が設けられている第1貫通導体4および第2貫通導体5の外側とは、具体的には上面視した場合に第1配線導体2と第2配線導体3とで囲まれた領域の外側のことである。   In the differential transmission line of the present invention, as shown in the example shown in FIG. 5, it is preferable that a plurality of ground through conductors 6 are provided around the outside of the first through conductor 4 and the second through conductor 5. In this case, the grounding through conductor 6 provided around the outside of the first through conductor 4 and the second through conductor 5 improves the grounding property, and noise is externally applied to the first through conductor 4 and the second through conductor 5. The high frequency signal can be transmitted more efficiently. Specifically, the outside of the first through conductor 4 and the second through conductor 5 provided with the ground through conductor 6 is surrounded by the first wiring conductor 2 and the second wiring conductor 3 when viewed from above. It is outside the area.

本発明の多層配線基板は、図1に示す例のように、複数の絶縁層が積層されてなる絶縁基体1(図1においては3層の絶縁層を積層している)の内部に、上記構成の本発明の差動伝送線路を備え、絶縁基体の一方主面および他方主面に接地導体層7が形成されているとともに、該接地導体層7に接地貫通導体6を接続している。このような構成により、接地貫通導体6によって第1貫通導体4および第2貫通導体5にノイズが乗り難くなるとともに、絶縁基体1の一方主面および他方主面に形成された接地導体層7によって外部からのノイズの影響を低減することができるので、高周波信号を効率よく伝送することができる。   As shown in the example shown in FIG. 1, the multilayer wiring board according to the present invention has an insulating substrate 1 in which a plurality of insulating layers are stacked (in FIG. 1, three insulating layers are stacked). The differential transmission line of the present invention having the configuration is provided, and a ground conductor layer 7 is formed on one main surface and the other main surface of the insulating base, and a ground through conductor 6 is connected to the ground conductor layer 7. With such a configuration, the grounding through conductor 6 makes it difficult for noise to ride on the first through conductor 4 and the second through conductor 5, and the grounding conductor layer 7 formed on the one main surface and the other main surface of the insulating base 1. Since the influence of external noise can be reduced, high-frequency signals can be transmitted efficiently.

絶縁基体1は複数の絶縁層からなり、該絶縁層は、例えば酸化アルミニウム(アルミナ:Al)質焼結体,窒化アルミニウム(AlN)質焼結体,炭化珪素(SiC)質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックスからなる。図1〜図3に示す例では、絶縁基体1が3層の絶縁層からなる例を示している。この例では、第3絶縁層1c,第2絶縁層1b,第1絶縁層1aが下から順次積層され、最上層が第1絶縁層1aであり、中間層が第2絶縁層1bであり、最下層が第3絶縁層1cである。 The insulating substrate 1 is composed of a plurality of insulating layers. The insulating layer is made of, for example, an aluminum oxide (alumina: Al 2 O 3 ) sintered body, an aluminum nitride (AlN) sintered body, or a silicon carbide (SiC) sintered body. Body, mullite sintered body, and ceramics such as glass ceramics. In the example shown in FIGS. 1 to 3, an example in which the insulating base 1 is composed of three insulating layers is shown. In this example, the third insulating layer 1c, the second insulating layer 1b, and the first insulating layer 1a are sequentially stacked from the bottom, the uppermost layer is the first insulating layer 1a, and the intermediate layer is the second insulating layer 1b. The lowest layer is the third insulating layer 1c.

一対の配線導体を構成する第1配線導体2および第2配線導体3ならびに第1貫通導体4,第2貫通導体5,接地貫通導体6は、絶縁層と同時焼成により形成される、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金,銀(Ag),銅(Cu),金(Au),銀−パラジウム(Ag−Pd)合金等の金属を主成分とするメタライズからなるものである。   The first wiring conductor 2 and the second wiring conductor 3, and the first through conductor 4, the second through conductor 5, and the ground through conductor 6 constituting the pair of wiring conductors are formed of tungsten (W ), Molybdenum (Mo), Molybdenum-Manganese (Mo-Mn) alloy, Silver (Ag), Copper (Cu), Gold (Au), Silver-Palladium (Ag-Pd) alloy, etc. It consists of

第1配線導体2は、一方の第1配線導体2aおよび他方の第1配線導体2bを有し、第2配線導体3もまた、一方の第2配線導体3aおよび他方の第2配線導体3bを有している。そして、一方の第1配線導体2aおよび他方の第2配線導体3bが、第2絶縁層1bの上面に形成され、他方の第1配線導体2bおよび一方の第2配線導体3aが、第3絶縁層1cの上面に形成されている。   The first wiring conductor 2 has one first wiring conductor 2a and the other first wiring conductor 2b, and the second wiring conductor 3 also has one second wiring conductor 3a and the other second wiring conductor 3b. Have. Then, one first wiring conductor 2a and the other second wiring conductor 3b are formed on the upper surface of the second insulating layer 1b, and the other first wiring conductor 2b and one second wiring conductor 3a are third insulation. It is formed on the upper surface of the layer 1c.

第1貫通導体4は、一方の第1配線導体2aと他方の第1配線導体2bとを電気的に接続する機能を有し、直径が0.05〜0.2mmの寸法が使用されるが、配線基板の要求される
特性インピーダンスと配線密度に応じて必要な寸法とすれば良い。
The first through conductor 4 has a function of electrically connecting one first wiring conductor 2a and the other first wiring conductor 2b and has a diameter of 0.05 to 0.2 mm. The required dimensions may be selected according to the required characteristic impedance and wiring density.

第2貫通導体5は、一方の第2配線導体3aと他方の第2配線導体3bとを電気的に接続する機能を有し、直径が0.05〜0.2mmで第1貫通導体4と同じ寸法とすることで、第
1貫通導体4と同じインピーダンスの値にできるので好ましい。
The second through conductor 5 has a function of electrically connecting one second wiring conductor 3a and the other second wiring conductor 3b, and has the same dimensions as the first through conductor 4 with a diameter of 0.05 to 0.2 mm. This is preferable because the impedance value can be the same as that of the first through conductor 4.

第1貫通導体4および第2貫通導体5は、第2絶縁層1bを貫通して設けられており、一方の第1配線導体2aと他方の第1配線導体2bとが第1貫通導体4を介して電気的に接続され、一方の第2配線導体3aと他方の第2配線導体3bとが第2貫通導体5を介して電気的に接続されている。   The first through conductor 4 and the second through conductor 5 are provided so as to penetrate the second insulating layer 1b, and one first wiring conductor 2a and the other first wiring conductor 2b connect the first through conductor 4 with each other. One second wiring conductor 3 a and the other second wiring conductor 3 b are electrically connected via the second through conductor 5.

接地貫通導体6は、第1貫通導体4と第2貫通導体5との間に設けられることが重要である。このような構成により、第1貫通導体4と第2貫通導体5との間に設けられた接地貫通導体6によって、第1貫通導体4と第2貫通導体5との間に発生する電磁界結合を弱めることができ、その結果、外部からのノイズの影響を低減することができる。   It is important that the grounding through conductor 6 is provided between the first through conductor 4 and the second through conductor 5. With such a configuration, the electromagnetic field coupling generated between the first through conductor 4 and the second through conductor 5 by the ground through conductor 6 provided between the first through conductor 4 and the second through conductor 5. As a result, the influence of external noise can be reduced.

接地貫通導体6は、直径が0.05〜0.2mmで第1貫通導体4および第2貫通導体5と同
じ寸法とすることで、第1貫通導体4および第2貫通導体5と同じインピーダンスの値にできるので好ましく、その形成位置は、電界分布の磁場の流れに沿って接地貫通導体6を設けると効果的に電磁界結合の磁場を断ち切りやすくなり、電磁界結合を弱めることができるので好ましい。
The grounding through conductor 6 has a diameter of 0.05 to 0.2 mm and the same dimensions as the first through conductor 4 and the second through conductor 5, so that the same impedance value as that of the first through conductor 4 and the second through conductor 5 can be obtained. Therefore, it is preferable to provide the ground through conductor 6 along the flow of the magnetic field of the electric field distribution, because it is easy to effectively cut off the magnetic field of the electromagnetic field coupling and weaken the electromagnetic field coupling.

具体的には、接地貫通導体6が設けられる位置は、図1〜図3に示す例のように、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上が最も電磁界結合が強いため、この部分に接地貫通導体6を設けることで効果的に電磁界結合の磁場が断ち切りやすくなり、電磁界結合を弱くすることができる。   Specifically, the position where the grounding through conductor 6 is provided is most on the straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5 as in the example shown in FIGS. Since the electromagnetic field coupling is strong, by providing the grounding through conductor 6 in this portion, the magnetic field of the electromagnetic field coupling can be easily cut off effectively, and the electromagnetic field coupling can be weakened.

接地貫通導体6は、図4に示す例のように、第1貫通導体4の中心と第2貫通導体5の
中心とを結んだ直線上で、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置を中心にして、左右の横方向に並ぶように複数設けることが好ましい。この場合、電磁界結合による電界分布の磁場は、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上で、第1貫通導体4の中心と第2貫通導体5の中心とを2分する位置を中心にして、同心円状に形成されるので、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上の最も強い電磁界結合の磁場に加えて、その周囲に発生している電磁界結合の磁場をも接地貫通導体6でより効果的に断ち切りやすくすることができる。その結果、電磁界結合を弱めて、外部からのノイズの影響を低減し、高周波信号をより効率よく伝送することができるので好ましい。
As shown in the example shown in FIG. 4, the grounding through conductor 6 is formed on a straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5, and the center of the first through conductor 4 and the second through conductor. It is preferable to provide a plurality of 5 so as to be lined up in the horizontal direction on the left and right sides, with the center of 5 being divided into two. In this case, the magnetic field of the electric field distribution by the electromagnetic field coupling is on a straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5, and the center of the first through conductor 4 and the second through conductor 5. Since it is formed in a concentric circle centering on a position that bisects the center, the strongest electromagnetic coupling magnetic field on the straight line connecting the center of the first through conductor 4 and the center of the second through conductor 5 is obtained. In addition, it is possible to more effectively cut off the electromagnetically coupled magnetic field generated around the ground by the grounding through conductor 6. As a result, the electromagnetic field coupling is weakened, the influence of external noise is reduced, and a high-frequency signal can be transmitted more efficiently, which is preferable.

接地貫通導体6は、図5に示す例のように、第1貫通導体4の中心と第2貫通導体5の中心とを結んだ直線上で、第1貫通導体4および第2貫通導体5のそれぞれの外側に設けられていることが好ましい。この場合、第1貫通導体4と第2貫通導体5との間に発生する電磁界結合により生じる電界分布の磁場を効果的に断ち切りやすくして、電磁界結合を弱め、ノイズの影響を低減させるとともに、第1貫通導体4および第2貫通導体5のそれぞれの外側に設けられた接地貫通導体6によっても、第1貫通導体4および第2貫通導体5に外部からノイズが入るのを抑制し、高周波信号をより効率よく伝送することができる。   As shown in the example shown in FIG. 5, the ground penetrating conductor 6 is formed on the straight line connecting the center of the first penetrating conductor 4 and the center of the second penetrating conductor 5. It is preferable to be provided on the outside of each. In this case, the magnetic field of the electric field distribution generated by the electromagnetic coupling generated between the first through conductor 4 and the second through conductor 5 can be effectively cut off easily, weakening the electromagnetic coupling, and reducing the influence of noise. In addition, the ground through conductor 6 provided outside each of the first through conductor 4 and the second through conductor 5 also suppresses noise from entering the first through conductor 4 and the second through conductor 5 from the outside. A high-frequency signal can be transmitted more efficiently.

図6に示す例は、接地貫通導体6が、第1貫通導体4および第2貫通導体5の間に複数設けられるとともに、第1貫通導体4および第2貫通導体5の外側の周囲にも複数設けられている例である。この場合、第1貫通導体4と第2貫通導体5との間に発生する電磁界結合により生じる電界分布の磁場を効果的に断ち切りやすくして、電磁界結合を弱めることができ、その結果、第1貫通導体4および第2貫通導体5への外部からのノイズの影響を低減し、高周波信号をより効率よく伝送することができる。   In the example shown in FIG. 6, a plurality of ground through conductors 6 are provided between the first through conductor 4 and the second through conductor 5, and a plurality of ground through conductors 6 are also provided around the outside of the first through conductor 4 and the second through conductor 5. It is an example provided. In this case, it is possible to effectively cut off the magnetic field of the electric field distribution generated by the electromagnetic field coupling generated between the first through conductor 4 and the second through conductor 5 and weaken the electromagnetic field coupling. The influence of external noise on the first through conductor 4 and the second through conductor 5 can be reduced, and a high-frequency signal can be transmitted more efficiently.

本発明の多層配線基板は、図1〜図3に示す例のように、複数の絶縁層が積層されてなる絶縁基体1の内部に、上記構成の本発明の差動伝送線路を備え、絶縁基体の一方主面および他方主面に接地導体層7が形成されているとともに、該接地導体層7に接地貫通導体6が接続されているものである。   The multilayer wiring board of the present invention includes the differential transmission line of the present invention having the above-described configuration inside an insulating substrate 1 in which a plurality of insulating layers are laminated as in the examples shown in FIGS. A ground conductor layer 7 is formed on one main surface and the other main surface of the base body, and a ground through conductor 6 is connected to the ground conductor layer 7.

図1〜図3に示す例は、3層の絶縁層を積層した例であり、これら3層の絶縁層は、図7に示す例のように、第3絶縁層1c,第2絶縁層1b,第1絶縁層1aが下から順次積層されている。図7に示す例は、本願発明の多層配線基板を上層から下層にかけて順次層毎に示した分解斜視図であり、第1絶縁層1a,第2絶縁層1b,第3絶縁層1cにおける貫通導体の接続は破線で示している。絶縁層の中央部には上述した第1貫通導体4と第2貫通導体5と、さらにこれらの貫通導体の間に接地貫通導体6が設けられている。そして絶縁層の外周部には、第1配線導体2および第2配線導体4に電気的に接続する貫通導体が設けられ、この貫通導体を介して、第1配線導体2および第2配線導体3が端子8に導出されて電気信号が伝送される。   The example shown in FIGS. 1 to 3 is an example in which three insulating layers are laminated, and these three insulating layers are the third insulating layer 1c and the second insulating layer 1b as in the example shown in FIG. The first insulating layer 1a is sequentially stacked from the bottom. The example shown in FIG. 7 is an exploded perspective view showing the multilayer wiring board of the present invention in order from the upper layer to the lower layer, and shows through conductors in the first insulating layer 1a, the second insulating layer 1b, and the third insulating layer 1c. These connections are indicated by broken lines. The first through conductor 4 and the second through conductor 5 described above are provided in the central portion of the insulating layer, and the grounding through conductor 6 is provided between these through conductors. A through conductor that is electrically connected to the first wiring conductor 2 and the second wiring conductor 4 is provided on the outer peripheral portion of the insulating layer, and the first wiring conductor 2 and the second wiring conductor 3 are interposed through the through conductor. Is led to a terminal 8 to transmit an electric signal.

具体的には、第1配線導体2および第2配線導体3の端子8への導出経路は、図2(b)および図3(b)に示す例のように、第2絶縁層1bの上面に形成された一方の第1配線導体2aおよび他方の第2配線導体3bは、第1絶縁層1aを貫通して設けられた貫通導体を介して絶縁基体1の一方主面の端子8に導出される。また第3絶縁層1cの上面に形成された他方の第1配線導体2bおよび一方の第2配線導体3aは、第1絶縁層1aおよび第2絶縁層1bを貫通して設けられた貫通導体を介して絶縁基体1の一方主面の端子8に導出される。   Specifically, the lead-out path to the terminal 8 of the first wiring conductor 2 and the second wiring conductor 3 is the upper surface of the second insulating layer 1b as in the example shown in FIGS. 2 (b) and 3 (b). One of the first wiring conductors 2a and the other second wiring conductor 3b formed in the lead-out are led out to the terminal 8 on one main surface of the insulating base 1 through a through conductor provided through the first insulating layer 1a. Is done. Further, the other first wiring conductor 2b and one second wiring conductor 3a formed on the upper surface of the third insulating layer 1c are through conductors provided through the first insulating layer 1a and the second insulating layer 1b. Through the terminal 8 on one main surface of the insulating substrate 1.

第1配線導体2を流れる信号線の伝搬は、信号線が絶縁基体1の一方主面の端子8から
入り、第1絶縁層1aを貫通して設けられた貫通導体を介して一方の第1配線導体2aに伝搬し、第1貫通導体4を経由して、他方の第1配線導体2bに伝搬し、第1絶縁層1aおよび第2絶縁層1bを貫通して設けられた貫通導体を経由して絶縁基体1の一方主面の端子8へと伝搬するという経路をたどる。
Propagation of the signal line flowing through the first wiring conductor 2 is such that the signal line enters from the terminal 8 on one main surface of the insulating base 1 and passes through the first conductor through the through conductor provided through the first insulating layer 1a. Propagates to the wiring conductor 2a, passes through the first through conductor 4, propagates to the other first wiring conductor 2b, and passes through the through conductor provided through the first insulating layer 1a and the second insulating layer 1b. Then, the path of propagation to the terminal 8 on one main surface of the insulating base 1 is followed.

同様に、第2配線導体3を流れる信号線の伝搬は、信号線が絶縁基体1の一方主面の端子8から入り、第1絶縁層1aおよび第2絶縁層1bを貫通して設けられた貫通導体を介して一方の第2配線導体3aに伝搬し、第2貫通導体5を経由して、他方の第2配線導体3bに伝搬し、第1絶縁層1aを貫通して設けられた貫通導体を経由して絶縁基体1の一方主面の端子8へと伝搬するという経路をたどる。   Similarly, the propagation of the signal line flowing through the second wiring conductor 3 is provided through the first insulating layer 1a and the second insulating layer 1b, with the signal line entering from the terminal 8 on one main surface of the insulating base 1. Propagating to one second wiring conductor 3a through the through conductor, propagating to the other second wiring conductor 3b through the second through conductor 5, and penetrating through the first insulating layer 1a It follows the path of propagation to the terminal 8 on one main surface of the insulating base 1 via the conductor.

このとき、第1配線導体2を流れる信号線の線路長は、第2絶縁層1bの上面に形成された一方の第1配線導体2aの長さと、第3絶縁層1cの上面に形成された他方の第1配線導体2bの長さと、第2絶縁層1bを貫通して設けられ一方の第1配線導体2aと他方の第1配線導体2bとを電気的に接続する第1貫通導体4の長さと、第1絶縁層1aを貫通して設けられた貫通導体の長さと、第1絶縁層1aおよび第2絶縁層1bを貫通して設けられた貫通導体の長さとを足した長さとなる。   At this time, the line length of the signal line flowing through the first wiring conductor 2 is the length of one first wiring conductor 2a formed on the upper surface of the second insulating layer 1b and the upper surface of the third insulating layer 1c. The length of the other first wiring conductor 2b and the first through conductor 4 provided through the second insulating layer 1b and electrically connecting one first wiring conductor 2a and the other first wiring conductor 2b. It is a length obtained by adding the length, the length of the through conductor provided through the first insulating layer 1a, and the length of the through conductor provided through the first insulating layer 1a and the second insulating layer 1b. .

同様に、第2配線導体3を流れる信号線の線路長は、第3絶縁層1cの上面に形成された一方の第2配線導体3aの長さと、第2絶縁層1bの上面に形成された他方の第2配線導体3bの長さと、第2絶縁層1bを貫通して設けられ一方の第2配線導体3aと他方の第2配線導体3bとを電気的に接続する第2貫通導体5の長さと、第1絶縁層1aを貫通して設けられた貫通導体の長さと、第1絶縁層1aおよび第2絶縁層1bを貫通して設けられた貫通導体の長さとを足した長さとなり、上述した第1配線導体2を流れる信号線の線路長と同じ長さとなる。   Similarly, the line length of the signal line flowing through the second wiring conductor 3 is the length of one second wiring conductor 3a formed on the top surface of the third insulating layer 1c and the top length of the second insulating layer 1b. The length of the other second wiring conductor 3b and the second through conductor 5 provided through the second insulating layer 1b and electrically connecting one second wiring conductor 3a and the other second wiring conductor 3b. The length is obtained by adding the length of the through conductor provided through the first insulating layer 1a and the length of the through conductor provided through the first insulating layer 1a and the second insulating layer 1b. The length of the signal line flowing through the first wiring conductor 2 is the same as the length of the signal line.

このように、絶縁層を挟んで上下に対向するように一対の配線導体を配置した差動伝送線路において、一方の第1配線導体2aと他方の第1配線導体2bとが絶縁層を貫通して設けられた第1貫通導体4を介して電気的に接続され、一方の第2配線導体3aと他方の第2配線導体3bとが絶縁層を貫通して設けられた第2貫通導体5を介して電気的に接続されていることから、絶縁層を挟んで上下に形成された第1配線導体2および第2配線導体3が第1貫通導体4および第2貫通導体5を介して上下で入れ替わり、交差するように接続されることとなる。その結果、上述したように端子8間における第1配線導体2と第2配線導体3との線路長がほぼ同じものとなるので、抵抗を同じにすることができる。   In this way, in the differential transmission line in which the pair of wiring conductors are arranged so as to face each other with the insulating layer interposed therebetween, one first wiring conductor 2a and the other first wiring conductor 2b penetrate the insulating layer. The second through conductor 5 is electrically connected through the first through conductor 4 provided so that one second wiring conductor 3a and the other second wiring conductor 3b are provided through the insulating layer. Since the first wiring conductor 2 and the second wiring conductor 3 formed above and below the insulating layer are vertically connected to each other via the first through conductor 4 and the second through conductor 5. It will be replaced and connected so as to intersect. As a result, as described above, the line lengths of the first wiring conductor 2 and the second wiring conductor 3 between the terminals 8 are substantially the same, so that the resistance can be made the same.

このような絶縁基体1および一対の配線導体(第1配線導体2および第2配線導体3)ならびに第1貫通導体4,第2貫通導体5,接地貫通導体6を有する多層配線基板は、以下の方法により作製される。   A multilayer wiring board having such an insulating substrate 1 and a pair of wiring conductors (first wiring conductor 2 and second wiring conductor 3) and first through conductor 4, second through conductor 5, and ground through conductor 6 is as follows. Produced by the method.

例えば、絶縁層が酸化アルミニウム質焼結体で形成される場合には、まず、酸化アルミニウム,酸化珪素,酸化マグネシウムおよび酸化カルシウムの原材料粉末に適当な有機バインダおよび溶媒を添加混合して泥漿状となすとともに、これをドクターブレード法等によってシート状に成形し、絶縁層となる複数のセラミックグリーンシートを作製する。   For example, when the insulating layer is formed of an aluminum oxide sintered body, first, an appropriate organic binder and solvent are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide and calcium oxide to form a slurry. At the same time, this is formed into a sheet shape by a doctor blade method or the like to produce a plurality of ceramic green sheets to be an insulating layer.

次に、セラミックグリーンシートの第1貫通導体4および第2貫通導体5ならびに接地貫通導体6が形成される所定位置に適当な打ち抜き加工により貫通孔を形成するとともに、貫通孔に導体ペーストを充填する。また、スクリーン印刷法等によってセラミックグリーンシートの所定位置に第1配線導体2および第2配線導体3となる導体ペースト層を10μm〜20μmの厚みに形成する。導体ペーストは、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金等の融点の高い金属粉末と適当な樹脂バ
インダおよび溶剤とを混練することにより作製される。
Next, through holes are formed by appropriate punching at predetermined positions where the first through conductor 4 and the second through conductor 5 and the ground through conductor 6 of the ceramic green sheet are formed, and the through hole is filled with a conductive paste. . Also, a conductor paste layer to be the first wiring conductor 2 and the second wiring conductor 3 is formed to a thickness of 10 μm to 20 μm at a predetermined position of the ceramic green sheet by a screen printing method or the like. The conductive paste is produced by kneading a metal powder having a high melting point such as tungsten (W), molybdenum (Mo), molybdenum-manganese (Mo-Mn) alloy, an appropriate resin binder, and a solvent.

最後に、これらセラミックグリーンシートを重ね合わせて加熱圧着して積層体を作製し、この積層体を1500℃〜1600℃程度の高温で焼成することによって絶縁層と配線導体と貫通導体とが焼結一体化された多層配線基板が作製される。   Finally, these ceramic green sheets are stacked and thermocompression bonded to produce a laminate, and the laminate is fired at a high temperature of about 1500 ° C. to 1600 ° C. to sinter the insulating layer, the wiring conductor, and the through conductor. An integrated multilayer wiring board is produced.

接地導体層7は、絶縁基体1の一方主面および他方主面に形成され、接地貫通導体6が接続されている。接地導体層7の厚みは、特に規定は無いが、0.1μm〜20μm程度であ
る。25〜40GHz程度の高い周波数の信号を伝送する場合には、接地導体層7の電気抵抗率が高くなると伝送特性が劣化するおそれがあるので、接地導体層7の電気抵抗率は4mΩ・cm以下であることが好ましい。
The ground conductor layer 7 is formed on one main surface and the other main surface of the insulating base 1, and the ground through conductor 6 is connected thereto. The thickness of the ground conductor layer 7 is not specifically defined, but is about 0.1 μm to 20 μm. When transmitting a signal having a high frequency of about 25 to 40 GHz, if the electrical resistivity of the ground conductor layer 7 is increased, the transmission characteristics may be deteriorated. Therefore, the electrical resistivity of the ground conductor layer 7 is 4 mΩ · cm or less. It is preferable that

接地導体層7の形成方法は、第1絶縁層1aの上面に接地導体層7となる導体ペーストを印刷塗布し、同様に第3絶縁層1cの下面の全面に接地導体層7となる導体ペーストを印刷塗布することで形成される。この接地導体層7となる導体ペーストは、上述した第1配線導体2および第2配線導体3となる導体ペーストと同様の材料および作製方法で製作される。   The ground conductor layer 7 is formed by printing and applying a conductor paste to be the ground conductor layer 7 on the upper surface of the first insulating layer 1a, and similarly to the conductor paste to be the ground conductor layer 7 on the entire lower surface of the third insulating layer 1c. Is formed by printing. The conductor paste to be the ground conductor layer 7 is manufactured by the same material and manufacturing method as the conductor paste to be the first wiring conductor 2 and the second wiring conductor 3 described above.

なお、本発明は、上述した最良の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を行なうことは何ら差し支えない。例えば、本実施形態では、差動伝送線路は絶縁基体1の上面の端子8から絶縁基体1の内部の配線に接続されて形成され、再度上面の端子8に接続されているが、例えば、上面の端子8から内部の配線に接続されて形成され、下面の端子8に接続されても良く、その逆でも良く、側面に端子8を形成しても良い。また、例えば本実施形態の一例では、絶縁基体1をセラミックスからなるものとしたが、絶縁基体1をポリイミド層等の絶縁樹脂層で形成し、配線導体および貫通導体を銅で形成しても良い。このような場合、本発明の多層配線基板が、プローブピンを接触させて半導体素子の電気特性を確認するプローブカード用の多層配線基板に用いられる場合には、この多層配線基板の上面に複数の絶縁樹脂層を積層するので、多層配線基板と絶縁樹脂層とがともに有機樹脂であり、絶縁樹脂層からなる多層配線基板と絶縁樹脂層との界面の接合を良好にすることができる。   The present invention is not limited to the above-described best mode, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the differential transmission line is formed by being connected from the terminal 8 on the upper surface of the insulating base 1 to the wiring inside the insulating base 1, and again connected to the terminal 8 on the upper surface. The terminal 8 may be connected to the internal wiring and may be connected to the terminal 8 on the lower surface, or vice versa, or the terminal 8 may be formed on the side surface. Further, for example, in the example of this embodiment, the insulating substrate 1 is made of ceramics, but the insulating substrate 1 may be formed of an insulating resin layer such as a polyimide layer, and the wiring conductor and the through conductor may be formed of copper. . In such a case, when the multilayer wiring board of the present invention is used for a multilayer wiring board for a probe card for checking the electrical characteristics of a semiconductor element by contacting probe pins, a plurality of wiring boards are formed on the upper surface of the multilayer wiring board. Since the insulating resin layers are laminated, the multilayer wiring board and the insulating resin layer are both organic resins, and the interface at the interface between the multilayer wiring board made of the insulating resin layer and the insulating resin layer can be improved.

1・・・・・・・絶縁基体
1a・・・・・・第1絶縁層
1b・・・・・・第2絶縁層
1c・・・・・・第3絶縁層
2・・・・・・・第1配線導体
2a・・・・・・一方の第1配線導体
2b・・・・・・他方の第1配線導体
3・・・・・・・第2配線導体
3a・・・・・・一方の第2配線導体
3b・・・・・・他方の第2配線導体
4・・・・・・・第1貫通導体
5・・・・・・・第2貫通導体
6・・・・・・・接地貫通導体
7・・・・・・・接地導体層
8・・・・・・・端子
DESCRIPTION OF SYMBOLS 1 ..... Insulation substrate 1a .... 1st insulation layer 1b .... 2nd insulation layer 1c .... 3rd insulation layer 2 .... First wiring conductor 2a... One wiring conductor 2b... First wiring conductor 3... Second wiring conductor 3a. One second wiring conductor 3b... The other second wiring conductor 4.... First through conductor 5.... Second through conductor 6..・ Grounding through conductor 7 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Grounding conductor layer 8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Terminal

Claims (5)

絶縁層を挟んで上下に対向する第1配線導体および第2配線導体を有する一対の配線導体からなる差動伝送線路において、
前記第1配線導体は一方の第1配線導体と他方の第1配線導体とを有し、
前記第2配線導体は一方の第2配線導体と他方の第2配線導体とを有しており、
前記一方の第1配線導体と前記一方の第2配線導体とが前記絶縁層を挟んで上下に対向するとともに、前記他方の第1配線導体と前記他方の第2配線導体とが前記絶縁層を挟んで上下に対向しており、
前記一方の第1配線導体の端部と前記他方の第1配線導体の端部とが前記絶縁層を貫通して設けられた第1貫通導体を介して電気的に接続され、
前記一方の第2配線導体の端部と前記他方の第2配線導体の端部とが前記絶縁層を貫通して設けられた第2貫通導体を介して電気的に接続されており、
前記第1貫通導体と前記第2貫通導体との間に接地貫通導体が設けられていることを特徴とする差動伝送線路。
In a differential transmission line composed of a pair of wiring conductors having a first wiring conductor and a second wiring conductor facing each other up and down across an insulating layer,
The first wiring conductor has one first wiring conductor and the other first wiring conductor;
The second wiring conductor has one second wiring conductor and the other second wiring conductor;
The one first wiring conductor and the one second wiring conductor are vertically opposed to each other with the insulating layer interposed therebetween, and the other first wiring conductor and the other second wiring conductor serve as the insulating layer. It is opposed to the top and bottom,
An end of the one first wiring conductor and an end of the other first wiring conductor are electrically connected via a first through conductor provided through the insulating layer;
An end of the one second wiring conductor and an end of the other second wiring conductor are electrically connected via a second through conductor provided through the insulating layer;
A differential transmission line, wherein a grounding through conductor is provided between the first through conductor and the second through conductor.
前記接地貫通導体は、前記第1貫通導体の中心と前記第2貫通導体の中心とを結んだ直線上で、前記第1貫通導体の中心と前記第2貫通導体の中心とを2分する位置に設けられていることを特徴とする請求項1記載の差動伝送線路。 The grounding through conductor bisects the center of the first through conductor and the center of the second through conductor on a straight line connecting the center of the first through conductor and the center of the second through conductor. The differential transmission line according to claim 1, wherein the differential transmission line is provided. 前記接地貫通導体は、前記第1貫通導体および前記第2貫通導体の内側の前記第1貫通導体の中心と前記第2貫通導体の中心とを結んだ直線と直交する方向に複数設けられていることを特徴とする請求項1または請求項2記載の差動伝送線路。 A plurality of the ground through conductors are provided in a direction orthogonal to a straight line connecting the center of the first through conductor and the center of the second through conductor inside the first through conductor and the second through conductor. The differential transmission line according to claim 1, wherein the differential transmission line is characterized in that: 前記接地貫通導体は、前記第1貫通導体および前記第2貫通導体の外側の周囲に複数設けられていることを特徴とする請求項1乃至請求項3のいずれかに記載の差動伝送線路。 4. The differential transmission line according to claim 1, wherein a plurality of the ground through conductors are provided around the outside of the first through conductor and the second through conductor. 5. 複数の絶縁層が積層されてなる絶縁基体の内部に、請求項1乃至請求項4のいずれかに記載の差動伝送線路を備え、前記絶縁基体の一方主面および他方主面に接地導体層が形成されているとともに、該接地導体層に前記接地貫通導体が接続されていることを特徴とする多層配線基板。 The differential transmission line according to any one of claims 1 to 4 is provided in an insulating base formed by laminating a plurality of insulating layers, and a ground conductor layer is provided on one main surface and the other main surface of the insulating base. And a grounding through conductor is connected to the grounding conductor layer.
JP2011236106A 2011-10-27 2011-10-27 Differential transmission line and multilayer wiring board Pending JP2013093521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236106A JP2013093521A (en) 2011-10-27 2011-10-27 Differential transmission line and multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236106A JP2013093521A (en) 2011-10-27 2011-10-27 Differential transmission line and multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2013093521A true JP2013093521A (en) 2013-05-16

Family

ID=48616414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236106A Pending JP2013093521A (en) 2011-10-27 2011-10-27 Differential transmission line and multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2013093521A (en)

Similar Documents

Publication Publication Date Title
US8344259B2 (en) Connection terminal, package using the same, and electronic apparatus
JP2007288180A (en) Wiring structure, multilayered wiring board, and electronic device
JP2009111658A (en) Multilayer wiring board
JP5323435B2 (en) Multi-layer wiring board for differential transmission
JP2009111132A (en) Multilayer wiring board
JP4927993B2 (en) Composite wiring board
JP2010028800A (en) Structure, connection terminal, package, and electronic device
JP3878795B2 (en) Multilayer wiring board
JP2016115736A (en) Semiconductor element package and semiconductor device
JP2013093521A (en) Differential transmission line and multilayer wiring board
JP4373752B2 (en) Wiring board
JP2017098070A (en) Electronic device
JP4349827B2 (en) Wiring board
JP2004259960A (en) Wiring board
JP4249601B2 (en) Wiring board
JP2016171191A (en) Wiring board
JP2004259959A (en) Wiring board
JP2013115347A (en) Differential transmission line and multilayer wiring board
JP2020017622A (en) Wiring board, package for electronic component, and electronic device
JP2004253746A (en) Wiring board
JP5036591B2 (en) Wiring board
JP2000077808A (en) Wiring board
CN105764252A (en) Wiring board
JP5159229B2 (en) Wiring board manufacturing method
JP2013125840A (en) Wiring board