JP2013093181A - Fuel cell structure - Google Patents

Fuel cell structure Download PDF

Info

Publication number
JP2013093181A
JP2013093181A JP2011233952A JP2011233952A JP2013093181A JP 2013093181 A JP2013093181 A JP 2013093181A JP 2011233952 A JP2011233952 A JP 2011233952A JP 2011233952 A JP2011233952 A JP 2011233952A JP 2013093181 A JP2013093181 A JP 2013093181A
Authority
JP
Japan
Prior art keywords
power generation
generation element
fuel cell
support substrate
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011233952A
Other languages
Japanese (ja)
Other versions
JP5062786B1 (en
Inventor
Kenji Suzuki
憲次 鈴木
Kunihiko Yoshioka
邦彦 吉岡
Naoya Takase
尚哉 高瀬
Makoto Omori
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011233952A priority Critical patent/JP5062786B1/en
Application granted granted Critical
Publication of JP5062786B1 publication Critical patent/JP5062786B1/en
Publication of JP2013093181A publication Critical patent/JP2013093181A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a "horizontal stripe type" fuel cell having excellent reliability, in which increase in electrical resistance of the electrical connection between power generation element parts arranged on both front and rear surfaces of supporting substrates is suppressed.SOLUTION: Flat shaped support substrates 10 having a longitudinal direction include a fuel gas passage 11 therein. A plurality of power generation element parts that are electrically connected in series are arranged on the upper and lower surfaces of the support substrates 10. The support substrates 10 comprise: insulation substrate parts 10a formed by a porous material with electrical insulation properties; and conductive substrate parts 10b connected to the insulation substrate parts 10a, and formed by a material having electrical conductivity. The plurality of power generation element parts are arranged on the front and rear surfaces of the insulation substrate parts 10a. The conductive substrate part 10b electrically connects one of external electrodes among the plurality of power generation element parts arranged on one of the front and rear surfaces of the insulation substrate parts 10a to one of internal electrodes among the plurality of power generation element parts arranged on the other surface of the insulation substrate parts 10a.

Description

本発明は、燃料電池の構造体に関する。   The present invention relates to a fuel cell structure.

従来より、「ガス流路が内部に形成された電気絶縁性を有する多孔質の平板状の支持基板」と、「それぞれが少なくとも内側電極、固体電解質、及び外側電極が積層されてなる複数の発電素子部であって、前記平板状の支持基板の表裏の主面のそれぞれにおける互いに離れた複数の箇所にそれぞれ設けられた複数の発電素子部」と、「前記支持基板の表裏の主面のそれぞれに設けられ、隣り合う前記発電素子部の一方の内側電極と他方の外側電極とを電気的に接続する複数の電気的接続部」とを備えた固体酸化物形燃料電池の構造体が知られている(例えば、特許文献1、2を参照)。このような構成は、「横縞型」とも呼ばれる。   Conventionally, “a porous flat plate-like support substrate having an electrical insulating property in which a gas flow path is formed” and “a plurality of power generations in which at least an inner electrode, a solid electrolyte, and an outer electrode are laminated, respectively. Element portions, a plurality of power generation element portions respectively provided at a plurality of positions separated from each other on each of the front and back main surfaces of the flat support substrate, and each of the main surfaces on the front and back surfaces of the support substrate And a plurality of electrical connection portions that electrically connect one inner electrode and the other outer electrode of the adjacent power generation element portions ”are known. (For example, refer to Patent Documents 1 and 2). Such a configuration is also called a “horizontal stripe type”.

一般に、上述の「横縞型」の燃料電池の構造体では、支持基板の表裏の一方側に設けられた発電素子部と他方側に設けられた発電素子部とが電気的に接続される構成が採用される。この構成を達成するため、上記文献に記載の構造体では、電気絶縁性を有する支持基板の表裏の主面にそれぞれ形成された導電膜が支持基板の側面にも延設されて互いに接続される構成(以下、「従来構成1」と呼ぶ)が採用されている。また、上記文献には、電気絶縁性を有する支持基板の内部において厚さ方向に貫通する円柱状の導電体が形成される構成(以下、「従来構成2」と呼ぶ)も記載されている。   Generally, in the above-mentioned “horizontal stripe type” fuel cell structure, the power generation element portion provided on one side of the front and back of the support substrate is electrically connected to the power generation element portion provided on the other side. Adopted. In order to achieve this configuration, in the structure described in the above document, the conductive films respectively formed on the front and back main surfaces of the support substrate having electrical insulation are also extended to the side surfaces of the support substrate and connected to each other. A configuration (hereinafter referred to as “conventional configuration 1”) is employed. Further, the above document also describes a configuration (hereinafter referred to as “conventional configuration 2”) in which a cylindrical conductor penetrating in the thickness direction is formed inside a support substrate having electrical insulation.

特開2008−59793号公報JP 2008-59793 A 特開2009−176701号公報JP 2009-176701 A

上述のように、支持基板の表裏のそれぞれに設けられた発電素子部同士が電気的に接続される際、電気抵抗の増大が抑制され且つ信頼性の高い電気的接続構造が要求される。   As described above, when the power generating element portions provided on the front and back surfaces of the support substrate are electrically connected to each other, an increase in electrical resistance is suppressed and a highly reliable electrical connection structure is required.

本発明は、「横縞型」の燃料電池の構造体であって、支持基板の表裏のそれぞれに設けられた発電素子部同士の電気的接続について電気抵抗の増大が抑制され且つ信頼性の高いのを提供することを目的とする。   The present invention is a “horizontal stripe type” fuel cell structure, in which an increase in electrical resistance is suppressed and electrical reliability of electrical connection between power generating element portions provided on the front and back sides of a support substrate is high. The purpose is to provide.

本発明に係る燃料電池の構造体は、上述と同様、支持基板の表裏のそれぞれに発電素子部が設けられた「横縞型」の燃料電池の構造体である。本発明に係る燃料電池の構造体の特徴は、以下の点にある。即ち、前記支持基板が、「前記長手方向における第1範囲に存在し且つ内部全域に亘って電気絶縁性を有する多孔質の材料からなる絶縁基板部」と、「前記長手方向における前記第1範囲と接続する第2範囲に存在し且つ内部全域に亘って導電性を有する材料からなる導電基板部」と、を含んで構成される。前記複数の発電素子部は、前記絶縁基板部の表裏の主面のそれぞれに設けられる。そして、前記導電基板部は、前記絶縁基板部の表裏の一方の主面に設けられた前記複数の発電素子部のうちの1つ(第1発電素子部)の前記外側電極又は前記内側電極と、前記絶縁基板部の表裏の他方の主面に設けられた前記複数の発電素子部のうちの1つ(第2発電素子部)の前記外側電極又は前記内側電極と、を電気的に接続するように構成される。ここにおいて、前記導電基板部は、導電性を有する多孔質の材料で構成されても、導電性を有する緻密な材料で構成されてもよい。   The fuel cell structure according to the present invention is a “horizontal stripe type” fuel cell structure in which a power generation element portion is provided on each of the front and back surfaces of a support substrate, as described above. The characteristics of the fuel cell structure according to the present invention are as follows. That is, the support substrate is “an insulating substrate made of a porous material that exists in the first range in the longitudinal direction and has electrical insulation throughout the entire interior” and “the first range in the longitudinal direction”. And a conductive substrate portion made of a material having conductivity over the entire inner area ”. The plurality of power generation element portions are provided on each of the main surfaces of the front and back surfaces of the insulating substrate portion. The conductive substrate portion includes the outer electrode or the inner electrode of one of the plurality of power generation element portions (first power generation element portion) provided on one main surface on the front and back sides of the insulating substrate portion. And electrically connecting the outer electrode or the inner electrode of one of the plurality of power generation element portions (second power generation element portion) provided on the other main surface of the front and back surfaces of the insulating substrate portion. Configured as follows. Here, the conductive substrate portion may be formed of a porous material having conductivity or may be formed of a dense material having conductivity.

これによれば、支持基板の導電基板部の内部全域が、支持基板の表裏に設けられた発電素子部同士を電気的に接続するための「電流の通過領域」として使用され得る。従って、上記文献に記載の構成(前記従来構成1、2)と比べて、前記「電流の通過領域」が安定してより広く確保され得る。この結果、支持基板の表裏に設けられた発電素子部同士の電気的接続について、電気抵抗の増大が抑制され且つ信頼性の高い構成が実現され得る。   According to this, the whole inside area of the conductive substrate portion of the support substrate can be used as a “current passage region” for electrically connecting the power generating element portions provided on the front and back of the support substrate. Therefore, as compared with the configuration described in the above document (the conventional configurations 1 and 2), the “current passing region” can be stably and widely secured. As a result, regarding the electrical connection between the power generating element portions provided on the front and back of the support substrate, an increase in electrical resistance can be suppressed and a highly reliable configuration can be realized.

具体的には、前記第1発電素子部の外側電極と電気的に接続された導電部材と、前記第2発電素子部の内側電極と、が前記導電基板部に接続するように配置されることによって、前記導電基板部が、前記第1発電素子部の外側電極と前記第2発電素子部の内側電極とを電気的に接続するように構成され得る。これによって、支持基板の表裏に設けられた発電素子部同士が電気的に直列に接続される構成が実現される。   Specifically, the conductive member electrically connected to the outer electrode of the first power generation element unit and the inner electrode of the second power generation element unit are arranged to be connected to the conductive substrate unit. Accordingly, the conductive substrate unit may be configured to electrically connect the outer electrode of the first power generation element unit and the inner electrode of the second power generation element unit. Thereby, the structure by which the power generation element parts provided on the front and back of the support substrate are electrically connected in series is realized.

或いは、前記第1発電素子部の外側電極と電気的に接続された第1導電部材と、前記第2発電素子部の外側電極と電気的に接続された第2導電部材と、が前記導電基板部に接続するように配置されることによって、前記導電基板部が、前記第1発電素子部の外側電極と前記第2発電素子部の外側電極とを電気的に接続するように構成され得る。これによって、支持基板の表裏に設けられた発電素子部同士が電気的に並列に接続される構成が実現される。   Alternatively, the first conductive member electrically connected to the outer electrode of the first power generation element portion and the second conductive member electrically connected to the outer electrode of the second power generation element portion are the conductive substrate. The conductive substrate portion may be configured to electrically connect the outer electrode of the first power generation element portion and the outer electrode of the second power generation element portion by being arranged so as to be connected to the portion. Thereby, the structure by which the power generation element parts provided on the front and back of the support substrate are electrically connected in parallel is realized.

本発明に係る燃料電池の構造体を示す斜視図である。1 is a perspective view showing a structure of a fuel cell according to the present invention. 図1に示す燃料電池の構造体の2−2線に対応する断面図である。It is sectional drawing corresponding to the 2-2 line of the structure of the fuel cell shown in FIG. 図1に示す支持基板の凹部に埋設された燃料極及びインターコネクタの状態を示した平面図である。It is the top view which showed the state of the fuel electrode and interconnector which were embed | buried under the recessed part of the support substrate shown in FIG. 支持基板の導電基板部が、支持基板の表裏に設けられた発電素子部同士を電気的に接続する構成を説明するための支持基板の主要断面図である。It is principal sectional drawing of the support substrate for demonstrating the structure which the electrically conductive board | substrate part of a support substrate electrically connects the electric power generation element parts provided in the front and back of the support substrate. 図1に示す燃料電池の構造体の作動状態を説明するための図である。It is a figure for demonstrating the operating state of the structure of the fuel cell shown in FIG. 図1に示す燃料電池の構造体の作動状態における電流の流れを説明するための図4に対応する図である。FIG. 5 is a view corresponding to FIG. 4 for explaining the flow of current in the operating state of the structure of the fuel cell shown in FIG. 1. 図1に示す支持基板を示す斜視図である。It is a perspective view which shows the support substrate shown in FIG. 図1に示す燃料電池の構造体の製造過程における第1段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a first stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第2段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a second stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第3段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a third stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第4段階における図2に対応する断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 2 in a fourth stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第5段階における図2に対応する断面図である。FIG. 6 is a cross-sectional view corresponding to FIG. 2 in a fifth stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第6段階における図2に対応する断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 2 in a sixth stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第7段階における図2に対応する断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 2 in a seventh stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 図1に示す燃料電池の構造体の製造過程における第8段階における図2に対応する断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 2 in an eighth stage in the manufacturing process of the fuel cell structure shown in FIG. 1. 本発明に係る燃料電池の構造体の第1変形例の図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 of the 1st modification of the structure of the fuel cell which concerns on this invention. 本発明に係る燃料電池の構造体の第2変形例の図6に対応する断面図である。It is sectional drawing corresponding to FIG. 6 of the 2nd modification of the structure of the fuel cell concerning this invention. 本発明に係る燃料電池の構造体の第3変形例の図6に対応する断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 6 of a third modification of the fuel cell structure according to the present invention. 本発明に係る燃料電池の構造体の第4変形例の図6に対応する断面図である。FIG. 9 is a cross-sectional view corresponding to FIG. 6 of a fourth modification of the fuel cell structure according to the present invention.

(構成)
図1は、本発明の実施形態に係る固体酸化物形燃料電池(SOFC)の構造体を示す。このSOFCの構造体は、長手方向(x軸方向)を有する平板状の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本例では、4つ)の同形の発電素子部Aが長手方向において所定の間隔をおいて配置された、所謂「横縞型」と呼ばれる構成を有する。
(Constitution)
FIG. 1 shows a structure of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. This SOFC structure is electrically connected in series to the upper and lower surfaces (main surfaces (planes) on both sides parallel to each other) of the flat support substrate 10 having a longitudinal direction (x-axis direction). (In this example, four) power generation element portions A having the same shape are arranged at a predetermined interval in the longitudinal direction and have a so-called “horizontal stripe type” configuration.

このSOFCの構造体の全体を上方からみた形状は、例えば、長手方向の辺の長さが50〜500mmで長手方向に直交する幅方向(y軸方向)の長さが10〜100mmの長方形である。このSOFCの構造体の全体の厚さは、1〜5mmである。以下、図1に加えて、このSOFCの構造体の図1に示す2−2線に対応する部分断面図である図2を参照しながら、このSOFCの構造体の詳細について説明する。図2は、代表的な1組の隣り合う発電素子部A,Aのそれぞれの構成(の一部)、並びに、発電素子部A,A間の構成を示す部分断面図である。その他の組の隣り合う発電素子部A,A間の構成も、図2に示す構成と同様である。   The shape of the entire SOFC structure as viewed from above is, for example, a rectangle having a length of 50 to 500 mm in the longitudinal direction and a length in the width direction (y-axis direction) perpendicular to the longitudinal direction of 10 to 100 mm. is there. The total thickness of the SOFC structure is 1 to 5 mm. Hereinafter, in addition to FIG. 1, the details of the SOFC structure will be described with reference to FIG. 2, which is a partial cross-sectional view of the SOFC structure corresponding to line 2-2 shown in FIG. 1. FIG. 2 is a partial cross-sectional view showing a configuration (part of) each of a typical pair of adjacent power generation element portions A and A and a configuration between the power generation element portions A and A. The configuration between the other power generation element portions A and A in other sets is the same as the configuration shown in FIG.

支持基板10は、平板状の焼成体である。後述する図4に示すように、支持基板10は、電気絶縁性を有する多孔質の材料からなる絶縁基板部10aに加えて、その長手方向の一端部において、導電性を有する材料からなる導電基板部10bをも備える。導電基板部10bについては後述する。また、後述する図7に示すように、支持基板10の内部には、長手方向に延びる複数(本例では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。支持基板10の絶縁基板部10aの上下面のそれぞれの発電素子部Aに対応する位置には、凹部12がそれぞれ形成されている。各凹部12は、支持基板10の絶縁基板部10aの材料からなる底壁と、全周に亘って支持基板10の絶縁基板部10aの材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。   The support substrate 10 is a flat plate-like fired body. As shown in FIG. 4 to be described later, the support substrate 10 includes a conductive substrate made of a conductive material at one end in the longitudinal direction in addition to an insulating substrate portion 10a made of a porous material having electrical insulation. A portion 10b is also provided. The conductive substrate portion 10b will be described later. Further, as shown in FIG. 7 described later, a plurality (six in this example) of fuel gas passages 11 (through holes) extending in the longitudinal direction are provided in the support substrate 10 at a predetermined interval in the width direction. Formed. Concave portions 12 are respectively formed at positions corresponding to the respective power generating element portions A on the upper and lower surfaces of the insulating substrate portion 10a of the support substrate 10. Each recess 12 includes a bottom wall made of a material of the insulating substrate portion 10a of the support substrate 10 and a side wall (2 along the longitudinal direction) closed in the circumferential direction made of the material of the insulating substrate portion 10a of the support substrate 10 over the entire circumference. A rectangular parallelepiped depression defined by two side walls and two side walls extending in the width direction.

支持基板10の絶縁基板部10aの内部全域は、電気絶縁性を有する多孔質の材料で構成される。支持基板10の絶縁基板部10aは、例えば、CSZ(カルシア安定化ジルコニア)から構成され得る。或いは、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。 The entire internal area of the insulating substrate portion 10a of the support substrate 10 is made of a porous material having electrical insulation. The insulating substrate portion 10a of the support substrate 10 can be made of, for example, CSZ (calcia stabilized zirconia). Alternatively, it may be composed of NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia), NiO (nickel oxide) and Y 2 O 3 (yttria), or MgO. (Magnesium oxide) and MgAl 2 O 4 (magnesia alumina spinel) may be used.

支持基板10の絶縁基板部10aは、「遷移金属酸化物又は遷移金属」と、絶縁性セラミックスとを含んで構成され得る。「遷移金属酸化物又は遷移金属」としては、NiO(酸化ニッケル)又はNi(ニッケル)が好適である。遷移金属は、燃料ガスの改質反応を促す触媒(炭化水素系のガスの改質触媒)として機能し得る。   The insulating substrate portion 10a of the support substrate 10 may be configured to include “transition metal oxide or transition metal” and insulating ceramics. As the “transition metal oxide or transition metal”, NiO (nickel oxide) or Ni (nickel) is suitable. The transition metal can function as a catalyst for promoting a reforming reaction of the fuel gas (hydrocarbon-based gas reforming catalyst).

また、絶縁性セラミックスとしては、MgO(酸化マグネシウム)、又は、「MgAl(マグネシアアルミナスピネル)とMgO(酸化マグネシウム)の混合物」が好適である。また、絶縁性セラミックスとして、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、Y(イットリア)が使用されてもよい。 Further, as the insulating ceramic, MgO (magnesium oxide) or “mixture of MgAl 2 O 4 (magnesia alumina spinel) and MgO (magnesium oxide)” is preferable. Further, CSZ (calcia stabilized zirconia), YSZ (8YSZ) (yttria stabilized zirconia), Y 2 O 3 (yttria) may be used as the insulating ceramic.

このように、支持基板10の絶縁基板部10aが「遷移金属酸化物又は遷移金属」を含むことによって、改質前の残存ガス成分を含んだガスが多孔質の支持基板10の絶縁基板部10aの内部の多数の気孔を介して燃料ガス流路11から燃料極に供給される過程において、上記触媒作用によって改質前の残存ガス成分の改質を促すことができる。加えて、支持基板10の絶縁基板部10aが絶縁性セラミックスを含むことによって、支持基板10の絶縁基板部10aの絶縁性を確保することができる。この結果、隣り合う燃料極間における絶縁性が確保され得る。   As described above, since the insulating substrate portion 10a of the support substrate 10 contains “transition metal oxide or transition metal”, the insulating substrate portion 10a of the porous support substrate 10 contains a gas containing the residual gas component before the modification. In the process of being supplied from the fuel gas flow path 11 to the fuel electrode through a large number of pores in the interior, reforming of the residual gas component before reforming can be promoted by the catalytic action. In addition, since the insulating substrate portion 10a of the support substrate 10 includes insulating ceramics, the insulating property of the insulating substrate portion 10a of the support substrate 10 can be ensured. As a result, insulation between adjacent fuel electrodes can be ensured.

支持基板10の厚さは、1〜5mmである。以下、説明の簡便化のため、支持基板10の絶縁基板部10aの上面側の構成についてのみ説明していく。支持基板10の絶縁基板部10aの下面側の構成についても同様である。   The thickness of the support substrate 10 is 1 to 5 mm. Hereinafter, for simplification of description, only the configuration on the upper surface side of the insulating substrate portion 10a of the support substrate 10 will be described. The same applies to the configuration of the lower surface side of the insulating substrate portion 10a of the support substrate 10.

図2及び図3に示すように、支持基板10の絶縁基板部10aの上面(上側の主面)に形成された各凹部12には、燃料極集電部21の全体が埋設(充填)されている。従って、各燃料極集電部21は直方体状を呈している。各燃料極集電部21の上面(外側面)には、凹部21aが形成されている。各凹部21aは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向に沿う2つの側壁は支持基板10の絶縁基板部10aの材料からなり、幅方向に沿う2つの側壁は燃料極集電部21の材料からなる。   As shown in FIGS. 2 and 3, the entire fuel electrode current collector 21 is embedded (filled) in each recess 12 formed on the upper surface (upper main surface) of the insulating substrate portion 10 a of the support substrate 10. ing. Therefore, each fuel electrode current collector 21 has a rectangular parallelepiped shape. A recess 21 a is formed on the upper surface (outer surface) of each fuel electrode current collector 21. Each recess 21a has a rectangular parallelepiped shape defined by a bottom wall made of the material of the fuel electrode current collector 21 and side walls closed in the circumferential direction (two side walls along the longitudinal direction and two side walls along the width direction). It is a depression. Of the side walls closed in the circumferential direction, two side walls along the longitudinal direction are made of the material of the insulating substrate portion 10 a of the support substrate 10, and the two side walls along the width direction are made of the material of the fuel electrode current collector 21.

各凹部21aには、燃料極活性部22の全体が埋設(充填)されている。従って、各燃料極活性部22は直方体状を呈している。燃料極集電部21と燃料極活性部22とにより燃料極20が構成される。燃料極20(燃料極集電部21+燃料極活性部22)は、電子伝導性を有する多孔質の材料からなる焼成体である。各燃料極活性部22の幅方向に沿う2つの側面と底面とは、凹部21a内で燃料極集電部21と接触している。   The entire anode active portion 22 is embedded (filled) in each recess 21a. Accordingly, each fuel electrode active portion 22 has a rectangular parallelepiped shape. A fuel electrode 20 is configured by the fuel electrode current collector 21 and the fuel electrode active unit 22. The fuel electrode 20 (fuel electrode current collector 21 + fuel electrode active part 22) is a fired body made of a porous material having electron conductivity. The two side surfaces and the bottom surface along the width direction of each anode active portion 22 are in contact with the anode current collecting portion 21 in the recess 21a.

各燃料極集電部21の上面(外側面)における凹部21aを除いた部分には、凹部21bが形成されている。各凹部21bは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向に沿う2つの側壁は支持基板10の絶縁基板部10aの材料からなり、幅方向に沿う2つの側壁は燃料極集電部21の材料からなる。   A recess 21b is formed in a portion of the upper surface (outer surface) of each fuel electrode current collector 21 excluding the recess 21a. Each recess 21b has a rectangular parallelepiped shape defined by a bottom wall made of the material of the fuel electrode current collector 21 and side walls closed in the circumferential direction (two side walls along the longitudinal direction and two side walls along the width direction). It is a depression. Of the side walls closed in the circumferential direction, two side walls along the longitudinal direction are made of the material of the insulating substrate portion 10 a of the support substrate 10, and the two side walls along the width direction are made of the material of the fuel electrode current collector 21.

各凹部21bには、インターコネクタ30が埋設(充填)されている。従って、各インターコネクタ30は直方体状を呈している。インターコネクタ30は、電子伝導性を有する緻密な材料からなる焼成体である。各インターコネクタ30の幅方向に沿う2つの側面と底面とは、凹部21b内で燃料極集電部21と接触している。   An interconnector 30 is embedded (filled) in each recess 21b. Accordingly, each interconnector 30 has a rectangular parallelepiped shape. The interconnector 30 is a fired body made of a dense material having electronic conductivity. The two side surfaces and the bottom surface along the width direction of each interconnector 30 are in contact with the fuel electrode current collector 21 in the recess 21b.

燃料極20(燃料極集電部21及び燃料極活性部22)の上面(外側面)と、インターコネクタ30の上面(外側面)と、支持基板10(の絶縁基板部10a)の主面とにより、1つの平面(凹部12が形成されていない場合の支持基板10の主面と同じ平面)が構成されている。即ち、燃料極20の上面とインターコネクタ30の上面と支持基板10(の絶縁基板部10a)の主面との間で、段差が形成されていない。   The upper surface (outer surface) of the fuel electrode 20 (the fuel electrode current collector 21 and the fuel electrode active portion 22), the upper surface (outer surface) of the interconnector 30, and the main surface of the support substrate 10 (the insulating substrate portion 10a) Thus, one plane (the same plane as the main surface of the support substrate 10 when the recess 12 is not formed) is configured. That is, no step is formed between the upper surface of the fuel electrode 20, the upper surface of the interconnector 30, and the main surface of the support substrate 10 (the insulating substrate portion 10a).

燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極活性部22の厚さは、5〜30μmであり、燃料極集電部21の厚さ(即ち、凹部12の深さ)は、50〜500μmである。 The fuel electrode active part 22 may be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Or you may comprise from NiO (nickel oxide) and GDC (gadolinium dope ceria). The fuel electrode current collector 21 can be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Alternatively, it may be composed of NiO (nickel oxide) and Y 2 O 3 (yttria), or may be composed of NiO (nickel oxide) and CSZ (calcia stabilized zirconia). The thickness of the anode active portion 22 is 5 to 30 μm, and the thickness of the anode current collecting portion 21 (that is, the depth of the recess 12) is 50 to 500 μm.

このように、燃料極集電部21は、電子伝導性を有する物質を含んで構成される。燃料極活性部22は、電子伝導性を有する物質と酸化性イオン(酸素イオン)伝導性を有する物質とを含んで構成される。燃料極活性部22における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」は、燃料極集電部21における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」よりも大きい。   As described above, the fuel electrode current collector 21 includes a substance having electronic conductivity. The fuel electrode active part 22 includes a substance having electron conductivity and a substance having oxidative ion (oxygen ion) conductivity. The “volume ratio of the substance having oxygen ion conductivity with respect to the entire volume excluding the pore portion” in the anode active portion 22 is “having oxygen ion conductivity with respect to the entire volume excluding the pore portion” in the anode current collecting portion 21. It is larger than the “volume ratio of the substance”.

インターコネクタ30は、例えば、LaCrO(ランタンクロマイト)から構成され得る。LaCrOは、Caがドープされた(La,Ca)CrO(カルシウムドープランタンクロマイト)であっても、Srがドープされた(La,Sr)CrO(ストロンチウムドープランタンクロマイト)であってもよい。或いは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ30の厚さは、10〜100μmである。 The interconnector 30 can be composed of, for example, LaCrO 3 (lanthanum chromite). LaCrO 3 may be Ca-doped (La, Ca) CrO 3 (calcium doped planan chromite) or Sr-doped (La, Sr) CrO 3 (strontium doped planan chromite). . Alternatively, it may be composed of (Sr, La) TiO 3 (strontium titanate). The thickness of the interconnector 30 is 10 to 100 μm.

燃料極20及びインターコネクタ30がそれぞれの凹部12に埋設された状態の支持基板10(絶縁基板部10a+導電基板部10b)における長手方向に延びる外周面において複数のインターコネクタ30が形成されたそれぞれの部分の長手方向中央部を除いた全面は、固体電解質膜40により覆われている。固体電解質膜40は、イオン伝導性を有し且つ電気絶縁性を有する緻密な材料からなる焼成体である。固体電解質膜40は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、LSGM(ランタンガレート)から構成されてもよい。固体電解質膜40の厚さは、3〜50μmである。なお、固体電解質膜40のうち、発電素子部Aに対応する部分(即ち、燃料極20と後述する空気極60とで挟まれる部分)はイオン伝導性を有しているが、それ以外の部分はイオン伝導性を有していてもいなくてもよい。   Each of the plurality of interconnectors 30 formed on the outer peripheral surface extending in the longitudinal direction of the support substrate 10 (insulating substrate portion 10a + conductive substrate portion 10b) in a state where the fuel electrode 20 and the interconnector 30 are embedded in the respective recesses 12 respectively. The entire surface excluding the central portion in the longitudinal direction of the portion is covered with the solid electrolyte membrane 40. The solid electrolyte membrane 40 is a fired body made of a dense material having ion conductivity and electrical insulation. The solid electrolyte membrane 40 can be made of, for example, YSZ (8YSZ) (yttria stabilized zirconia). Or you may comprise from LSGM (lantern gallate). The thickness of the solid electrolyte membrane 40 is 3 to 50 μm. In the solid electrolyte membrane 40, the portion corresponding to the power generation element portion A (that is, the portion sandwiched between the fuel electrode 20 and the air electrode 60 described later) has ion conductivity, but the other portions. May or may not have ionic conductivity.

即ち、燃料極20がそれぞれの凹部12に埋設された状態の支持基板10(絶縁基板部10a+導電基板部10b)における長手方向に延びる外周面の全面は、インターコネクタ30と固体電解質膜40とからなる緻密層により覆われている。この緻密層は、緻密層の内側の空間を流れる燃料ガスと緻密層の外側の空間を流れる空気との混合を防止するガスシール機能を発揮する。   That is, the entire outer peripheral surface extending in the longitudinal direction of the support substrate 10 (insulating substrate portion 10a + conductive substrate portion 10b) in a state where the fuel electrode 20 is embedded in each recess 12 is formed from the interconnector 30 and the solid electrolyte membrane 40. It is covered with a dense layer. This dense layer exhibits a gas sealing function that prevents mixing of the fuel gas flowing in the space inside the dense layer and the air flowing in the space outside the dense layer.

なお、図2に示すように、本例では、固体電解質膜40が、燃料極20の上面、インターコネクタ30の上面における長手方向の両側端部、及び支持基板10の主面を覆っている。ここで、上述したように、燃料極20の上面とインターコネクタ30の上面と支持基板10(の絶縁基板部10a)の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。   As shown in FIG. 2, in this example, the solid electrolyte membrane 40 covers the upper surface of the fuel electrode 20, both end portions in the longitudinal direction on the upper surface of the interconnector 30, and the main surface of the support substrate 10. Here, as described above, no step is formed between the upper surface of the fuel electrode 20, the upper surface of the interconnector 30, and the main surface of the support substrate 10 (the insulating substrate portion 10a). Therefore, the solid electrolyte membrane 40 is flattened. As a result, compared with the case where a step is formed in the solid electrolyte membrane 40, the generation of cracks in the solid electrolyte membrane 40 due to stress concentration can be suppressed, and the gas sealing function of the solid electrolyte membrane 40 is reduced. Can be suppressed.

固体電解質膜40における各燃料極活性部22と接している箇所の上面には、反応防止膜50を介して空気極60が形成されている。反応防止膜50は、緻密な材料からなる焼成体であり、空気極60は、電子伝導性を有する多孔質の材料からなる焼成体である。反応防止膜50及び空気極60を上方からみた形状は、燃料極活性部22と略同一の長方形である。   An air electrode 60 is formed on the upper surface of a portion in contact with each fuel electrode active part 22 in the solid electrolyte membrane 40 via a reaction preventing film 50. The reaction preventing film 50 is a fired body made of a dense material, and the air electrode 60 is a fired body made of a porous material having electron conductivity. The shape of the reaction preventing film 50 and the air electrode 60 viewed from above is substantially the same rectangle as the fuel electrode active part 22.

反応防止膜50は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜50の厚さは、3〜50μmである。空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極60は、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。空気極60の厚さは、10〜100μmである。 The reaction preventing film 50 can be made of, for example, GDC = (Ce, Gd) O 2 (gadolinium-doped ceria). The thickness of the reaction preventing film 50 is 3 to 50 μm. The air electrode 60 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, from LSF = (La, Sr) FeO 3 (lanthanum strontium ferrite), LNF = La (Ni, Fe) O 3 (lanthanum nickel ferrite), LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite), etc. It may be configured. Further, the air electrode 60 may be configured by two layers of a first layer (inner layer) made of LSCF and a second layer (outer layer) made of LSC. The thickness of the air electrode 60 is 10 to 100 μm.

なお、反応防止膜50が介装されるのは、SOFC作製時又は作動中のSOFC内において固体電解質膜40内のYSZと空気極60内のSrとが反応して固体電解質膜40と空気極60との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するためである。   The reaction preventing film 50 is interposed because the YSZ in the solid electrolyte film 40 and the Sr in the air electrode 60 react with each other in the SOFC during the production or operation of the SOFC, and the solid electrolyte film 40 and the air electrode. This is to suppress the occurrence of a phenomenon in which a reaction layer having a large electric resistance is formed at the interface with the substrate 60.

ここで、燃料極20と、固体電解質膜40と、反応防止膜50と、空気極60とが積層されてなる積層体が、「発電素子部A」に対応する(図2を参照)。即ち、支持基板10の絶縁基板部10aの上面には、複数(本例では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。同様に、支持基板10の絶縁基板部10aの下面にも、複数(本例では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。   Here, the laminated body formed by laminating the fuel electrode 20, the solid electrolyte membrane 40, the reaction preventing membrane 50, and the air electrode 60 corresponds to the “power generation element portion A” (see FIG. 2). That is, a plurality (four in this example) of power generating element portions A are arranged on the upper surface of the insulating substrate portion 10a of the support substrate 10 at a predetermined interval in the longitudinal direction. Similarly, a plurality (four in this example) of power generation element portions A are also arranged on the lower surface of the insulating substrate portion 10a of the support substrate 10 at a predetermined interval in the longitudinal direction.

各組の隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aのインターコネクタ30とを跨ぐように、空気極60、固体電解質膜40、及び、インターコネクタ30の上面に、空気極集電膜70が形成されている。空気極集電膜70は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極集電膜70を上方からみた形状は、長方形である。   For each pair of adjacent power generation element portions A and A, the air electrode 60 of one power generation element portion A (on the left side in FIG. 2) and the interconnector of the other power generation element portion A (on the right side in FIG. 2). The air electrode current collecting film 70 is formed on the upper surfaces of the air electrode 60, the solid electrolyte film 40, and the interconnector 30. The air electrode current collector film 70 is a fired body made of a porous material having electron conductivity. The shape of the air electrode current collector film 70 as viewed from above is a rectangle.

空気極集電膜70は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電膜70の厚さは、50〜500μmである。 The air electrode current collector film 70 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite) may be used. Or you may comprise from Ag (silver) and Ag-Pd (silver palladium alloy). The thickness of the air electrode current collector film 70 is 50 to 500 μm.

このように各空気極集電膜70が形成されることにより、各組の隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aの燃料極20(特に、燃料極集電部21)とが、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」を介して電気的に接続される。この結果、支持基板10の絶縁基板部10aの上面に配置されている複数(本例では、4つ)の発電素子部Aが電気的に直列に接続される。同様に、支持基板10の絶縁基板部10aの下面に配置されている複数(本例では、4つ)の発電素子部Aも電気的に直列に接続される。ここで、支持基板10の絶縁基板部10aの上下面のそれぞれについて、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」が、前記「電気的接続部」に対応する。   By forming each air electrode current collecting film 70 in this way, for each pair of adjacent power generation element portions A and A, the air electrode 60 of one power generation element portion A (on the left side in FIG. 2), The other fuel electrode 20 (particularly, the fuel electrode current collector 21) of the power generating element part A (on the right side in FIG. 2) passes through the “air electrode current collector film 70 and interconnector 30” having electronic conductivity. Are electrically connected. As a result, a plurality (four in this example) of power generating element portions A arranged on the upper surface of the insulating substrate portion 10a of the support substrate 10 are electrically connected in series. Similarly, a plurality (four in this example) of power generation element portions A arranged on the lower surface of the insulating substrate portion 10a of the support substrate 10 are also electrically connected in series. Here, for each of the upper and lower surfaces of the insulating substrate portion 10a of the support substrate 10, the “air electrode current collector film 70 and the interconnector 30” having electronic conductivity correspond to the “electrical connection portion”.

なお、インターコネクタ30は、前記「電気的接続部」における前記「緻密な材料で構成された第1部分」に対応し、気孔率は10%以下である。空気極集電膜70は、前記「電気的接続部」における前記「多孔質の材料で構成された第2部分」に対応し、気孔率は20〜60%である。   The interconnector 30 corresponds to the “first portion made of a dense material” in the “electrical connection portion” and has a porosity of 10% or less. The air electrode current collecting film 70 corresponds to the “second portion made of a porous material” in the “electrical connection portion”, and has a porosity of 20 to 60%.

図4に示すように、支持基板10の絶縁基板部10aの長手方向の一端部(x軸負方向の端部)には、導電基板部10bが接続されている。即ち、支持基板10の長手方向における第1範囲に亘って絶縁基板部10aが存在し、支持基板10の長手方向における前記第1範囲と接続する第2範囲に亘って導電基板部10bが存在する。絶縁基板部10aと導電基板部10bとによって、1つの平板状の支持基板10が構成されている。   As shown in FIG. 4, the conductive substrate portion 10 b is connected to one end portion (end portion in the negative x-axis direction) of the insulating substrate portion 10 a of the support substrate 10 in the longitudinal direction. That is, the insulating substrate portion 10a exists over the first range in the longitudinal direction of the support substrate 10, and the conductive substrate portion 10b exists over the second range connected to the first range in the longitudinal direction of the support substrate 10. . The insulating substrate portion 10a and the conductive substrate portion 10b constitute one flat support substrate 10.

支持基板10の導電基板部10bの内部全域は、導電性を有する多孔質又は緻密質の材料で構成される。支持基板10の導電基板部10bは、多孔質の材料の場合、例えば、燃料極集電部21と同じ材料で構成され得、緻密質の材料の場合、例えば、インターコネクタ30と同じ材料で構成され得る。   The entire inner area of the conductive substrate portion 10b of the support substrate 10 is made of a conductive porous or dense material. The conductive substrate portion 10b of the support substrate 10 can be made of, for example, the same material as the fuel electrode current collector 21 in the case of a porous material, and can be made of, for example, the same material as that of the interconnector 30 in the case of a dense material. Can be done.

図4に示すように、この実施形態では、支持基板10の上面において絶縁基板部10aと導電基板部10bとに跨るように形成された凹部に導電部材80が埋設されている。この導電部材80は、インターコネクタ30及び空気極集電膜70を介して、支持基板10の絶縁基板部10aの上面において最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第1発電素子部)の空気極60と電気的に接続されている。   As shown in FIG. 4, in this embodiment, a conductive member 80 is embedded in a recess formed on the upper surface of the support substrate 10 so as to straddle the insulating substrate portion 10a and the conductive substrate portion 10b. The conductive member 80 is a power generation element disposed on the uppermost end side (x-axis negative direction side) of the upper surface of the insulating substrate portion 10a of the support substrate 10 via the interconnector 30 and the air electrode current collecting film 70. It is electrically connected to the air electrode 60 of the part A (first power generation element part).

他方、支持基板10の下面において絶縁基板部10aと導電基板部10bとに跨るように形成された凹部には、支持基板10の絶縁基板部10aの下面において最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第2発電素子部)の燃料極20(の集電部21)が埋設されている。以上より、支持基板10の導電基板部10bは、「第1発電素子部」の空気極60と「第2発電素子部」の燃料極20とを電気的に接続している。これによって、支持基板10の表裏に設けられた発電素子部同士が電気的に直列に接続されている。   On the other hand, in the recess formed on the lower surface of the support substrate 10 so as to straddle the insulating substrate portion 10a and the conductive substrate portion 10b, one end side in the longitudinal direction on the lower surface of the insulating substrate portion 10a of the support substrate 10 (x-axis negative The fuel electrode 20 (the current collecting part 21) of the power generating element part A (second power generating element part) arranged on the direction side is embedded. As described above, the conductive substrate portion 10b of the support substrate 10 electrically connects the air electrode 60 of the “first power generation element portion” and the fuel electrode 20 of the “second power generation element portion”. Thereby, the power generating element portions provided on the front and back of the support substrate 10 are electrically connected in series.

なお、支持基板10の絶縁基板部10aの材料(即ち、電気絶縁性を有する多孔質の材料)は、気孔率が10〜60%であり、導電率が1×10-3S/cm未満である。支持基板10の導電基板部10bの材料(即ち、導電性を有する材料)は、多孔質の場合、気孔率が10〜60%で、導電率が1×10−3S/cm以上であり、緻密質の場合、気孔率が10%以下で、導電率が1×10−3S/cm以上である。 Note that the material of the insulating substrate portion 10a of the support substrate 10 (that is, a porous material having electrical insulation) has a porosity of 10 to 60% and an electrical conductivity of less than 1 × 10 −3 S / cm. is there. When the material of the conductive substrate portion 10b of the support substrate 10 (that is, a material having conductivity) is porous, the porosity is 10 to 60%, and the conductivity is 1 × 10 −3 S / cm or more, In the case of a dense material, the porosity is 10% or less, and the conductivity is 1 × 10 −3 S / cm or more.

以上、説明した「横縞型」のSOFCの構造体に対して、図5に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面(特に、各空気極集電膜70)を「酸素を含むガス」(空気等)に曝す(或いは、支持基板10の上下面に沿って酸素を含むガスを流す)ことにより、固体電解質膜40の両側面間に生じる酸素分圧差によって起電力が発生する。更に、この構造体を外部の負荷に接続すると、下記(1)、(2)式に示す化学反応が起こり、電流が流れる(発電状態)。
(1/2)・O+2e→O2− (於:空気極60) …(1)
+O2−→HO+2e (於:燃料極20) …(2)
As shown in FIG. 5, the fuel gas (hydrogen gas or the like) flows through the fuel gas flow path 11 of the support substrate 10 as shown in FIG. By exposing the upper and lower surfaces (particularly, each air electrode current collecting film 70) to “gas containing oxygen” (air or the like) (or flowing a gas containing oxygen along the upper and lower surfaces of the support substrate 10), the solid electrolyte An electromotive force is generated by an oxygen partial pressure difference generated between both side surfaces of the film 40. Furthermore, when this structure is connected to an external load, chemical reactions shown in the following formulas (1) and (2) occur, and current flows (power generation state).
(1/2) · O 2 + 2e → O 2− (where: air electrode 60) (1)
H 2 + O 2− → H 2 O + 2e (in the fuel electrode 20) (2)

発電状態においては、支持基板10の上面に設けられた複数の発電素子部Aと、支持基板10の下面に設けられた複数の発電素子部Aとが、電気的に直列に接続されることによって、電流は図6に矢印で示すように流れる。   In the power generation state, the plurality of power generation element portions A provided on the upper surface of the support substrate 10 and the plurality of power generation element portions A provided on the lower surface of the support substrate 10 are electrically connected in series. The current flows as shown by arrows in FIG.

(製造方法)
次に、図1に示した「横縞型」のSOFCの構造体の製造方法の一例について図7〜図15を参照しながら簡単に説明する。図7〜図15において、各部材の符号の末尾の「g」は、その部材が「焼成前」であることを表す。
(Production method)
Next, an example of a manufacturing method of the “horizontal stripe type” SOFC structure shown in FIG. 1 will be briefly described with reference to FIGS. 7 to 15, “g” at the end of the reference numeral of each member represents that the member is “before firing”.

先ず、図7に示す形状を有する支持基板の成形体10gが作製される。支持基板の成形体10gは、絶縁基板部に対応する成形体部10agと、導電基板部に対応する成形体部10bgとからなる。成形体部10agは、例えば、絶縁基板部10aの材料の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製され得る。同様に、成形体部10bgは、例えば、導電基板部10bの材料の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製され得る。このように作製された成形体部10ag、10bgが圧着・接合されることによって、支持基板の成形体10gが作製され得る。以下、図7に示す8−8線に対応する部分断面を表す図8〜図15を参照しながら説明を続ける。   First, a support substrate molded body 10g having the shape shown in FIG. 7 is produced. The support substrate molded body 10g includes a molded body portion 10ag corresponding to the insulating substrate portion and a molded body portion 10bg corresponding to the conductive substrate portion. The molded body portion 10ag can be produced by using a method such as extrusion molding or cutting using a slurry obtained by adding a binder or the like to the powder of the material of the insulating substrate portion 10a. Similarly, the molded body portion 10bg can be manufactured using a technique such as extrusion molding or cutting using a slurry obtained by adding a binder or the like to the powder of the material of the conductive substrate portion 10b. The molded body 10g of the support substrate can be manufactured by pressure bonding and joining the molded body portions 10ag and 10bg thus manufactured. Hereinafter, the description will be continued with reference to FIGS. 8 to 15 showing partial cross sections corresponding to line 8-8 shown in FIG.

図8に示すように、支持基板の成形体10gが作製されると、次に、図9に示すように、支持基板の成形体10g(10ag)の上下面に形成された各凹部に、燃料極集電部の成形体21gがそれぞれ埋設・形成される。次いで、図10に示すように、各燃料極集電部の成形体21gの外側面に形成された各凹部に、燃料極活性部の成形体22gがそれぞれ埋設・形成される。各燃料極集電部の成形体21g、及び各燃料極活性部22gは、例えば、燃料極20の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。   As shown in FIG. 8, when the support substrate molded body 10g is manufactured, next, as shown in FIG. 9, the fuel is formed in the recesses formed on the upper and lower surfaces of the support substrate molded body 10g (10ag). The molded body 21g of the pole current collector is embedded and formed. Next, as shown in FIG. 10, a molded body 22g of the fuel electrode active portion is embedded and formed in each recess formed in the outer surface of the molded body 21g of each fuel electrode current collector. The molded body 21g of each fuel electrode current collector and each of the fuel electrode active parts 22g use, for example, a slurry obtained by adding a binder or the like to the powder of the material of the fuel electrode 20 (for example, Ni and YSZ), It is embedded and formed using printing methods.

続いて、図11に示すように、各燃料極集電部の成形体21gの外側面における「燃料極活性部の成形体22gが埋設された部分を除いた部分」に形成された各凹部に、インターコネクタの成形体30gがそれぞれ埋設・形成される。各インターコネクタの成形体30gは、例えば、インターコネクタ30の材料(例えば、LaCrO)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。 Subsequently, as shown in FIG. 11, in each concave portion formed in “the portion excluding the portion where the molded body 22 g of the fuel electrode active portion is embedded” on the outer surface of the molded body 21 g of each fuel electrode current collector. The interconnector molded bodies 30g are respectively embedded and formed. The molded body 30g of each interconnector is embedded and formed by using a slurry obtained by adding a binder or the like to the material of the interconnector 30 (for example, LaCrO 3 ), using a printing method or the like. .

次に、図12に示すように、複数の燃料極の成形体(21g+22g)及び複数のインターコネクタの成形体30gがそれぞれ埋設・形成された状態の支持基板の成形体10g(10ag)における長手方向に延びる外周面において複数のインターコネクタの成形体30gが形成されたそれぞれの部分の長手方向中央部を除いた全面に、固体電解質膜の成形膜40gが形成される。固体電解質膜の成形膜40gは、例えば、固体電解質膜40の材料(例えば、YSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成される。   Next, as shown in FIG. 12, the longitudinal direction of the support substrate molded body 10g (10ag) in a state in which a plurality of fuel electrode molded bodies (21g + 22g) and a plurality of interconnector molded bodies 30g are embedded and formed, respectively. A solid electrolyte membrane molded film 40g is formed on the entire surface excluding the central part in the longitudinal direction of each of the portions where the plurality of interconnector molded bodies 30g are formed on the outer peripheral surface extending in the direction. The molded membrane 40g of the solid electrolyte membrane is formed using, for example, a printing method, a dipping method, etc., using a slurry obtained by adding a binder or the like to the powder of the material of the solid electrolyte membrane 40 (for example, YSZ). The

次に、図13に示すように、固体電解質膜の成形体40gにおける各燃料極の成形体22gと接している箇所の外側面に、反応防止膜の成形膜50gが形成される。各反応防止膜の成形膜50gは、例えば、反応防止膜50の材料(例えば、GDC)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, as shown in FIG. 13, a reaction preventing film forming film 50 g is formed on the outer surface of the solid electrolyte film forming body 40 g in contact with the fuel electrode forming body 22 g. The molded film 50g of each reaction preventing film is formed using a slurry obtained by adding a binder or the like to the powder of the material (for example, GDC) of the reaction preventing film 50, using a printing method or the like.

そして、このように種々の成形膜が形成された状態の支持基板の成形体10g(10ag+10bg)が、空気中にて1500℃で3時間焼成される。これにより、図1に示したSOFCの構造体において空気極60及び空気極集電膜70が形成されていない状態の構造体が得られる。   Then, 10 g (10ag + 10bg) of the support substrate in a state where various molded films are formed in this way is fired at 1500 ° C. for 3 hours in the air. As a result, a structure in which the air electrode 60 and the air electrode current collector film 70 are not formed in the SOFC structure shown in FIG. 1 is obtained.

次に、図14に示すように、各反応防止膜50の外側面に、空気極の成形膜60gが形成される。各空気極の成形膜60gは、例えば、空気極60の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, as shown in FIG. 14, an air electrode forming film 60 g is formed on the outer surface of each reaction preventing film 50. The molded film 60g of each air electrode is formed using a slurry obtained by adding a binder or the like to the powder of the material of the air electrode 60 (for example, LSCF), using a printing method or the like.

次に、図15に示すように、各組の隣り合う発電素子部について、一方の発電素子部の空気極の成形膜60gと、他方の発電素子部のインターコネクタ30とを跨ぐように、空気極の成形膜60g、固体電解質膜40、及び、インターコネクタ30の外側面に、空気極集電膜の成形膜70gが形成される。各空気極集電膜の成形膜70gは、例えば、空気極集電膜70の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, as shown in FIG. 15, for each pair of adjacent power generation element portions, air is formed so as to straddle the air electrode molding film 60 g of one power generation element portion and the interconnector 30 of the other power generation element portion. On the outer surface of the electrode forming film 60 g, the solid electrolyte film 40, and the interconnector 30, the air electrode current collecting film forming film 70 g is formed. The forming film 70g of each air electrode current collector film is obtained by using a slurry obtained by adding a binder or the like to the powder of the material of the air electrode current collector film 70 (for example, LSCF), using a printing method or the like. It is formed.

そして、このように成形膜60g、70gが形成された状態の支持基板10が、空気中にて1050℃で3時間焼成される。これにより、図1に示したSOFCの構造体が得られる。なお、この時点では、酸素含有雰囲気での焼成により、支持基板10、及び燃料極20中のNi成分が、NiOとなっている。従って、燃料極20の導電性を獲得するため、その後、支持基板10側から還元性の燃料ガスが流され、NiOが800〜1000℃で1〜100時間に亘って還元処理される。なお、この還元処理は発電時に行われてもよい。以上、図1に示したSOFCの構造体の製造方法の一例について説明した。   Then, the support substrate 10 in which the molded films 60g and 70g are thus formed is baked in air at 1050 ° C. for 3 hours. As a result, the SOFC structure shown in FIG. 1 is obtained. At this time, the Ni component in the support substrate 10 and the fuel electrode 20 is NiO by firing in an oxygen-containing atmosphere. Therefore, in order to acquire the conductivity of the fuel electrode 20, thereafter, reducing fuel gas is flowed from the support substrate 10 side, and NiO is reduced at 800 to 1000 ° C. for 1 to 100 hours. This reduction process may be performed during power generation. The example of the method for manufacturing the SOFC structure shown in FIG. 1 has been described above.

(作用・効果)
以上、説明したように、上記本発明に係る「横縞型」のSOFCの構造体の実施形態では、図4及び図6に示すように、支持基板10の導電基板部10bの内部全域が、支持基板10の表裏に設けられた発電素子部A同士を電気的に接続するための「電流の通過領域」として使用される。従って、背景技術の欄で紹介した文献に記載の構成(前記従来構成1、2)と比べて、前記「電流の通過領域」が安定してより広く確保され得る。この結果、支持基板10の表裏に設けられた発電素子部A同士の電気的接続について、電気抵抗の増大が抑制され且つ信頼性の高い構成が実現され得る。
(Action / Effect)
As described above, in the embodiment of the “horizontal stripe type” SOFC structure according to the present invention, as shown in FIGS. 4 and 6, the entire area inside the conductive substrate portion 10 b of the support substrate 10 is supported. It is used as a “current passage region” for electrically connecting the power generating element portions A provided on the front and back of the substrate 10. Therefore, as compared with the configuration described in the literature introduced in the section of the background art (the conventional configurations 1 and 2), the “current passing region” can be stably and widely secured. As a result, regarding the electrical connection between the power generating element portions A provided on the front and back of the support substrate 10, an increase in electrical resistance can be suppressed and a highly reliable configuration can be realized.

また、支持基板10(の絶縁基板部10a)の上下面に形成されている、燃料極20を埋設するための複数の凹部12のそれぞれが、全周に亘って支持基板10(の絶縁基板部10a)の材料からなる周方向に閉じた側壁を有している。換言すれば、支持基板10において各凹部12を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板10が外力を受けた場合に変形し難い。   In addition, each of the plurality of recesses 12 for embedding the fuel electrode 20 formed on the upper and lower surfaces of the support substrate 10 (the insulating substrate portion 10a thereof) extends over the entire circumference of the support substrate 10 (the insulating substrate portion thereof). 10a) having a circumferentially closed side wall made of material. In other words, the support body 10 is formed with a frame surrounding each recess 12. Therefore, this structure is not easily deformed when the support substrate 10 receives an external force.

また、支持基板10(の絶縁基板部10a)の各凹部12内に燃料極20及びインターコネクタ30等の部材が隙間なく充填・埋設された状態で、支持基板10(の絶縁基板部10a)と前記埋設された部材とが共焼結される。従って、部材間の接合性が高く且つ信頼性の高い焼結体が得られる。   Further, the support substrate 10 (the insulating substrate portion 10a) and the support substrate 10 (the insulating substrate portion 10a) are filled and buried in the respective recesses 12 of the support substrate 10 (the insulating substrate portion 10a) without gaps. The embedded member is co-sintered. Therefore, a sintered body having high bondability between members and high reliability can be obtained.

また、インターコネクタ30が、燃料極集電部21の外側面に形成された凹部21bに埋設され、この結果、直方体状のインターコネクタ30の幅方向(y軸方向)に沿う2つの側面と底面とが凹部21b内で燃料極集電部21と接触している。従って、燃料極集電部21の外側平面上に直方体状のインターコネクタ30が積層される(接触する)構成が採用される場合に比べて、燃料極20(集電部21)とインターコネクタ30との界面の面積を大きくできる。従って、燃料極20とインターコネクタ30との間における電子伝導性を高めることができ、この結果、燃料電池の発電出力を高めることができる。   The interconnector 30 is embedded in a recess 21b formed on the outer surface of the fuel electrode current collector 21, and as a result, two side surfaces and a bottom surface along the width direction (y-axis direction) of the rectangular interconnector 30 Are in contact with the anode current collector 21 in the recess 21b. Therefore, the fuel electrode 20 (the current collector 21) and the interconnector 30 are compared to the case where a configuration in which the rectangular parallelepiped interconnector 30 is laminated (contacted) on the outer plane of the fuel electrode current collector 21 is employed. The area of the interface with can be increased. Therefore, the electronic conductivity between the fuel electrode 20 and the interconnector 30 can be increased, and as a result, the power generation output of the fuel cell can be increased.

また、上記実施形態では、平板状の支持基板10(の絶縁基板部10a)の上下面のそれぞれに、複数の発電素子部Aが設けられている。これにより、支持基板の片側面のみに複数の発電素子部が設けられる場合に比して、構造体中における発電素子部の数を多くでき、燃料電池の発電出力を高めることができる。   Moreover, in the said embodiment, the several electric power generation element part A is provided in each of the upper and lower surfaces of the flat support substrate 10 (the insulating substrate part 10a). Thereby, compared with the case where a plurality of power generation element portions are provided only on one side surface of the support substrate, the number of power generation element portions in the structure can be increased, and the power generation output of the fuel cell can be increased.

また、上記実施形態では、固体電解質膜40が、燃料極20の外側面、インターコネクタ30の外側面における長手方向の両側端部、及び支持基板10の主面を覆っている。ここで、燃料極20の外側面とインターコネクタ30の外側面と支持基板10の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。   In the above embodiment, the solid electrolyte membrane 40 covers the outer surface of the fuel electrode 20, both end portions in the longitudinal direction of the outer surface of the interconnector 30, and the main surface of the support substrate 10. Here, no step is formed between the outer surface of the fuel electrode 20, the outer surface of the interconnector 30, and the main surface of the support substrate 10. Therefore, the solid electrolyte membrane 40 is flattened. As a result, compared with the case where a step is formed in the solid electrolyte membrane 40, the generation of cracks in the solid electrolyte membrane 40 due to stress concentration can be suppressed, and the gas sealing function of the solid electrolyte membrane 40 is reduced. Can be suppressed.

なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図6等に示すように、支持基板10(の絶縁基板部10a)に形成された凹部12の平面形状(支持基板10の主面に垂直の方向からみた場合の形状)が、長方形になっているが、例えば、正方形、円形、楕円形、長穴形状等であってもよい。   In addition, this invention is not limited to the said embodiment, A various modification can be employ | adopted within the scope of the present invention. For example, in the above embodiment, as shown in FIG. 6 and the like, the planar shape of the recess 12 formed in the support substrate 10 (the insulating substrate portion 10a thereof) (the shape when viewed from the direction perpendicular to the main surface of the support substrate 10). ) Is a rectangle, but may be, for example, a square, a circle, an ellipse, or a long hole.

また、上記実施形態においては、各凹部12にはインターコネクタ30の全体が埋設されているが、インターコネクタ30の一部のみが各凹部12に埋設され、インターコネクタ30の残りの部分が凹部12の外に突出(即ち、支持基板10の主面から突出)していてもよい。   In the above embodiment, the entire interconnector 30 is embedded in each recess 12, but only a part of the interconnector 30 is embedded in each recess 12, and the remaining portion of the interconnector 30 is recessed 12. May protrude outside (that is, protrude from the main surface of the support substrate 10).

また、上記実施形態においては、燃料極20が燃料極集電部21と燃料極活性部22との2層で構成されているが、燃料極20が燃料極活性部22に相当する1層で構成されてもよい。加えて、上記実施形態においては、「内側電極」及び「外側電極」がそれぞれ燃料極及び空気極となっているが、逆であってもよい。   Further, in the above embodiment, the fuel electrode 20 is composed of two layers of the fuel electrode current collector 21 and the fuel electrode active portion 22, but the fuel electrode 20 is a single layer corresponding to the fuel electrode active portion 22. It may be configured. In addition, in the above embodiment, the “inner electrode” and the “outer electrode” are the fuel electrode and the air electrode, respectively, but they may be reversed.

加えて、上記実施形態においては、図3に示すように、燃料極集電部21の外側面に形成された凹部21bが、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(支持基板10の絶縁基板部10aの材料からなる長手方向に沿う2つの側壁と、燃料極集電部21の材料からなる幅方向に沿う2つの側壁)と、で画定された直方体状の窪みとなっている。この結果、凹部21bに埋設されたインターコネクタ30の幅方向に沿う2つの側面と底面とが凹部21b内で燃料極集電部21と接触している。   In addition, in the above embodiment, as shown in FIG. 3, the recess 21 b formed on the outer surface of the anode current collector 21 has a bottom wall made of the material of the anode current collector 21 and the circumferential direction. A rectangular parallelepiped defined by closed side walls (two side walls along the longitudinal direction made of the material of the insulating substrate portion 10a of the support substrate 10 and two side walls along the width direction made of the material of the fuel electrode current collector 21). It is a hollow. As a result, the two side surfaces and the bottom surface along the width direction of the interconnector 30 embedded in the recess 21b are in contact with the fuel electrode current collector 21 in the recess 21b.

これに対し、図16に示すように、燃料極集電部21の外側面に形成された凹部21bが、燃料極集電部21の材料からなる底壁と、全周に亘って燃料極集電部21の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と、幅方向に沿う2つの側壁)と、で画定された直方体状の窪みであってもよい。これによれば、凹部21bに埋設されたインターコネクタ30の4つの側面の全てと底面とが凹部21b内で燃料極集電部21と接触する。従って、燃料極集電部21とインターコネクタ30との界面の面積をより一層大きくできる。従って、燃料極集電部21とインターコネクタ30との間における電子伝導性をより一層高めることができ、この結果、燃料電池の発電出力をより一層高めることができる。   On the other hand, as shown in FIG. 16, the recess 21b formed on the outer surface of the fuel electrode current collector 21 has a bottom wall made of the material of the fuel electrode current collector 21 and the fuel electrode current collector over the entire circumference. It may be a rectangular parallelepiped recess defined by circumferentially closed side walls (two side walls along the longitudinal direction and two side walls along the width direction) made of the material of the electric part 21. According to this, all four side surfaces and the bottom surface of the interconnector 30 embedded in the recess 21b are in contact with the fuel electrode current collector 21 in the recess 21b. Therefore, the area of the interface between the fuel electrode current collector 21 and the interconnector 30 can be further increased. Therefore, the electronic conductivity between the fuel electrode current collector 21 and the interconnector 30 can be further increased, and as a result, the power generation output of the fuel cell can be further increased.

また、上記実施形態では、図4及び図6に示すように、支持基板10の絶縁基板部10aの長手方向の一端部(x軸負方向の端部)に導電基板部10bが接続されて、その導電基板部10bが支持基板10全体の長手方向の一端部(x軸負方向の端部)を構成しているが、図17に示すように、前記導電基板部10bの長手方向の一端部(x軸負方向の端部)に更に絶縁基板部10aが追加されて、その追加された絶縁基板部10aが支持基板10全体の長手方向の一端部(x軸負方向の端部)を構成してもよい。この場合、支持基板10の長手方向の両端部に絶縁基板部10aがそれぞれ配置され、それらの間に導電基板部10bが挟まれるように配置される。これによって、支持基板10の長手方向の端部から導入される空気の拡散等に起因する導電基板部10bの再酸化の発生が抑制され得る。   Moreover, in the said embodiment, as shown in FIG.4 and FIG.6, the electrically conductive board | substrate part 10b is connected to the one end part (end part of a negative x-axis direction) of the insulating substrate part 10a of the support substrate 10, The conductive substrate portion 10b constitutes one end portion in the longitudinal direction of the entire support substrate 10 (end portion in the negative x-axis direction). As shown in FIG. 17, one end portion in the longitudinal direction of the conductive substrate portion 10b. An insulating substrate portion 10a is further added to (the end portion in the negative x-axis direction), and the added insulating substrate portion 10a constitutes one end portion in the longitudinal direction of the entire support substrate 10 (an end portion in the negative x-axis direction). May be. In this case, the insulating substrate portions 10a are respectively disposed at both ends of the support substrate 10 in the longitudinal direction, and the conductive substrate portions 10b are interposed therebetween. As a result, the occurrence of reoxidation of the conductive substrate portion 10b due to diffusion of air introduced from the end portion in the longitudinal direction of the support substrate 10 can be suppressed.

また、上記実施形態では、支持基板10の表裏に設けられた発電素子部同士が電気的に直列に接続されているが、図18及び図19に示すように、支持基板10の表裏に設けられた発電素子部同士が電気的に並列に接続されていてもよい。図18に示す例では、支持基板10の上下面のそれぞれにおいて、絶縁基板部10aと導電基板部10bとに跨るように形成された凹部に導電部材80が埋設されている。支持基板10の上面において、導電部材80は、インターコネクタ30及び空気極集電膜70を介して、支持基板10の絶縁基板部10aにおいて最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第1発電素子部)の空気極60と電気的に接続され、支持基板10の下面において、導電部材80は、インターコネクタ30及び空気極集電膜70を介して、支持基板10の絶縁基板部10aにおいて最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第2発電素子部)の空気極60と電気的に接続されている。   Moreover, in the said embodiment, although the electric power generation element parts provided in the front and back of the support substrate 10 are electrically connected in series, as shown in FIG.18 and FIG.19, it is provided in the front and back of the support substrate 10. FIG. The power generating element portions may be electrically connected in parallel. In the example shown in FIG. 18, the conductive member 80 is embedded in a recess formed so as to straddle the insulating substrate portion 10 a and the conductive substrate portion 10 b on each of the upper and lower surfaces of the support substrate 10. On the upper surface of the support substrate 10, the conductive member 80 is disposed on one end side (x-axis negative direction side) in the most longitudinal direction in the insulating substrate portion 10 a of the support substrate 10 via the interconnector 30 and the air electrode current collector film 70. The electrically-conductive member 80 is electrically connected to the air electrode 60 of the generated power-generating element part A (first power-generating element part), and on the lower surface of the support substrate 10, via the interconnector 30 and the air-electrode current collecting film 70. The insulating substrate portion 10a of the support substrate 10 is electrically connected to the air electrode 60 of the power generating element portion A (second power generating element portion) disposed on the most longitudinal end side (x-axis negative direction side).

この結果、支持基板10の導電基板部10bは、「第1発電素子部」の空気極60と「第2発電素子部」の空気極60とを電気的に接続している。これによって、支持基板10の表裏に設けられた発電素子部同士が電気的に並列に接続される。このように、支持基板10の表裏に設けられた発電素子部同士が電気的に並列に接続されることによって、電流は図18に矢印で示すように流れる。   As a result, the conductive substrate portion 10b of the support substrate 10 electrically connects the air electrode 60 of the “first power generation element portion” and the air electrode 60 of the “second power generation element portion”. As a result, the power generating element portions provided on the front and back surfaces of the support substrate 10 are electrically connected in parallel. As described above, when the power generating element portions provided on the front and back surfaces of the support substrate 10 are electrically connected in parallel, a current flows as indicated by an arrow in FIG.

図19に示す例では、支持基板10の上面において、絶縁基板部10aと導電基板部10bとに跨るように形成された凹部に、支持基板10の絶縁基板部10aの上面において最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第1発電素子部)の燃料極20(の集電部21)が埋設されている。同様に、支持基板10の下面においても、絶縁基板部10aと導電基板部10bとに跨るように形成された凹部に、支持基板10の絶縁基板部10aの下面において最も長手方向の一端側(x軸負方向側)に配置された発電素子部A(第2発電素子部)の燃料極20(の集電部21)が埋設されている。以上より、支持基板10の導電基板部10bは、「第1発電素子部」の燃料極20と「第2発電素子部」の燃料極20とを電気的に接続している。これによって、支持基板10の表裏に設けられた発電素子部同士が電気的に並列に接続される。このように、支持基板10の表裏に設けられた発電素子部同士が電気的に並列に接続されることによって、電流は図19に矢印で示すように流れる。   In the example shown in FIG. 19, one end in the longitudinal direction on the upper surface of the insulating substrate portion 10 a of the supporting substrate 10 is formed in the concave portion formed so as to straddle the insulating substrate portion 10 a and the conductive substrate portion 10 b on the upper surface of the supporting substrate 10. The fuel electrode 20 (the current collecting part 21) of the power generating element part A (first power generating element part) arranged on the side (x-axis negative direction side) is embedded. Similarly, also on the lower surface of the support substrate 10, one end side in the longitudinal direction (x) on the lower surface of the insulating substrate portion 10 a of the support substrate 10 is formed in a recess formed so as to straddle the insulating substrate portion 10 a and the conductive substrate portion 10 b. The fuel electrode 20 (the current collecting part 21) of the power generating element part A (second power generating element part) arranged on the negative side of the shaft is embedded. As described above, the conductive substrate portion 10b of the support substrate 10 electrically connects the fuel electrode 20 of the “first power generation element portion” and the fuel electrode 20 of the “second power generation element portion”. As a result, the power generating element portions provided on the front and back surfaces of the support substrate 10 are electrically connected in parallel. As described above, when the power generating element portions provided on the front and back surfaces of the support substrate 10 are electrically connected in parallel, a current flows as indicated by an arrow in FIG.

10…支持基板、10a…絶縁基板部、10b…導電基板部、11…燃料ガス流路、12…凹部、20…燃料極、21…燃料極集電部、21a、21b…凹部、22…燃料極活性部、30…インターコネクタ、40…固体電解質膜、50…反応防止膜、60…空気極、70…空気極集電膜、80…導電部材、A…発電素子部   DESCRIPTION OF SYMBOLS 10 ... Support substrate, 10a ... Insulating substrate part, 10b ... Conductive substrate part, 11 ... Fuel gas flow path, 12 ... Recessed part, 20 ... Fuel electrode, 21 ... Fuel electrode current collecting part, 21a, 21b ... Recessed part, 22 ... Fuel Polar active part, 30 ... interconnector, 40 ... solid electrolyte membrane, 50 ... reaction prevention film, 60 ... air electrode, 70 ... air electrode current collector film, 80 ... conductive member, A ... power generation element part

Claims (6)

ガス流路が内部に形成された長手方向を有する平板状の支持基板と、
それぞれが少なくとも内側電極、固体電解質、及び外側電極が積層されてなる複数の発電素子部であって、前記平板状の支持基板の表裏の主面のそれぞれにおける互いに離れた複数の箇所にそれぞれ設けられた複数の発電素子部と、
前記支持基板の表裏の主面のそれぞれに設けられ、隣り合う前記発電素子部の一方の内側電極と他方の外側電極とを電気的に接続する複数の電気的接続部と、
を備えた燃料電池の構造体であって、
前記支持基板は、
前記長手方向における第1範囲に存在し且つ内部全域に亘って電気絶縁性を有する多孔質の材料からなる絶縁基板部と、前記長手方向における前記第1範囲と接続する第2範囲に存在し且つ内部全域に亘って導電性を有する材料からなる導電基板部と、を含んで構成され、
前記複数の発電素子部は、前記絶縁基板部の表裏の主面のそれぞれに設けられ、
前記導電基板部は、
前記絶縁基板部の表裏の一方の主面に設けられた前記複数の発電素子部のうちの1つである第1発電素子部の前記外側電極又は前記内側電極と、前記絶縁基板部の表裏の他方の主面に設けられた前記複数の発電素子部のうちの1つである第2発電素子部の前記外側電極又は前記内側電極と、を電気的に接続するように構成された、燃料電池の構造体。
A flat support substrate having a longitudinal direction in which a gas flow path is formed;
Each is a plurality of power generating element portions each formed by laminating at least an inner electrode, a solid electrolyte, and an outer electrode, and provided at a plurality of locations separated from each other on each of the front and back main surfaces of the flat support substrate. A plurality of generator elements,
A plurality of electrical connection portions that are provided on each of the front and back main surfaces of the support substrate and electrically connect one inner electrode and the other outer electrode of the adjacent power generation element portions;
A fuel cell structure comprising:
The support substrate is
An insulating substrate made of a porous material present in the first range in the longitudinal direction and having electrical insulation throughout the entire region; and in a second range connected to the first range in the longitudinal direction; And a conductive substrate portion made of a material having conductivity over the entire inner area,
The plurality of power generation element portions are provided on the main surfaces of the front and back surfaces of the insulating substrate portion,
The conductive substrate portion is
The outer electrode or the inner electrode of the first power generation element portion which is one of the plurality of power generation element portions provided on one main surface of the front and back surfaces of the insulating substrate portion, and the front and back surfaces of the insulating substrate portion A fuel cell configured to electrically connect the outer electrode or the inner electrode of a second power generation element portion that is one of the plurality of power generation element portions provided on the other main surface. Structure.
請求項1に記載の燃料電池の構造体において、
前記第1発電素子部の外側電極と電気的に接続された導電部材と、前記第2発電素子部の内側電極と、が前記導電基板部に接続するように配置されることによって、前記導電基板部が、前記第1発電素子部の外側電極と前記第2発電素子部の内側電極とを電気的に接続するように構成された、燃料電池の構造体。
The fuel cell structure according to claim 1,
A conductive member electrically connected to the outer electrode of the first power generation element portion and an inner electrode of the second power generation element portion are arranged to be connected to the conductive substrate portion, whereby the conductive substrate The fuel cell structure is configured to electrically connect the outer electrode of the first power generation element section and the inner electrode of the second power generation element section.
請求項1に記載の燃料電池の構造体において、
前記第1発電素子部の外側電極と電気的に接続された第1導電部材と、前記第2発電素子部の外側電極と電気的に接続された第2導電部材と、が前記導電基板部に接続するように配置されることによって、前記導電基板部が、前記第1発電素子部の外側電極と前記第2発電素子部の外側電極とを電気的に接続するように構成された、燃料電池の構造体。
The fuel cell structure according to claim 1,
A first conductive member electrically connected to the outer electrode of the first power generation element portion and a second conductive member electrically connected to the outer electrode of the second power generation element portion are formed on the conductive substrate portion. A fuel cell configured to electrically connect the outer electrode of the first power generation element unit and the outer electrode of the second power generation element unit by being arranged to be connected. Structure.
請求項1乃至請求項3の何れか一項に記載の燃料電池の構造体において、
前記第1発電素子部は、前記絶縁基板部の表裏の一方の主面に設けられた前記複数の発電素子部のうち前記長手方向の一方側の端に位置する発電素子部であり、
前記第2発電素子部は、前記絶縁基板部の表裏の他方の主面に設けられた前記複数の発電素子部のうち前記長手方向の一方側の端に位置する発電素子部である、燃料電池の構造体。
In the structure of the fuel cell according to any one of claims 1 to 3,
The first power generation element part is a power generation element part located at one end in the longitudinal direction among the plurality of power generation element parts provided on one main surface of the front and back of the insulating substrate part,
The fuel cell, wherein the second power generation element portion is a power generation element portion located at one end in the longitudinal direction among the plurality of power generation element portions provided on the other main surface of the front and back surfaces of the insulating substrate portion. Structure.
請求項1乃至請求項4の何れか一項に記載の燃料電池の構造体において、
前記絶縁基板部の表裏の主面のそれぞれにおける前記複数の箇所に、前記絶縁基板部の材料からなる底壁と全周に亘って前記絶縁基板部の材料からなる周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、
前記各第1凹部に、対応する前記発電素子部の内側電極がそれぞれ埋設された、燃料電池の構造体。
In the structure of the fuel cell according to any one of claims 1 to 4,
At the plurality of locations on the front and back main surfaces of the insulating substrate portion, a bottom wall made of the material of the insulating substrate portion and a side wall closed in the circumferential direction made of the material of the insulating substrate portion over the entire circumference. Each having a first recess,
A fuel cell structure in which the corresponding inner electrode of the power generation element portion is embedded in each first recess.
請求項5に記載の燃料電池の構造体において、
前記各電気的接続部は、緻密な材料で構成された第1部分と、前記第1部分と接続され且つ多孔質の材料で構成された第2部分とで構成され、
前記埋設された各内側電極の外側面に、前記内側電極の材料からなる底壁と全周に亘って前記内側電極の材料からなる周方向に閉じた側壁とを有する第2凹部がそれぞれ形成され、
前記各第2凹部に、対応する前記電気的接続部の前記第1部分がそれぞれ埋設された、燃料電池の構造体。
The fuel cell structure according to claim 5, wherein
Each of the electrical connection portions includes a first portion made of a dense material, and a second portion made of a porous material connected to the first portion,
Second recesses having a bottom wall made of the material of the inner electrode and a circumferentially closed side wall made of the material of the inner electrode are formed on the outer surface of each embedded inner electrode. ,
The structure of a fuel cell, wherein the first portion of the corresponding electrical connection portion is embedded in each second recess.
JP2011233952A 2011-10-25 2011-10-25 Fuel cell structure Expired - Fee Related JP5062786B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233952A JP5062786B1 (en) 2011-10-25 2011-10-25 Fuel cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233952A JP5062786B1 (en) 2011-10-25 2011-10-25 Fuel cell structure

Publications (2)

Publication Number Publication Date
JP5062786B1 JP5062786B1 (en) 2012-10-31
JP2013093181A true JP2013093181A (en) 2013-05-16

Family

ID=47189610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233952A Expired - Fee Related JP5062786B1 (en) 2011-10-25 2011-10-25 Fuel cell structure

Country Status (1)

Country Link
JP (1) JP5062786B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162630A (en) * 2015-03-03 2016-09-05 日本碍子株式会社 Fuel battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356014A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell generator
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010205619A (en) * 2009-03-04 2010-09-16 Kyocera Corp Cell stack of horizontal solid oxide fuel cell, and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356014A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell generator
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010205619A (en) * 2009-03-04 2010-09-16 Kyocera Corp Cell stack of horizontal solid oxide fuel cell, and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162630A (en) * 2015-03-03 2016-09-05 日本碍子株式会社 Fuel battery

Also Published As

Publication number Publication date
JP5062786B1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4828664B1 (en) Fuel cell structure
JP5116184B1 (en) Fuel cell structure
JP6169930B2 (en) Solid oxide fuel cell
WO2012008385A1 (en) Fuel cell structural body
JP4883733B1 (en) Fuel cell structure
JP4824137B1 (en) Fuel cell structure
JP5443648B1 (en) Fuel cell structure
JP6158659B2 (en) Solid oxide fuel cell
JP6039459B2 (en) Solid oxide fuel cell
JP5116182B1 (en) Fuel cell structure
JP4846061B1 (en) Fuel cell structure
JP4902013B1 (en) Fuel cell
JP5075268B1 (en) Fuel cell structure
JP6169932B2 (en) Solid oxide fuel cell
JP5050124B1 (en) Fuel cell structure
JP5062786B1 (en) Fuel cell structure
JP5122676B1 (en) Fuel cell structure
JP5417548B2 (en) Fuel cell structure
JP6039461B2 (en) Solid oxide fuel cell
JP6039463B2 (en) Solid oxide fuel cell
JP2015064930A (en) Fuel cell

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Ref document number: 5062786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees