JP2013093140A - 電池電極用スラリーの製造方法 - Google Patents

電池電極用スラリーの製造方法 Download PDF

Info

Publication number
JP2013093140A
JP2013093140A JP2011233192A JP2011233192A JP2013093140A JP 2013093140 A JP2013093140 A JP 2013093140A JP 2011233192 A JP2011233192 A JP 2011233192A JP 2011233192 A JP2011233192 A JP 2011233192A JP 2013093140 A JP2013093140 A JP 2013093140A
Authority
JP
Japan
Prior art keywords
slurry
blade
battery
stirring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011233192A
Other languages
English (en)
Other versions
JP5770064B2 (ja
Inventor
Akira Iwata
章 岩田
Yoshiyuki Sakamaki
良行 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKIRA KIKO KK
Original Assignee
AKIRA KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKIRA KIKO KK filed Critical AKIRA KIKO KK
Priority to JP2011233192A priority Critical patent/JP5770064B2/ja
Priority to KR1020120084268A priority patent/KR20130045162A/ko
Publication of JP2013093140A publication Critical patent/JP2013093140A/ja
Application granted granted Critical
Publication of JP5770064B2 publication Critical patent/JP5770064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 塗布性、分散性が良く、電池電極用に適したスラリーを短時間で製造することができる電池電極用スラリーの製造方法を提供する。
【解決手段】 攪拌装置1の攪拌槽2内に少なくとも電極活物質とバインダー等の各種構成物質を投入して電池電極用スラリーを製造する電池電極用スラリーの製造方法であって、攪拌装置1は、攪拌槽2の最も底壁4側で回転する羽根であり、攪拌槽2の投入物を内周壁8側に押し出す作用をする底壁側羽根9と、底壁側羽根9よりも上方に設けられ、上下方向に形成された抵抗部材40を回転中心回りに回転させることによって投入物の分散性を向上させる分散羽根15と、分散羽根15よりも上方に設けられ、攪拌槽2の中央域において渦巻流を発生させる渦巻流生成羽根14と、を有している。
【選択図】 図1

Description

本発明は電池電極用スラリーの製造方法に関する。
近年、各種携帯電池、電気自動車、コージェネ装置などの電池の需要が拡大している。各種電池の内、実用的な電池は化学電池がほとんどを占めており、そのような化学電池としては、一次電池、二次電池、及び燃料電池が含まれる。
このような化学電池のうち、極性電極と電解質界面で形成される電気二重層を利用した電気二重層キャパシタは、電子機器のバックアップ電源として近年需要が伸びている。また、電気自動車の電源などの大容量を必要とする用途に対しても、高出力の電気二重層キャパシタの利用が注目されている。
電気二重層キャパシタを製造する場合は、集電体の上に電極用スラリーを塗布して乾燥させることにより分極性電極を形成する塗布法が、分極性電極の膜厚を従来方法に比べて薄くすることが可能であるとともに、分極性電極の生産性向上にも有効であることが報告されている。
上記塗布法を用いた分極性電極の形成は、例えば、電極活物質、導電助剤、バインダー及びバインダーを溶解させる溶剤からなる有機溶媒系の電極用スラリーを集電体の上に塗布して乾燥させることにより行われる。又は、有機溶媒系の電極用スラリーに代えて、電極活物質、導電助剤、バインダー及びバインダーを分散させる分散媒を混練した水系の電極用スラリーが用いられることもある。
このような電気自動車に用いられる電気二重層キャパシタの基本構成例としては、特許文献1が例示できる。
また、有機溶剤系又は水系の電極用スラリーの製造に際しては、電極活物質、導電助剤、バインダー等の混合物を物理的に均一に分散させることが必要になる。
電極用スラリーを攪拌する装置としては、電極用スラリーの組成や粘度に応じて多種多様な攪拌装置が採用されており、最も好ましい攪拌装置の構成は分からないのが現状である。
特開2000−208368
しかしながら、現在採用されている攪拌装置を用いた電池電極用スラリーの製造であれば、均一で良好な塗布性、分散性を有するスラリーを製造するためには、長時間を要する課題があった。また、生産効率を上げるために、多数の攪拌装置を設ける必要があり、スラリー製造コストが高くなる課題があった。
本発明は上記課題に鑑みてなされたものであり、本発明の目的は、上記課題を解決できる電池電極用スラリーの製造方法を提供することにある。
具体的な目的の一例を示すと、以下の通りである。
(a)塗布性、分散性が良く、電池電極用に適したスラリーを短時間で製造することができるようにする。
なお、上記に記載した以外の発明の課題、その解決手段及びその効果は、後述する明細書内の記載において詳しく説明する。
まず、本発明を説明する前に本発明に係る製造方法を発明するに至った経過を説明する。
本発明者は電極用スラリーの効率的な製造方法の開発を考えた。その理由は従来の電極用スラリー用の攪拌装置は複雑な制御が必要で、1億円を超えるものもある高額な装置であり、しかも上記したようにスラリーの製造に長時間を要することが知られていたからである。
最初に、本発明者は、従来の方法と同じように、攪拌槽の上方からいろいろな形状の攪拌羽根や攪拌棒材を攪拌槽内の材料に突入させて、攪拌羽根や攪拌棒材の形状を変えるとともに回転速度の調整を行い、希望とする電極用スラリーを得られるか否かの実験を行った。しかし、水分を含まず、粉体としての複数の電池電極材料を入れて良好に混合する条件と、バインダーを投入した後に良好に混合する条件と、水分を徐々に加えて所望の粘度のスラリーを生成するまでの混合条件は、それぞれ著しく異なり、予想以上に各工程の混合時間を短縮することは難しいことが判明した。特に、スラリーの粘度が高くなったときにいかにして分散を短時間で良好に行なうかという点が難しいのである。結局、スラリーの粘度が高くなったときは、電極用スラリーの性質に対応した攪拌羽根や攪拌棒材を長時間駆動することによってのみ、スラリーの混合が良好に行われることを本発明者は再確認しただけであった。
このような経過によって、電極用スラリーの効率的な製造方法の開発は行き詰まったわけであるが、その時、発明者の一人が錠剤用の粒状物を製造する装置でスラリーの製造を行ってみてはどうかと提案した。その理由は、既に本発明者は密度を0.7〜0.6程度に抑えることができ、打錠に適した粒状体を形成することができる攪拌造粒装置(特開2011−83672)を開発していたからである。
この発明者の提案に対して、特開2011−83672の装置はあくまで低密度の打錠用の粒状体の形成を主目的とするものであり、スラリーのような粘性の高い液状のものを攪拌、混合するために適したものとは全く考えられず、その提案に対して懐疑的であったが、一度試してみるのも良いと考え直して、羽根形状と羽根の組み合わせをいろいろ変えて実験を行なった。
その結果は驚くべきものであり、現状のスラリー製造装置よりも格段に短い時間でスラリーを製造でき、そのスラリーの塗布性、電気的特性も従来品と遜色なく、むしろ一部の特性において従来品を上回るスラリーを生成できることを発見した。
また、本発明者は、上記実験を重ねることによって、上記特開2011−83672の装置構成をスラリー製造用に単純に適用しただけでは、電池電極用に適したスラリーを短時間で製造することはできないことを発見した。具体的には、
(1)本発明の構成である分散羽根は、短時間で電池電極用スラリーを製造するためには必須の要件であることが分かった。
(2)特開2011−83672に開示された構成では2つの回転軸を同心円状に設置して、底壁側羽根の回転数を低く設定し、渦巻流生成羽根の回転数を高く設定するように構成したが、電池電極用スラリーを製造するためには、むしろ、2つの回転軸を1つの回転軸に統合し、底壁側羽根と渦巻流生成羽根を共に高速度域で回転することにより、下記に記載する条件の異なる各工程において混合を均一化でき、電気特性も良好な電極用スラリーを製造できることが分かった。
なお、特開2011−83672に開示された2つの回転軸を備えた構成より、1つの回転軸によって底壁側羽根、分散羽根、及び渦巻流生成羽根を一体として回転させる構成の方が製造コストを安くすることができ、経済的合理性からも本発明に係る構成は価値あるものである。
本発明に係る製造方法は、電池電極用スラリー以外の均一混合を要求される各種のスラリーの製造に適用できることも十分に予想できるが、本特許出願を申請した時点でスラリーの製造方法として極めて有効であると確認できているのは電池電極用スラリーであるから、この電池電極用スラリーの製造方法に限定して本製造方法の特許を申請することにした。
本発明は多面的に表現できるが、例えば、代表的なものを挙げると、次のように構成したものである。下記本発明において、各符号は後述する実施形態との対応関係を分かりやすくするために一例として示したものである。つまり、本発明の各構成要素は、各構成要素を構成する文言の概念において把握されるべきであり、実施形態に記載した符号に係る構成に限定されないものである。
本発明に係る第1形態の電池電極用スラリーの製造方法は、攪拌装置1の攪拌槽2内に少なくとも電極活物質とバインダー等の各種構成物質を投入して電池電極用スラリーを製造する電池電極用スラリーの製造方法であって、
前記攪拌装置1は、
前記攪拌槽2の最も底壁4側で回転する羽根であり、前記攪拌槽2の投入物を内周壁8側に押し出す作用をする底壁側羽根9と、
前記底壁側羽根9よりも上方に設けられ、上下方向に形成された抵抗部材40を回転中心回りに回転させることによって前記投入物の分散性を向上させる分散羽根15と、
前記分散羽根15よりも上方に設けられ、前記攪拌槽2の中央域において渦巻流を発生させる渦巻流生成羽根14と、を有していることを特徴とする。
本発明に係る第2形態は、前記第1形態において、極性電極と電解質界面で形成される電気二重層を利用した電気二重層キャパシタに採用され、有機溶剤系又は水系のスラリーの製造に用いることを特徴とする。
本発明に係る第3形態は、前記各形態において、少なくとも前記電極活物質を前記攪拌槽2内に投入して混合する電極活物質混合工程と、
その混合された投入物に対してバインダーを投入して攪拌するバインダー攪拌工程と、
有機溶剤系又は水系の溶媒を加えて攪拌して所定の粘性を有するスラリーを生成する溶媒攪拌工程と、を少なくとも含んでいることを特徴とする。
本発明に係る第4形態は、前記各形態において、前記渦巻流生成羽根14を、前記渦巻流生成羽根14の回転中心から外側に向かうに従って羽根が上向きになる上向き羽根で形成したことを特徴とする。
本発明に係る第5形態は、前記各形態において、前記渦巻流生成羽根14を、前記底壁4と略平行な平行羽根で形成したことを特徴とする。
本発明に係る第6形態は、前記各形態において、前記分散羽根15に前記投入物の上下方向の移動を可能にする開口19を設けたことを特徴とする。
本発明に係る第7形態は、前記各形態において、前記底壁側羽根9における最外側部の周速度を5m/秒〜40m/秒になるように設定したことを特徴とする。
本発明に係る第8形態は、前記各形態において、最終的に製造されたスラリーの粘度が500cps〜5000cpsであることを特徴とする。
以下、本発明に係る製造方法であれば、塗布性、分散性が良く、電池電極用に適したスラリーを短時間で製造することができる。
図1(A)は本実施形態に係るスラリー製造装置の縦断面図、図1(B)は図1(A)のB−B線横断面図である。 スラリー製造装置の概略横断面図である。 本実施形態に係る攪拌羽根の立体分解図である。 各羽根による投入物の流れを説明する縦断面図である。 各羽根による投入物の流れを説明する横断面図である。 図6(a)〜(f)はそれぞれ渦巻流生成羽根の一例を示す図である。 図7(A)は分散羽根の一例を示す平面図、図7(B)はその側面図である。
以下、本発明の実施の形態を図面に基づき説明する。
本実施形態に係る製造方法を適用する製造装置について図1〜図5を参照しつつ説明する。
図1に示すように、このスラリー製造装置1の攪拌槽2はほぼ上半部域の周壁2aを円錐形のテーパ状に形成するとともに、ほぼ下半部域の周壁2bを内周壁8で形成してある。攪拌槽2の上端部には投入口3を設けてある。
攪拌槽2には底壁4の下方から突出するように設けられた回転軸5(図1(B)参照)を設けてある。
回転軸5は高速回転できるモータ7に接続してある。
図3に示すように、回転軸5に下側から順に、底壁側羽根9、分散羽根15、渦巻流生成羽根14を固定した後、円錐形のキャップ部21を回転軸5の上端に取り付ける。
底壁側羽根9としては、一般にアジテータ羽根とも呼ばれるものが採用できる。底壁側羽根9は回転軸5の回転中心から半径方向に翼形に延びる半径部10と、半径部10の端部に設けられた掻き出し部12とを備えている。半径部10は攪拌槽2の底壁4に近接又は当接して回転する。掻き出し部12は攪拌槽2の内周壁8に近接又は当接して移動する。掻き出し部12は半径部10によって外側に押し出されてきた投入材料を再び中心側へ掻き出す機能がある。
図1に一例として示すように、掻き出し部12は、前記半径部10の端部から少しだけ上方に延びた部分を設けることもできる。
図1,図2に示す構成では、底壁側羽根9の半径部10は攪拌槽2の内周壁8に接するように構成されている。また、底壁側羽根9は直径方向に延びて角度120度(degree)間隔で3個設けられた構成が示してある。但し、底壁側羽根9の本数は、180度間隔で2個、90度間隔で4個、というように異なる羽根の本数を設けることもできる。
底壁側羽根9の掻き出し部12の周速度は5m/秒〜40m/秒の高速度で回転させることが好ましい。上記周速度となるように攪拌槽の直径の大きさによって回転数を調整する。
渦巻流生成羽根14は、回転した時に攪拌槽2の中心部域において渦巻状の流れを発生させる羽根である。渦巻流生成羽根14としては、外端部域が上方に曲がった上向き羽根(縦断面が略C字形である羽根)で形成することが好ましい。図1、図2に示す構成では90度間隔で高い頂端を有する4つの羽根を備えた上向き羽根が例示されている。
但し、底壁4と略平行な羽根も採用することもできる。電池電極材料の種類によっては、平行羽根にした方が上向き羽根よりも良いスラリーを製造できる場合がある。
渦巻流生成羽根14を設けることで、粉体の電池電極材料を混合するときも、バインダーを追加して粘性を高めた状態でも、さらに水分を順次、追加してスラリーを生成する状態においても、良好な混合・分散機能を発揮することを本発明者は確認している。
渦巻流生成羽根14の種類としては、図6(a)〜(f)に示すような形態が例示できる。なお、図6(a)(c)(e)は平面図、図6(b)(d)(f)はそれぞれの縦断面図である。
図6(a)(b)に示す渦巻流生成羽根14は、基部38に取り付けられた羽根が4枚あり、各羽根は底壁4に平行な平坦部36と上方に曲がった端部37とで構成されている。端部37は三角形状に尖っており、端部域の分散効果が高い構成になっている。
図6(c)(d)に示す渦巻流生成羽根14は、基部38に取り付けられた羽根が8枚あり、各羽根はなだらかに上方に傾斜した曲板部39を有しており、竜巻流の形成効果と先端部域の分散効果が高い構成になっている。
図6(e)(f)に示す渦巻流生成羽根14は、基部38に取り付けられた羽根が4枚あり、各羽根は略平行に延びる平行羽根となっている。
渦巻流生成羽根14の先端には尖った刃部を設けることが好ましい。
分散羽根15は底壁側羽根9と渦巻流生成羽根との間に設けられる羽根である。この分散羽根15は、上下方向に形成された抵抗部材40を回転中心回りに回転させることによって投入物の分散性を向上させる機能を有する。つまり、渦巻流生成羽根14に加えて分散機能を大きく高める分散羽根15を設けることで、粉体、液体の両方(特に粘度の高いスラリー)において高い混合、分散機能を発揮できるようにしている。
分散羽根18の代表的な構成としては、例えば図7(A)(B)に示すような羽根が例示できる。この分散羽根18は抵抗部材40としてのギザギザのノコギリ刃40を周端部の全域に輪状に有している。ノコギリ刃40は隣り合う刃が互い違いに上下に突出しており、側面視におけるノコギリ刃40の形状は三角形状に形成してある。このようなノコギリ刃40を有する分散羽根15は、高速で回転した場合に投入物を分散する作用が極めて高い。
なお、抵抗部材40としてはノコギリ刃40以外にも棒状物などの突起物を上下に立設した構成などが採用できる。それらの突起物は、周端部の全域又は一部に輪状に設ける。
また、分散羽根18に複数の開口19を設けることで、投入物の上下動が妨げられやすい攪拌槽の中央域において、上下方向に投入物を移動させることができ、粉体、液体の両方において分散性を高めることができる。
本実施形態に係るスラリー製造方法の処理について説明する。
この実施形態に係る製造方法は、電極活物質混合工程、バインダー攪拌工程、溶媒攪拌工程の順で行われる。但し、バインダー攪拌工程と溶媒攪拌工程は一部時間的に重なってもよい。
(電極活物質混合工程)
攪拌槽2に少なくとも電極活物質を含んだ材料を前記攪拌槽2内に投入して混合分散処理を行う。電極活物質以外の物質としては、導電助剤などがある。
(バインダー攪拌工程)
次いで、前記投入物にバインダーを滴下してバインダーとの混合を行う。
(溶媒攪拌工程)
水分等の溶媒を加えて攪拌して所定の粘性を有するスラリーを生成する。
以下、予想される混合作用について説明する。
各工程における混合処理において、底壁側羽根9の回転によって内周壁8の周辺に押し付けられるように移動する投入物は図4及び図5に示すように内周壁8から中央部域に戻すような投入物の流れ22ができる。
一方、中央部域では、渦巻流生成羽根14が高速回転しているので、図4で示すような攪拌槽2の中央部域で渦巻24が生じる。そして、底壁側羽根9によって引き起こされる中央部域に向かう投入物の流れ22をその渦巻24に巻き込むように回転し、渦巻流生成羽根14と分散羽根15によって混合、分散を行うことにより、短時間で混合を良好に行う。
また、分散羽根15を設けることで投入物を分散する機能を高める作用があることを本発明者は確認している。この機能は、粉体としての電池電極材料であっても、バインダー、水分を加えたスラリー状態の混合物であっても同様に発揮される。
また、底壁側羽根9、分散羽根15、渦巻流生成羽根14は全て攪拌槽2の底壁4の下方から突入した回転軸に取り付けるように構成しているので、上方から羽根を突入させる昇降装置が不要になり、装置周りのスペースを有効に利用できるとともに製造コストを下げることができる。
スラリーを取り出すときは、一般には攪拌槽2を傾斜させることで行なう。この場合、スラリー攪拌槽の一般的な取出し機構を採用できる。
なお、図3に示すように、底壁側羽根9、分散羽根15、渦巻流生成羽根14を回転軸に取り付ける構成なので、スラリー製造後の掃除も行ないやすい利点がある。
本発明は化学電池に使用する電極塗布材料の製造において適用が可能である。適用できる電池又は適用できる可能性がある電池を以下に例示する。
[一次電池]
(アルカリ電池)
アルカリ乾電池、ニッケル系一次電池(オキシライド乾電池)、アルカリボタン電池、酸化銀電池、水銀電池。
(有機電解液電池)
二酸化マンガン・リチウム電池、フッ化黒鉛リチウム電池、酸化銅リチウム電池、二酸化鉄リチウム電池。
(空気電池)
空気亜鉛電池、空気湿電池。
(リザーブ電池)
注液式電池、海水電池、溶解塩電池。
(その他)
塩化チトニル・リチウム電池、二酸化硫黄リチウム電池。
[二次電池]
(アルカリ蓄電池)
密閉型ニッケル・カドミウム電池、開放型ニッケル・カドミウム蓄電池、ニッケル水素電池、ニッケル・亜鉛蓄電池、空気亜鉛蓄電池。
(鉛酸系電池)
鉛蓄電池、小型シール鉛蓄電池。
(有機電解液電池)
リチウムイオン電池、金属リチウム二次電池。
(ポリマー電池)
リチウムポリマー電池。
(電力貯蔵用電池)
ナトリウム硫黄電池、レドックスフロー電池、亜鉛窒素、亜鉛塩素電池。
[燃料電池]
リン酸燃料電池、溶融炭素塩燃料電池、固体電解質燃料電池、高分子電解質燃料電池。
以下、比較例に係る攪拌装置と、本実施例に係る攪拌装置とを比べた実験結果について説明する。
比較例に係る攪拌装置は、低い速度で公転する主翼に、速い速度で自転する従翼(攪拌羽根)を取り付けた構成である。また、この攪拌装置は攪拌槽の上方から攪拌羽根を突入させて使用する。
この攪拌装置を比較例として採用したのは、電気二重層キャパシタ用の電極用スラリーを製造する実験において、本発明の構成を除いて、塗布性、分散性において最も好ましい構成と思われたからである。なお、このような比較例に係る攪拌装置を選ぶこと、及び、バインダー、溶媒としての水を投入する順序、主翼・従翼の回転の有無、回転数の設定や、時間の配分は公知技術ではない。
表1は電池電極の正極用スラリーの製造条件であり、表2は電池電極の負極用スラリーの製造条件である。表1,表2は、共に比較例に係る装置と本実施例に係る装置を使用して、製造時間を比較したものである。なお、表1,表2において、電極用材料に示す材料1〜材料3は、電極活物質、導電助剤などの各種構成物質を示している。なお、当然のことながら、最初に投入する電極用材料の種類は3種類に限定されない。
Figure 2013093140
Figure 2013093140
表1では比較例の390分に対して本実施例は35分、表2では比較例の540分に対して本実施例は50分というように時間にして約1/10〜1/11程度に短縮できており、製造効率を格段に改善することができた。また、塗布性、電池電極用スラリーの特性も従来装置によって製造したものと全く遜色なく、良好であった。
なお、本発明によって製造できるスラリーの粘度の範囲は、500cps〜5000cps(センチポアズ)であった。
電池電極用スラリーに使用される電極活物質、導電助剤、バインダー及びバインダーを溶解させる溶剤などは多種多様な材料が採用される。しかし、物理的に攪拌し、混合する過程において最も技術的に障壁となるのは、スラリーの粘度が高くなったときにいかにして分散を短時間で良好に行なうかである。本実験では本実施例に係る装置は、バインダー攪拌の時間及び加水攪拌の時間を比較例に比べて著しく短時間で行なうことができた。
したがって、同じ範囲のスラリーの粘度であれば、電極活物質、導電助剤、バインダー及びバインダーを溶解させる溶剤などの電極構成物質がどのようなものを採用しても、同様に本発明に係る攪拌装置による製造方法を採用できることは容易に予測できるものである。
また、本製造装置であれば、電極用材料の回転数とスラリーになったときの回転数は大きく変化しておらず、単純な一つの回転軸の回転数制御だけで済むので制御装置も簡便なもので足りる利点がある。
1…攪拌装置、2…攪拌槽、4…攪拌槽の底壁、9…底壁側羽根、14…渦巻流生成羽根、15…分散羽根、19…分散羽根の開口、40…抵抗部材(ノコギリ刃)。

Claims (8)

  1. 攪拌装置(1)の攪拌槽(2)内に少なくとも電極活物質とバインダー等の各種構成物質を投入して電池電極用スラリーを製造する電池電極用スラリーの製造方法であって、
    前記攪拌装置(1)は、
    前記攪拌槽(2)の最も底壁(4)側で回転する羽根であり、前記攪拌槽(2)の投入物を内周壁(8)側に押し出す作用をする底壁側羽根(9)と、
    前記底壁側羽根(9)よりも上方に設けられ、上下方向に形成された抵抗部材(40)を回転中心回りに回転させることによって前記投入物の分散性を向上させる分散羽根(15)と、
    前記分散羽根(15)よりも上方に設けられ、前記攪拌槽(2)の中央域において渦巻流を発生させる渦巻流生成羽根(14)と、を有していることを特徴とする電池電極用スラリーの製造方法。
  2. 請求項1に記載の電池電極用スラリーの製造方法において、極性電極と電解質界面で形成される電気二重層を利用した電気二重層キャパシタに採用され、有機溶剤系又は水系のスラリーの製造に用いる電池電極用スラリーの製造方法。
  3. 請求項1に記載の電池電極用スラリーの製造方法において、少なくとも前記電極活物質を前記攪拌槽(2)内に投入して混合する電極活物質混合工程と、
    その混合された投入物に対してバインダーを投入して攪拌するバインダー攪拌工程と、
    有機溶剤系又は水系の溶媒を加えて攪拌して所定の粘性を有するスラリーを生成する溶媒攪拌工程と、を少なくとも含んでいる電池電極用スラリーの製造方法。
  4. 請求項1に記載の電池電極用スラリーの製造方法において、前記渦巻流生成羽根(14)を、前記渦巻流生成羽根(14)の回転中心から外側に向かうに従って羽根が上向きになる上向き羽根で形成した電池電極用スラリーの製造方法。
  5. 請求項1に記載の電池電極用スラリーの製造方法において、前記渦巻流生成羽根(14)を、前記底壁(4)と略平行な平行羽根で形成した電池電極用スラリーの製造方法。
  6. 請求項1に記載の電池電極用スラリーの製造方法において、前記分散羽根(15)に前記投入物の上下方向の移動を可能にする開口(19)を設けた電池電極用スラリーの製造方法。
  7. 請求項1に記載の電池電極用スラリーの製造方法において、前記底壁側羽根(9)における最外側部の周速度を5m/秒〜40m/秒になるように設定した電池電極用スラリーの製造方法。
  8. 請求項1に記載の電池電極用スラリーの製造方法において、最終的に製造されたスラリーの粘度が500cps〜5000cpsである電池電極用スラリーの製造方法。
JP2011233192A 2011-10-24 2011-10-24 電池電極用スラリーの製造方法 Active JP5770064B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011233192A JP5770064B2 (ja) 2011-10-24 2011-10-24 電池電極用スラリーの製造方法
KR1020120084268A KR20130045162A (ko) 2011-10-24 2012-08-01 전지전극용 슬러리의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233192A JP5770064B2 (ja) 2011-10-24 2011-10-24 電池電極用スラリーの製造方法

Publications (2)

Publication Number Publication Date
JP2013093140A true JP2013093140A (ja) 2013-05-16
JP5770064B2 JP5770064B2 (ja) 2015-08-26

Family

ID=48616138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233192A Active JP5770064B2 (ja) 2011-10-24 2011-10-24 電池電極用スラリーの製造方法

Country Status (2)

Country Link
JP (1) JP5770064B2 (ja)
KR (1) KR20130045162A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030406A1 (ko) * 2013-08-30 2015-03-05 주식회사 엘지화학 전극 슬러리의 임펠러 믹서
CN108325420A (zh) * 2017-01-20 2018-07-27 (株)Tsi 电池电极用浆料搅拌机
CN108435048A (zh) * 2018-04-26 2018-08-24 义乌市绿美生物科技有限公司 一种流感防治药物制备装置的使用方法
CN108435095A (zh) * 2018-04-26 2018-08-24 义乌市绿美生物科技有限公司 一种流感防治药物制备装置
CN111530359A (zh) * 2020-05-27 2020-08-14 重庆工程职业技术学院 一种复合材料性能分析用搅拌装置
CN113782703A (zh) * 2021-09-13 2021-12-10 湖北众邦新能源有限公司 一种锂电池负极片制备装置
CN118649596A (zh) * 2024-08-19 2024-09-17 湖南金阳烯碳新材料股份有限公司 一种混料机组、分散均匀的干法电极制备方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124886A1 (de) * 2019-09-16 2021-03-18 EKATO Rühr- und Mischtechnik GmbH Rührorganvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222711A (ja) * 2006-02-21 2007-09-06 Denso Corp 攪拌機、その攪拌機を用いたスラリー製造装置およびそのスラリー製造装置を用いたスラリーの製造方法。
JP2011083672A (ja) * 2009-10-14 2011-04-28 Akira Kiko Kk 攪拌造粒装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222711A (ja) * 2006-02-21 2007-09-06 Denso Corp 攪拌機、その攪拌機を用いたスラリー製造装置およびそのスラリー製造装置を用いたスラリーの製造方法。
JP2011083672A (ja) * 2009-10-14 2011-04-28 Akira Kiko Kk 攪拌造粒装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030406A1 (ko) * 2013-08-30 2015-03-05 주식회사 엘지화학 전극 슬러리의 임펠러 믹서
CN105050701A (zh) * 2013-08-30 2015-11-11 株式会社Lg化学 电极浆料的叶轮混合器
EP2954947A4 (en) * 2013-08-30 2016-02-17 Lg Chemical Ltd WHEEL MIXER FOR ELECTRODE SLUDGE
JP2016516269A (ja) * 2013-08-30 2016-06-02 エルジー・ケム・リミテッド 電極スラリーのインペラミキサー
TWI607801B (zh) * 2013-08-30 2017-12-11 Lg化學股份有限公司 電極漿料之葉輪混合器
US10022684B2 (en) 2013-08-30 2018-07-17 Lg Chem, Ltd. Impeller mixer of electrode slurry
CN108325420A (zh) * 2017-01-20 2018-07-27 (株)Tsi 电池电极用浆料搅拌机
CN108435048A (zh) * 2018-04-26 2018-08-24 义乌市绿美生物科技有限公司 一种流感防治药物制备装置的使用方法
CN108435095A (zh) * 2018-04-26 2018-08-24 义乌市绿美生物科技有限公司 一种流感防治药物制备装置
CN111530359A (zh) * 2020-05-27 2020-08-14 重庆工程职业技术学院 一种复合材料性能分析用搅拌装置
CN113782703A (zh) * 2021-09-13 2021-12-10 湖北众邦新能源有限公司 一种锂电池负极片制备装置
CN118649596A (zh) * 2024-08-19 2024-09-17 湖南金阳烯碳新材料股份有限公司 一种混料机组、分散均匀的干法电极制备方法及系统

Also Published As

Publication number Publication date
KR20130045162A (ko) 2013-05-03
JP5770064B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5770064B2 (ja) 電池電極用スラリーの製造方法
Shen et al. Graphene-boosted, high-performance aqueous Zn-ion battery
Fang et al. Recent advances in aqueous zinc-ion batteries
Blanc et al. Scientific challenges for the implementation of Zn-ion batteries
Iqbal et al. Capacitive and diffusive contribution in strontium phosphide-polyaniline based supercapattery
Liu et al. Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors
Liu et al. New nanoconfined galvanic replacement synthesis of hollow Sb@ C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries
Wang et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping
Sun et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries
Yuan et al. Improved electrochemical performance of Fe-substituted NaNi0. 5Mn0. 5O2 cathode materials for sodium-ion batteries
Reddy et al. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries
Wu et al. Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries
Shi et al. Bimetallic Co‐Mn Perovskite Fluorides as Highly‐Stable Electrode Materials for Supercapacitors
Feng et al. Template synthesis of a heterostructured MnO2@ SnO2 hollow sphere composite for high asymmetric supercapacitor performance
Li et al. Ultrafine Mn3O4 nanowires/three-dimensional graphene/single-walled carbon nanotube composites: superior electrocatalysts for oxygen reduction and enhanced Mg/air batteries
Spinner et al. Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries
JP6167127B2 (ja) 電極、及び電気化学素子
CN105895904B (zh) 制备和回收锂离子电池的正极活性材料的方法
Li et al. Hierarchical WS2@ NiCo2O4 core–shell heterostructure arrays supported on carbon cloth as high-performance electrodes for symmetric flexible supercapacitors
Xu et al. Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances
D’Ambrose et al. Material failure mechanisms of alkaline Zn rechargeable conversion electrodes
Wu et al. Assembly of multifunctional Ni2P/NiS0. 66 heterostructures and their superstructure for high lithium and sodium anodic performance
Li et al. Insight into the composition effect of nickel cobalt layered double hydroxide nanoarrays with the enhanced synergistic effect for supercapacitor electrode
CN105826559A (zh) 一种以氧化石墨烯为正极的可充电锌离子电池
Li et al. Engineering unique ball-in-ball structured (Ni0. 33Co0. 67) 9S8@ C nanospheres for advanced sodium storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150624

R150 Certificate of patent or registration of utility model

Ref document number: 5770064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250