JP2013092391A - Frequency measurement device and frequency measurement method of electric power system - Google Patents

Frequency measurement device and frequency measurement method of electric power system Download PDF

Info

Publication number
JP2013092391A
JP2013092391A JP2011232933A JP2011232933A JP2013092391A JP 2013092391 A JP2013092391 A JP 2013092391A JP 2011232933 A JP2011232933 A JP 2011232933A JP 2011232933 A JP2011232933 A JP 2011232933A JP 2013092391 A JP2013092391 A JP 2013092391A
Authority
JP
Japan
Prior art keywords
frequency
series data
effective value
power system
time series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011232933A
Other languages
Japanese (ja)
Other versions
JP5813455B2 (en
Inventor
Noriyoshi Suga
紀善 須賀
Tomonori Nakatsukasa
智教 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011232933A priority Critical patent/JP5813455B2/en
Publication of JP2013092391A publication Critical patent/JP2013092391A/en
Application granted granted Critical
Publication of JP5813455B2 publication Critical patent/JP5813455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a fundamental frequency with high precision even when a frequency component close to a commercial frequency is included.SOLUTION: A frequency measurement method of an electric power system that introduces and converts a voltage of a three-phase AC power system into digital data, and introduces a system voltage of the digital data to perform frequency operation includes: generating first time-series data x(t) from the system voltage of the digital data; generating second time-series data g(t) by integrating the first time-series data on a numeral basis; determining an effective value (X) of the first time-series data and an effective value (G) of the second time-series data; and deriving a frequency (f) by multiplying the ratio of the effective value (X) to effective value (G) by a predetermined constant.

Description

本発明の実施形態は、電力系統の周波数測定装置および周波数測定方法に関する。   Embodiments described herein relate generally to a power system frequency measurement device and a frequency measurement method.

電力系統の周波数は電力会社により高精度に維持されているが、電力需給の平衡が崩れると周波数に変動が生じる。周波数の測定は、周波数を維持して電力系統を安定的に運転するために必要であり、これまで様々な方法が考案されて適用されている。   The frequency of the power system is maintained with high precision by the power company, but the frequency fluctuates when the balance of power supply and demand is lost. Frequency measurement is necessary to stably operate the power system while maintaining the frequency, and various methods have been devised and applied so far.

周波数は1秒間の正弦波の波数であるが、周波数の計測値を周波数の維持のために遅滞なく使用するには1秒間は長すぎるので、周波数の逆数に相当する正弦波の周期(50Hz系統では周期は約20msとなる)を測定することなどして、短時間の電圧波形のデータから周波数を測定することが行われている。   The frequency is the wave number of a sine wave for 1 second, but it is too long for 1 second to use the measured value of the frequency without delay for maintaining the frequency. Therefore, the period of the sine wave corresponding to the reciprocal of the frequency (50 Hz system) In this case, the frequency is measured from the voltage waveform data for a short time.

電力系統の電圧波形は基本波と呼ばれる商用周波数(≒50Hzまたは60Hz)の正弦波成分に、分数調波や高調波などが重畳したものである。一般に電力系統の周波数とは、この基本波の周波数を指す。電力系統の周波数の測定では電力系統の電圧波形が周期波であることを前提に周波数の計測が行われている。   The voltage waveform of the power system is obtained by superimposing a fractional harmonic or a harmonic on a sine wave component of a commercial frequency (≈50 Hz or 60 Hz) called a fundamental wave. In general, the frequency of the power system refers to the frequency of this fundamental wave. In the measurement of the frequency of the power system, the frequency is measured on the assumption that the voltage waveform of the power system is a periodic wave.

電力系統では負荷の急変や事故などで様々な擾乱が発生する。このような擾乱は周期あるいは周波数とは独立した事象であるが、電圧波形の周期性を乱すことから、周波数の測定を妨害して、測定結果に影響を与える要因として無視できない。   In power systems, various disturbances occur due to sudden changes in loads and accidents. Such a disturbance is an event independent of the period or frequency, but disturbs the periodicity of the voltage waveform, and therefore cannot be ignored as a factor that interferes with the frequency measurement and affects the measurement result.

以下、一例を挙げて説明する。
電力系統に事故が発生すると、電圧の位相が急変することがある。電圧位相の急変は1周期の時間の増加や減少になるので、計測結果が周波数の低下や上昇を示すことが起こる。このような一過性の擾乱は長くは継続しないので、周波数継電器では動作時間を100ms程度以上として、周波数測定結果に含まれる擾乱の影響を受けないような対策が行われている。しかし、この間は周波数の計測値には大きな誤差が含まれることになり、好ましいことではない。一過性ではないノイズ源による電圧波形歪みも周波数計測に影響を与える。
Hereinafter, an example will be described.
When an accident occurs in the power system, the voltage phase may change suddenly. Since a sudden change in voltage phase results in an increase or decrease in the time of one cycle, the measurement result may show a decrease or increase in frequency. Since such a transient disturbance does not continue for a long time, the frequency relay has an operation time of about 100 ms or more and measures are taken so as not to be affected by the disturbance included in the frequency measurement result. However, a large error is included in the frequency measurement value during this period, which is not preferable. Voltage waveform distortion due to non-transient noise sources also affects frequency measurement.

すなわち、安定して運転されている同一電力系統内にもかかわらず、電圧を観測している箇所での現象である一過性の擾乱や一過性でない波形歪みによって、観測箇所で周波数の測定値が異なる場合が予想される。周波数による保護や制御は電力系統全体を対象に協調して実施するので、この現象は好ましいことではない。   In other words, the frequency is measured at the observation point due to transient disturbances and non-transient waveform distortions at the point where the voltage is observed, even though the power system is operating stably. Expect different values. This phenomenon is not preferable because protection and control by frequency are performed in cooperation for the entire power system.

特開昭57−95136号公報JP-A-57-95136

大浦好文監修「保護リレーシステム工学」、電気学会、2002年3月発行、P.102、P.150〜151、Protected relay system engineering supervised by Yoshifumi Oura, The Institute of Electrical Engineers of Japan, March 2002, P.102, P.150-151, 電気学会技術報告第1127号、「周波数リレーシステムによる事故波及防止技術」、電気学会、2008年9月発行、P.72〜75、IEEJ Technical Report No. 1127, “Accident Ripple Prevention Technology by Frequency Relay System”, IEEJ, September 2008, P.72-75, 長谷良秀著、「電力系統技術の実用理論ハンドブック」、丸善株式会社、平成16年年3月発行、P.123〜134、Yoshihide Hase, “Practical Theory of Power System Technology Handbook”, Maruzen Co., Ltd., published in March 2004, pages 123-134,

商用周波数から離れた周波数成分は、従来技術でアナログフィルタやディジタルフィルタを用いて低減するようにしているが、商用周波数に近接した周波数成分についてはフィルタでの除去は難しい。   Although the frequency component far from the commercial frequency is reduced by using an analog filter or a digital filter in the prior art, it is difficult to remove the frequency component close to the commercial frequency by the filter.

そこで本発明は、商用周波数に近接した周波数成分を含む場合でも高精度に基本周波数を測定することが可能にし、電力系統事故に伴う擾乱があってもその影響を受けにくい、電力系統の周波数測定装置および周波数測定方法を提供するものである。   Therefore, the present invention makes it possible to measure the fundamental frequency with high accuracy even when frequency components close to the commercial frequency are included, and to measure the frequency of the power system that is not easily affected by disturbances caused by a power system accident. An apparatus and a frequency measurement method are provided.

上記の目的を達成するため、実施形態1に係る電力系統の周波数測定装置は、三相交流の電力系統の電圧を導入しディジタルデータに変換して出力する入力部と、前記入力部から出力されたディジタルデータの系統電圧を導入して周波数演算を行う周波数演算部とを備え、前記周波数演算部は、導入したディジタルデータの系統電圧から第1の時系列データx(t)を生成する第1の手段と、前記第1の手段で生成された第1の時系列データx(t)を数値積分して第2の時系列データg(t)を生成する第2の手段と、前記第1の手段で求めた第1の時系列データx(t)の実効値(X)を導出する第3の手段と、前記第2の手段で求めた第2の時系列データg(t)の実効値(G)を導出する第4の手段と、前記第3の手段で求めた実効値(X)および前記第4の手段求めた実効値(G)の比に予定の定数を乗じて周波数(f)を導出する第5の手段、を備えたことを特徴とする。   In order to achieve the above object, the power system frequency measurement device according to Embodiment 1 introduces a voltage of a three-phase AC power system, converts the voltage into digital data, and outputs the digital data, and is output from the input unit. And a frequency calculation unit that performs frequency calculation by introducing a system voltage of the digital data, and the frequency calculation unit generates a first time-series data x (t) from the system voltage of the introduced digital data. And second means for numerically integrating the first time series data x (t) generated by the first means to generate second time series data g (t), and the first The third means for deriving the effective value (X) of the first time series data x (t) obtained by the means of the above, and the effective of the second time series data g (t) obtained by the second means A fourth means for deriving a value (G), an effective value (X) obtained by the third means, and the fourth hand Fifth means for deriving obtained rms frequency multiplied by a constant appointment to the ratio of (G) (f), characterized by comprising a.

本発明の実施形態1に係る電力系統の周波数測定装置および周波数測定方法の構成図。The lineblock diagram of the frequency measuring device and frequency measuring method of an electric power system concerning Embodiment 1 of the present invention. 図1の周波数演算部における周波数演算を行うソフトウエアの演算フローを示す図。The figure which shows the calculation flow of the software which performs the frequency calculation in the frequency calculating part of FIG. 本発明の実施形態2に係る電力系統の周波数測定装置および周波数測定方法の構成図。The lineblock diagram of the frequency measuring device and frequency measuring method of an electric power system concerning Embodiment 2 of the present invention. 図3の周波数演算部における周波数演算を行うソフトウエアの演算フローを示す図。The figure which shows the calculation flow of the software which performs the frequency calculation in the frequency calculating part of FIG.

以下、本発明に係る電力系統の周波数測定装置および周波数測定方法の実施形態について、図面を参照して説明する。なお、各図を通して共通する要素には同一符号を付けることにより、重複する説明は適宜省略するものとする。   DESCRIPTION OF EMBODIMENTS Embodiments of a power system frequency measuring device and a frequency measuring method according to the present invention will be described below with reference to the drawings. In addition, the overlapping description shall be abbreviate | omitted suitably by attaching | subjecting the same code | symbol to the element which is common throughout each figure.

[実施形態1]
まず、図1を参照して実施形態1による電力系統の周波数測定装置および周波数測定方法について説明する。
[Embodiment 1]
First, a power system frequency measurement device and a frequency measurement method according to Embodiment 1 will be described with reference to FIG.

(構成)
図1は、本発明の一実施形態による電力系統の周波数測定装置および周波数測定方法を示す図である。
(Constitution)
FIG. 1 is a diagram illustrating a frequency measurement device and a frequency measurement method for a power system according to an embodiment of the present invention.

本実施形態1による電力系統の周波数測定装置および周波数測定方法は、例えばマイクロプロセッサおよびメモリを含む周辺回路等から構成されたディジタル演算装置によって実現できるもので、電力系統に設置された計器用変圧器(図示せず)から導出した系統電圧量Va、Vb、Vcをそれぞれ導入して「ディジタル変換された電気量」[V]を出力する入力部1と、この入力部1からの「ディジタル変換された電気量」[V]を用いて周波数演算を行う周波数演算部2から構成されている。   The power system frequency measuring device and frequency measuring method according to the first embodiment can be realized by a digital arithmetic device composed of, for example, a peripheral circuit including a microprocessor and a memory. An instrument transformer installed in the power system An input unit 1 for introducing a system voltage amount Va, Vb, Vc derived from (not shown) and outputting a “digitally converted quantity of electricity” [V]; The frequency calculation unit 2 performs frequency calculation using the “amount of electricity” [V].

入力部1は入力電圧を絶縁してレベル変換を行い、アナログディジタル変換を行うもので、非特許文献1に記載のディジタルリレーユニットの入力変換器とアナログ/ディジタル変換部に相当するものである。ここでは、「ディジタル変換された電気量」を[V]のように[ ]で括って表記する。   The input unit 1 performs level conversion by insulating the input voltage and performs analog-digital conversion. The input unit 1 corresponds to the input converter and analog / digital conversion unit of the digital relay unit described in Non-Patent Document 1. Here, the “digitally converted quantity of electricity” is expressed in brackets [] such as [V].

また、周波数演算部2は非特許文献1に記載のディジタルリレーユニットの演算処理部に相当するもので、ここでは、ディジタル演算装置に内蔵されているソフトウエアに従って、予定の周波数演算を行い電力系統の周波数[f]を測定する。測定された周波数[f]は電力系統の周波数維持、電力系統の保護あるいは制御などに様々に利用できる。   The frequency calculation unit 2 corresponds to the calculation processing unit of the digital relay unit described in Non-Patent Document 1. Here, the frequency calculation unit 2 performs a predetermined frequency calculation according to software built in the digital calculation device, and the power system. Frequency [f] is measured. The measured frequency [f] can be used for various purposes such as maintaining the frequency of the power system, protecting or controlling the power system.

図2は周波数演算部2が、周波数演算を行うためのソフトウエアの演算フローを示す図である。
本実施形態1の周波数演算部2は、主に次の4つの演算処理を実行する。
FIG. 2 is a diagram illustrating a calculation flow of software for the frequency calculation unit 2 to perform frequency calculation.
The frequency calculation unit 2 of the first embodiment mainly executes the following four calculation processes.

まず、第1の処理ステップS11において、入力部1で入力した電気量[V]を演算して時系列データ[x(t)]を生成する。
次に、第2の処理ステップS12において、ステップS11で生成した時系列データ[x(t)]を数値積分して時系列データ[g(t)]を生成する。
First, in the first processing step S11, the electric quantity [V] input by the input unit 1 is calculated to generate time series data [x (t)].
Next, in the second processing step S12, the time series data [g (t)] generated in step S11 is numerically integrated to generate time series data [g (t)].

さらに、第1の処理ステップS13において、既に求められたこれらの2つの時系列データ[x(t)]および[g(t)]から、その実効値XおよびGを演算する。
そして最後の第4の処理ステップS14において、上述した2つの実効値XおよびGの比を演算して、周波数[f]を求める。
Further, in the first processing step S13, the effective values X and G are calculated from these two time series data [x (t)] and [g (t)] that have already been obtained.
In the final fourth processing step S14, the ratio of the two effective values X and G described above is calculated to obtain the frequency [f].

(作用)
本実施形態1の作用について説明する。先ず周波数演算に関して説明する。
電気量x(t)について、x(t)、g(t)の実効値をそれぞれX、Gとするとき、電力系統の周波数を(1)式にて演算する。

Figure 2013092391
(Function)
The operation of the first embodiment will be described. First, frequency calculation will be described.
For the electric quantity x (t), when the effective values of x (t) and g (t) are X and G, respectively, the frequency of the power system is calculated by the equation (1).
Figure 2013092391

なお、周知のように、実効値X、Gは、下記の(2)式および(3)式で演算されるものである。

Figure 2013092391
As is well known, the effective values X and G are calculated by the following equations (2) and (3).
Figure 2013092391

先ず、(1)式で周波数が演算することを説明する。
良く知られているように、周期Tの時間関数はフーリエ級数を用いて、次の(4)式のように表され、さらに、(4)式中の定数等は(5)式、(6)式で表される。

Figure 2013092391
First, it will be described that the frequency is calculated by the equation (1).
As is well known, the time function of the period T is expressed as the following equation (4) using a Fourier series, and the constants in the equation (4) are the equations (5), (6 ) Expression.
Figure 2013092391

以下、これらの関数の実効値を求める。

Figure 2013092391
であるとき、
Figure 2013092391
と表される。 Hereinafter, the effective values of these functions are obtained.
Figure 2013092391
When
Figure 2013092391
It is expressed.

これら(7)式と(8)式の比は、次の(9)式で表される。

Figure 2013092391
The ratio between these equations (7) and (8) is expressed by the following equation (9).
Figure 2013092391

(9)式において、基本波成分だけの場合にはc=0(ただし、n≠1)であるから、この(9)式は、ω(=2πf)となる。これは基本波の角周波数を表す。
従って、これから、(1)式で周波数が演算できることが分かる。
In Expression (9), when only the fundamental wave component is present, c n = 0 (where n ≠ 1), and therefore Expression (9) is ω (= 2πf). This represents the angular frequency of the fundamental wave.
Therefore, it can be understood from this that the frequency can be calculated by the equation (1).

これは、例えば、

Figure 2013092391
とすると、
Figure 2013092391
となり、(1)式が
Figure 2013092391
となって“周波数”と一致することから、容易に理解できる。 This is, for example,
Figure 2013092391
Then,
Figure 2013092391
And the formula (1) becomes
Figure 2013092391
This is easy to understand because it matches the “frequency”.

図2に示した周波数演算を行うためのソフトウエアの演算フローを示す図では、先ず処理ステップS11で[V]から時系列データ[x(t)]を演算し、続く処理ステップS12で系列データ[x(t)]を数値積分して時系列データ[g(t)]を演算し、続く処理ステップS13でこれらからこの二つの時系列データの実効値X、Gを演算し、最後の処理ステップS14でこの二つの実効値X、Gの比(X/G)を演算して、周波数[f]を演算する。   In the diagram showing the calculation flow of the software for performing the frequency calculation shown in FIG. 2, first, the time series data [x (t)] is calculated from [V] in the processing step S11, and then the series data is processed in the subsequent processing step S12. [X (t)] is numerically integrated to calculate time-series data [g (t)], and in subsequent processing step S13, the effective values X and G of these two time-series data are calculated, and the final processing is performed. In step S14, the ratio (X / G) of these two effective values X and G is calculated to calculate the frequency [f].

なお、連続量と離散量の違い、積分と数値積分の違いは本質的な違いではないので、図2の演算フローは、(1)式に準じて周波数を演算するものであるといえる。   Since the difference between the continuous quantity and the discrete quantity and the difference between the integral and the numerical integration are not essential differences, it can be said that the calculation flow in FIG. 2 calculates the frequency according to the equation (1).

本発明は、商用周波数に近接した周波数成分を含む場合でも高精度に基本周波数を測定する装置あるいは方法を提供することを目的とするものであるので、以下、これについて作用を説明する。   An object of the present invention is to provide an apparatus or method for measuring a fundamental frequency with high accuracy even when a frequency component close to a commercial frequency is included.

商用周波数に近接した周波数成分を含む電圧を、基本波電圧の振幅で正規化して次の(10)式のように表記する。

Figure 2013092391
ここで、ωは基本波の角周波数、右辺第二項は重畳した基本波に近接した成分(大きさ;α、角周波数の差分;ωn)を示す。 A voltage including a frequency component close to the commercial frequency is normalized by the amplitude of the fundamental wave voltage and expressed as the following equation (10).
Figure 2013092391
Here, ω represents the angular frequency of the fundamental wave, and the second term on the right side represents a component (size; α, difference between angular frequencies; ωn) close to the superimposed fundamental wave.

このとき、

Figure 2013092391
である。 At this time,
Figure 2013092391
It is.

次に、高精度に周波数を計算するために、(12)式で実効値Xを、(13)式で実効値Gを求める。

Figure 2013092391
Next, in order to calculate the frequency with high accuracy, the effective value X is obtained by equation (12) and the effective value G is obtained by equation (13).
Figure 2013092391

また、

Figure 2013092391
これら(12)式および(13)式より、周波数は次の(14)式で計算される。
Figure 2013092391
Also,
Figure 2013092391
From these equations (12) and (13), the frequency is calculated by the following equation (14).
Figure 2013092391

この(14)式によって、本実施形態1の周波数演算が「商用周波数に近接した周波数成分」を含む場合に、どの程度の誤差を生じるのかについて評価する。   By this equation (14), it is evaluated how much error occurs when the frequency calculation of the first embodiment includes a “frequency component close to the commercial frequency”.

例えば、基本周波数f=50Hzの電力系統で、基本周波数からfn=10Hz離れた周波数成分が2%(α=0.02)重畳したときの、演算値は50.003Hzと基本周波数との差が十分に小さい。   For example, in a power system with a fundamental frequency f = 50 Hz, when the frequency component separated by fn = 10 Hz from the fundamental frequency is superimposed by 2% (α = 0.02), the calculated value is 500.003 Hz and the difference between the fundamental frequency is Small enough.

本実施形態1と対比するために、周期を測定し、その逆数より周波数を求める公知の方法で同様の計算を行ってみる。   For comparison with the first embodiment, the same calculation is performed by a known method in which the period is measured and the frequency is obtained from the reciprocal thereof.

「商用周波数に近接した周波数成分」を含む電圧を同様に(基本波電圧の振幅で正規化して)次のように表記する。

Figure 2013092391
と表記する。 Similarly, a voltage including “a frequency component close to a commercial frequency” is expressed as follows (normalized by the amplitude of the fundamental voltage).
Figure 2013092391
Is written.

この式の周期は、

Figure 2013092391
の解であるので、同様に、例えば、f=50Hz、fn=10Hz、α=0.02とすると、
t=19.94msとなり、周期の逆数を周波数とするとf≒50.15Hzとなって、基本波の周波数50Hzに対して、f≒0.15Hzだけ外れた値となり、「商用周波数に近接した周波数成分」を含む場合に、大きな影響を受けることが分かる。 The period of this equation is
Figure 2013092391
Similarly, for example, when f = 50 Hz, fn = 10 Hz, and α = 0.02,
When t = 19.94 ms and the frequency of the reciprocal of the cycle, f≈50.15 Hz, which is a value deviated by f≈0.15 Hz from the fundamental frequency 50 Hz. It can be seen that when the component is included, it is greatly affected.

したがって、本実施形態1の周波数計測装置および周波数測定方法によれば、公知の方法に比較して、フィルタでの除去が難しい「商用周波数に近接した周波数成分」を含む場合にも電力系統の基本周波数をより正確に測定することができる。   Therefore, according to the frequency measurement device and the frequency measurement method of the first embodiment, the basics of the power system can be obtained even when “frequency components close to the commercial frequency” that are difficult to remove by a filter are included compared to the known method. The frequency can be measured more accurately.

以上の説明では、[V]として演算に用いる相を明示しなかったが、3相の内のどの相を選択しても得られる結果が同一であることは明らかである。また、上述のように3相の内の1相のみ選択して一つの周波数算出結果を得るほかに、3相の内の2相以上を用いて2つ以上の周波数算出結果を得たり、それらの平均値を得ても良い。   In the above description, the phase to be used in the calculation is not specified as [V], but it is clear that the result obtained is the same regardless of which of the three phases is selected. In addition to selecting only one of the three phases as described above to obtain one frequency calculation result, two or more of three phases can be used to obtain two or more frequency calculation results. May be obtained.

(効果)
以上述べたように、本実施形態1によれば、商用周波数に近接した周波数成分を含む場合でも高精度に基本周波数を測定することが可能である。
(effect)
As described above, according to the first embodiment, it is possible to measure the fundamental frequency with high accuracy even when the frequency component close to the commercial frequency is included.

[実施形態2]
次に、図3を参照して実施形態2による電力系統の周波数測定装置および周波数測定方法について説明する。
[Embodiment 2]
Next, the frequency measurement apparatus and frequency measurement method for the power system according to the second embodiment will be described with reference to FIG.

(構成)
本実施形態2が前述した実施形態1と主に相違する点は、周波数演算部2に導入される電気量が実施形態1の場合系統電圧量であるのに対して、本実施形態2の場合正相電圧量である。その他については特に変わるところはない。
(Constitution)
The main difference between the second embodiment and the first embodiment is that the amount of electricity introduced into the frequency calculation unit 2 is the system voltage amount in the first embodiment, whereas the second embodiment is different from the first embodiment. The amount of positive phase voltage. There is no particular change in the others.

図3の実施形態2による電力系統の周波数測定装置および周波数測定方法も、実施形態1同様、マイクロプロセッサおよびメモリを含む周辺回路等から構成されたディジタル演算装置によって実現できるもので、電力系統に設置された計器用変圧器(図示せず)から導出した電圧を導入する入力部1と、この入力部1の出力を導入して正相電圧量[V1]を合成する正相合成部3と、この正相合成部3で合成された正相電圧量[V1]を用いて周波数演算を行う周波数演算部2とから構成されている。   Similarly to the first embodiment, the frequency measurement device and frequency measurement method for the power system according to the second embodiment shown in FIG. 3 can be realized by a digital arithmetic unit composed of a peripheral circuit including a microprocessor and a memory, and is installed in the power system. An input unit 1 for introducing a voltage derived from an instrument transformer (not shown), and a positive phase synthesis unit 3 for introducing an output of the input unit 1 to synthesize a positive phase voltage amount [V1]; The frequency calculation unit 2 performs frequency calculation using the positive phase voltage amount [V1] synthesized by the positive phase synthesis unit 3.

正相合成部3は、各相毎にそれぞれディジタル変換された電気量[Va]、[Vb]、[Vc]を用いて、正相電圧量[V1]を合成する。なお、正相電圧量は[V1]=[Va]+a×[Vb]+a2×[Vc](a相基準の場合、但し、aはexp(j120)、ここで、+はベクトル和を意味する)として知られる電気量である。 The positive phase synthesizing unit 3 synthesizes the positive phase voltage amount [V1] using the electric quantities [Va], [Vb], and [Vc] digitally converted for each phase. The positive phase voltage amount is [V1] = [Va] + a × [Vb] + a 2 × [Vc] (in the case of a phase reference, where a is exp (j120), where + is a vector sum Is the quantity of electricity known as).

正相電気量の合成法には幾つかの方法が知られているが、本実施形態2の説明とは関係がないので、ここでは説明を省略する。勿論、定義式に忠実に合成演算を行っても良いことは言うまでもない。   Several methods are known for synthesizing the positive phase electric quantity, but the description is omitted here because it is not related to the description of the second embodiment. Of course, it goes without saying that the composition operation may be performed faithfully to the definition formula.

図4は周波数演算を行うソフトウエアの演算フローを示す図であり、正相電圧量[V1]から時系列データ[x(t)]を演算し、この時系列データ[x(t)]を数値積分して時系列データ[g(t)]を演算し、これらからこの二つの時系列データの実効値X、Gを演算し、この二つの実効値の比(X/G)を演算して、周波数[f]を演算することを示している。   FIG. 4 is a diagram showing a calculation flow of software for performing frequency calculation. Time series data [x (t)] is calculated from the positive phase voltage amount [V1], and the time series data [x (t)] is calculated. Calculate time series data [g (t)] by numerical integration, calculate the effective values X and G of these two time series data, and calculate the ratio (X / G) of these two effective values. The frequency [f] is calculated.

(作用)
ここでは、正相電圧量[V1]を使用することによる作用効果を説明する。
電圧の大きな位相急変は、電力系統の事故によるものであり、3相短絡(3ΦS)、2相短絡(2ΦS)、2相地絡(2ΦG)、1相地絡(1ΦG)の事故によってどのような位相急変が発生するかについては、例えば非特許文献2や非特許文献3にて公知である。非特許文献3では、第9章送電線の事故時電圧・電流の図式解法とその傾向にて、詳細に解説がなされている。大きな位相急変は、線間電圧や相電圧をそのまま使用して、周波数の計測を行う場合には避けることのできない現象である。しかし、大きな位相急変が(電力系統の事故時にも)発生しない電気量を用いれば、周波数計測の結果に大きな誤差が含まれることはない。
(Function)
Here, the effect by using the positive phase voltage amount [V1] will be described.
A sudden phase change with a large voltage is due to an accident in the power system. For example, Non-Patent Document 2 and Non-Patent Document 3 disclose whether a sudden phase change occurs. Non-Patent Document 3 explains in detail in Chapter 9 Schematic Solution of Transmission Line Voltage / Current and Trends. A large sudden phase change is a phenomenon that cannot be avoided when frequency is measured using line voltages or phase voltages as they are. However, if an amount of electricity that does not cause a large phase sudden change (even during a power system accident) is used, the frequency measurement result does not include a large error.

特許文献1では、電力系統事故時にも電圧位相急変が小さい電気量である正相電圧とそれを用いた周波数計測について、その作用効果を述べている。
特許文献1中に詳述されているので、繰り返しの説明は省略するが、正相電圧を用いることで、電力系統事故時にも周波数計測の結果に大きな誤差が含まれることがない。
Patent Document 1 describes the effects of a positive phase voltage, which is an electric quantity with a small voltage phase sudden change even when a power system failure occurs, and frequency measurement using the positive phase voltage.
Although detailed description is omitted in Patent Document 1, repeated description is omitted, but by using the positive phase voltage, a large error is not included in the frequency measurement result even in the case of a power system failure.

(効果)
以上述べたように、本実施形態2によれば、正相電気量[V1]を用いることで、電力系統事故時でもより高精度に基本周波数を測定することが可能となり、かつ、電力系統事故に伴う擾乱の影響を受けにくい、電力系統の周波数測定装置および周波数測定方法を提供することができる。
(effect)
As described above, according to the second embodiment, by using the positive phase electric quantity [V1], it is possible to measure the fundamental frequency with higher accuracy even in the case of a power system failure, and the power system failure. It is possible to provide a frequency measurement device and a frequency measurement method for an electric power system that are not easily affected by the disturbance caused by the.

なお、以上説明した実施形態1および2は、例として提示したものであって発明の範囲を限定することを意図したものではない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   The first and second embodiments described above are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…入力部、2…周波数演算部、3…正相合成部、Va、Vb、Vc…電力系統の各相電圧、[Va],[Vb],[Vc]…ディジタル変換された電力系統の各相電圧量、[V1]…合成された正相電圧量、[f]…測定された周波数、[x(t)]…[V1]から得られた時系列データ、[g(t)]…[x(t)]を数値積分して得られた時系列データ、X…[x(t)]の実効値、G…[g(t)]の実効値。   DESCRIPTION OF SYMBOLS 1 ... Input part, 2 ... Frequency calculating part, 3 ... Positive phase synthetic | combination part, Va, Vb, Vc ... Each phase voltage of a power system, [Va], [Vb], [Vc] ... Digitally converted power system Voltage amount of each phase, [V1] ... synthesized positive phase voltage amount, [f] ... measured frequency, [x (t)] ... time series data obtained from [V1], [g (t)] ... time-series data obtained by numerical integration of [x (t)], X ... effective value of [x (t)], G ... effective value of [g (t)].

Claims (4)

三相交流の電力系統の電圧を導入しディジタルデータに変換して出力する入力部と、前記入力部から出力されたディジタルデータの系統電圧を導入して周波数演算を行う周波数演算部とを備え、
前記周波数演算部は、導入したディジタルデータの系統電圧から第1の時系列データx(t)を生成する第1の手段と、前記第1の手段で生成された第1の時系列データx(t)を数値積分して第2の時系列データg(t)を生成する第2の手段と、前記第1の手段で求めた第1の時系列データx(t)の実効値(X)を導出する第3の手段と、前記第2の手段で求めた第2の時系列データg(t)の実効値(G)を導出する第4の手段と、前記第3の手段で求めた実効値(X)および前記第4の手段求めた実効値(G)の比に予定の定数を乗じて周波数(f)を導出する第5の手段、を備えたことを特徴とする電力系統の周波数測定装置。
An input unit that introduces a voltage of a three-phase AC power system, converts it into digital data and outputs it, and a frequency calculation unit that introduces a system voltage of digital data output from the input unit and performs a frequency calculation,
The frequency calculation unit includes first means for generating first time series data x (t) from the system voltage of the introduced digital data, and first time series data x ( a second means for numerically integrating t) to generate second time series data g (t), and an effective value (X) of the first time series data x (t) obtained by the first means. Obtained by the third means, fourth means for deriving the effective value (G) of the second time series data g (t) obtained by the second means, and obtained by the third means A fifth means for deriving a frequency (f) by multiplying a ratio between the effective value (X) and the effective value (G) obtained by the fourth means by a predetermined constant; Frequency measuring device.
三相交流の電力系統の電圧を導入しディジタルデータに変換し、このディジタルデータの系統電圧を導入して周波数演算を行うようにした電力系統の周波数測定方法において、
前記ディジタルデータの系統電圧から第1の時系列データx(t)を生成し、前記第1の時系列データを数値積分して第2の時系列データg(t)を生成し、前記第1の時系列データの実効値(X)および前記第2の時系列データの実効値(G)を求め、前記実効値(X)および前記実効値(G)の比に予定の定数を乗じて周波数(f)を導出することを特徴とする電力系統の周波数測定方法。
In the method of measuring the frequency of the power system that introduces the voltage of the power system of the three-phase AC and converts it into digital data, and introduces the system voltage of this digital data to perform the frequency calculation,
First time-series data x (t) is generated from the system voltage of the digital data, and second time-series data g (t) is generated by numerical integration of the first time-series data. The effective value (X) of the time-series data and the effective value (G) of the second time-series data are obtained, and the ratio of the effective value (X) and the effective value (G) is multiplied by a predetermined constant to obtain the frequency. (f) is derived, The frequency measurement method of the electric power system characterized by the above-mentioned.
三相交流の電力系統の各相の電圧を導入しディジタルデータに変換して出力する入力部と、前記入力部から出力された各相のディジタルデータの系統電圧を導入して正相電気量を合成する正相合成部と、前記正相合成部で合成された正相電気量を用いて周波数演算を行う周波数演算部とを備え、
前記周波数演算部は、導入した系統電圧の正相量に係わる第3の時系列データx(t)を生成する第6の手段と、前記第6の手段で生成された第3の時系列データx(t)を数値積分して第4の時系列データg(t)を生成する第7の手段と、前記第6の手段で求めた第3の時系列データx(t)の実効値(X)を導出する第8の手段と、前記第7の手段で求めた第4の時系列データg(t)の実効値(G)を導出する第9の手段と、前記第8の手段で求めた実効値(X)および前記第9の手段求めた実効値(G)の比に予定の定数を乗じて周波数(f)を導出する第10の手段、を備えたことを特徴とする電力系統の周波数測定装置。
An input unit that introduces a voltage of each phase of a three-phase AC power system, converts it into digital data and outputs it, and introduces a system voltage of the digital data of each phase output from the input unit to calculate the positive phase electric quantity A positive phase synthesis unit to synthesize, and a frequency calculation unit that performs frequency calculation using the positive phase electrical quantity synthesized by the positive phase synthesis unit,
The frequency calculation unit includes sixth means for generating third time series data x (t) related to the positive phase amount of the introduced system voltage, and third time series data generated by the sixth means. A seventh means for numerically integrating x (t) to generate fourth time series data g (t) and an effective value of the third time series data x (t) obtained by the sixth means ( An eighth means for deriving X), a ninth means for deriving the effective value (G) of the fourth time series data g (t) obtained by the seventh means, and an eighth means A tenth means for deriving a frequency (f) by multiplying a ratio of the obtained effective value (X) and the effective value (G) obtained by the ninth means by a predetermined constant; System frequency measuring device.
三相交流の電力系統の各相の電圧を導入し各相のディジタルデータに変換し、この各相のディジタルデータの系統電圧を導入して正相電気量を合成し、この正相電気量を用いて周波数演算を行うようにした電力系統の周波数測定方法において、
前記導入した系統電圧の正相量に係わる第3の時系列データx(t)を生成し、前記第3の時系列データを数値積分して第4の時系列データg(t)を生成し、前記第3の時系列データの実効値(X)および前記第4の時系列データの実効値(G)を求め、前記実効値(X)および前記実効値(G)の比に予定の定数を乗じて周波数(f)を導出することを特徴とする電力系統の周波数測定方法。
The voltage of each phase of the three-phase AC power system is introduced and converted to digital data of each phase, the system voltage of this digital data of each phase is introduced to synthesize positive phase electricity, and this positive phase electricity is In the frequency measurement method of the power system that is used to perform the frequency calculation,
The third time series data x (t) related to the introduced positive phase amount of the system voltage is generated, and the fourth time series data g (t) is generated by numerical integration of the third time series data. The effective value (X) of the third time series data and the effective value (G) of the fourth time series data are obtained, and a predetermined constant is set as the ratio of the effective value (X) and the effective value (G). A frequency measurement method for an electric power system, wherein the frequency (f) is derived by multiplying.
JP2011232933A 2011-10-24 2011-10-24 Frequency measurement apparatus and frequency measurement method for power system Active JP5813455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232933A JP5813455B2 (en) 2011-10-24 2011-10-24 Frequency measurement apparatus and frequency measurement method for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232933A JP5813455B2 (en) 2011-10-24 2011-10-24 Frequency measurement apparatus and frequency measurement method for power system

Publications (2)

Publication Number Publication Date
JP2013092391A true JP2013092391A (en) 2013-05-16
JP5813455B2 JP5813455B2 (en) 2015-11-17

Family

ID=48615624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232933A Active JP5813455B2 (en) 2011-10-24 2011-10-24 Frequency measurement apparatus and frequency measurement method for power system

Country Status (1)

Country Link
JP (1) JP5813455B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226590A (en) * 2016-07-19 2016-12-14 国网河北省电力公司电力科学研究院 A kind of synchronous phase measuring in power system method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127272A (en) * 1976-04-16 1977-10-25 Hitachi Ltd Operator
JPS5795136A (en) * 1980-11-29 1982-06-12 Tokyo Shibaura Electric Co Frequency relay unit
JPH06281679A (en) * 1993-03-25 1994-10-07 Toshiba Corp Frequency detection system
JPH09171038A (en) * 1995-12-19 1997-06-30 Toshiba Syst Technol Kk Frequency detecting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127272A (en) * 1976-04-16 1977-10-25 Hitachi Ltd Operator
JPS5795136A (en) * 1980-11-29 1982-06-12 Tokyo Shibaura Electric Co Frequency relay unit
JPH06281679A (en) * 1993-03-25 1994-10-07 Toshiba Corp Frequency detection system
JPH09171038A (en) * 1995-12-19 1997-06-30 Toshiba Syst Technol Kk Frequency detecting system

Also Published As

Publication number Publication date
JP5813455B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
Freijedo et al. A generic open-loop algorithm for three-phase grid voltage/current synchronization with particular reference to phase, frequency, and amplitude estimation
JP4679525B2 (en) Active filter
JP6127824B2 (en) Power conditioner system for photovoltaic power generation
JP2012163543A (en) Frequency detector
JP5680260B1 (en) Digital protection relay
Cardenas et al. Real-time evaluation of power quality using FPGA based measurement system
JP5813455B2 (en) Frequency measurement apparatus and frequency measurement method for power system
JP6138353B2 (en) Circuit breaker
US9285410B2 (en) Control circuit, and power generation device having the same
JP2007306638A (en) Sampling frequency converter
KR20120065533A (en) Control device and method for making unbalanced three phase voltage at ac power source
JP2007139434A (en) Method and device for estimating high-voltage capacitor current
JP6126372B2 (en) Ground resistance meter, ground resistance measurement method, and program
JP2023027568A (en) current sensor
JP2018119944A (en) Voltage measuring device and voltage measuring method
JP2014014208A (en) Ground directional relay
JP2021071336A (en) Excitation inrush current discrimination device and discrimination method
RU2486532C1 (en) Device to control deformation of power transformer windings
CN113691152B (en) Power conversion device and abnormality detection method
KR20180051032A (en) Modified single phase-locked loop control method using moving average filter
Efe Analysis of power system interharmonics
JP4588985B2 (en) Harmonic analyzer
JP2006266684A (en) Higher harmonic detection apparatus
JP2011142709A (en) Protective relay device
JP2017020913A (en) Insulation monitoring device and inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R151 Written notification of patent or utility model registration

Ref document number: 5813455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151