JP2013092159A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP2013092159A
JP2013092159A JP2013031648A JP2013031648A JP2013092159A JP 2013092159 A JP2013092159 A JP 2013092159A JP 2013031648 A JP2013031648 A JP 2013031648A JP 2013031648 A JP2013031648 A JP 2013031648A JP 2013092159 A JP2013092159 A JP 2013092159A
Authority
JP
Japan
Prior art keywords
fuel injection
injection
fuel
period
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013031648A
Other languages
Japanese (ja)
Other versions
JP5435157B2 (en
Inventor
Kazuhiro Terayama
和宏 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013031648A priority Critical patent/JP5435157B2/en
Publication of JP2013092159A publication Critical patent/JP2013092159A/en
Application granted granted Critical
Publication of JP5435157B2 publication Critical patent/JP5435157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device that can suppress a torque step upon switching an injection mode.SOLUTION: In a fuel injection control device 11 for a spark ignition type internal combustion engine EG including a fuel injection valve 118 which directly injects fuel to a combustion chamber, a control signal for switching between a first injection mode where a first fuel injection is performed from a middle period to a latter period of an intake stroke, and a second injection mode where a fuel injection is performed only from an anterior period to a middle period of the intake stroke is outputted. The control signal for performing the fuel injection only from the middle period to the latter period of the intake stroke is outputted upon switching from the second injection mode to the first injection mode.

Description

本発明は、内燃機関の燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for an internal combustion engine.

高負荷又は高回転領域における混合気の均質性を高めるために、吸気行程の中期に燃料噴射を行ったのち、圧縮行程の中期以降に少なくとも2回の燃料噴射を行う火花点火式直噴エンジンが知られている(特許文献1)。   In order to improve the homogeneity of the air-fuel mixture in the high load or high rotation region, a spark ignition direct injection engine that performs fuel injection at the middle of the intake stroke and then performs at least two fuel injections after the middle of the compression stroke. Known (Patent Document 1).

特開2005−256630号公報JP 2005-256630 A

しかしながら、上記従来技術では噴射モードを切り換える際にトルク段差が生じるという問題がある。   However, the conventional technique has a problem that a torque step is generated when the injection mode is switched.

本発明が解決しようとする課題は、噴射モードの切り換え時のトルク段差を抑制できる燃料噴射制御装置を提供することである。 The problem to be solved by the present invention is to provide a fuel injection control device capable of suppressing a torque step at the time of switching the injection mode.

本発明は、吸気行程の前期から中期の期間にのみ燃料噴射を行う第2噴射モードから、吸気行程の中期から後期に第1回目の燃料噴射を行ったのち圧縮行程の前期から中期に第2回目の燃料噴射を行う第1噴射モードへの切り換え時に、吸気行程の中期から後期の期間にのみ燃料噴射を行うことによって上記課題を解決する。 In the present invention, the second injection mode in which fuel is injected only during the period from the first period to the middle period of the intake stroke, the second fuel injection is performed from the first period to the middle of the compression stroke after the first fuel injection is performed from the middle period to the second period of the intake stroke At the time of switching to the first injection mode in which the second fuel injection is performed, the above problem is solved by performing the fuel injection only during the middle period to the latter period of the intake stroke.

本発明によれば、第2噴射モードから第1噴射モードへの切り換え時に燃料噴射時期及び分割比が徐々に切り換えられるので、噴射モードの切り換え時のトルク段差を抑制することができる。   According to the present invention, since the fuel injection timing and the division ratio are gradually switched when switching from the second injection mode to the first injection mode, it is possible to suppress a torque step during switching of the injection mode.

本発明の一実施の形態を適用した内燃機関を示すブロック図である。1 is a block diagram showing an internal combustion engine to which an embodiment of the present invention is applied. 図1に示す内燃機関の燃料噴射タイミングを示すタイムチャートである。It is a time chart which shows the fuel-injection timing of the internal combustion engine shown in FIG. 図1に示す内燃機関の第1回目の噴射量と第2回目の噴射時期との関係を示す制御マップである。3 is a control map showing a relationship between a first injection amount and a second injection timing of the internal combustion engine shown in FIG. 1. 図1に示す内燃機関の第1噴射モードと第2噴射モードとの切換時の燃料噴射タイミングを示すタイムチャートである。FIG. 3 is a time chart showing fuel injection timing when switching between a first injection mode and a second injection mode of the internal combustion engine shown in FIG. 1. FIG. 図1に示す内燃機関の燃料噴射時期とサージトルクとの関係を示すグラフである。2 is a graph showing a relationship between fuel injection timing and surge torque of the internal combustion engine shown in FIG. 1. 図1に示す内燃機関の燃料噴射時期と出力トルクとの関係を示すグラフである。2 is a graph showing the relationship between fuel injection timing and output torque of the internal combustion engine shown in FIG. 1.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態を適用した火花点火式直噴エンジンEGを示すブロック図であり、エンジンEGの吸気通路111には、エアーフィルタ112、吸入空気流量を検出するエアフローメータ113、吸入空気流量を制御するスロットルバルブ114およびコレクタ115が設けられている。   FIG. 1 is a block diagram showing a spark ignition direct injection engine EG to which an embodiment of the present invention is applied. An air filter 112 and an air flow meter 113 for detecting an intake air flow rate are provided in an intake passage 111 of the engine EG. A throttle valve 114 and a collector 115 for controlling the intake air flow rate are provided.

スロットルバルブ114には、当該スロットルバルブ114の開度を調整するDCモータ等のアクチュエータ116が設けられている。このスロットルバルブアクチュエータ116は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成するように、エンジンコントロールユニット11からの駆動信号に基づき、スロットルバルブ114の開度を電子制御する。また、スロットルバルブ114の開度を検出するスロットルセンサ117が設けられて、その検出信号をエンジンコントロールユニット1へ出力する。なお、スロットルセンサ117はアイドルスイッチとしても機能させることができる。   The throttle valve 114 is provided with an actuator 116 such as a DC motor that adjusts the opening of the throttle valve 114. The throttle valve actuator 116 electronically controls the opening of the throttle valve 114 based on the drive signal from the engine control unit 11 so as to achieve the required torque calculated based on the driver's accelerator pedal operation amount and the like. Further, a throttle sensor 117 for detecting the opening degree of the throttle valve 114 is provided, and the detection signal is output to the engine control unit 1. The throttle sensor 117 can also function as an idle switch.

燃料噴射バルブ118は、燃焼室123に臨ませて設けられている。燃料噴射バルブ118は、エンジンコントロールユニット11において設定される駆動パルス信号によって開弁駆動され、図外の燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に制御された燃料を、運転要求に応じた噴射量となるように所定のタイミングで筒内に直接噴射する。本例における燃料噴射時期の詳細は後述する。   The fuel injection valve 118 is provided facing the combustion chamber 123. The fuel injection valve 118 is driven to open by a drive pulse signal set in the engine control unit 11 and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator in accordance with an operation request. The fuel is directly injected into the cylinder at a predetermined timing so as to reach a quantity. Details of the fuel injection timing in this example will be described later.

シリンダ119と、当該シリンダ内を往復移動するピストン120の冠面と、吸気バルブ121及び排気バルブ122が設けられたシリンダヘッドとで囲まれる空間が燃焼室123を構成する。点火プラグ124は、各気筒の燃焼室123に臨んで装着され、エンジンコントロールユニット11からの点火信号に基づいて吸入混合気に対して点火を行う。   A space surrounded by the cylinder 119, the crown surface of the piston 120 that reciprocates within the cylinder, and the cylinder head provided with the intake valve 121 and the exhaust valve 122 constitutes a combustion chamber 123. The spark plug 124 is mounted facing the combustion chamber 123 of each cylinder, and ignites the intake air-fuel mixture based on an ignition signal from the engine control unit 11.

一方、排気通路125には、排気中の特定成分、たとえば酸素濃度を検出することにより排気、ひいては吸入混合気の空燃比を検出する空燃比センサ126が設けられ、その検出信号はエンジンコントロールユニット11へ出力される。この空燃比センサ126は、リッチ・リーン出力する酸素センサであっても良いし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい。   On the other hand, the exhaust passage 125 is provided with an air-fuel ratio sensor 126 for detecting an exhaust gas by detecting a specific component in the exhaust gas, for example, oxygen concentration, and thus an air-fuel ratio of the intake air-fuel mixture. Is output. The air-fuel ratio sensor 126 may be an oxygen sensor that performs rich / lean output, or a wide-area air-fuel ratio sensor that linearly detects the air-fuel ratio over a wide area.

また、排気通路125には、排気を浄化するための排気浄化触媒127が設けられている。この排気浄化触媒127としては、ストイキ(理論空燃比,λ=1、空気重量/燃料重量=14.7)近傍において排気中の一酸化炭素COと炭化水素HCを酸化するとともに、窒素酸化物NOxの還元を行って排気を浄化することができる三元触媒、或いは排気中の一酸化炭素COと炭化水素HCの酸化を行う酸化触媒を用いることができる。   The exhaust passage 125 is provided with an exhaust purification catalyst 127 for purifying the exhaust. The exhaust purification catalyst 127 oxidizes carbon monoxide CO and hydrocarbon HC in the exhaust in the vicinity of stoichiometric (theoretical air-fuel ratio, λ = 1, air weight / fuel weight = 14.7), and nitrogen oxide NOx. It is possible to use a three-way catalyst that can purify the exhaust gas by reducing the above, or an oxidation catalyst that oxidizes carbon monoxide CO and hydrocarbon HC in the exhaust gas.

排気通路125の排気浄化触媒127の下流側には、排気中の特定成分、たとえば酸素濃度を検出し、リッチ・リーン出力する酸素センサ128が設けられ、その検出信号はエンジンコントロールユニット11へ出力される。ここでは、酸素センサ128の検出値により、空燃比センサ126の検出値に基づく空燃比フィードバック制御を補正することで、空燃比センサ126の劣化等に伴う制御誤差を抑制する等のために(いわゆるダブル空燃比センサシステム採用のために)、下流側酸素センサ128を設けて構成したが、空燃比センサ126の検出値に基づく空燃比フィードバック制御を行なわせるだけで良い場合には、酸素センサ128を省略することができる。   On the downstream side of the exhaust purification catalyst 127 in the exhaust passage 125, there is provided an oxygen sensor 128 that detects a specific component in the exhaust, for example, oxygen concentration, and outputs a rich / lean output, and the detection signal is output to the engine control unit 11. The Here, by correcting the air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor 126 based on the detection value of the oxygen sensor 128, so as to suppress a control error associated with the deterioration of the air-fuel ratio sensor 126 (so-called) Although the downstream oxygen sensor 128 is provided (for the adoption of a double air-fuel ratio sensor system), if it is only necessary to perform air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor 126, the oxygen sensor 128 is Can be omitted.

なお、図1において129はマフラである。   In FIG. 1, reference numeral 129 denotes a muffler.

エンジンEGのクランク軸130にはクランク角センサ131が設けられ、エンジンコントロールユニット11は、クランク角センサ131から機関回転と同期して出力されるクランク単位角信号を一定時間カウントすることで、又は、クランク基準角信号の周期を計測することで、機関回転速度Neを検出することができる。   The crankshaft 130 of the engine EG is provided with a crank angle sensor 131, and the engine control unit 11 counts a crank unit angle signal output from the crank angle sensor 131 in synchronization with the engine rotation for a predetermined time, or By measuring the cycle of the crank reference angle signal, the engine speed Ne can be detected.

エンジンEGの冷却ジャケット132には、水温センサ133が当該冷却ジャケットに臨んで設けられ、冷却ジャケット131内の冷却水温度Twを検出し、これをエンジンコントロールユニット11へ出力する。   The cooling jacket 132 of the engine EG is provided with a water temperature sensor 133 facing the cooling jacket, detects the cooling water temperature Tw in the cooling jacket 131, and outputs this to the engine control unit 11.

さて、背景技術の欄で触れたとおり、直噴エンジンの低回転高負荷領域では混合気の均質性が悪く燃焼変動が大きいが、本発明者が探求したところ以下の事項が判明した。   Now, as mentioned in the background section, the homogeneity of the air-fuel mixture is poor and the combustion fluctuation is large in the low-rotation and high-load region of the direct injection engine.

図5に示す「△」のプロットは、スロットルバルブ114を全開とし、吸気行程及び圧縮行程のうちクランク角度CAが0〜230°ATDCの範囲において、10°間隔でストイキ(空気過剰率λ=1)の燃料を1回噴射したときのサージトルクを測定した結果を示すグラフである。   In the plot of “Δ” shown in FIG. 5, the throttle valve 114 is fully opened, and the stoichiometric (excess air ratio λ = 1) at intervals of 10 ° in the range of the crank angle CA of 0 to 230 ° ATDC in the intake stroke and the compression stroke. It is a graph which shows the result of having measured the surge torque when the fuel of 1) is injected once.

これによると、低回転高負荷領域では、P1で示すCA=40〜50°ATDCの期間で燃料噴射するのが最もサージトルクが小さく運転性が良好であることが理解されるが、P2で示すCA=90〜130°ATDCの期間に燃料噴射してもこれと同等の小さいサージトルクとなることが確認された。このCA=90〜130°ATDCといった吸気行程の中期から後期の期間は、筒内のタンブル流を壊さない均質性の充分に高い領域と考えられるからである。   According to this, in the low rotation and high load region, it is understood that the fuel injection is the smallest in the period of CA = 40 to 50 ° ATDC indicated by P1, and the operability is good, but indicated by P2. It was confirmed that even if fuel was injected during the period of CA = 90 to 130 ° ATDC, the same surge torque was obtained. This is because the period from the middle stage to the latter stage of the intake stroke such as CA = 90 to 130 ° ATDC is considered to be a sufficiently high region that does not break the tumble flow in the cylinder.

また、P3で示すCA=190〜220°ATDCの期間に燃料噴射してもサージトルクが小さくなることが確認された。このCA=190〜220°ATDCという圧縮行程の前期から中期の期間は、シリンダ容積が大きい故、空気と燃料の混合体積が大きく均質性が高い領域と考えられるからである。   It was also confirmed that the surge torque was reduced even when fuel was injected during the CA = 190-220 ° ATDC period indicated by P3. This is because the period from the first to the middle of the compression stroke of CA = 190 to 220 ° ATDC is considered to be a region where the mixing volume of air and fuel is large and the homogeneity is high because the cylinder volume is large.

そこで、本発明者は、CA=90°ATDCの時期(固定)に第1回目の燃料噴射(ストイキ)を行ったのち、CA=160〜260°ATDCの範囲において、10°間隔で第2回目の燃料噴射を行ったときのサージトルクを測定した。第1回目の燃料噴射量と第2回目の燃料噴射量との分割比は7:3とした。図5に示す「○」のプロットがこの結果を示すグラフである。   Therefore, the present inventor performs the first fuel injection (stoichiometric) at the time of CA = 90 ° ATDC (fixed), and then the second time at intervals of 10 ° in the range of CA = 160 to 260 ° ATDC. The surge torque when fuel injection was performed was measured. The division ratio between the first fuel injection amount and the second fuel injection amount was 7: 3. The plot of “◯” shown in FIG. 5 is a graph showing this result.

これによると、CA=90°ATDCで行う第1回目の燃料噴射に対し、P4で示すCA=180〜240°ATDC、より好ましくはCA=200〜230°ATDC、さらにより好ましくはCA=210〜220°ATDCの期間に第2回目の燃料噴射を行うとサージトルクが約25%小さくなることが確認された。これは、上述したようにCA=180〜240°ATDCという圧縮行程の前期から中期の期間は、シリンダ容積が大きい故、空気と燃料の混合体積が大きく均質性が高い領域と考えられるからである。   According to this, for the first fuel injection performed at CA = 90 ° ATDC, CA = 180 to 240 ° ATDC, more preferably CA = 200 to 230 ° ATDC, and even more preferably CA = 210 to P4. It was confirmed that the surge torque is reduced by about 25% when the second fuel injection is performed during the period of 220 ° ATDC. This is because, as described above, the period from the first half to the middle of the compression stroke of CA = 180 to 240 ° ATDC is considered to be a region where the mixing volume of air and fuel is large and the homogeneity is high because the cylinder volume is large. .

したがって、低回転高負荷領域において、CA=90〜130°ATDCという吸気行程の中期から後期の期間に第1回目の燃料噴射を行ったのち、CA=180〜240°ATDCという圧縮行程の前期から中期の期間に第2回目の燃料噴射を行うと、すなわち均質燃焼するようなタイミングで2度の燃料噴射を行うことで、サージトルクが小さくなり運転性が向上する。   Therefore, after the first fuel injection is performed in the middle to late period of the intake stroke of CA = 90 to 130 ° ATDC in the low rotation and high load region, from the first half of the compression stroke of CA = 180 to 240 ° ATDC. When the second fuel injection is performed in the middle period, that is, by performing the fuel injection twice at a timing at which homogeneous combustion is performed, the surge torque is reduced and the drivability is improved.

またこうした燃料噴射時期の制御はサージトルク、すなわち燃焼変動の改善だけでなく出力の向上にも寄与する。すなわち、低回転高負荷領域では、高回転領域に比べてノック余裕度が小さいために、点火時期が最小点火進角値MBTから離れた時期に設定される。このため、燃焼変動が大きくなるだけでなく出力も低下するといった問題があるが、上記の時期に第1回目と第2回目の燃料噴射を行うことで燃焼変動だけでなく出力も向上する。   Further, such control of the fuel injection timing contributes not only to improvement of surge torque, that is, combustion fluctuation, but also to improvement of output. That is, in the low rotation high load region, since the knock margin is smaller than that in the high rotation region, the ignition timing is set at a time away from the minimum ignition advance value MBT. For this reason, there is a problem that not only the combustion fluctuation increases but also the output decreases, but by performing the first and second fuel injections at the above timing, not only the combustion fluctuation but also the output is improved.

図6に示す「△」のプロットは、スロットルバルブ114を全開とし、吸気行程及び圧縮行程のうちクランク角度CAが50〜250°ATDCの範囲において、10°間隔でストイキ(空気過剰率λ=1)よりリッチの燃料を1回噴射したときの出力トルクを測定した結果を示すグラフである。   The plot of “Δ” shown in FIG. 6 indicates that the throttle valve 114 is fully opened and the stoichiometric air excess ratio λ = 1 at intervals of 10 ° in the range of the crank angle CA of 50 to 250 ° ATDC in the intake stroke and the compression stroke. It is a graph which shows the result of having measured the output torque when richer fuel is injected once.

これによると、CA=100°ATDCの時期に燃料噴射を行うと出力トルクが最大となることが確認されたので、第1回目の燃料噴射時期をCA=100°ATDC(固定)で行ったのち、CA=150〜260°ATDCの範囲において、10°間隔で第2回目の燃料噴射を行ったときの出力トルクを測定した。第1回目の燃料噴射量と第2回目の燃料噴射量との分割比は7:3とした。図6に示す「○」のプロットがこの結果を示すグラフである。   According to this, it has been confirmed that when the fuel injection is performed at the time of CA = 100 ° ATDC, the output torque is maximized. Therefore, after the first fuel injection timing is performed at CA = 100 ° ATDC (fixed) In the range of CA = 150 to 260 ° ATDC, the output torque when the second fuel injection was performed at 10 ° intervals was measured. The division ratio between the first fuel injection amount and the second fuel injection amount was 7: 3. The plot of “◯” shown in FIG. 6 is a graph showing this result.

これによると、P5で示すCA=180〜240°ATDCの時期に第2回目の燃料噴射を行うと、出力トルクが約5%向上することが確認された。   According to this, it was confirmed that when the second fuel injection is performed at CA = 180 to 240 ° ATDC indicated by P5, the output torque is improved by about 5%.

以上の知見に基づき、本例では以下の制御を実行する。   Based on the above knowledge, the following control is executed in this example.

図2は本例の直噴エンジンEGの燃料噴射タイミングを示すタイムチャートであり、運転状態に応じて第1噴射モードと第2噴射モードとを選択し、切り換える。同図の上に示す第1噴射モードは、図5及び図6を参照して説明したように、吸気行程の中期から後期の期間に第1回目の燃料噴射を行い、続く圧縮行程の前期から中期の期間に第2回目の燃料噴射を行うモードであり、これにより均質燃焼が行われる。   FIG. 2 is a time chart showing the fuel injection timing of the direct injection engine EG of this example, and the first injection mode and the second injection mode are selected and switched according to the operating state. As described with reference to FIGS. 5 and 6, the first injection mode shown in the upper part of the figure performs the first fuel injection in the middle period to the latter period of the intake stroke, and starts from the first half of the subsequent compression stroke. This is a mode in which the second fuel injection is performed in the middle period, whereby homogeneous combustion is performed.

この第1噴射モードは、たとえば低回転高負荷の運転条件の際に実行される。言い換えると、低回転高負荷以外の運転条件の際に第1噴射モードの実行を禁止する。これにより、第1噴射モードによって必ずしも燃焼変動の抑制あるいは出力トルクの向上が得られない運転条件では第1噴射モードを禁止して、燃焼変動あるいは出力トルクの改善を図る。第1噴射モードを禁止する低回転高負荷以外の運転条件では、たとえば第2噴射モードを実行する。   This first injection mode is executed, for example, under the operating condition of low rotation and high load. In other words, the execution of the first injection mode is prohibited under operating conditions other than low rotation and high load. As a result, the first injection mode is prohibited under the operating conditions in which the first injection mode cannot necessarily suppress the combustion fluctuation or the output torque is improved, and the combustion fluctuation or the output torque is improved. For example, the second injection mode is executed under operating conditions other than the low rotation and high load that prohibit the first injection mode.

第1噴射モードにおける第1回目の燃料噴射量と第2回目の燃料噴射量との分割比は運転条件に応じて適宜設定することができるが、本例では図3に示すように、第1回目の燃料噴射量の分割比を大きくするほど第2回目の燃料噴射時期を遅角させることとしている。図3は直噴エンジンEGの第1回目の噴射量と第2回目の噴射時期との関係を示す制御マップである。   The division ratio between the first fuel injection amount and the second fuel injection amount in the first injection mode can be appropriately set according to the operating conditions. In this example, as shown in FIG. The second fuel injection timing is retarded as the division ratio of the fuel injection amount is increased. FIG. 3 is a control map showing the relationship between the first injection amount and the second injection timing of the direct injection engine EG.

これにより増量された第1回目の燃料により均質性が低下するおそれもあるが、第2回目の噴射をリタードさせることで両噴射間隔が長くなるので、燃料の均質性が低下するのを抑制することができる。   This may reduce the homogeneity due to the increased amount of the first fuel, but retarding the second injection suppresses the deterioration of the homogeneity of the fuel because both injection intervals are increased. be able to.

これに対し、たとえば低回転高負荷以外の運転状態では図2の下に示す第2噴射モードを選択する。第2噴射モードは吸気行程の前期から中期の期間に1回だけ燃料噴射を行うモードであり、これにより均質燃焼が行われる。   On the other hand, for example, the second injection mode shown in the lower part of FIG. The second injection mode is a mode in which fuel injection is performed only once during the period from the previous period to the middle period of the intake stroke, whereby homogeneous combustion is performed.

そして、第1噴射モードから第2噴射モードへ切り換える場合、又は第2噴射モードから第1噴射モードへ切り換える場合は、燃料噴射時期を図2に示すように直接切り換えることもできるが、本例では切り換え時のトルク段差を抑制するために図4に示すように制御する。   When switching from the first injection mode to the second injection mode, or when switching from the second injection mode to the first injection mode, the fuel injection timing can be switched directly as shown in FIG. In order to suppress the torque step at the time of switching, control is performed as shown in FIG.

図4は、直噴エンジンEGの第1噴射モードと第2噴射モードとの切換時の燃料噴射タイミングを示すタイムチャートであり、一番上が第2噴射モードの燃料噴射時期を示し、一番下が第1噴射モードの燃料噴射時期を示す。   FIG. 4 is a time chart showing the fuel injection timing at the time of switching between the first injection mode and the second injection mode of the direct injection engine EG, and the top shows the fuel injection timing in the second injection mode. The bottom shows the fuel injection timing in the first injection mode.

そしてたとえば、第2噴射モードから第1噴射モードへ切り換える場合は、まず上から二番目及び三番目に示すように吸気行程の前期から中期の期間に行われている1回のみの燃料噴射の時期を第1噴射モードの第1回目の噴射時期まで遅角し、次いで上から四番目に示すように第1噴射モードと同様に吸気行程にて第1回目の燃料噴射を行ったのち圧縮行程で第2回目の燃料噴射を行う。このとき、燃料噴射量に変更がない場合は、第2回目の燃料噴射量の分割比を徐々に増加させる。   And, for example, when switching from the second injection mode to the first injection mode, as shown in the second and third from the top, the timing of the one-time fuel injection that is performed from the first period to the middle period of the intake stroke Is retarded until the first injection timing in the first injection mode, and then, as shown in the fourth from the top, after the first fuel injection is performed in the intake stroke as in the first injection mode, in the compression stroke A second fuel injection is performed. At this time, if there is no change in the fuel injection amount, the division ratio of the second fuel injection amount is gradually increased.

逆に第1噴射モードから第2噴射モードへ切り換える場合は、一番下及び下から二番目に示すように第2回目の燃料噴射量の分割比を徐々に減少させ、下から三番目に示すように第2噴射モードと同じ1回のみの燃料噴射に移行したのち、下から四番目及び一番上に示すように吸気行程における1回のみの燃料噴射時期を進角させる。   Conversely, when switching from the first injection mode to the second injection mode, the division ratio of the second fuel injection amount is gradually decreased as shown in the second from the bottom and the bottom, and the third from the bottom. Thus, after shifting to the same one-time fuel injection as in the second injection mode, the one-time fuel injection timing in the intake stroke is advanced as shown in the fourth and top from the bottom.

このように第1噴射モードと第2噴射モードとを燃料噴射時期及び分割比について徐々に切り換えることで切り換え時のトルク段差の発生を抑制することができる。   In this way, by gradually switching the first injection mode and the second injection mode with respect to the fuel injection timing and the division ratio, it is possible to suppress the occurrence of a torque step at the time of switching.

以上のとおり、本例の直噴エンジンEGによれば、特に低回転高負荷における混合気の均質性が高くなってサージトルクが小さくなり、運転性が向上する。また、ノックが改善され出力トルクも向上する。   As described above, according to the direct injection engine EG of this example, the homogeneity of the air-fuel mixture particularly at a low rotation and high load is increased, the surge torque is reduced, and the drivability is improved. Further, knocking is improved and output torque is also improved.

上記エンジンコントロールユニット11は本発明に係る制御手段に相当する。   The engine control unit 11 corresponds to control means according to the present invention.

EG…エンジン(内燃機関)
11…エンジンコントローラ
111…吸気通路
112…エアーフィルタ
113…エアフローメータ
114…スロットルバルブ
115…コレクタ
116…スロットルバルブアクチュエータ
117…スロットルセンサ
118…燃料噴射バルブ
119…シリンダ
120…ピストン
121…吸気バルブ
122…排気バルブ
123…燃焼室
124…点火プラグ
125…排気通路
126…空燃比センサ
127…排気浄化触媒
128…酸素センサ
129…マフラ
130…クランク軸
131…クランク角センサ
132…冷却ジャケット
133…水温センサ
134…温度センサ
EG ... Engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 11 ... Engine controller 111 ... Intake passage 112 ... Air filter 113 ... Air flow meter 114 ... Throttle valve 115 ... Collector 116 ... Throttle valve actuator 117 ... Throttle sensor 118 ... Fuel injection valve 119 ... Cylinder 120 ... Piston 121 ... Intake valve 122 ... Exhaust Valve 123 ... Combustion chamber 124 ... Spark plug 125 ... Exhaust passage 126 ... Air-fuel ratio sensor 127 ... Exhaust purification catalyst 128 ... Oxygen sensor 129 ... Muffler 130 ... Crankshaft 131 ... Crank angle sensor 132 ... Cooling jacket 133 ... Water temperature sensor 134 ... Temperature Sensor

Claims (3)

燃焼室に燃料を直接噴射する燃料噴射バルブを備えた火花点火式内燃機関の燃料噴射制御装置において、
吸気行程の中期から後期の期間に第1回目の燃料噴射を行うとともに、圧縮行程の前期から中期の期間に第2回目の燃料噴射を行う第1噴射モードと、吸気行程の前期から中期の期間にのみ燃料噴射を行う第2噴射モードとを切り換える制御信号を出力する制御手段を備え、
前記制御手段は、前記第2噴射モードから前記第1噴射モードへの切り換え時に、吸気行程の中期から後期の期間にのみ燃料噴射を行う制御信号を出力する燃料噴射制御装置。
In a fuel injection control device for a spark ignition internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber,
The first injection mode in which the first fuel injection is performed during the middle to late period of the intake stroke and the second fuel injection is performed during the first to middle period of the compression stroke, and the first to middle period of the intake stroke Control means for outputting a control signal for switching between the second injection mode for performing fuel injection only at
The control means is a fuel injection control device that outputs a control signal for injecting fuel only during a middle period to a late period of the intake stroke when switching from the second injection mode to the first injection mode.
請求項1に記載の燃料噴射制御装置において、
前記制御手段は、前記第1噴射モードのとき、クランク角度90〜130°ATDCの期間に前記第1回目の燃料噴射を行うとともに、クランク角度180〜240°ATDCの期間に前記第2回目の燃料噴射を行う制御信号を出力する燃料噴射制御装置。
The fuel injection control device according to claim 1,
In the first injection mode, the control means performs the first fuel injection during a crank angle of 90 to 130 ° ATDC and the second fuel during a crank angle of 180 to 240 ° ATDC. A fuel injection control device that outputs a control signal for performing injection.
請求項1または2に記載の燃料噴射制御装置において、
前記制御手段は、前記第1噴射モードのとき、前記第2回目の燃料噴射量に対する前記第1回目の燃料噴射量の分割比を大きくするほど前記第2回目の燃料の噴射時期を遅角させる制御信号を出力する燃料噴射制御装置。
The fuel injection control device according to claim 1 or 2,
The control means retards the second fuel injection timing as the division ratio of the first fuel injection amount to the second fuel injection amount is increased in the first injection mode. A fuel injection control device that outputs a control signal.
JP2013031648A 2013-02-21 2013-02-21 Fuel injection control device for internal combustion engine Expired - Fee Related JP5435157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031648A JP5435157B2 (en) 2013-02-21 2013-02-21 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031648A JP5435157B2 (en) 2013-02-21 2013-02-21 Fuel injection control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009162535A Division JP2011017285A (en) 2009-07-09 2009-07-09 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013092159A true JP2013092159A (en) 2013-05-16
JP5435157B2 JP5435157B2 (en) 2014-03-05

Family

ID=48615455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031648A Expired - Fee Related JP5435157B2 (en) 2013-02-21 2013-02-21 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5435157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161219A (en) * 2014-02-27 2015-09-07 富士重工業株式会社 fuel injection control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231744A (en) * 1996-12-19 1998-09-02 Mitsubishi Motors Corp Spark ignition type intercylinder injection internal combustion engine
JPH11159382A (en) * 1997-09-29 1999-06-15 Mazda Motor Corp Cylinder injection type engine
JP2001082211A (en) * 1999-09-16 2001-03-27 Nissan Motor Co Ltd Control device for direct injection spark-ignition type internal combustion engine
JP2004232575A (en) * 2003-01-31 2004-08-19 Denso Corp Fuel injection control device of cylinder injection type internal combustion engine
JP2007211616A (en) * 2006-02-07 2007-08-23 Hitachi Ltd Fuel injection control device of engine
JP2008291816A (en) * 2007-05-28 2008-12-04 Toyota Motor Corp Control device of internal combustion engine
JP2009068461A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Fuel injection control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231744A (en) * 1996-12-19 1998-09-02 Mitsubishi Motors Corp Spark ignition type intercylinder injection internal combustion engine
JPH11159382A (en) * 1997-09-29 1999-06-15 Mazda Motor Corp Cylinder injection type engine
JP2001082211A (en) * 1999-09-16 2001-03-27 Nissan Motor Co Ltd Control device for direct injection spark-ignition type internal combustion engine
JP2004232575A (en) * 2003-01-31 2004-08-19 Denso Corp Fuel injection control device of cylinder injection type internal combustion engine
JP2007211616A (en) * 2006-02-07 2007-08-23 Hitachi Ltd Fuel injection control device of engine
JP2008291816A (en) * 2007-05-28 2008-12-04 Toyota Motor Corp Control device of internal combustion engine
JP2009068461A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Fuel injection control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161219A (en) * 2014-02-27 2015-09-07 富士重工業株式会社 fuel injection control device

Also Published As

Publication number Publication date
JP5435157B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US8150598B2 (en) Engine controller
JP2012057492A (en) Catalyst warming-up control device
JP2007016685A (en) Internal combustion engine control device
JP2018091267A (en) Controller of internal combustion engine
JP2007332867A (en) Control device of internal combustion engine
JP5332962B2 (en) Control device for internal combustion engine
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP5560237B2 (en) In-cylinder injection internal combustion engine control device
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2011001905A (en) Variable compression ratio internal combustion engine
JP2012184688A (en) Catalyst early warming-up controller for internal combustion engine
JP4032859B2 (en) Control device for direct-injection spark ignition engine
JP2011017285A (en) Fuel injection control device for internal combustion engine
JP4943873B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4840289B2 (en) Control unit for gasoline engine
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5435157B2 (en) Fuel injection control device for internal combustion engine
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP2006002683A (en) Control device for internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP2013155751A (en) Controller of internal combustion engine
JP2015031241A (en) Combustion state control device of internal combustion engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
US20170089290A1 (en) Control apparatus for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees