JP2013089567A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2013089567A
JP2013089567A JP2011231963A JP2011231963A JP2013089567A JP 2013089567 A JP2013089567 A JP 2013089567A JP 2011231963 A JP2011231963 A JP 2011231963A JP 2011231963 A JP2011231963 A JP 2011231963A JP 2013089567 A JP2013089567 A JP 2013089567A
Authority
JP
Japan
Prior art keywords
heat
heat medium
heat exchange
exchange member
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011231963A
Other languages
Japanese (ja)
Other versions
JP5699900B2 (en
Inventor
Shintaro Watanabe
慎太郎 渡▲辺▼
Koji Yoshihara
康二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011231963A priority Critical patent/JP5699900B2/en
Publication of JP2013089567A publication Critical patent/JP2013089567A/en
Application granted granted Critical
Publication of JP5699900B2 publication Critical patent/JP5699900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery module that prevents unevenness of temperature in battery cells.SOLUTION: A battery module 1 comprises: an assembled battery 3 that is formed by arranging a plurality of battery cells 2; and a temperature control mechanism 5 that controls the temperatures of the respective battery cells 2. The temperature control mechanism 5 has: a heat exchange member 21 that is sandwiched between each adjacent pair of the battery cells 2; and a first heating medium pipe 22a and a second heating medium pipe 22b that circulate a heating medium therefrom to a heat source mechanism 27 and back thereto and that are thermally coupled to four sections of each of the heat exchange members 21. The first heating medium pipe 22a and the second heating medium pipe 22b are disposed in such a manner that the heating medium flows in different directions in each adjacent pair of the four sections, of each heat exchange member 21, to which the first heating medium pipe 22a and the second heating medium pipe 22b are coupled.

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

従来、二次電池は、充電して繰り返し使用可能であることから種々の電源として広く利用されている。そして、高い出力電圧が要求される用途では、複数の電池セルを配列してなる組電池として利用されている。ここで、二次電池では、その温度環境が性能や寿命に大きな影響を与えるため、組電池に各電池セルの温度調節を行うための温度調節機構を組み合わせてなる電池モジュールが従来から提案されている(例えば、特許文献1)。   Conventionally, secondary batteries are widely used as various power sources because they can be charged and used repeatedly. And in the use for which a high output voltage is requested | required, it is utilized as an assembled battery formed by arranging a plurality of battery cells. Here, in the secondary battery, since the temperature environment has a great influence on the performance and life, a battery module in which a temperature adjustment mechanism for adjusting the temperature of each battery cell is combined with an assembled battery has been proposed. (For example, Patent Document 1).

具体的には、図5に示すように、この電池モジュール51では、組電池52は、長方形板状に形成された電池セル53をその板厚方向に配列することにより構成されている。一方、温度調節機構54は、各電池セル53間に配置される板状の吸熱プレート55と、吸熱プレート55に対して熱的に結合される複数の冷却パイプ56とを備えている。各冷却パイプ56は、略U字状に形成されており、その直線部分が電池セル53の配列方向と平行になるように吸熱プレート55に結合されるとともに、同冷却パイプ56の両端が冷却機構57に連結されている。そして、冷却液が冷却パイプ56と冷却機構57との間で循環することにより、冷却液が冷却機構57で冷却されるとともに、電池セル53で発生する熱が吸熱プレート55及び冷却パイプ56を介して冷却液に吸熱され、同電池セル53が冷却されるようになっている。   Specifically, as shown in FIG. 5, in this battery module 51, the assembled battery 52 is configured by arranging battery cells 53 formed in a rectangular plate shape in the plate thickness direction. On the other hand, the temperature adjustment mechanism 54 includes a plate-like heat absorption plate 55 disposed between the battery cells 53 and a plurality of cooling pipes 56 that are thermally coupled to the heat absorption plate 55. Each cooling pipe 56 is formed in a substantially U shape, and is coupled to the heat absorbing plate 55 so that the straight portion thereof is parallel to the arrangement direction of the battery cells 53, and both ends of the cooling pipe 56 are cooled by a cooling mechanism. 57. Then, the cooling liquid circulates between the cooling pipe 56 and the cooling mechanism 57, whereby the cooling liquid is cooled by the cooling mechanism 57, and the heat generated in the battery cells 53 passes through the heat absorbing plate 55 and the cooling pipe 56. Then, the battery cell 53 is cooled by absorbing heat into the coolant.

特開2009−9889号公報JP 2009-9889 A

ところで、冷却パイプ56内を流通する冷却液の温度は、電池セル53の熱を吸収することで上昇するため、冷却液の温度は冷却機構57から冷却液が流れ込む冷却パイプ56の上流側で低く、その下流側に向かうにつれて高くなる。そのため、1つの吸熱プレート55においても、冷却パイプ56の上流側が結合された部分と、冷却パイプ56の下流側が結合された部分とでは、その冷却効率が異なる。   By the way, the temperature of the coolant flowing through the cooling pipe 56 rises by absorbing the heat of the battery cells 53, so the temperature of the coolant is low on the upstream side of the cooling pipe 56 into which the coolant flows from the cooling mechanism 57. It becomes higher as it goes to the downstream side. Therefore, also in one heat absorption plate 55, the cooling efficiency is different between the portion where the upstream side of the cooling pipe 56 is coupled and the portion where the downstream side of the cooling pipe 56 is coupled.

しかし、上記従来の構成では、各冷却パイプ56が上下に二条をなすように配置されており、吸熱プレート55の下側(図5における下側)に配置された端部からそれぞれ冷却液が流れ込み、各冷却パイプ56を流れて吸熱プレート55の上側(図5における上側)に配置された端部からそれぞれ冷却液が流れ出すように構成されている。したがって、吸熱プレート55において、その上側が下側よりも冷却効率が低くなり易く、吸熱プレート55に温度ムラが生じるようになる。その結果、電池セル53でも温度ムラが生じることで、例えば電池セル53の寿命の低下等を招く虞があり、この点においてなお改善の余地があった。なお、このような問題は、電池セルを冷却する場合に限らず、加熱する場合にも同様に生じ得る。   However, in the above-described conventional configuration, the cooling pipes 56 are arranged so as to form two strips in the vertical direction, and the cooling liquid flows in from the end portion disposed on the lower side of the heat absorbing plate 55 (lower side in FIG. 5). The cooling liquid flows through the cooling pipes 56 and flows out from the end portions arranged on the upper side of the heat absorbing plate 55 (upper side in FIG. 5). Therefore, in the heat absorption plate 55, the upper side is more likely to have a lower cooling efficiency than the lower side, and temperature unevenness occurs in the heat absorption plate 55. As a result, the temperature unevenness also occurs in the battery cell 53, which may lead to, for example, a decrease in the life of the battery cell 53, and there is still room for improvement in this respect. Such a problem may occur not only when the battery cell is cooled but also when it is heated.

本発明は、上記問題点を解決するためになされたものであって、その目的は、電池セルに温度ムラが生じることを抑制できる電池モジュールを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a battery module capable of suppressing the occurrence of temperature unevenness in battery cells.

上記目的を達成するため、請求項1に記載の発明は、複数の電池セルを配列してなる組電池と、前記各電池セルの温度調節を行う温度調節機構と、を備え、前記温度調節機構は、前記電池セル間に挟まれる熱交換部材、及び前記各熱交換部材に対して熱的に結合されるとともに熱源機構との間で熱媒体が循環する複数の熱媒配管を有する電池モジュールにおいて、前記各熱交換部材には、前記熱媒配管が少なくとも4箇所以上で結合され、前記各熱媒配管は、隣り合う結合箇所での前記熱媒体の流通方向が互いに逆向きとなるように配設されたことを要旨とする。   In order to achieve the above object, the invention according to claim 1 includes an assembled battery in which a plurality of battery cells are arranged, and a temperature adjustment mechanism that adjusts the temperature of each battery cell, and the temperature adjustment mechanism. Is a battery module having a heat exchange member sandwiched between the battery cells and a plurality of heat medium pipes that are thermally coupled to the heat exchange members and in which a heat medium circulates between the heat source mechanisms. The heat medium pipes are coupled to each of the heat exchange members at at least four places, and the heat medium pipes are arranged so that the flow directions of the heat medium at the adjacent joint parts are opposite to each other. The gist is that it was established.

上記構成によれば、熱媒配管を流通する熱媒体の流通方向が、隣り合う結合箇所で互いに逆向きとなるため、熱交換部材に各熱媒配管の上流側部分同士(又は下流側部分同士)が隣り合って配置されず、熱交換部材の一部に各熱媒配管の上流側部分(又は下流側部分)が偏ることを抑制できる。これにより、熱交換部材に温度ムラが生じることを抑制でき、ひいては電池セルに温度ムラが生じることを抑制できる。   According to the said structure, since the distribution direction of the heat medium which distribute | circulates a heat-medium piping is mutually opposite in an adjacent joint location, upstream part (or downstream part) of each heat-medium piping is made into a heat exchange member. ) Are not arranged next to each other, and the upstream portion (or the downstream portion) of each heat medium pipe can be prevented from being biased to a part of the heat exchange member. Thereby, it can suppress that a temperature nonuniformity arises in a heat exchange member, and can suppress that a temperature nonuniformity arises in a battery cell by extension.

また、前記熱交換部材には、前記熱媒配管の結合箇所が等間隔に設けられていてもよい。
上記構成によれば、熱媒配管の結合箇所が熱交換部材に等間隔で配置されるため、熱交換部材及び電池セルに温度ムラが生じることをより抑制できるようになる。
In addition, the heat exchange member may be provided with joint portions of the heat medium pipe at equal intervals.
According to the said structure, since the joining location of a heat-medium piping is arrange | positioned at equal intervals in a heat exchange member, it becomes possible to suppress more that temperature nonuniformity arises in a heat exchange member and a battery cell.

また、前記電池セル及び前記熱交換部材は長方形板状に形成されるとともに、前記熱交換部材の各長辺及び各短辺に前記熱媒配管の結合箇所が1箇所ずつ設けられ、前記各熱媒配管は、前記各長辺に結合される長辺部及び前記各短辺に結合される短辺部の一端同士を連結することにより形成されるとともに、前記各短辺部に熱媒体が流れ込み、前記各長辺部から熱媒体が流れ出すように配設されていてもよい。   In addition, the battery cell and the heat exchange member are formed in a rectangular plate shape, and one connection portion of the heat medium pipe is provided on each long side and each short side of the heat exchange member. The medium pipe is formed by connecting one end of the long side part coupled to each of the long sides and the short side part coupled to each of the short sides, and the heat medium flows into each of the short side parts. The heat medium may flow from the long side portions.

ここで、熱交換部材及び電池セルが長方形板状に形成された場合、その短辺から中央までの長さは、その長辺から中央までの長さよりも長くなる。つまり、短辺側に配置された熱媒配管の熱は、長辺側に配置された熱媒配管の熱に比べ、熱交換部材の中央に伝達され難い。この点、上記構成によれば、熱交換部材の短辺に熱媒配管の上流側部分が配置され、長辺に熱媒配管の下流側部分が配置されるため、熱交換部材及び電池セルに温度ムラが生じることをより一層抑制できるようになる。   Here, when the heat exchange member and the battery cell are formed in a rectangular plate shape, the length from the short side to the center is longer than the length from the long side to the center. That is, the heat of the heat medium pipe arranged on the short side is less likely to be transmitted to the center of the heat exchange member than the heat of the heat medium pipe arranged on the long side. In this regard, according to the above configuration, the upstream portion of the heat medium pipe is disposed on the short side of the heat exchange member, and the downstream portion of the heat medium pipe is disposed on the long side. It becomes possible to further suppress the occurrence of temperature unevenness.

本発明によれば、電池セルに温度ムラが生じることを抑制できる電池モジュールを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery module which can suppress that a temperature nonuniformity arises in a battery cell can be provided.

第1実施形態の電池モジュールの概略構成を示す斜視図。The perspective view which shows schematic structure of the battery module of 1st Embodiment. 第1実施形態の電源モジュールにおける配列方向と直交する断面図(図1のA−A断面図)。Sectional drawing orthogonal to the arrangement direction in the power supply module of 1st Embodiment (AA sectional drawing of FIG. 1). 第2実施形態の電源モジュールにおける配列方向と直交する断面図。Sectional drawing orthogonal to the arrangement direction in the power supply module of 2nd Embodiment. 別例の電池モジュールの概略構成を示す斜視図。The perspective view which shows schematic structure of the battery module of another example. 従来の電池モジュールの概略構成を示す斜視図。The perspective view which shows schematic structure of the conventional battery module.

(第1実施形態)
以下、本発明を具体化した第1実施形態を図面に従って説明する。
図1に示す電池モジュール1は、電気自動車やハイブリッド車に搭載された走行用モータの電源として用いられるものである。同図に示すように、電池モジュール1は、充電可能な二次電池として構成された複数の電池セル2を配列してなる組電池3と、各電池セル2の温度調節を行う温度調節機構5とを備えている。
(First embodiment)
A first embodiment of the present invention will be described below with reference to the drawings.
A battery module 1 shown in FIG. 1 is used as a power source for a traveling motor mounted on an electric vehicle or a hybrid vehicle. As shown in the figure, a battery module 1 includes an assembled battery 3 in which a plurality of battery cells 2 configured as rechargeable secondary batteries are arranged, and a temperature adjustment mechanism 5 that adjusts the temperature of each battery cell 2. And.

本実施形態の電池セル2には、長方形板状に形成された角型セルが採用されている。そして、組電池3は、複数の電池セル2をその板厚方向に沿って配列することにより構成されている。なお、以下の説明では、電池セル2が配列された方向を配列方向、電池セル2の正面視における長辺に沿った方向を幅方向、電池セル2の短辺に沿った方向を高さ方向とする。   The battery cell 2 of the present embodiment employs a rectangular cell formed in a rectangular plate shape. And the assembled battery 3 is comprised by arranging the some battery cell 2 along the plate | board thickness direction. In the following description, the direction in which the battery cells 2 are arranged is the arrangement direction, the direction along the long side in the front view of the battery cell 2 is the width direction, and the direction along the short side of the battery cell 2 is the height direction. And

各電池セル2における高さ方向上側(図1における上側)の側面には、同方向に突出する正極端子11及び負極端子12が幅方向に間隔を空けて設けられている。また、組電池3の配列方向両端には、それぞれ長方形板状のエンドプレート13が設けられている。なお、組電池3は、各エンドプレート13に拘束バンド(図示略)が装着されることにより、電池セル2に配列方向両側から加圧された状態で組み付けられている。   A positive electrode terminal 11 and a negative electrode terminal 12 projecting in the same direction are provided on the side surface of each battery cell 2 on the upper side in the height direction (upper side in FIG. 1) with an interval in the width direction. Also, rectangular plate-like end plates 13 are provided at both ends of the assembled battery 3 in the arrangement direction. In addition, the assembled battery 3 is assembled | attached in the state pressurized by the battery cell 2 from the arrangement direction both sides by attaching a restraint band (not shown) to each end plate 13. FIG.

温度調節機構5は、各電池セル2間、及び配列方向両端に設けられた電池セル2と各エンドプレート13との間で挟持される複数の熱交換部材21と、各熱交換部材21に熱的に(熱伝達可能に)結合される2つの第1熱媒配管22a及び第2熱媒配管22bとを備えている。なお、熱交換部材21及び各熱媒配管22a,22bは、アルミ合金やカーボン等の熱伝導率の高い材料により構成されている。   The temperature adjustment mechanism 5 includes a plurality of heat exchange members 21 sandwiched between the battery cells 2 and the end plates 13 provided between the battery cells 2 and at both ends in the arrangement direction, and heat to the heat exchange members 21. The first heat medium pipe 22a and the second heat medium pipe 22b are coupled to each other (so that heat can be transferred). The heat exchange member 21 and the heat medium pipes 22a and 22b are made of a material having high thermal conductivity such as an aluminum alloy or carbon.

図1及び図2に示すように、各熱交換部材21は、電池セル2における配列方向端面の全体に接触する略長方形板状に形成されている。そして、各熱交換部材21の外縁には、第1熱媒配管22aと第2熱媒配管22bが4箇所で結合されるようになっている。   As shown in FIGS. 1 and 2, each heat exchange member 21 is formed in a substantially rectangular plate shape that contacts the entire end surface in the arrangement direction of the battery cell 2. And the 1st heat-medium piping 22a and the 2nd heat-medium piping 22b are couple | bonded with the outer edge of each heat exchange member 21 at four places.

詳しくは、熱交換部材21における電池セル2又はエンドプレート13によって挟持される挟持部23は、電池セル2と略同一の幅方向長さ及び高さ方向長さを有している。そして、挟持部23には、その幅方向両側に突出する一対の短辺突出部24が形成されるとともに、その高さ方向下側に突出する長辺突出部25が形成されている。各短辺突出部24の高さ方向長さは、挟持部23(電池セル2)の高さ方向長さよりも短く形成されており、短辺突出部24は、挟持部23における高さ方向上側にそれぞれ形成されている。そして、短辺突出部24には、配列方向に貫通するとともに高さ方向に長い長孔状の結合孔24aがそれぞれ形成されている。また、長辺突出部25の幅方向長さは、挟持部23の幅方向長さと略同一に形成されている。そして、長辺突出部25には、配列方向に貫通するとともに幅方向に長い長孔状の結合孔25aが幅方向に間隔を空けて2つ形成されている(図2参照)。なお、挟持部23の表面は、シート状の絶縁シート(図示略)により被覆されている。   In detail, the clamping part 23 clamped by the battery cell 2 or the end plate 13 in the heat exchange member 21 has substantially the same width direction length and height direction length as the battery cell 2. The sandwiching portion 23 is formed with a pair of short side protruding portions 24 protruding on both sides in the width direction and a long side protruding portion 25 protruding on the lower side in the height direction. The length in the height direction of each short side protrusion 24 is formed shorter than the length in the height direction of the sandwiching portion 23 (battery cell 2), and the short side protrusion 24 is located above the height in the sandwiching portion 23. Are formed respectively. The short-side protruding portion 24 is formed with a long-hole-like coupling hole 24a that penetrates in the arrangement direction and is long in the height direction. Further, the length in the width direction of the long side protruding portion 25 is formed to be substantially the same as the length in the width direction of the holding portion 23. The long-side protruding portion 25 is formed with two long-hole-like coupling holes 25a that penetrate in the arrangement direction and are long in the width direction with a gap in the width direction (see FIG. 2). In addition, the surface of the clamping part 23 is coat | covered with the sheet-like insulating sheet (not shown).

熱交換部材21の高さ方向上側に結合される第1熱媒配管22aは、1本の配管を折り曲げることにより略U字状に形成されている。この第1熱媒配管22aは、電池セル2の配列方向に延びるとともに、熱交換部材21の幅方向両側、すなわち熱交換部材21の各短辺側に配置される一対の短辺部31a,31bを有している。各短辺部31a,31bの断面形状は、高さ方向に長い長円状に形成されており、各短辺部31a,31bが結合孔24aに圧入されることにより、第1熱媒配管22aが各熱交換部材21に対して熱的に結合されている。つまり、結合孔24aが第1熱媒配管22aの結合箇所に相当する。   The first heat medium pipe 22a coupled to the upper side in the height direction of the heat exchange member 21 is formed in a substantially U shape by bending one pipe. The first heat medium pipe 22 a extends in the arrangement direction of the battery cells 2 and is paired with a pair of short sides 31 a and 31 b arranged on both sides in the width direction of the heat exchange member 21, that is, on each short side of the heat exchange member 21. have. The cross-sectional shape of each short side part 31a, 31b is formed in an oval shape long in the height direction, and the first heat medium pipe 22a is formed by press-fitting each short side part 31a, 31b into the coupling hole 24a. Are thermally coupled to each heat exchange member 21. That is, the coupling hole 24a corresponds to a coupling portion of the first heat medium pipe 22a.

一方、熱交換部材21の高さ方向下側に係合される第2熱媒配管22bは、別部材からなる直線状の長辺部32a,32bの一端同士を連結部32cによって接続することにより略U字状に形成されている。長辺部32a,32bは、電池セル2の配列方向に延びるとともに、熱交換部材21の高さ方向下側、すなわち熱交換部材21の長辺側に配置されている。各長辺部32a,32bの断面形状は、幅方向に長い長円状に形成されており、各長辺部32a,32bが結合孔25aに圧入されることにより、第2熱媒配管22bが各熱交換部材21に対して熱的に結合されている。つまり、結合孔25aが第2熱媒配管22bの結合箇所に相当する。   On the other hand, the second heat medium pipe 22b engaged with the lower side in the height direction of the heat exchange member 21 connects one ends of the linear long side portions 32a and 32b made of different members to each other by the connecting portion 32c. It is formed in a substantially U shape. The long side portions 32 a and 32 b extend in the arrangement direction of the battery cells 2 and are arranged on the lower side in the height direction of the heat exchange member 21, that is, on the long side of the heat exchange member 21. The cross-sectional shape of each long side part 32a, 32b is formed in an oval shape long in the width direction, and the second heat medium pipe 22b is formed by press-fitting each long side part 32a, 32b into the coupling hole 25a. The heat exchange members 21 are thermally coupled to each other. That is, the coupling hole 25a corresponds to a coupling location of the second heat medium pipe 22b.

各熱媒配管22a,22bは、配管内部を流通する熱媒体(例えば、水や空気等)を冷却又は加熱するための熱源機構27に接続されている。そして、熱媒体が各熱媒配管22a,22bと熱源機構27との間で循環することにより、熱交換部材21及び各熱媒配管22a,22bを介して電池セル2と熱媒体との間で熱交換が行われて電池セル2の温度が調節される。なお、本実施形態の熱源機構27は、熱媒体を冷却する冷却器、熱媒体を加熱する加熱器及びポンプ(いずれも図示略)を有しており、同ポンプによって熱媒体が熱源機構27と各熱媒配管22a,22bとの間を強制的に循環するようになっている。   Each of the heat medium pipes 22a and 22b is connected to a heat source mechanism 27 for cooling or heating a heat medium (for example, water or air) flowing through the pipe. And when a heat carrier circulates between each heat carrier piping 22a and 22b and heat source mechanism 27, between battery cell 2 and a heat carrier via heat exchange member 21 and each heat carrier piping 22a and 22b. Heat exchange is performed and the temperature of the battery cell 2 is adjusted. The heat source mechanism 27 of the present embodiment includes a cooler that cools the heat medium, a heater that heats the heat medium, and a pump (both not shown), and the heat medium is combined with the heat source mechanism 27 by the pump. The heat medium pipes 22a and 22b are forcibly circulated.

ここで、各熱媒配管22a,22b内を流通する熱媒体の温度は、電池セル2を冷却する場合には、電池セル2の熱を吸収することで上昇するため、熱源機構27から熱媒体が流れ込む熱媒配管22a,22bの上流側で低く、熱媒配管22a,22bの下流側に向かうにつれて高くなる。一方、熱媒体の温度は、電池セル2を加熱する場合には、電池セル2に熱が吸収されることで低下するため、熱媒配管22a,22bの上流側で高く、熱媒配管22a,22bの下流側に向かうにつれて低くなる。そのため、1つの熱交換部材21においても、熱媒配管22a,22bの上流側が結合された部分と、熱媒配管22a,22bの下流側が結合された部分とでは、その冷却効率又は加熱効率が異なる。   Here, the temperature of the heat medium flowing through the heat medium pipes 22a and 22b rises by absorbing the heat of the battery cell 2 when the battery cell 2 is cooled. Is low on the upstream side of the heat medium pipes 22a and 22b, and becomes higher toward the downstream side of the heat medium pipes 22a and 22b. On the other hand, when the battery cell 2 is heated, the temperature of the heat medium decreases due to the heat absorbed by the battery cell 2, so the temperature of the heat medium is high on the upstream side of the heat medium pipes 22 a and 22 b. It becomes low as it goes to the downstream side of 22b. Therefore, also in one heat exchange member 21, the cooling efficiency or the heating efficiency is different between the part where the upstream side of the heat medium pipes 22a and 22b is coupled and the part where the downstream side of the heat medium pipes 22a and 22b are coupled. .

この点を踏まえ、各熱媒配管22a,22bは、熱交換部材21に対する隣り合う結合箇所での熱媒体の流通方向が互いに逆向きとなるように配設されている。換言すれば、熱交換部材21には、熱媒配管22a,22bにおける熱源機構27から熱媒体が流れ込む上流部と、熱媒配管22a,22bにおける熱源機構27に熱媒体が流れ出す下流部とが交互に配置されている。詳しくは、熱源機構27における熱媒体を送り出す送出ポート27aには、第1熱媒配管22aの短辺部31a及び第2熱媒配管22bの長辺部32bが接続されるとともに、熱源機構27における熱媒体を回収する回収ポート27bには、第1熱媒配管22aの短辺部31b及び第2熱媒配管22bの長辺部32aが接続されている。   In consideration of this point, each of the heat medium pipes 22a and 22b is disposed so that the flow directions of the heat medium at the adjacent joints with respect to the heat exchange member 21 are opposite to each other. In other words, in the heat exchange member 21, an upstream portion where the heat medium flows from the heat source mechanism 27 in the heat medium pipes 22a and 22b and a downstream portion where the heat medium flows into the heat source mechanism 27 in the heat medium pipes 22a and 22b are alternately arranged. Is arranged. Specifically, a short side portion 31a of the first heat medium pipe 22a and a long side portion 32b of the second heat medium pipe 22b are connected to the delivery port 27a that sends out the heat medium in the heat source mechanism 27, and in the heat source mechanism 27. A short side 31b of the first heat medium pipe 22a and a long side 32a of the second heat medium pipe 22b are connected to the recovery port 27b for recovering the heat medium.

以上記述したように、本実施形態によれば、以下の作用効果を奏することができる。
(1)第1熱媒配管22aと第2熱媒配管22bを、熱交換部材21に対する結合箇所の隣同士で熱媒体の流通方向が互いに逆向きとなるように配設した。そのため、熱交換部材21に対しては、第1熱媒配管22aと第2熱媒配管22bの上流側部分同士(又は下流側部分同士)が隣り合って配置されず、熱交換部材21の一部に各熱媒配管22a,22bの上流側部分(又は下流側部分)が偏ることを抑制できる。これにより、熱交換部材21に温度ムラが生じることを抑制でき、ひいては電池セル2に温度ムラが生じることを抑制できる。
As described above, according to the present embodiment, the following operational effects can be achieved.
(1) The first heat medium pipe 22a and the second heat medium pipe 22b are arranged adjacent to the coupling portion with respect to the heat exchange member 21 so that the flow directions of the heat medium are opposite to each other. Therefore, the upstream part (or the downstream part) of the first heat medium pipe 22a and the second heat medium pipe 22b is not arranged adjacent to the heat exchange member 21, and the heat exchange member 21 It can suppress that the upstream part (or downstream part) of each heat-medium piping 22a, 22b is biased to a part. Thereby, it can suppress that a temperature nonuniformity arises in the heat exchange member 21, and can suppress that a temperature nonuniformity arises in the battery cell 2 by extension.

(2)各熱媒配管22a,22bの断面形状を長孔状に形成したため、例えば各熱媒配管22a,22bの断面形状を丸穴状に形成する場合に比べ、熱交換部材21を効率的に温度調節することができる。   (2) Since the cross-sectional shape of each of the heat medium pipes 22a and 22b is formed in a long hole shape, for example, the heat exchange member 21 is more efficient than when the cross-sectional shape of each of the heat medium pipes 22a and 22b is formed in a round hole shape. The temperature can be adjusted.

(第2実施形態)
次に、本発明を具体化した第2実施形態を図面に従って説明する。なお、本実施形態と上記第1実施形態との主たる相違点は温度調節機構の構成のみである。このため、説明の便宜上、同一の構成については上記第1実施形態と同一の符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. The main difference between the present embodiment and the first embodiment is only the configuration of the temperature adjustment mechanism. For this reason, for convenience of explanation, the same components are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.

図3に示すように、熱交換部材21の挟持部23には、その幅方向両側、すなわち短辺から突出する一対の短辺突出部41が形成されるとともに、挟持部23の高さ方向両側、すなわち長辺から突出する一対の長辺突出部42が形成されている。つまり、熱交換部材21の各長辺及び各短辺に熱媒配管22a,22bの結合箇所が1箇所ずつ設けられている。そして、熱交換部材21の外縁には、熱媒配管22a,22bの結合箇所が等間隔に設けられている。   As shown in FIG. 3, the sandwiching portion 23 of the heat exchange member 21 is formed with a pair of short side projecting portions 41 projecting from both sides in the width direction, that is, from the short side, and both sides in the height direction of the sandwiching portion 23. That is, a pair of long side protruding portions 42 protruding from the long sides are formed. That is, one coupling point of the heat medium pipes 22a and 22b is provided on each long side and each short side of the heat exchange member 21. And the joining location of heat-medium piping 22a, 22b is provided in the outer edge of the heat exchange member 21 at equal intervals.

詳しくは、各短辺突出部41の高さ方向長さは、挟持部23(電池セル2)の高さ方向長さよりも短く形成されており、各短辺突出部41は、挟持部23の高さ方向中央に位置するように形成されている。一方、各長辺突出部42の幅方向長さは、挟持部23の幅方向長さよりも短く形成されており、各長辺突出部42は、挟持部23の幅方向中央に位置するように形成されている。そして、各短辺突出部41には、高さ方向に長い長孔状の結合孔41aがその中央に形成され、各長辺突出部42には、幅方向に長い長孔状の結合孔42aがその中央に形成されている。   Specifically, the length in the height direction of each short-side protrusion 41 is formed to be shorter than the length in the height direction of the sandwiching portion 23 (battery cell 2). It is formed so as to be located at the center in the height direction. On the other hand, the length in the width direction of each long side protrusion 42 is formed shorter than the length in the width direction of the holding part 23, and each long side protrusion 42 is positioned at the center in the width direction of the holding part 23. Is formed. Each short-side protruding portion 41 is formed with a long hole-like coupling hole 41a in the height direction, and each long-side protruding portion 42 has a long-hole-like coupling hole 42a that is long in the width direction. Is formed in the center.

第1熱媒配管22aは、別部材からなる直線状の短辺部43a及び長辺部43bの一端同士を連結部43cよって接続することにより略U字状に形成されている。短辺部43aは、配列方向に延びるとともに熱交換部材21の幅方向左側に配置され、長辺部43bは、配列方向に延びるとともに熱交換部材21の高さ方向上側に配置されている。一方、第2熱媒配管22bは、別部材からなる直線状の短辺部44a及び長辺部44bの一端同士を連結部44cよって接続することにより略U字状に形成されている。短辺部44aは、配列方向に延びるとともに熱交換部材21の幅方向右側に配置され、長辺部44bは、配列方向に延びるとともに熱交換部材21の高さ方向下側に配置されている。   The first heat medium pipe 22a is formed in a substantially U shape by connecting one ends of a linear short side portion 43a and a long side portion 43b made of different members by a connecting portion 43c. The short side portion 43 a extends in the arrangement direction and is arranged on the left side in the width direction of the heat exchange member 21, and the long side portion 43 b extends in the arrangement direction and is arranged on the upper side in the height direction of the heat exchange member 21. On the other hand, the second heat medium pipe 22b is formed in a substantially U shape by connecting one ends of a linear short side portion 44a and a long side portion 44b made of different members by a connecting portion 44c. The short side portion 44a extends in the arrangement direction and is disposed on the right side in the width direction of the heat exchange member 21, and the long side portion 44b extends in the arrangement direction and is disposed on the lower side in the height direction of the heat exchange member 21.

そして、各熱媒配管22a,22bは、各短辺部43a,44aに熱媒体が流れ込み、各長辺部43b,44bから熱媒体が流れ出すように配設されている。詳しくは、熱源機構27の送出ポート27aには、熱媒配管22a,22bの各短辺部43a,44aが接続されるとともに、熱源機構27の回収ポート27bには、各長辺部43b,44bが接続されている。   And each heat medium piping 22a, 22b is arrange | positioned so that a heat medium may flow into each short side part 43a, 44a, and a heat medium may flow out from each long side part 43b, 44b. Specifically, the short side portions 43a and 44a of the heat medium pipes 22a and 22b are connected to the delivery port 27a of the heat source mechanism 27, and the long side portions 43b and 44b are connected to the recovery port 27b of the heat source mechanism 27. Is connected.

以上記述したように、本実施形態によれば、上記第1実施形態の(1)、(2)の作用効果に加え、以下の作用効果を奏することができる。
(3)熱交換部材21に、熱媒配管22a,22bの結合箇所である結合孔41a,42aを等間隔に設けたため、熱交換部材21及び電池セル2に温度ムラが生じることをより抑制できるようになる。
As described above, according to this embodiment, in addition to the effects (1) and (2) of the first embodiment, the following effects can be achieved.
(3) Since the coupling holes 41a and 42a, which are coupling points of the heat medium pipes 22a and 22b, are provided at equal intervals in the heat exchange member 21, it is possible to further suppress the occurrence of temperature unevenness in the heat exchange member 21 and the battery cell 2. It becomes like this.

(4)電池セル2及び熱交換部材21を長方形板状に形成するとともに、熱交換部材21の各長辺及び各短辺に各熱媒配管22a,22bの結合箇所を1箇所ずつ設けた。そして、各熱媒配管22a,22bを、短辺部43a,44a及び長辺部43b,44bの一端同士を連結することにより形成するとともに、各短辺部43a,44aに熱媒体が流れ込み、各長辺部43b,44bから熱媒体が流れ出すように配設した。   (4) The battery cell 2 and the heat exchange member 21 were formed in a rectangular plate shape, and one coupling point for each heat medium pipe 22a, 22b was provided on each long side and each short side of the heat exchange member 21. And while forming each heat-medium piping 22a, 22b by connecting one end of short side part 43a, 44a and long side part 43b, 44b, a heat medium flows into each short side part 43a, 44a, It arrange | positioned so that a heat medium might flow out from the long side parts 43b and 44b.

ここで、熱交換部材21が長方形板状に形成された場合、その短辺から中央までの長さは、その長辺から中央までの長さよりも長くなる。つまり、短辺側に配置された熱媒配管の熱は、長辺側に配置された熱媒配管の熱に比べ、熱交換部材21の中央に伝達され難い。この点、上記構成によれば、熱交換部材21の短辺突出部41に各熱媒配管22a,22bの上流側部分が配置され、長辺突出部42に各熱媒配管22a,22bの下流側部分が配置される。そのため、熱交換部材21及び電池セル2に温度ムラが生じることをより一層抑制できるようになる。   Here, when the heat exchange member 21 is formed in a rectangular plate shape, the length from the short side to the center is longer than the length from the long side to the center. That is, the heat of the heat medium pipe arranged on the short side is less likely to be transmitted to the center of the heat exchange member 21 than the heat of the heat medium pipe arranged on the long side. In this regard, according to the above configuration, the upstream side portions of the heat medium pipes 22a and 22b are arranged in the short side protruding portion 41 of the heat exchange member 21, and the long side protruding portion 42 is downstream of the heat medium pipes 22a and 22b. Side parts are arranged. Therefore, it becomes possible to further suppress the occurrence of temperature unevenness in the heat exchange member 21 and the battery cell 2.

なお、上記各実施形態は、これを適宜変更した以下の態様にて実施することもできる。
○上記各実施形態では、各熱媒配管22a,22bを略U字状に形成にし、配列方向の一端側から流入した熱媒体が、折り返されて再び配列方向の一端側から流出するようにした。しかし、これに限らず、熱媒配管における配列方向の一端側又は他端側から流入した熱媒体が他端側又は一端側から流出するようにしてもよい。
In addition, each said embodiment can also be implemented in the following aspects which changed this suitably.
In each of the above embodiments, the heat medium pipes 22a and 22b are formed in a substantially U shape so that the heat medium flowing from one end side in the arrangement direction is folded back and flows out from one end side in the arrangement direction again. . However, the present invention is not limited to this, and the heat medium flowing from one end side or the other end side in the arrangement direction of the heat medium pipe may flow out from the other end side or the one end side.

例えば、図4に示す例では、温度調節機構5は、熱交換部材21の各長辺及び各短辺に1本ずつ配置される4つの熱媒配管22a〜22dと、2つの熱源機構27とを備えている。そして、熱媒配管22a〜22dは、配列方向に延びる直線状にそれぞれ形成されるとともに、熱媒配管22a〜22dの配列方向の両端は、隣り合う結合箇所での熱媒体の流通方向が互いに逆向きとなるように配設されている。なお、熱媒配管22a,22cは、短辺突出部41の結合孔41aに圧入されることにより熱交換部材21に対して熱的に結合され、熱媒配管22b,22dは、長辺突出部42の結合孔42aに圧入されることにより熱交換部材21に対して熱的に結合されている。この構成によれば、配列方向一端側に配置された熱交換部材21に熱媒配管22a,22cの上流側部分が結合されるとともに、配列方向他端側に配置された熱交換部材21に熱媒配管22b,22dの上流側部分が結合される。したがって、配列方向一端側に配置された電池セル2と、配列方向他端側に配置された電池セル2とが同様に温度調節されるようになるため、各電池セル2間に温度ムラが生じることを抑制できる。   For example, in the example illustrated in FIG. 4, the temperature adjustment mechanism 5 includes four heat medium pipes 22 a to 22 d arranged one by one on each long side and each short side of the heat exchange member 21, and two heat source mechanisms 27. It has. The heat medium pipes 22a to 22d are respectively formed in a straight line extending in the arrangement direction, and the flow directions of the heat medium at the adjacent coupling points are opposite to each other at both ends of the heat medium pipes 22a to 22d in the arrangement direction. It arrange | positions so that it may become direction. The heat medium pipes 22a and 22c are thermally coupled to the heat exchanging member 21 by being press-fitted into the coupling holes 41a of the short side protruding parts 41, and the heat medium pipes 22b and 22d are long side protruding parts. The heat exchange member 21 is thermally coupled by being press-fitted into the coupling hole 42 a of 42. According to this configuration, the upstream portion of the heat medium pipes 22a and 22c is coupled to the heat exchange member 21 arranged on one end side in the arrangement direction, and the heat exchange member 21 arranged on the other end side in the arrangement direction is heated. The upstream portions of the medium pipes 22b and 22d are coupled. Therefore, since the temperature of the battery cell 2 arranged on one end side in the arrangement direction and the battery cell 2 arranged on the other end side in the arrangement direction are similarly adjusted, temperature unevenness occurs between the battery cells 2. This can be suppressed.

○上記各実施形態では、各熱媒配管22a,22bを略U字状に形成し、熱媒体の流通方向が一回折り返されるようにしたが、これに限らず、例えば熱媒体の流通方向が複数回折り返されるように折り曲げた形状としてもよい。   In each of the above embodiments, each of the heat medium pipes 22a and 22b is formed in a substantially U shape so that the flow direction of the heat medium is folded once, but not limited to this, for example, the flow direction of the heat medium is It is good also as a shape bent so that it may be folded in multiple times.

○上記各実施形態では、各熱媒配管22a,22bの断面形状を長孔状に形成したが、これに限らず、丸孔状や多角形孔状に形成してもよく、また、配管内に多数の孔が形成された形状としてもよい。   In the above embodiments, the cross-sectional shape of each heat medium pipe 22a, 22b is formed in a long hole shape, but is not limited thereto, and may be formed in a round hole shape or a polygonal hole shape. It is good also as a shape in which many holes were formed.

○上記各実施形態では、各熱媒配管22a,22bを結合孔24a,25a,41a,42aに圧入することにより熱交換部材21に熱的に結合したが、これに限らず、例えばロウ付け等により熱媒配管22a,22bを熱交換部材21に結合させてもよい。   In each of the above embodiments, each heat medium pipe 22a, 22b is thermally coupled to the heat exchange member 21 by press-fitting into the coupling holes 24a, 25a, 41a, 42a. The heat medium pipes 22a and 22b may be coupled to the heat exchange member 21.

○上記実施形態では、挟持部23の表面を絶縁シートにより被覆したが、これに限らず、例えば絶縁性を有する塗料や接着剤等により挟持部23の表面を被覆してもよい。
○上記実施形態では、熱交換部材21を長方形板状に形成したが、これに限らず、例えば円板形状にしてもよく、また、電池セル2との間で熱交換を行うことができれば、板状以外の他の形状としてもよい。
In the above embodiment, the surface of the sandwiching portion 23 is covered with the insulating sheet. However, the present invention is not limited to this, and the surface of the sandwiching portion 23 may be covered with, for example, an insulating paint or adhesive.
In the above embodiment, the heat exchange member 21 is formed in a rectangular plate shape. However, the heat exchange member 21 is not limited thereto. For example, the heat exchange member 21 may have a disk shape, and if heat exchange can be performed with the battery cell 2, Other shapes than the plate shape may be used.

○上記各実施形態において、熱交換部材21に熱媒配管22a,22bとの間で熱媒体を循環させる流路を形成してもよい。
○上記各実施形態では、電池セル2を角型セルとして構成したが、これに限らず、例えば円筒型セルやラミネート型セルとして構成してもよい。
In each of the above embodiments, the heat exchange member 21 may be formed with a flow path for circulating the heat medium between the heat medium pipes 22a and 22b.
In each of the above embodiments, the battery cell 2 is configured as a square cell, but is not limited thereto, and may be configured as, for example, a cylindrical cell or a laminated cell.

○上記各実施形態では、熱源機構27が熱媒体を加熱及び冷却可能な構成としたが、これに限らず、熱源機構27が加熱のみ又は冷却のみ可能な構成としてもよい。
○上記各実施形態では、各熱交換部材21に熱媒配管22a,22bを4箇所で結合させたが、これに限らず、隣り合う結合箇所での熱媒体の流通方向が互いに逆向きであればよく、6箇所以上で結合させてもよい。
In each of the above embodiments, the heat source mechanism 27 is configured to be able to heat and cool the heat medium. However, the configuration is not limited thereto, and the heat source mechanism 27 may be configured to be capable of only heating or cooling.
In each of the above embodiments, the heat medium pipes 22a and 22b are coupled to the respective heat exchanging members 21 at four locations. However, the present invention is not limited to this, and the flow directions of the heat medium at adjacent coupling locations may be opposite to each other. What is necessary is just to couple | bond at 6 or more places.

○上記各実施形態では、本発明を電気自動車やハイブリッド車に搭載された走行用モータの電源として用いられる電池モジュール1に適用したが、他の用途に用いられる電源に適用してもよい。   In each of the above embodiments, the present invention is applied to the battery module 1 used as a power source for a traveling motor mounted on an electric vehicle or a hybrid vehicle, but may be applied to a power source used for other purposes.

次に、上記各実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(イ)前記電池セル及び前記熱交換部材は長方形板状に形成されるとともに、前記熱媒配管の断面形状は、長孔状に形成されたことを特徴とする電池モジュール。上記構成によれば、例えば熱媒配管の断面形状を丸穴状に形成する場合に比べ、熱交換部材を効率的に温度調節することが可能になる。
Next, technical ideas that can be understood from the above embodiments and other examples will be described below together with their effects.
(A) The battery cell and the heat exchange member are formed in a rectangular plate shape, and a cross-sectional shape of the heat medium pipe is formed in a long hole shape. According to the said structure, compared with the case where the cross-sectional shape of heat-medium piping is formed in a round hole shape, it becomes possible to adjust the temperature of a heat exchange member efficiently.

(ロ)前記各熱媒配管の少なくとも1つは、前記電池セルの配列方向の一端側から流入した熱媒体が前記配列方向の他端側から流出するように前記熱源機構に接続され、前記各熱媒配管の少なくとも他の1つは、前記配列方向の他端側から流入した熱媒体が前記配列方向の一端側から流出するように配設されたことを特徴とする電池モジュール。上記構成によれば、配列方向一端側に配置された電池セルと、配列方向他端側に配置された電池セルとが同様に温度調節されるようになるため、各電池セル間に温度ムラが生じることを抑制できる。   (B) At least one of the heat medium pipes is connected to the heat source mechanism so that the heat medium flowing from one end side in the arrangement direction of the battery cells flows out from the other end side in the arrangement direction, At least another one of the heat medium pipes is arranged such that the heat medium flowing in from the other end side in the arrangement direction flows out from one end side in the arrangement direction. According to the above configuration, since the temperature of the battery cell arranged on one end side in the arrangement direction and the battery cell arranged on the other end side in the arrangement direction are similarly adjusted, there is a temperature unevenness between the battery cells. It can be suppressed.

1…電池モジュール、2…電池セル、3…組電池、5…温度調節機構、21…熱交換部材、22a〜22d…熱媒配管、24,41…短辺突出部、24a,25a,41a,42a…結合孔、25,42…長辺突出部、27…熱源機構、31a,31b,43a,44a…短辺部、32a,32b,43b,44b…長辺部。   DESCRIPTION OF SYMBOLS 1 ... Battery module, 2 ... Battery cell, 3 ... Assembly battery, 5 ... Temperature control mechanism, 21 ... Heat exchange member, 22a-22d ... Heat-medium piping, 24, 41 ... Short side protrusion part, 24a, 25a, 41a, 42a ... coupling hole, 25, 42 ... long side protrusion, 27 ... heat source mechanism, 31a, 31b, 43a, 44a ... short side, 32a, 32b, 43b, 44b ... long side.

Claims (3)

複数の電池セルを配列してなる組電池と、前記各電池セルの温度調節を行う温度調節機構と、を備え、
前記温度調節機構は、前記電池セル間に挟まれる熱交換部材、及び前記各熱交換部材に対して熱的に結合されるとともに熱源機構との間で熱媒体が循環する複数の熱媒配管を有する電池モジュールにおいて、
前記各熱交換部材には、前記熱媒配管が少なくとも4箇所以上で結合され、
前記各熱媒配管は、隣り合う結合箇所での前記熱媒体の流通方向が互いに逆向きとなるように配設されたことを特徴とする電池モジュール。
An assembled battery in which a plurality of battery cells are arranged, and a temperature adjustment mechanism for adjusting the temperature of each battery cell,
The temperature adjusting mechanism includes a heat exchange member sandwiched between the battery cells, and a plurality of heat medium pipes that are thermally coupled to the heat exchange members and in which a heat medium circulates between the heat source mechanism. In the battery module having
Each heat exchange member is coupled with the heat medium pipe at at least four locations,
Each said heat medium piping is arrange | positioned so that the distribution | circulation direction of the said heat medium in the adjacent joint location may become reverse direction mutually.
請求項1に記載の電池モジュールにおいて、
前記熱交換部材には、前記熱媒配管の結合箇所が等間隔に設けられたことを特徴とする電池モジュール。
The battery module according to claim 1,
The battery module according to claim 1, wherein the heat exchange members are provided at equal intervals in the heat exchange pipe.
請求項1又は2に記載の電池モジュールにおいて、
前記電池セル及び前記熱交換部材は長方形板状に形成されるとともに、前記熱交換部材の各長辺及び各短辺に前記熱媒配管の結合箇所が1箇所ずつ設けられ、
前記各熱媒配管は、前記各長辺に結合される長辺部及び前記各短辺に結合される短辺部の一端同士を連結することにより形成されるとともに、前記各短辺部に熱媒体が流れ込み、前記各長辺部から熱媒体が流れ出すように配設されたことを特徴とする電池モジュール。
The battery module according to claim 1 or 2,
The battery cell and the heat exchange member are formed in a rectangular plate shape, and each heat medium pipe is connected to each long side and each short side of the heat exchange member by one place,
Each of the heat medium pipes is formed by connecting one end of a long side portion coupled to each of the long sides and one end of a short side portion coupled to each of the short sides, and heat is applied to each of the short side portions. A battery module, wherein a medium flows in and a heat medium flows out from each of the long sides.
JP2011231963A 2011-10-21 2011-10-21 Battery module Expired - Fee Related JP5699900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231963A JP5699900B2 (en) 2011-10-21 2011-10-21 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231963A JP5699900B2 (en) 2011-10-21 2011-10-21 Battery module

Publications (2)

Publication Number Publication Date
JP2013089567A true JP2013089567A (en) 2013-05-13
JP5699900B2 JP5699900B2 (en) 2015-04-15

Family

ID=48533245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231963A Expired - Fee Related JP5699900B2 (en) 2011-10-21 2011-10-21 Battery module

Country Status (1)

Country Link
JP (1) JP5699900B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181504A (en) * 2015-03-24 2016-10-13 株式会社東芝 Battery module
JP2020043037A (en) * 2018-09-13 2020-03-19 株式会社デンソー Battery unit
CN112117509A (en) * 2019-06-21 2020-12-22 比亚迪股份有限公司 Power battery pack and vehicle with same
CN113795967A (en) * 2020-02-27 2021-12-14 株式会社Lg新能源 Energy storage system including superabsorbent sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106521A (en) * 1996-09-26 1998-04-24 Matsushita Electric Ind Co Ltd Storage battery power supply device
JPH1154157A (en) * 1997-08-04 1999-02-26 Toyota Motor Corp Heat exchanger and battery case
JP2007066647A (en) * 2005-08-30 2007-03-15 Toyota Motor Corp Battery cooling structure and battery module
JP2007200778A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Cooling structure of secondary battery
JP2008059950A (en) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd Power source device
JP2009009889A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle
JP2010097872A (en) * 2008-10-17 2010-04-30 Denso Corp Battery cooler
JP2010157502A (en) * 2008-12-15 2010-07-15 Visteon Global Technologies Inc Heat exchanger for temperature control of vehicle battery
JP2012195209A (en) * 2011-03-17 2012-10-11 Toyota Industries Corp Battery temperature control device
JP2013012463A (en) * 2011-05-30 2013-01-17 Yokohama Rubber Co Ltd:The Temperature control device for storage battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106521A (en) * 1996-09-26 1998-04-24 Matsushita Electric Ind Co Ltd Storage battery power supply device
JPH1154157A (en) * 1997-08-04 1999-02-26 Toyota Motor Corp Heat exchanger and battery case
JP2007066647A (en) * 2005-08-30 2007-03-15 Toyota Motor Corp Battery cooling structure and battery module
JP2007200778A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Cooling structure of secondary battery
JP2008059950A (en) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd Power source device
JP2009009889A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle
JP2010097872A (en) * 2008-10-17 2010-04-30 Denso Corp Battery cooler
JP2010157502A (en) * 2008-12-15 2010-07-15 Visteon Global Technologies Inc Heat exchanger for temperature control of vehicle battery
JP2012195209A (en) * 2011-03-17 2012-10-11 Toyota Industries Corp Battery temperature control device
JP2013012463A (en) * 2011-05-30 2013-01-17 Yokohama Rubber Co Ltd:The Temperature control device for storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181504A (en) * 2015-03-24 2016-10-13 株式会社東芝 Battery module
JP2020043037A (en) * 2018-09-13 2020-03-19 株式会社デンソー Battery unit
JP7107119B2 (en) 2018-09-13 2022-07-27 株式会社デンソー battery unit
CN112117509A (en) * 2019-06-21 2020-12-22 比亚迪股份有限公司 Power battery pack and vehicle with same
CN112117509B (en) * 2019-06-21 2023-04-07 比亚迪股份有限公司 Power battery pack and vehicle with same
CN113795967A (en) * 2020-02-27 2021-12-14 株式会社Lg新能源 Energy storage system including superabsorbent sheet

Also Published As

Publication number Publication date
JP5699900B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP2013051099A (en) Module for battery temperature control
JP5157681B2 (en) Stacked cooler
JP2014191916A (en) Cooling device
JP5699900B2 (en) Battery module
JP2017535022A (en) Energy supply module for a voltage supply device provided in a vehicle
US20130045411A1 (en) Cooling device
US10601086B2 (en) Cooling system for cooling electrochemical cells of a battery system
JP5516166B2 (en) Vehicle power supply
JP5783465B2 (en) Busbar and electrical circuit
WO2018235473A1 (en) Terminal cooling device
JP2018147607A (en) Heat transfer device for battery pack
JP2015103324A (en) Cooling structure for battery pack
JP5751127B2 (en) Battery module
JP2012199149A (en) Battery temperature controller
JP2021077583A (en) Battery temperature controller
JP2015156347A (en) Battery temperature adjustment device
JP2019185902A (en) Cooling and heating device for battery pack
JP5906921B2 (en) Battery module and vehicle
CN113875073B (en) Battery cooling system
CN112470329B (en) Cooling device
CN209843900U (en) Battery pack thermal management system
JP2014098496A (en) Laminate type heat exchanger
JP2013114926A (en) Heat exchanger for battery, and vehicle
JP2014093238A (en) Heat exchange apparatus of battery pack
CN218919048U (en) Battery module and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R151 Written notification of patent or utility model registration

Ref document number: 5699900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees