JP2013088310A - Aluminum die casting component defect detection method - Google Patents

Aluminum die casting component defect detection method Download PDF

Info

Publication number
JP2013088310A
JP2013088310A JP2011229785A JP2011229785A JP2013088310A JP 2013088310 A JP2013088310 A JP 2013088310A JP 2011229785 A JP2011229785 A JP 2011229785A JP 2011229785 A JP2011229785 A JP 2011229785A JP 2013088310 A JP2013088310 A JP 2013088310A
Authority
JP
Japan
Prior art keywords
defect
ray
aluminum die
internal
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229785A
Other languages
Japanese (ja)
Other versions
JP5849601B2 (en
Inventor
Munetaka Mitsumura
宗隆 三ツ邑
Shigeru Okita
滋 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011229785A priority Critical patent/JP5849601B2/en
Priority to CN201180002918.4A priority patent/CN102782487B/en
Priority to EP11859014A priority patent/EP2527831A1/en
Priority to PCT/JP2011/006058 priority patent/WO2012117468A1/en
Priority to US13/581,185 priority patent/US9383343B2/en
Publication of JP2013088310A publication Critical patent/JP2013088310A/en
Application granted granted Critical
Publication of JP5849601B2 publication Critical patent/JP5849601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum die casting component defect detection method capable of properly detecting an internal defect of an actual aluminum die casting component, specially a state of a fracture chill layer.SOLUTION: Image outputs of both an image obtained by ultrasonic crack inspection and an image obtained by X-ray CT are adjusted in advance such that defect areas to the same defect of the images are the same, an internal defect of a preset prescribed range of an aluminum die casting component is subjected to ultrasonic crack inspection and X-ray CT, the total sum of defect areas obtained by performing image analysis of the internal defect by ultrasonic crack inspection of the prescribed range is calculated as the total defect amount by ultrasonic crack inspection, the total sum of defect areas obtained by performing image analysis of the internal defect by X-ray CT of the prescribed range is calculated as the total defect amount by X-ray CT, and the total amount of a fracture chill layer of the preset prescribed range of the aluminum die casting component is calculated by subtracting the total defect amount by X-ray CT from the total defect amount by ultrasonic crack inspection.

Description

本発明は、アルミダイカスト部品の欠陥検出方法に関するものであり、例えば車両の電動パワーステアリング装置に用いられる部品などの欠陥検出に好適なものである。   The present invention relates to a method for detecting a defect in an aluminum die-cast part, and is suitable for detecting a defect such as a part used in an electric power steering device for a vehicle.

例えば車両の電動パワーステアリング装置に用いられるコラムハウジングなどはアルミダイカスト部品からなる。このようなアルミダイカスト部品の強度評価方法としては、例えば下記特許文献1や特許文献2に記載されるものがある。このうち、特許文献1では、例えば鋳造品に超音波を照射して鋳造品からの音波情報に基づいて鋳造品の鋳巣と破断チル層を検出して第1の内部欠陥3次元分布データを取得し、同じ鋳造品をX線CT測定して鋳造品の複数の断面画像から鋳造品の鋳巣を検出して第2の内部欠陥3次元分布データを取得し、第1の内部欠陥3次元分布データと第2の内部欠陥3次元分布データを比較して鋳造品の破断チル層の3次元分布データを取得する。また、特許文献2では、アルミダイカスト部品のゲート近傍のランナー部内で凝固した溶湯から検査片を切り出し、その検査片の切出し面である検査面の面積に対する検査面に露出している破断チル層の面積の面積率を算出し、その面積率と所定の基準値とを比較してアルミダイカスト部品の不良を判断する。   For example, a column housing used for an electric power steering device of a vehicle is made of an aluminum die cast part. As a method for evaluating the strength of such an aluminum die-cast part, for example, there are methods described in Patent Document 1 and Patent Document 2 below. Among these, in Patent Document 1, for example, the cast product is irradiated with ultrasonic waves to detect the cast hole and the broken chill layer based on the sound wave information from the cast product, and the first internal defect three-dimensional distribution data is obtained. The X-ray CT measurement of the same cast product is performed to detect the cavities of the cast product from a plurality of cross-sectional images of the cast product, the second internal defect three-dimensional distribution data is acquired, and the first internal defect three-dimensional data is obtained. The distribution data and the second internal defect three-dimensional distribution data are compared to obtain the three-dimensional distribution data of the broken chill layer of the cast product. Moreover, in patent document 2, the test piece is cut out from the molten metal solidified in the runner part in the vicinity of the gate of the aluminum die cast part, and the fractured chill layer exposed on the test surface with respect to the area of the test surface that is the cut surface of the test piece is disclosed. The area ratio of the area is calculated, and the area ratio is compared with a predetermined reference value to determine the defect of the aluminum die cast part.

特開2005−91288号公報JP 2005-91288 A 特開2007−111728号公報JP 2007-1111728 A

しかしながら、前記特許文献2に記載されるアルミダイカスト部品の欠陥検出方法は、あくまでもアルミダイカスト部品のランナー部内の凝固した溶湯を検査したものであり、アルミダイカスト部品自体の欠陥検出ではない。これに対し、前記特許文献1に記載されるアルミダイカスト部品の欠陥検出方法は、アルミダイカスト部品自体の評価を可能とするが、実際のアルミダイカスト部品について、超音波探傷による内部欠陥3次元分布データを取得し、X線CTによる内部欠陥3次元分布データを取得し、両者を比較して破断チル層の分布データを取得するのは極めて困難である。   However, the defect detection method of the aluminum die-cast part described in Patent Document 2 is merely an inspection of the solidified melt in the runner portion of the aluminum die-cast part, and is not a defect detection of the aluminum die-cast part itself. On the other hand, the defect detection method of the aluminum die-cast part described in Patent Document 1 enables evaluation of the aluminum die-cast part itself, but for an actual aluminum die-cast part, internal defect three-dimensional distribution data by ultrasonic flaw detection. It is extremely difficult to acquire the three-dimensional internal defect distribution data by X-ray CT and acquire the distribution data of the fractured chill layer by comparing the two.

本発明は、上記のような問題点に着目してなされたものであり、実際のアルミダイカスト部品の内部欠陥、特に破断チル層の状態を適正に検出することが可能なアルミダイカスト部品の欠陥検出方法を提供することを目的とするものである。   The present invention has been made paying attention to the above-mentioned problems, and is capable of properly detecting an internal defect of an actual aluminum die-cast part, in particular, a state of a broken chill layer. It is intended to provide a method.

上記課題を解決するために、本発明のアルミダイカスト部品の欠陥検出方法は、超音波探傷で得られる画像及びX線CTで得られる画像の同一欠陥に対する欠陥面積が同等になるように予め両者の画像出力を調整し、アルミダイカスト部品の予め設定された所定範囲の内部欠陥を超音波探傷し、当該所定範囲の超音波探傷による内部欠陥を画像解析して欠陥面積を求め、当該所定範囲の超音波探傷による内部欠陥の欠陥面積の総和を超音波探傷による欠陥総量として算出し、前記アルミダイカスト部品の所定範囲の内部欠陥をX線CTし、当該所定範囲のX線CTによる内部欠陥を画像解析して欠陥面積を求め、当該所定範囲のX線CTによる内部欠陥の欠陥面積の総和をX線CTによる欠陥総量として算出し、前記超音波探傷による欠陥総量からX線CTによる欠陥総量を減じて前記アルミダイカスト部品の予め設定された所定範囲の破断チル層の総量を算出することを特徴とするものである。   In order to solve the above problems, the defect detection method for an aluminum die-cast part according to the present invention is performed in advance so that the defect areas for the same defect in the image obtained by ultrasonic flaw detection and the image obtained by X-ray CT become equal. Adjust the image output, ultrasonically detect a predetermined range of internal defects in the aluminum die-cast part, analyze the image of the internal defects of the predetermined range of ultrasonic defects, determine the defect area, Calculate the total defect area of internal defects by ultrasonic flaw detection as the total amount of defects by ultrasonic flaw detection, perform X-ray CT of internal defects in a predetermined range of the aluminum die cast part, and analyze the internal defects by X-ray CT in the predetermined range Then, the defect area is obtained, the sum of the defect areas of the internal defects by the X-ray CT in the predetermined range is calculated as the total defect amount by the X-ray CT, and the total defect by the ultrasonic flaw detection is calculated. It is characterized in that to calculate the total amount of the fracture chill layer of preset predetermined range of said aluminum die-cast component by subtracting the defect amount by X-ray CT from.

また、前記超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、欠陥面積が予め設定された所定面積以上の欠陥面積について欠陥面積の総和を求めることを特徴とするものである。
また、前記超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、所定範囲の欠陥面積毎に内部欠陥の個数のヒストグラムを作成することを特徴とするものである。
Further, when calculating the sum of the defect areas of the internal defects by the ultrasonic flaw detection and the sum of the defect areas of the internal defects by the X-ray CT, the sum of the defect areas is calculated for a defect area having a predetermined defect area or more. It is characterized by seeking.
In addition, a histogram of the number of internal defects is created for each predetermined defect area when calculating the sum of defect areas of internal defects by ultrasonic flaw detection and the sum of defect areas of internal defects by X-ray CT. It is what.

而して、本発明のアルミダイカスト部品の欠陥検出によれば、超音波探傷で得られる画像及びX線CTで得られる画像の同一欠陥に対する欠陥面積が同等になるように予め両者の画像出力を調整し、アルミダイカスト部品の予め設定された所定範囲の内部欠陥を超音波探傷し、当該所定範囲の超音波探傷による内部欠陥を画像解析して欠陥面積を求め、当該所定範囲の超音波探傷による内部欠陥の欠陥面積の総和を超音波探傷による欠陥総量として算出し、アルミダイカスト部品の同じ所定範囲の内部欠陥をX線CTし、当該所定範囲のX線CTによる内部欠陥を画像解析して欠陥面積を求め、当該所定範囲のX線CTによる内部欠陥の欠陥面積の総和をX線CTによる欠陥総量として算出し、超音波探傷による欠陥総量からX線CTによる欠陥総量を減じてアルミダイカスト部品の予め設定された所定範囲の破断チル層の総量を算出することとしたため、アルミダイカスト部品の内部欠陥、特に破断チル層の状態を適正に検出することができる。   Thus, according to the defect detection of the aluminum die cast part of the present invention, the image output of both is performed in advance so that the defect area for the same defect of the image obtained by ultrasonic flaw detection and the image obtained by X-ray CT becomes equal. Adjust, ultrasonically detect a predetermined range of internal defects in the aluminum die-cast part, analyze the image of the internal defects of the predetermined range of ultrasonic flaws, determine the defect area, and by ultrasonic detection of the predetermined range The total defect area of the internal defects is calculated as the total amount of defects by ultrasonic flaw detection, X-ray CT is performed for internal defects in the same predetermined range of the aluminum die-cast part, and the internal defects by X-ray CT in the predetermined range are image analyzed The area is obtained, the sum of the defect areas of the internal defects by the X-ray CT in the predetermined range is calculated as the total defect amount by the X-ray CT, and the X-ray CT is calculated from the total defect amount by the ultrasonic flaw detection. Since it was decided to Recessed by subtracting the total amount to calculate the amount of breakage chill layer of preset predetermined range of aluminum die cast parts, internal defects of the aluminum die-cast part, in particular properly detect the state of breaking the chill layer.

また、超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、欠陥面積が予め設定された所定面積以上の欠陥面積について欠陥面積の総和を求めることとしたため、アルミダイカスト部品の内部欠陥、特に破断チル層の状態をより一層適正に検出することができる。
また、超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、所定範囲の欠陥面積毎に内部欠陥の個数のヒストグラムを作成することとしたため、アルミダイカスト部品の内部欠陥の状態を認識しやすい。
Further, when obtaining the sum of defect areas of internal defects by ultrasonic flaw detection and the sum of defect areas of internal defects by X-ray CT, the sum of defect areas is obtained for defect areas having a predetermined defect area or more. Therefore, the internal defect of the aluminum die cast part, particularly the state of the fractured chill layer can be detected more appropriately.
In addition, when calculating the sum of the defect areas of the internal defects by ultrasonic flaw detection and the sum of the defect areas of the internal defects by X-ray CT, it was decided to create a histogram of the number of internal defects for each defect area in a predetermined range. Easily recognize the state of internal defects in aluminum die-cast parts.

本発明のアルミダイカスト部品の欠陥検出方法の一実施形態を示す超音波探傷の説明図である。It is explanatory drawing of the ultrasonic flaw detection which shows one Embodiment of the defect detection method of the aluminum die-casting part of this invention. 図1のアルミダイカスト部品の高応力部の説明図である。It is explanatory drawing of the high stress part of the aluminum die-casting part of FIG. 超音波探傷で得られた破断チル層及び鋳巣の画像及び断面写真画像である。It is the image and cross-sectional photograph image of a fractured chill layer and a cast hole obtained by ultrasonic flaw detection. 短冊状テストピースに対する超音波探傷及びX線CTによる鋳巣及び破断チル層の画像及び破断チル層の写真画像である。It is the image of a cast hole and a fracture | rupture chill layer by ultrasonic testing and X-ray CT with respect to a strip-shaped test piece, and the photograph image of a fracture | rupture chill layer. 引張試験片に対する超音波探傷及びX線CTによる鋳巣及び破断チル層の画像及び破断面の写真画像である。2 is an image of a cast hole and a fractured chill layer by ultrasonic flaw detection and X-ray CT on a tensile test piece and a photographic image of a fracture surface. 超音波探傷及びX線CTによる人工欠陥の画像及び写真画像である。It is the image and photographic image of the artificial defect by ultrasonic flaw detection and X-ray CT. アルミダイカスト部品の超音波探傷及びX線CTによる鋳巣及び破断チル層の画像である。It is an image of a cast hole and a fractured chill layer by ultrasonic flaw detection and X-ray CT of an aluminum die cast part. 超音波探傷及びX線CTによる破断チル層の画像及び断面写真画像である。It is the image and cross-sectional photographic image of a fractured chill layer by ultrasonic flaw detection and X-ray CT. 超音波探傷による内部欠陥の画像及び欠陥面積、欠陥面積のヒストグラム、欠陥面積の総和からなる欠陥総量の説明図である。It is explanatory drawing of the defect total amount which consists of the image of an internal defect by ultrasonic flaw, a defect area, a histogram of a defect area, and the sum total of a defect area. 破断チル層の総量算出の説明図である。It is explanatory drawing of total amount calculation of a fracture | rupture chill layer.

次に、本発明のアルミダイカスト部品の欠陥検出方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態のアルミダイカスト部品の欠陥検出方法で用いられる6軸可動超音波探傷装置の説明図であり、図1aは装置の全体図、図1bは被探傷物とターンテーブルの詳細図、図1cは内部欠陥探傷の説明図である。図中の符号1は、本実施形態で内部欠陥検出の対象となるアルミダイカスト部品であり、例えば電動パワーステアリング装置のコラムハウジングである。
Next, an embodiment of a defect detection method for an aluminum die cast part according to the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a six-axis movable ultrasonic flaw detector used in the defect detection method for aluminum die cast parts of the present embodiment, FIG. 1a is an overall view of the device, and FIG. 1b is a detail of a flaw detection object and a turntable. FIG. 1 and FIG. 1 c are explanatory diagrams of internal defect inspection. Reference numeral 1 in the figure denotes an aluminum die-cast part that is an object of internal defect detection in the present embodiment, for example, a column housing of an electric power steering apparatus.

本実施形態では、ターンテーブル2の上にアルミダイカスト部品1を搭載し、ターンテーブル2を回転させながら探触子(プローブ)3を上方から下方に移動し、アルミダイカスト部品1の内側を螺旋状に探傷する。本実施形態のアルミダイカスト部品1は、円筒部を有するので、この円筒部の切削加工済み内周面を超音波探傷装置で探傷して内部欠陥を検出すると共にX線CTでも内部欠陥を検出する。なお、図2は、超音波探傷されるアルミダイカスト部品の内周面の展開図であり、図2に示す符号5は、予め応力解析で得た高応力部であり、アルミダイカスト部品1の破壊強度を評価する場合には、この高応力部5について超音波探傷装置で探傷して内部欠陥を検出し、その欠陥面積で評価するとよい。   In this embodiment, the aluminum die-cast component 1 is mounted on the turntable 2, the probe (probe) 3 is moved downward from above while rotating the turntable 2, and the inside of the aluminum die-cast component 1 is spiraled Detect flaws. Since the aluminum die-cast part 1 of the present embodiment has a cylindrical portion, the inner peripheral surface of the cylindrical portion that has been machined is detected by an ultrasonic flaw detector to detect internal defects, and at the same time, X-ray CT also detects internal defects. . 2 is a development view of the inner peripheral surface of the aluminum die-cast part to be ultrasonically detected. Reference numeral 5 shown in FIG. 2 is a high-stress part obtained by stress analysis in advance, and the aluminum die-cast part 1 is destroyed. When evaluating the strength, the high stress portion 5 is preferably detected by an ultrasonic flaw detector to detect an internal defect, and the defect area is evaluated.

本発明のアルミダイカスト部品の欠陥評価方法は、前述の高応力部を含めた所定の範囲の内部欠陥検出を行い、欠陥の総量と、測定範囲の体積より、欠陥の存在率を算出し、強度の低下を予測するものである。特に、欠陥が高応力部に存在すると強度の低下が著しい。以下に、本実施形態のアルミダイカスト部品の欠陥検出方法の具体的手法について、開発の手順に沿って詳述する。まず始めに、アルミダイカスト部品の破断チル層を確認できる超音波探傷画像部分を断面観察して検証した。図3aには超音波探傷で検出された破断チル層を、図3bにはその断面写真画像を示す。超音波探傷では、鋳巣を検出できることも知られている。図3cには超音波探傷で検出された鋳巣を、図3dにはその断面写真画像を示す。これらの図から明らかなように、超音波探傷では、アルミダイカスト部品の破断チル層も鋳巣も検出することができる。ちなみに、ここには示していないが、超音波探傷ではアルミダイカスト部品の組織中介在物も検出することができる。   The defect evaluation method for aluminum die-cast parts according to the present invention performs internal defect detection in a predetermined range including the above-described high stress portion, calculates the defect existence rate from the total amount of defects and the volume of the measurement range, Is expected to decrease. In particular, when a defect exists in a high stress portion, the strength is remarkably reduced. Below, the specific method of the defect detection method of the aluminum die-cast component of this embodiment is explained in full detail along the procedure of development. First, the ultrasonic flaw detection image portion where the fractured chill layer of the aluminum die cast part can be confirmed was observed by cross-section and verified. FIG. 3a shows a broken chill layer detected by ultrasonic flaw detection, and FIG. 3b shows a cross-sectional photographic image thereof. It is also known that an ultrasonic flaw can detect a cast hole. FIG. 3c shows a cast hole detected by ultrasonic flaw detection, and FIG. 3d shows a cross-sectional photographic image thereof. As is apparent from these drawings, in the ultrasonic flaw detection, both the fractured chill layer and the cast hole of the aluminum die cast part can be detected. Incidentally, although not shown here, ultrasonic flaw detection can also detect inclusions in the structure of aluminum die-cast parts.

一方、X線CT(Computed Tomography:コンピュータ断層撮影)では、鋳巣は検出できても、破断チル層を検出できないという過去の実績から、平板テストピースを用いて、X線CTと超音波探傷で鋳巣及び破断チル層の画像を取得した。図4aにそれらの画像を示す。なお、図中のUTはUltrasonic Testingの略で、超音波探傷を示す。また、図4bには、図4aで超音波探傷によって破断チル層が検出された部分の断面写真画像を示す。超音波探傷によって破断チル層が検出された画像部分には、図4bに示す破断チル層が確認されたが、X線CTでは、この破断チル層を検出することができなかった。   On the other hand, in the case of X-ray CT (Computed Tomography), it is possible to detect a broken hole but not a fractured chill layer. Images of the cast hole and the fractured chill layer were acquired. These images are shown in FIG. 4a. In addition, UT in the figure is an abbreviation for Ultrasonic Testing and indicates ultrasonic flaw detection. FIG. 4b shows a cross-sectional photographic image of the portion where the broken chill layer is detected by ultrasonic flaw detection in FIG. 4a. The broken chill layer shown in FIG. 4b was confirmed in the image portion where the broken chill layer was detected by ultrasonic flaw detection, but this broken chill layer could not be detected by X-ray CT.

次に、アルミダイカスト部品と同じアルミニウム材料で引張試験片を作成し、X線CT及び超音波探傷で平行部(試験部)の内部欠陥を検出した。内部欠陥の検出測定後、試験片に対して引張試験を行い、破面を観察した。破損の起点となる鋳巣及び破断チル層の夫々についてX線CT及び超音波探傷による内部欠陥画像の検証を行った。二種類の結果を、夫々、図5a、図5bに示す。図5aは、鋳巣起点の破損であり、破面に観察される鋳巣とX線CT及び超音波探傷による内部欠陥画像、即ち鋳巣画像が一致している。一方、図5bは、破断チル層起点の破損であり、破面に観察される破断チル層は超音波探傷による内部欠陥画像、即ち破断チル層画像とは一致するものの、X線CTによる内部欠陥画像とは一致していない。なお、X線CTではアルミダイカスト部品の組織中介在物も検出することができる。   Next, a tensile test piece was made of the same aluminum material as that of the aluminum die cast part, and an internal defect in the parallel part (test part) was detected by X-ray CT and ultrasonic flaw detection. After detecting and detecting internal defects, the specimen was subjected to a tensile test and the fracture surface was observed. The internal defect image was examined by X-ray CT and ultrasonic flaw detection for each of the casting hole and fractured chill layer, which are the starting points of damage. Two types of results are shown in FIGS. 5a and 5b, respectively. FIG. 5a shows the breakage of the casting cavity starting point, and the casting defect observed on the fracture surface coincides with the internal defect image by X-ray CT and ultrasonic flaw detection, that is, the casting defect image. On the other hand, FIG. 5b shows a fracture at the origin of the fractured chill layer, and the fractured chill layer observed on the fracture surface coincides with the internal defect image by ultrasonic flaw detection, that is, the fractured chill layer image, but the internal defect by X-ray CT. It does not match the image. X-ray CT can also detect inclusions in the structure of aluminum die-cast parts.

これらの結果から、鋳巣及び破断チル層(及び介在物)を検出している超音波探傷による内部欠陥画像の欠陥面積の総和から鋳巣(及び介在物)を検出しているX線CT探傷による内部欠陥画像の欠陥面積の総和を減じてやれば破断チル層の欠陥面積の総和を得ることができるのではないか、という知見を得た。そのためには、同一の内部欠陥に対し、超音波探傷による内部欠陥画像の欠陥面積とX線CTによる内部欠陥画像の欠陥面積が同等でなければならない。そこで、アルミダイカスト部品から切り出した円筒状のテストピースに対して図6aに示すような直径φ0.5mmの円形の穴(人工欠陥)を明け、それをX線CT及び超音波探傷の画像として取得した。図6bはX線CTによる人工欠陥画像、図6cは超音波探傷による人工欠陥画像である。X線CTによる人工欠陥画像では、検出された人工欠陥の内径が0.5mmであることが確認された。超音波探傷による人工欠陥画像では、欠陥認識のための閾値を調整することで、欠陥画像の大きさを調整することができるので、人工欠陥の内径が0.5mmになるように閾値調整を行い、これによりX線CT画像と超音波探傷画像の出力調整が完了した。   From these results, the X-ray CT flaw detection detects the void (and inclusions) from the sum of the defect areas of the internal defect image by the ultrasonic flaw detection that detects the void and the broken chill layer (and inclusions). It was found that the total defect area of the broken chill layer could be obtained by reducing the total defect area of the internal defect image. For this purpose, for the same internal defect, the defect area of the internal defect image by ultrasonic flaw detection and the defect area of the internal defect image by X-ray CT must be equivalent. Therefore, a circular hole (artificial defect) with a diameter of 0.5 mm as shown in Fig. 6a is made in a cylindrical test piece cut out from an aluminum die-cast part, and it is acquired as an image of X-ray CT and ultrasonic flaw detection. did. FIG. 6B is an artificial defect image by X-ray CT, and FIG. 6C is an artificial defect image by ultrasonic flaw detection. In the artificial defect image by X-ray CT, it was confirmed that the inner diameter of the detected artificial defect was 0.5 mm. In an artificial defect image by ultrasonic flaw detection, the threshold value for defect recognition can be adjusted to adjust the size of the defect image. Therefore, the threshold value is adjusted so that the inner diameter of the artificial defect is 0.5 mm. Thus, the output adjustment of the X-ray CT image and the ultrasonic flaw detection image is completed.

図7には、実際のアルミダイカスト部品に対するX線CT内部欠陥画像と同じ部位の超音波探傷内部欠陥画像を夫々並べて示す。面積が0.2mm2以上の鋳巣に関してはX線CTによる欠陥画像と超音波探傷による欠陥画像が一致しているが、破断チル層に関しては超音波探傷による欠陥画像では検出されるもののX線CTによる欠陥画像では検出されない。このうち、破断チル層が超音波探傷による欠陥画像で検出された上側の部分について、実際の断面写真を取得したところ、図8に示すように、破断チル層が確認された。 In FIG. 7, the ultrasonic flaw detection internal defect images of the same part as the X-ray CT internal defect image for an actual aluminum die cast part are shown side by side. The defect image by X-ray CT and the defect image by ultrasonic flaw detection coincide with each other for a casting hole having an area of 0.2 mm 2 or more, but the broken chill layer is detected in the defect image by ultrasonic flaw detection although it is detected by X-ray. It is not detected in a defect image by CT. Among these, when the actual cross-sectional photograph was acquired about the upper part by which the fracture | rupture chill layer was detected with the defect image by ultrasonic flaw detection, as shown in FIG. 8, the fracture | rupture chill layer was confirmed.

そこで、超音波探傷による内部欠陥画像は、以下のような処理を行う。即ち、アルミダイカスト部品の予め設定された所定範囲を超音波探傷し、図9aに示すように直径φ0.5mmの人工欠陥テストピースを用いて、出力合わせした所定の閾値で超音波探傷による内部欠陥画像を2値化し、図9b、図9cに示すように画像解析ソフトで、例えば面積が0.2mm2以上の内部欠陥の欠陥面積を算出する。分かりやすくするためには、図9dに示すように、アルミダイカスト部品の試験番号毎に、欠陥面積毎のヒストグラムを作成する。そして、アルミダイカスト部品の試験番号毎に、欠陥面積の総和を超音波探傷による欠陥総量として算出する。この超音波探傷による欠陥総量は、鋳巣の欠陥面積と破断チル層の欠陥面積(及び介在物の欠陥面積)を含んでいる。 Therefore, the following processing is performed on the internal defect image by ultrasonic flaw detection. In other words, ultrasonic flaw detection is performed on a predetermined range of an aluminum die-cast part, and an internal defect by ultrasonic flaw detection is performed with a predetermined threshold value obtained by using an artificial defect test piece having a diameter of φ0.5 mm as shown in FIG. 9A. The image is binarized, and the defect area of the internal defect having an area of 0.2 mm 2 or more is calculated by image analysis software as shown in FIGS. 9b and 9c. For easy understanding, as shown in FIG. 9d, a histogram for each defect area is created for each test number of the aluminum die cast part. Then, for each test number of the aluminum die cast part, the sum of the defect areas is calculated as a total defect amount by ultrasonic flaw detection. The total amount of defects by ultrasonic flaw detection includes the defect area of the cast hole and the defect area of the fractured chill layer (and the defect area of inclusions).

従って、例えば図10aに示すように、アルミダイカスト部品の円筒部の所定範囲について超音波探傷を行い、図10bに示すように2値化した後、図10cのように0.2mm2以上の内部欠陥の欠陥面積を算出する。アルミダイカスト部品の円筒部の所定範囲についてX線CTを行い、図10dに示すように、同じ部位の所定範囲の試験番号毎に、超音波探傷による内部欠陥画像及びX線CTによる内部欠陥画像を画像解析して夫々の欠陥面積の総和を欠陥総量として算出する。この場合、No.1〜3が破断チル層、No.4が鋳巣と判断できる。次いで、図10eに示すように、超音波探傷による欠陥総量からX線CTによる欠陥総量を減じて前記アルミダイカスト部品の予め設定された所定範囲の破断チル層の総量を算出する。 Thus, for example, as shown in FIG. 10a, for a predetermined range of the cylindrical portion of the aluminum die cast parts subjected to ultrasonic flaw detection, after binarization as shown in FIG. 10b, the internal 0.2 mm 2 or more as shown in Figure 10c The defect area of the defect is calculated. X-ray CT is performed on a predetermined range of the cylindrical portion of the aluminum die-cast part, and as shown in FIG. 10d, an internal defect image by ultrasonic flaw detection and an internal defect image by X-ray CT are obtained for each test number of the predetermined range of the same part. Image analysis is performed to calculate the total defect area as the total defect amount. In this case, no. 1-3 are fractured chill layers, It can be determined that 4 is a cast hole. Next, as shown in FIG. 10e, the total amount of fracture chill layers in a predetermined range of the aluminum die cast part is calculated by subtracting the total amount of defects by X-ray CT from the total amount of defects by ultrasonic flaw detection.

ちなみに、内部欠陥の欠陥面積を0.2mm2以上とする理由は、0.2mm2未満の欠陥面積の内部欠陥は強度的に問題がないこと、及び少なくとも現在は0.2mm2未満の欠陥面積の内部欠陥をX線CTで正確に検出できないことの2点に由来する。超音波探傷では、0.2mm2未満の欠陥面積の内部欠陥も検出できる。従って、内部欠陥の欠陥面積を0.2mm2以上に限定しないで、単純に超音波探傷による欠陥総量からX線CTによる欠陥総量を減じると、超音波探傷でのみ検出された0.2mm2未満の欠陥面積の内部欠陥、つまり鋳巣か破断チル層か分明でなく且つ強度的に問題のない内部欠陥を評価することになってしまう。そのため、内部欠陥の欠陥面積を0.2mm2以上として欠陥の評価方法を確立した。 By the way, the reason why the defect area of the internal defect is 0.2 mm 2 or more is that the internal defect having a defect area of less than 0.2 mm 2 has no problem in strength, and at least the defect area of less than 0.2 mm 2 at present. This is due to two points that the internal defect of the above cannot be accurately detected by X-ray CT. In ultrasonic flaw detection, internal defects having a defect area of less than 0.2 mm 2 can also be detected. Therefore, if the defect total amount by X-ray CT is simply subtracted from the total defect amount by ultrasonic flaw detection without limiting the defect area of the internal defect to 0.2 mm 2 or more, it is less than 0.2 mm 2 detected only by ultrasonic flaw detection. Therefore, an internal defect having a defect area of 10 mm, that is, a cast hole or a fractured chill layer, which is not obvious and has no problem in strength, is evaluated. Therefore, the defect evaluation method was established by setting the defect area of the internal defect to 0.2 mm 2 or more.

このように本実施形態のアルミダイカスト部品の欠陥検出方法では、超音波探傷で得られる画像及びX線CTで得られる画像の人工欠陥(同一欠陥)に対する欠陥面積が同等になるように予め両者の画像出力を調整し、アルミダイカスト部品の予め設定された所定範囲の内部欠陥を超音波探傷し、当該所定範囲の超音波探傷による内部欠陥を画像解析して欠陥面積を求め、当該所定範囲の超音波探傷による内部欠陥の欠陥面積の総和を超音波探傷による欠陥総量として算出し、アルミダイカスト部品の同じ所定範囲の内部欠陥をX線CTし、当該所定範囲のX線CTによる内部欠陥を例えば画像解析して欠陥面積を求め、当該所定範囲のX線CTによる内部欠陥の欠陥面積の総和をX線CTによる欠陥総量として算出し、超音波探傷による欠陥総量からX線CTによる欠陥総量を減じてアルミダイカスト部品の予め設定された所定範囲の破断チル層の総量を算出することにより、アルミダイカスト部品の内部欠陥、特に破断チル層の状態を適正に検出することができる。   As described above, in the defect detection method of the aluminum die cast part according to the present embodiment, both of the images are obtained in advance so that the defect areas of the image obtained by ultrasonic flaw detection and the image obtained by X-ray CT with respect to the artificial defect (identical defect) are equal. Adjust the image output, ultrasonically detect a predetermined range of internal defects in the aluminum die-cast part, analyze the image of the internal defects of the predetermined range of ultrasonic defects, determine the defect area, The sum of the defect areas of the internal defects due to ultrasonic flaw detection is calculated as the total amount of defects due to ultrasonic flaw detection, X-ray CT is performed on the internal defects in the same predetermined range of the aluminum die cast part, and the internal defects due to the X-ray CT within the predetermined range are imaged, for example Analyze the defect area, calculate the total defect area of the internal defects by X-ray CT in the predetermined range as the total defect amount by X-ray CT, By subtracting the total amount of defects by X-ray CT from the total amount and calculating the total amount of fracture chill layer in a predetermined range of the aluminum die cast part, the internal defect of the aluminum die cast part, especially the state of the fracture chill layer, can be detected properly can do.

また、超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求めるにあたり、欠陥面積が予め設定された所定面積以上の欠陥面積について欠陥面積の総和を求めることにより、アルミダイカスト部品の内部欠陥、特に破断チル層の状態をより一層適正に検出することができる。
また、超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求めるにあたり、所定範囲の欠陥面積毎に内部欠陥の個数のヒストグラムを作成することとしたため、アルミダイカスト部品の内部欠陥の状態を認識しやすい。また、超音波探傷及びX線CTにより得られた画像から、部品のどの部位に欠陥が分布しているかを確認することが可能である。
In addition, when calculating the sum of defect areas of internal defects by ultrasonic flaw detection and the sum of defect areas of internal defects by X-ray CT, the sum of defect areas should be calculated for defect areas having a predetermined defect area or more. Thus, the internal defect of the aluminum die cast part, in particular, the state of the fractured chill layer can be detected more appropriately.
In addition, in determining the sum of the defect areas of the internal defects by ultrasonic flaw detection and the sum of the defect areas of the internal defects by X-ray CT, a histogram of the number of internal defects is created for each defect area in a predetermined range. Easily recognize the state of internal defects in die-cast parts. Moreover, it is possible to confirm in which part of the part the defect is distributed from the image obtained by ultrasonic flaw detection and X-ray CT.

1はアルミダイカスト部品
2はターンテーブル
3は探触子
5は高応力部
1 is an aluminum die-cast part 2 is a turntable 3 is a probe 5 is a high stress part

Claims (3)

超音波探傷で得られる画像及びX線CTで得られる画像の同一欠陥に対する欠陥面積が同等になるように予め両者の画像出力を調整し、アルミダイカスト部品の予め設定された所定範囲の内部欠陥を超音波探傷し、当該所定範囲の超音波探傷による内部欠陥を画像解析して欠陥面積を求め、当該所定範囲の超音波探傷による内部欠陥の欠陥面積の総和を超音波探傷による欠陥総量として算出し、前記アルミダイカスト部品の所定範囲の内部欠陥をX線CTし、当該所定範囲のX線CTによる内部欠陥を画像解析して欠陥面積を求め、当該所定範囲のX線CTによる内部欠陥の欠陥面積の総和をX線CTによる欠陥総量として算出し、前記超音波探傷による欠陥総量からX線CTによる欠陥総量を減じて前記アルミダイカスト部品の予め設定された所定範囲の破断チル層の総量を算出することを特徴とするアルミダイカスト部品の欠陥検出方法。   Adjust the image output of both in advance so that the defect area for the same defect of the image obtained by ultrasonic flaw detection and the image obtained by X-ray CT is equal, and the internal defect within a predetermined range of the aluminum die cast part Ultrasonic flaw detection, image analysis of the internal defects due to the ultrasonic inspection of the predetermined range to determine the defect area, and the total defect area of the internal defects due to the ultrasonic inspection of the predetermined range is calculated as the total amount of defects by the ultrasonic inspection , X-ray CT of an internal defect in a predetermined range of the aluminum die cast part, image analysis of the internal defect by the X-ray CT in the predetermined range to obtain a defect area, defect area of the internal defect by the X-ray CT in the predetermined range Is calculated as the total amount of defects by X-ray CT, the total amount of defects by X-ray CT is subtracted from the total amount of defects by ultrasonic flaw detection, and the aluminum die cast part is preset. Defect detection method of an aluminum die cast parts and calculates the total amount of breakage chilled layer of predetermined ranges. 前記超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、欠陥面積が予め設定された所定面積以上の欠陥面積について欠陥面積の総和を求めることを特徴とする請求項1に記載のアルミダイカスト部品の欠陥検出方法。   When calculating the sum of the defect areas of the internal defects by the ultrasonic flaw detection and the sum of the defect areas of the internal defects by the X-ray CT, calculating the sum of the defect areas for the defect areas having a predetermined defect area or more. The method for detecting a defect of an aluminum die cast part according to claim 1. 前記超音波探傷による内部欠陥の欠陥面積の総和及びX線CTによる内部欠陥の欠陥面積の総和を求める場合に、所定範囲の欠陥面積毎に内部欠陥の個数のヒストグラムを作成することを特徴とする請求項1又は2に記載のアルミダイカスト部品の欠陥検出方法。   A histogram of the number of internal defects is created for each defect area in a predetermined range when obtaining the sum of the defect areas of the internal defects by the ultrasonic flaw detection and the sum of the defect areas of the internal defects by the X-ray CT. The defect detection method of the aluminum die-casting part of Claim 1 or 2.
JP2011229785A 2011-02-28 2011-10-19 Defect detection method for aluminum die cast parts Active JP5849601B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011229785A JP5849601B2 (en) 2011-10-19 2011-10-19 Defect detection method for aluminum die cast parts
CN201180002918.4A CN102782487B (en) 2011-02-28 2011-10-28 The defect inspection method of aluminium die-cast part
EP11859014A EP2527831A1 (en) 2011-02-28 2011-10-28 Method for evaluating strength of aluminum die-cast part, aluminum die-cast part, and method for detecting defect of aluminum die-cast part
PCT/JP2011/006058 WO2012117468A1 (en) 2011-02-28 2011-10-28 Method for evaluating strength of aluminum die-cast part, aluminum die-cast part, and method for detecting defect of aluminum die-cast part
US13/581,185 US9383343B2 (en) 2011-02-28 2011-10-28 Strength evaluating method for aluminum die cast part, aluminum die cast part, and defect detecting method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229785A JP5849601B2 (en) 2011-10-19 2011-10-19 Defect detection method for aluminum die cast parts

Publications (2)

Publication Number Publication Date
JP2013088310A true JP2013088310A (en) 2013-05-13
JP5849601B2 JP5849601B2 (en) 2016-01-27

Family

ID=48532357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229785A Active JP5849601B2 (en) 2011-02-28 2011-10-19 Defect detection method for aluminum die cast parts

Country Status (1)

Country Link
JP (1) JP5849601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515786A (en) * 2015-01-08 2015-04-15 北京科技大学 Method for detecting and analyzing internal defect evolution of metal casting in fatigue process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674650A (en) * 1979-11-22 1981-06-20 Kobe Steel Ltd Method of determining adaptable range of ultrasonic inspection of propeller vane for ship
JPS5924215A (en) * 1982-07-30 1984-02-07 Nippon Plast Co Ltd Foreign matter detector for core metal of steering wheel
JPH03226668A (en) * 1990-01-31 1991-10-07 Mazda Motor Corp Inspection of cast product
JPH09325136A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Automatic defect evaluating method for centrifugal type impeller
JP2004144289A (en) * 2002-08-29 2004-05-20 Nsk Ltd Toroidal continuously variable transmission
JP2005091288A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Discrimination method for casting defect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674650A (en) * 1979-11-22 1981-06-20 Kobe Steel Ltd Method of determining adaptable range of ultrasonic inspection of propeller vane for ship
JPS5924215A (en) * 1982-07-30 1984-02-07 Nippon Plast Co Ltd Foreign matter detector for core metal of steering wheel
JPH03226668A (en) * 1990-01-31 1991-10-07 Mazda Motor Corp Inspection of cast product
JPH09325136A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Automatic defect evaluating method for centrifugal type impeller
JP2004144289A (en) * 2002-08-29 2004-05-20 Nsk Ltd Toroidal continuously variable transmission
JP2005091288A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Discrimination method for casting defect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515786A (en) * 2015-01-08 2015-04-15 北京科技大学 Method for detecting and analyzing internal defect evolution of metal casting in fatigue process

Also Published As

Publication number Publication date
JP5849601B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP4588414B2 (en) Internal defect inspection method and apparatus
EP2951780B1 (en) Method for the non-destructive testing of the volume of a test object and testing device configured for carrying out such a method
CN104407045A (en) Device and method for catching broken wire of bridge dragline based on metal magnetic memory technique
Wilczek et al. Porosity characterization of aluminium castings by using particular non-destructive techniques
WO2013128500A1 (en) Die-cast product rigidity evaluation method and die-cast product
Świłło et al. Automatic inspection of surface defects in die castings after machining
JP2009174859A (en) Remaining lifetime evaluation method of machine part
Brunke et al. A new Concept for High-Speed atline and inlineCT for up to 100% Mass Production Process Control
JP5849601B2 (en) Defect detection method for aluminum die cast parts
JP2006329917A (en) Internal defect inspection method and internal defect inspection device
JP2005091288A (en) Discrimination method for casting defect
CN102782487B (en) The defect inspection method of aluminium die-cast part
WO2012117468A1 (en) Method for evaluating strength of aluminum die-cast part, aluminum die-cast part, and method for detecting defect of aluminum die-cast part
JP2006200954A (en) Mold cavity detection method and mold cavity detector
JP2012194172A (en) Method for evaluating strength of aluminum die casting component and aluminum die casting component
US9846144B2 (en) Apparatus and method for detecting defect of press panel
Idris et al. Application of non-destructive testing techniques for the assessment of casting of AA5083 alloy
Stepanova et al. Acoustic-emission testing of multiple-pass welding defects of large-size constructions
JPH0712759A (en) Quality judgement method for cast component
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
Lahiri et al. Studies on temperature evolution during fatigue cycling of Ni-Al bronze (NAB) alloy using infrared thermography
JP2013083560A (en) Die-cast aluminum component strength evaluating method and die-cast aluminum components
JP2006133031A (en) Method and device for detecting defect of casting member
JP5482628B2 (en) Casting inspection method
KR20150036972A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150