JP2013087591A - Checking method and improvement method for deformation characteristic of back-filling material, and segment assembly timbering body - Google Patents

Checking method and improvement method for deformation characteristic of back-filling material, and segment assembly timbering body Download PDF

Info

Publication number
JP2013087591A
JP2013087591A JP2011231921A JP2011231921A JP2013087591A JP 2013087591 A JP2013087591 A JP 2013087591A JP 2011231921 A JP2011231921 A JP 2011231921A JP 2011231921 A JP2011231921 A JP 2011231921A JP 2013087591 A JP2013087591 A JP 2013087591A
Authority
JP
Japan
Prior art keywords
segment
tunnel
backfill material
rock
deformation characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011231921A
Other languages
Japanese (ja)
Other versions
JP5831749B2 (en
Inventor
Taku Ishii
卓 石井
Hiroyuki Tada
浩幸 多田
Hiroo Kumasaka
博夫 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011231921A priority Critical patent/JP5831749B2/en
Publication of JP2013087591A publication Critical patent/JP2013087591A/en
Application granted granted Critical
Publication of JP5831749B2 publication Critical patent/JP5831749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for checking deformation characteristics of a back-filling material.SOLUTION: Crushed stones 6 are back-filled between an installed rock-utilization segment 4 and an inner surface of a drift while the rock-utilization segment 4 is annularly installed on the inner-space side of the excavated drift, and an annular segment assembly timbering body 5 capable of partially advancing to the side of natural ground is constructed. Subsequently, a predetermined load acting on the side of the natural ground from the inner-space side of the drift is placed on a part of the segment assembly timbering body 5. Since the amount of partial displacement of the assembly timbering body 5 is measured, deformation characteristics of the back-filled crushed stones 6 can be checked.

Description

本発明は、裏込め材の変形特性の確認方法および裏込め材の変形特性の改良方法、ならびに、これら方法に用いるセグメント組立支保体に関する。   The present invention relates to a method for confirming the deformation characteristics of a backfill material, a method for improving the deformation characteristics of a backfill material, and a segment assembly support used in these methods.

高レベルの放射性廃棄物の地層処分施設において、支保工やグラウトに用いるセメント系材料は、地下水に溶出し、高アルカリ環境を生じさせる。このような高アルカリ環境は、緩衝材や埋め戻し材に使用するベントナイト系の土質材料や周辺岩盤に変質を生じさせ、長期的な性能の確保に不確実性を増大させる結果になる。   In geological disposal facilities for high-level radioactive waste, cement-based materials used for supporting works and grouts elute into groundwater, creating a highly alkaline environment. Such a highly alkaline environment causes alteration in bentonite-based soil materials and surrounding rocks used as cushioning materials and backfill materials, resulting in increased uncertainty in securing long-term performance.

このような課題を解決すべく、図1に示すように、支保工に岩石を利用したセグメント104を用いる坑道が提案されている。図2に示すように、岩石を利用したセグメント104は、鋼製の型枠141に花崗岩等の岩石ブロック142を配置するとともに、岩石ブロック142と岩石ブロック142との間、および岩石ブロック142と型枠141との間に生じる隙間にモルタル(図示せず)を充填した複合セグメントである(たとえば、特許文献1および非特許文献1参照)。   In order to solve such a problem, as shown in FIG. 1, a tunnel using a segment 104 using rock for supporting work has been proposed. As shown in FIG. 2, in the segment 104 using rock, a rock block 142 such as granite is arranged in a steel mold 141, and between the rock block 142 and the rock block 142 and between the rock block 142 and the mold. It is a composite segment in which a gap generated between the frame 141 is filled with mortar (not shown) (see, for example, Patent Document 1 and Non-Patent Document 1).

ところで、支保工にセグメントを用いて坑道を構築しても、坑道の掘削が進行するにつれて坑道の内面(地山の掘削壁面)がせり出してきたときに、その変形がセグメントに伝達されなければ、セグメントが地山の内空変形に抵抗することができない。これにより、支保工にセグメントを用いて坑道を構築する場合には、セグメントと坑道の内面との間に生じる空隙に裏込め材を充填することが要求される。   By the way, even if a tunnel is constructed using a segment for the support work, when the inner surface of the tunnel (the excavation wall of the natural ground) protrudes as the excavation of the tunnel progresses, the deformation is not transmitted to the segment. The segment cannot resist the inland deformation of the natural ground. Thereby, when constructing a mine shaft using a segment for a support work, it is required to fill a gap formed between the segment and the inner surface of the mine shaft with a backfill material.

たとえば、上述した高レベルの放射性廃棄物の地層処分施設では、セメント系材料を極力使用しないことから、裏込め材に砕石を用いることが提案されている(たとえば、非特許文献1および非特許文献2参照)。   For example, in the above-mentioned geological disposal facility for high-level radioactive waste, it is proposed to use crushed stone as a back-filling material because cement material is not used as much as possible (for example, Non-Patent Document 1 and Non-Patent Document 1). 2).

しかしながら、裏込め材を充填しても、その充填が不十分だったり、充填した裏込め材の弾性係数が小さかったりすると、セグメントが地山の内空変形に抵抗することができない。これにより、セグメントの支保反力が十分に効果を発揮するためには、裏込め材の変形特性が適切でなければならない(裏込め材の剛性(ヤング率)が大きくなければならない)。   However, even if the backfilling material is filled, if the filling is insufficient or the elastic modulus of the filled backfilling material is small, the segment cannot resist the deformation of the natural ground. Accordingly, in order for the supporting reaction force of the segment to exhibit a sufficient effect, the deformation characteristics of the backfilling material must be appropriate (the rigidity (Young's modulus) of the backfilling material must be large).

すなわち、セグメントと坑道の内面(地山の掘削壁面)との間に裏込めする裏込め材の剛性(ヤング率)ができるだけ大きく、かつ、地山が内空側に変形して地圧が作用した時の裏込め材の微少変形時の反力が大きいことが望ましい。   In other words, the rigidity (Young's modulus) of the backfill material that fills between the segment and the inner surface of the tunnel (the excavated wall surface of the natural ground) is as large as possible, and the natural pressure is applied by deforming the natural ground to the inner side. It is desirable that the reaction force at the time of minute deformation of the backfill material is large.

このような技術的課題を認識し、裏込め材の変形特性についての試験研究が進んでいる。たとえば、図3に示すように、円筒形の鋼製枠(内径300mm,高さ250mm)107に砕石(100mm〜200mm)106を充填するとともに、その上に円板(外径300mm)108を載せて載荷し、円板108の変位量と載荷応力との関係を求めた試験結果が報告されている。この試験において、期待する支保反力を2MPaとすると、その載荷応力に至るまでの変位量(初期変位量)は、図4に示すように、吹き込み充填しただけの場合には、11〜24mmとなり、初期載荷時の低応力領域における変位量が問題となることが指摘されている(たとえば、非特許文献2参照)。   Recognizing these technical issues, research on the deformation characteristics of backfill materials is progressing. For example, as shown in FIG. 3, a cylindrical steel frame (inner diameter 300 mm, height 250 mm) 107 is filled with crushed stone (100 mm to 200 mm) 106 and a disk (outer diameter 300 mm) 108 is placed thereon. The test results obtained by determining the relationship between the displacement amount of the disc 108 and the loading stress are reported. In this test, when the expected support reaction force is 2 MPa, the displacement amount (initial displacement amount) until reaching the loading stress is 11 to 24 mm when only blow filling is performed as shown in FIG. It has been pointed out that the amount of displacement in the low-stress region during initial loading is a problem (see, for example, Non-Patent Document 2).

特開2002−250795号公報JP 2002-250795 A

林克彦、野口聡ほか、「高レベル放射性廃棄物処分施設における坑道支保工に用いるセメント系材料の低減化技術に関する研究」日本原子力研究開発機構、地層処分研究開発部門、地層処分基盤研究開発ユニットKatsuhiko Hayashi, Satoshi Noguchi et al., "Research on reduction technology of cement materials used for tunnel support in high-level radioactive waste disposal facilities" Japan Atomic Energy Agency, Geological Disposal Research and Development Division, Geological Disposal Fundamental Research and Development Unit 多田浩幸、熊坂博夫ほか、「岩石利用セグメント支保工の裏込め砕石の変形特性試験と坑道の安定性の検討」土木学会、第66回年次学術講演会(平成23年度)p.117〜118Hiroyuki Tada, Hiroo Kumasaka, et al., “Deformation characteristics test of backfilled crushed stone of rock use segment support construction and examination of tunnel stability”, Japan Society of Civil Engineers, 66th Annual Scientific Lecture (2011) p. 117-118

しかしながら、山岳トンネルなどの坑道では、裏込め材の変形特性が問題となることはなく、裏込め材の変形特性を確認する確認方法や、裏込め材の変形特性が十分でない場合に裏込め材の変形特性を改良する改良方法は確立していない。   However, in tunnels such as mountain tunnels, the deformation characteristics of the backfilling material do not become a problem, and the confirmation method for confirming the deformation characteristics of the backfilling material or the backfilling material when the deformation characteristics of the backfilling material are not sufficient. There is no established method for improving the deformation characteristics.

本発明は、上記に鑑みてなされたものであって、裏込め材の変形特性を確認する裏込め材の変形特性の確認方法および裏込め材の変形特性を改良する裏込め材の変形特性の改良方法、ならびに、これら方法に用いるセグメント組立支保体を提供することを目的にする。   The present invention has been made in view of the above, and a method for confirming the deformation characteristics of the backfill material for confirming the deformation characteristics of the backfill material and the deformation characteristics of the backfill material for improving the deformation characteristics of the backfill material. It is an object of the present invention to provide an improved method and a segment assembly support used in these methods.

上述した課題を解決し、目的を達成するために、本発明は、掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、その後、前記一部に坑道の内空側から地山側に作用する所定の荷重を載荷し、前記一部の変位量を計測することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a backfill material between the installed segment and the inner surface of the mine shaft while the segment is annularly installed on the inner side of the excavated mine shaft. An annular segment assembly support body that can be filled and partly advanced to the natural ground side is constructed, and then a predetermined load acting on the natural ground side from the inner space side of the tunnel is loaded on the part, The amount of displacement is measured.

また、本発明は、掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、その後、前記一部に坑道の内空側から地山側に作用する振動を加え、前記裏込め材を締め固めることを特徴とする。   In addition, the present invention fills a backfilling material between the installed segment and the inner surface of the mine shaft, while the segment is installed in an annular shape on the inner side of the excavated mine shaft, and a part can advance to the natural ground side An annular segment assembly supporting body is constructed, and thereafter, a vibration that acts from the inner space side of the tunnel to the natural ground side is applied to the part, and the backfill material is compacted.

また、本発明は、上記発明において、さらに、裏込め材を締め固めることにより生じた空隙に裏込め材を補充することを特徴とする。   Further, the present invention is characterized in that, in the above-described invention, the backfilling material is further replenished in a gap generated by compacting the backfilling material.

また、本発明は、上述した方法に用いるセグメント組立支保体であって、円環状に組み立てられるセグメントに設けた検査窓を塞ぐ蓋体が地山側に進出可能であることを特徴とする。   Further, the present invention is a segment assembly supporting body used in the above-described method, characterized in that a lid that closes an inspection window provided in a segment assembled in an annular shape can advance to the natural ground side.

また、本発明は、上記発明において、前記検査窓は、前記セグメントの内側から外側に向けて拡開した窓枠を有し、前記蓋体は、前記セグメントの内側から外側に向けて拡開し、前記窓枠に嵌る外形を有することを特徴とする。   Further, the present invention is the above invention, wherein the inspection window has a window frame expanded from the inside to the outside of the segment, and the lid body is expanded from the inside to the outside of the segment. It has an outer shape that fits into the window frame.

本発明にかかる裏込め材の変形特性の確認方法は、掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、その後、セグメント組立支保体の地山側に進出可能な一部に坑道の内空側から地山側に作用する所定の荷重を載荷し、セグメント組立支保体の地山側に進出可能な一部の変位量を計測するので、裏込め材の変形特性を確認できる。   The method for confirming the deformation characteristics of the backfill material according to the present invention is to fill the backfill material between the installed segment and the inner surface of the tunnel, while installing the segment in an annular shape on the inner side of the excavated tunnel. Establish an annular segment assembly support body that can partially advance to the natural ground side, and then apply a predetermined load that acts on the natural ground side from the inside of the tunnel to a part that can advance to the natural ground side of the segment assembly support body Is measured, and the amount of displacement that can be advanced to the ground side of the segment assembly support is measured, so the deformation characteristics of the backfill material can be confirmed.

本発明にかかる裏込め材の変形特性の改良方法は、掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、その後、セグメント組立支保体の地山側に進出可能な一部に坑道の内空側から地山側に作用する振動を加え、裏込め材を締め固めることで、裏込め材の変形特性を改良できる。   The method for improving the deformation characteristics of the backfill material according to the present invention is to fill the backfill material between the installed segment and the inner surface of the tunnel, while installing the segment in an annular shape on the inner air side of the excavated tunnel. An annular segment assembly support body that can partially advance to the natural ground side is constructed, and then a vibration that acts from the inside of the tunnel to the natural ground side is added to a part of the segment assembly support body that can advance to the natural ground side. By compacting the backfill material, the deformation characteristics of the backfill material can be improved.

図1は、岩石利用セグメントを用いて構築した坑道を示す半断面鳥瞰図である。FIG. 1 is a half-sectional bird's-eye view showing a mine constructed using a rock utilization segment. 図2は、図1に示した岩石利用セグメントを示す斜視図である。FIG. 2 is a perspective view showing the rock utilization segment shown in FIG. 図3は、裏込め材の変形特性を求める変形試験装置を示す図であって、裏込め材に砕石を用いた例を示す図である。FIG. 3 is a diagram showing a deformation test apparatus for obtaining the deformation characteristics of the backfill material, and is a diagram showing an example in which crushed stone is used for the backfill material. 図4は、裏込め材に砕石を用いた場合の裏込め材の変形特性を示す図である。FIG. 4 is a diagram showing the deformation characteristics of the backfill material when crushed stone is used as the backfill material. 図5は、岩石利用セグメントを用いて構築した坑道を示す半断面鳥瞰図である。FIG. 5 is a half-sectional bird's-eye view showing a mine constructed using a rock utilization segment. 図6は、図5に示した岩石利用セグメントを示す斜視図である。FIG. 6 is a perspective view showing the rock utilization segment shown in FIG. 5. 図7は、本発明の実施の形態である裏込め充填した砕石の変形特性の確認方法に用いる岩石利用セグメントを示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing a rock utilization segment used in the method for confirming the deformation characteristics of backfilled crushed stone according to an embodiment of the present invention. 図8−1は、セグメント組立支保体の構築手順を示す図であって、岩石利用セグメントを設置し、砕石を裏込め充填している状態を示す図である。8-1 is a figure which shows the construction procedure of a segment assembly support body, Comprising: It is a figure which shows the state which installed the rock utilization segment and backfilled the crushed stone. 図8−2は、セグメント組立支保体の構築手順を示す図であって、セグメント組立支保体を構築した状態を示す図である。FIG. 8-2 is a diagram illustrating a construction procedure of the segment assembly support body, and is a diagram illustrating a state in which the segment assembly support body is constructed. 図8−3は、セグメント組立支保体に支保反力が作用した状態を示す図である。FIG. 8-3 is a diagram illustrating a state in which a support reaction force is applied to the segment assembly support body. 図9は、本発明の実施の形態である裏込め材の変形特性の確認方法において、蓋体に所定の荷重を載荷した状態を示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing a state in which a predetermined load is loaded on the lid in the method for confirming the deformation characteristics of the backfill material according to the embodiment of the present invention. 図10−1は、本発明の実施の形態である裏込め材の変形特性の改良方法において、裏込め充填した砕石に振動を与え始めた時の状態を示す断面模式図である。FIG. 10A is a schematic cross-sectional view showing a state when vibration is applied to the backfilled crushed stone in the method for improving the deformation characteristics of the backfilling material according to the embodiment of the present invention. 図10−2は、本発明の実施の形態である裏込め材の変形特性の改良方法において、裏込め充填した砕石に振動を与え終えた時の状態を示す断面模式図である。FIG. 10-2 is a schematic cross-sectional view showing a state when vibration is applied to the backfilled crushed stone in the method for improving the deformation characteristics of the backfilling material according to the embodiment of the present invention. 図11は、本発明の実施の形態である裏込め材の変形特性の改良方法において、砕石を補充する状態を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing a state in which crushed stone is replenished in the method for improving the deformation characteristics of the backfill material according to the embodiment of the present invention. 図12は、本発明の実施の形態である裏込め材の変形特性の改良方法において、砕石を補充する状態の別の例を示す断面模式図である。FIG. 12 is a schematic cross-sectional view showing another example of a state in which crushed stone is replenished in the method for improving the deformation characteristics of the backfill material according to the embodiment of the present invention.

以下に、本発明にかかる、裏込め材の変形特性の確認方法および裏込め材の変形特性の改良方法、ならびに、これら方法に用いるセグメント組立支保体の実施の形態を図面に基づいて詳細に説明する。なお、ここでは、図5に示すように、高レベルの放射性廃棄物を埋設処分する処分施設1において、岩石を利用したセグメント4でセグメント組立支保体5を構築し、裏込め材に砕石6を用いた例を説明するが、これにより、この発明が限定されるものではない。   Hereinafter, embodiments of a method for confirming deformation characteristics of a backfilling material, a method for improving the deformation characteristics of a backfilling material, and a segment assembly support used in these methods according to the present invention will be described in detail with reference to the drawings. To do. Here, as shown in FIG. 5, in the disposal facility 1 for burying and disposing of high-level radioactive waste, the segment assembly support body 5 is constructed with the segment 4 using rocks, and the crushed stone 6 is used as the backfill material. Although the example used is demonstrated, this invention is not limited by this.

図5に示すように、セグメント組立支保体5は、坑道3の内面(地山の掘削壁面)がせり出してきたときに、地山2の内空変形に抵抗するためのもので、掘削した坑道3の内空側に円環状に構築される。セグメント組立支保体5は、複数のセグメント4を円環状に設置することにより構築され、本実施の形態で構築されるセグメント組立支保体5は、地山2の内空変形に抵抗する状態で、一部のセグメント4あるいはセグメント4の一部を地山側に進出可能に構築する。   As shown in FIG. 5, the segment assembly support body 5 is for resisting the internal deformation of the natural ground 2 when the inner surface (the excavation wall surface of the natural ground) of the tunnel 3 protrudes. 3 is constructed in an annular shape on the inner space side. The segment assembly support body 5 is constructed by installing a plurality of segments 4 in an annular shape, and the segment assembly support body 5 constructed in the present embodiment is in a state that resists deformation of the inside of the natural ground 2. A part of segment 4 or a part of segment 4 is constructed so as to be able to advance to the natural ground side.

図6に示すように、本実施の形態で用いるセグメント4は、上述したように、岩石を利用したセグメント4(以下、「岩石利用セグメント4」という)であり、鋼製の型枠41に花崗岩等の岩石ブロック42をまんべんなく配置するとともに、岩石ブロック42と岩石ブロック42との間、および、岩石ブロック42と型枠41との間に生じる隙間にモルタル44を充填した複合セグメントである。岩石利用セグメント4は、正面視円弧状に形成してあり、型枠41は、正面視円弧状に湾曲形成された板状部(鋼板)411と、板状部411に溶接され、板状部411の上に箱状に形成された枠部412とを備えて構成してある。本実施の形態で用いる型枠41は、坑道3の内空側に設置した場合に、坑道3の内空側となる内側を板状部411が覆うように、内側に板状部411を配置し、外側に枠部412を配置する。これにより、本実施の形態の岩石利用セグメント4は、岩石ブロック42の表面が外側面に露出することになるが、その外側面(地山に対向する面)は滑らかに形成してあり、砕石6(裏込め材)を充填する場合にも砕石6が詰まることがない。   As shown in FIG. 6, the segment 4 used in the present embodiment is a segment 4 using rocks (hereinafter referred to as “rock use segment 4”) as described above, and the steel mold 41 has granite. The rock block 42 is arranged evenly, and a mortar 44 is filled in a gap formed between the rock block 42 and the rock block 42 and between the rock block 42 and the mold 41. The rock utilization segment 4 is formed in a circular arc shape when viewed from the front, and the mold frame 41 is welded to the plate-shaped portion (steel plate) 411 and the plate-shaped portion 411 that are curved and formed into a circular arc shape when viewed from the front. A frame portion 412 formed in a box shape on 411 is provided. The formwork 41 used in the present embodiment has a plate-like portion 411 arranged on the inner side so that the plate-like portion 411 covers the inner side of the mine shaft 3 when it is installed on the inner air side of the mine shaft 3. The frame portion 412 is disposed outside. Thereby, although the rock utilization segment 4 of this Embodiment exposes the surface of the rock block 42 to an outer side surface, the outer side surface (surface facing a natural ground) is formed smoothly, and crushed stone Even when 6 (backfill material) is filled, the crushed stone 6 is not clogged.

また、図7に示すように、本実施の形態で用いる岩石利用セグメント4には、その中央に検査窓43が設けてある。検査窓43は、岩石利用セグメント4の一部(蓋体432)を地山側に進出可能に構成したもので、岩石利用セグメント4の中央に設けた窓枠431と、該窓枠431を塞ぐ蓋体432と、蓋体432が窓枠431を塞いだ状態で蓋体432を固定する固定治具433とを有している。窓枠431は、岩石利用セグメント4の内側から外側に向けて漸次拡開するように形成してある。窓枠431は、たとえば、岩石利用セグメント4の地山接触面積の3%〜20%を占める大きさを有し、たとえば、角錐台状あるいは円錐台状に形成してある。蓋体432は、岩石利用セグメント4の内側から外側に向けて漸次拡開し、窓枠431に嵌る外形(角錐台状あるいは円錐台状)を有している。これにより、蓋体432は、坑道3の内空側から地山側に進出可能となり、内空側に退出することはない。また、蓋体432は、窓枠431を塞いだ状態で、その外側面が岩石利用セグメント4の外側面と面一となり、砕石6(裏込め材)を充填する場合にも砕石6が検査窓43に詰まることはない。なお、窓枠431と蓋体432とは、たとえば、金属で構成され、蓋体432を窓枠431に溶接することにより、蓋体432を窓枠431に固定することが可能である。   Moreover, as shown in FIG. 7, the rock utilization segment 4 used in the present embodiment is provided with an inspection window 43 at the center thereof. The inspection window 43 is configured such that a part of the rock utilization segment 4 (lid body 432) can be advanced to the natural mountain side, and a window frame 431 provided in the center of the rock utilization segment 4 and a lid for closing the window frame 431 A body 432 and a fixing jig 433 for fixing the lid 432 in a state where the lid 432 closes the window frame 431. The window frame 431 is formed so as to gradually expand from the inside to the outside of the rock utilization segment 4. The window frame 431 has a size that occupies 3% to 20% of the ground contact area of the rock utilization segment 4, for example, and is formed in a truncated pyramid shape or a truncated cone shape, for example. The lid 432 gradually expands from the inside to the outside of the rock utilization segment 4 and has an outer shape (a truncated pyramid shape or a truncated cone shape) that fits into the window frame 431. Thereby, the cover body 432 can advance from the inner space side of the tunnel 3 to the natural ground side, and does not retreat to the inner space side. In addition, the lid 432 closes the window frame 431, and the outer surface thereof is flush with the outer surface of the rock utilization segment 4, and the crushed stone 6 is also inspected when the crushed stone 6 (backing material) is filled. 43 will not clog. The window frame 431 and the lid body 432 are made of, for example, metal, and the lid body 432 can be fixed to the window frame 431 by welding the lid body 432 to the window frame 431.

また、図11に示すように、本実施の形態で用いる岩石利用セグメント4のうち、天端部に設置する岩石利用セグメント4Aの検査窓43Aは、蓋体432Aに補充口432A1が設けてある。補充口432A1は、設置した岩石利用セグメント4と坑道3の内面との間に生じた空隙に砕石を補充するためのもので、図11に示すように、鉛直方向に蓋体432Aを貫通するものであってもよいし、図12に示すように、斜め方向に蓋体432Aを貫通するものものであってもよい。   As shown in FIG. 11, among the rock utilization segments 4 used in the present embodiment, the inspection window 43A of the rock utilization segment 4A installed at the top end portion is provided with a replenishment port 432A1 in the lid 432A. The replenishment port 432A1 is for replenishing the crushed stone into the gap formed between the installed rock utilization segment 4 and the inner surface of the tunnel 3, and as shown in FIG. 11, penetrates the lid 432A in the vertical direction. Alternatively, as shown in FIG. 12, it may be one that penetrates the lid body 432A in an oblique direction.

上述した岩石利用セグメント4を用いて坑道を構築する場合には、図5に示すように、掘削した坑道3の内空側にセグメント組立支保体5を構築しながら坑道3を掘り進める。具体的には、坑口側から切羽側に順次セグメント組立支保体5を構築し、坑道3を掘り進める。   When constructing a mine shaft using the rock utilization segment 4 described above, as shown in FIG. 5, the mine shaft 3 is advanced while the segment assembly support body 5 is constructed on the inner space side of the excavated mine shaft 3. Specifically, the segment assembly support body 5 is sequentially constructed from the wellhead side to the face side, and the tunnel 3 is dug.

セグメント組立支保体5を構築する場合には、図8−1に示すように、掘削した坑道3の内空側に岩石利用セグメント4を円環状に設置しながら、設置した岩石利用セグメント4と坑道3の内面との間に砕石6を裏込め充填する。具体的には、いくつかの岩石利用セグメント4を設置するごとに、設置した岩石利用セグメント4と坑道3の内面との間に砕石6を裏込め充填する。このように、岩石利用セグメント4を円環状に設置しながら、設置した岩石利用セグメント4と坑道3の内面との間に砕石6を裏込め充填すると、図8−2に示すように、掘削した坑道3の内空側に円環状のセグメント組立支保体5が構築される。   When constructing the segment assembly support body 5, as shown in FIG. 8A, the rock utilization segment 4 and the tunnel are installed while the rock utilization segment 4 is installed in an annular shape inside the excavated tunnel 3. The crushed stone 6 is back-filled between the inner surface of 3. Specifically, every time several rock utilization segments 4 are installed, the crushed stone 6 is backfilled between the installed rock utilization segments 4 and the inner surface of the tunnel 3. In this way, when the rock utilization segment 4 is installed in an annular shape and the crushed stone 6 is backfilled between the installed rock utilization segment 4 and the inner surface of the tunnel 3, excavation is performed as shown in FIG. An annular segment assembly support body 5 is constructed on the inner space side of the mine shaft 3.

つぎに、岩石利用セグメント4に設けた検査窓43を用いて裏込め充填した砕石6の変形特性を確認する。具体的には、図9に示すように、まず、固定治具433(図7参照)を取り外し、蓋体432を坑道3の内空側から地山側に進出可能にする。つぎに、蓋体432に載荷装置(たとえば、油圧ジャッキ)Pをあてがい、蓋体432に所定の荷重を載荷し、このときの蓋体432の変位量を計測する。計測した変位量が所定の値よりも小さい場合には、砕石6が所望の密度でまんべんなく充填され、所望の剛性が発揮することになる。このように砕石6がまんべんなく充填され、所望の剛性を発揮する場合には、図8−3に示すように、円環状のセグメント組立支保体5が地山2の内空変形に抵抗することになる。この場合には、固定治具433(図7参照)を取り付け、蓋体432が窓枠431を塞いだ状態で蓋体432を固定する。一方、計測した変位量が所定の値よりも大きい場合には、砕石6が所望の密度で充填されていないことになる。   Next, the deformation characteristics of the crushed stone 6 backfilled and filled using the inspection window 43 provided in the rock utilization segment 4 are confirmed. Specifically, as shown in FIG. 9, first, the fixing jig 433 (see FIG. 7) is removed, and the lid body 432 can be advanced from the inner space side of the mineway 3 to the natural ground side. Next, a loading device (for example, a hydraulic jack) P is applied to the lid body 432, a predetermined load is loaded on the lid body 432, and the amount of displacement of the lid body 432 at this time is measured. When the measured displacement amount is smaller than a predetermined value, the crushed stone 6 is filled evenly at a desired density, and a desired rigidity is exhibited. Thus, when the crushed stone 6 is filled evenly and the desired rigidity is exhibited, the annular segment assembly supporting body 5 resists the deformation of the natural ground 2 as shown in FIG. Become. In this case, a fixing jig 433 (see FIG. 7) is attached, and the lid 432 is fixed in a state where the lid 432 blocks the window frame 431. On the other hand, when the measured displacement amount is larger than a predetermined value, the crushed stone 6 is not filled with a desired density.

砕石6が所望の密度で充填されていないことを確認した場合には、岩石利用セグメント4に設けた検査窓43を用いて裏込め充填した砕石6の変形特性を改良する。具体的には、図10に示すように、蓋体432に振動体(たとえば、バイブレータ)Bをあてがい、蓋体432に坑道3の内空側から地山側に作用する振動を加える。これにより、砕石6が締め固められ、砕石6の充填密度が上昇するとともに、砕石6が占める体積が減少する。そして、蓋体432は、坑道3の内空側から地山側に進出することになる。すなわち、蓋体432は、砕石6が占める体積が減少した分、坑道3の内空側から地山側に進出することになるので、その状態で蓋体432を固定すれば、岩石利用セグメント4と地山2との間に空隙は生じない。なお、蓋体432の固定には、いくつかの方法があるが、たとえば、溶接により固定する。   When it is confirmed that the crushed stone 6 is not filled at a desired density, the deformation characteristics of the crushed stone 6 that is backfilled and filled are improved using the inspection window 43 provided in the rock utilization segment 4. Specifically, as shown in FIG. 10, a vibrating body (for example, a vibrator) B is applied to the lid body 432, and vibrations that act on the lid body 432 from the inner space side of the tunnel 3 to the natural ground side are applied. As a result, the crushed stone 6 is compacted, the packing density of the crushed stone 6 increases, and the volume occupied by the crushed stone 6 decreases. And the cover body 432 advances from the inner space side of the mine shaft 3 to the natural ground side. That is, since the cover 432 advances from the inner space side of the mine shaft 3 to the natural mountain side as the volume occupied by the crushed stone 6 decreases, if the cover 432 is fixed in this state, the rock utilization segment 4 and There is no gap between the natural ground 2. Note that there are several methods for fixing the lid body 432, for example, fixing by welding.

また、蓋体432に坑道3の内空側から地山側に作用する振動を加えることにより、天端部となる岩石利用セグメント4Aと坑道3の内面との間に空隙が生じた場合には、図11あるいは図12に示すように、天端部となる岩石利用セグメント4Aの蓋体432Aに設けた補充口432A1から砕石6を補充することにより、裏込め充填した砕石6の変形特性を改良する。   In addition, when a gap is generated between the rock utilization segment 4A serving as the top end and the inner surface of the mine shaft 3 by applying a vibration that acts on the cover body 432 from the inner side of the mine shaft 3 to the natural ground side, As shown in FIG. 11 or FIG. 12, the deformation characteristics of the back-filled crushed stone 6 are improved by replenishing the crushed stone 6 from the replenishment port 432A1 provided in the lid 432A of the rock utilization segment 4A serving as the top end. .

上述した本実施の形態である裏込め材の変形特性の確認方法によれば、裏込め充填した砕石6が所望の密度でまんべんなく充填されているか、それとも、裏込め充填した砕石6が所望の密度で充填されていないかを確認できる。   According to the method for checking the deformation characteristics of the backfill material according to the present embodiment described above, the backfilled crushed stones 6 are evenly filled at a desired density, or the backfilled crushed stones 6 are at a desired density. It can be confirmed whether it is not filled with.

上述した本実施の形態である裏込め材の変形特性の改良方法によれば、裏込め充填した砕石6の変形特性を確認した後に裏込め充填した砕石6の変形特性を改良できる。   According to the method for improving the deformation characteristics of the backfill material according to the present embodiment described above, the deformation characteristics of the backfilled crushed stone 6 can be improved after the deformation characteristics of the backfilled crushed stone 6 are confirmed.

また、天端部となる岩石利用セグメント4Aの蓋体432Aに設けた補充口432A1から砕石6を補充するので、天端部となる岩石利用セグメント4Aと坑道3の内面との間に生じた空隙を埋めることができる。   Moreover, since the crushed stone 6 is replenished from the replenishment port 432A1 provided in the cover body 432A of the rock utilization segment 4A which becomes the top end portion, the gap formed between the rock utilization segment 4A which becomes the top end portion and the inner surface of the mine shaft 3 Can be filled.

1 処分施設
2 地山
3 坑道
4 岩石利用セグメント
4A 岩石利用セグメント
41 型枠
411 板状部
412 枠部
42 岩石ブロック
43 検査窓
43A 検査窓
431 窓枠
432 蓋体
432A 蓋体
432A1 補充口
433 固定治具
44 モルタル
5 セグメント組立支保体
6 砕石
DESCRIPTION OF SYMBOLS 1 Disposal facility 2 Ground mountain 3 Tunnel 4 Rock utilization segment 4A Rock utilization segment 41 Formwork 411 Plate-like part 412 Frame part 42 Rock block 43 Inspection window 43A Inspection window 431 Window frame 432 Lid body 432A Lid body 432A1 Replenishment port 433 Tool 44 Mortar 5 Segment assembly support 6 Crushed stone

Claims (5)

掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、
その後、前記一部に坑道の内空側から地山側に作用する所定の荷重を載荷し、前記一部の変位量を計測することを特徴とする裏込め材の変形特性の確認方法。
An annular segment assembly support that allows a backfill material to be filled between the installed segment and the inner surface of the tunnel, while a segment is installed in the inner ring side of the excavated tunnel, and a part can be advanced to the ground. Build the body,
Thereafter, a predetermined load acting on the part from the inner space side of the tunnel to the ground is loaded on the part, and the displacement amount of the part is measured.
掘削した坑道の内空側にセグメントを円環状に設置しながら、設置したセグメントと坑道の内面との間に裏込め材を充填し、一部が地山側に進出可能な円環状のセグメント組立支保体を構築し、
その後、前記一部に坑道の内空側から地山側に作用する振動を加え、前記裏込め材を締め固めることを特徴とする裏込め材の変形特性の改良方法。
An annular segment assembly support that allows a backfill material to be filled between the installed segment and the inner surface of the tunnel, while a segment is installed in the inner ring side of the excavated tunnel, and a part can be advanced to the ground. Build the body,
Then, the vibration which acts from the inner space side of a tunnel to the natural ground side is added to the said part, and the said backfill material is compacted, The improvement method of the deformation | transformation characteristic of the backfill material characterized by the above-mentioned.
さらに、裏込め材を締め固めることにより生じた空隙に裏込め材を補充することを特徴とする請求項2に記載の裏込め材の変形特性の改良方法。   The method for improving deformation characteristics of a backfill material according to claim 2, further comprising replenishing the backfill material to a gap formed by compacting the backfill material. 請求項1〜3のいずれかの方法に用いるセグメント組立支保体であって、円環状に組み立てられるセグメントに設けた検査窓を塞ぐ蓋体が地山側に進出可能であることを特徴とするセグメント組立支保体。   A segment assembly support used in the method according to any one of claims 1 to 3, wherein a lid for closing an inspection window provided in a segment assembled in an annular shape can be advanced to a natural ground side. Support body. 前記検査窓は、前記セグメントの内側から外側に向けて拡開した窓枠を有し、前記蓋体は、前記セグメントの内側から外側に向けて拡開し、前記窓枠に嵌る外形を有することを特徴とする請求項4に記載のセグメント組立支保体。   The inspection window has a window frame that widens from the inside to the outside of the segment, and the lid has an outer shape that widens from the inside to the outside of the segment and fits into the window frame. The segment assembly support body of Claim 4 characterized by these.
JP2011231921A 2011-10-21 2011-10-21 Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support Active JP5831749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231921A JP5831749B2 (en) 2011-10-21 2011-10-21 Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231921A JP5831749B2 (en) 2011-10-21 2011-10-21 Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support

Publications (2)

Publication Number Publication Date
JP2013087591A true JP2013087591A (en) 2013-05-13
JP5831749B2 JP5831749B2 (en) 2015-12-09

Family

ID=48531781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231921A Active JP5831749B2 (en) 2011-10-21 2011-10-21 Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support

Country Status (1)

Country Link
JP (1) JP5831749B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655099U (en) * 1979-10-03 1981-05-13
JPS5873693A (en) * 1981-10-27 1983-05-02 川崎重工業株式会社 Partial widening of tunnel due to shield construction method
JPS59141698A (en) * 1983-02-01 1984-08-14 鹿島建設株式会社 Back filling material injection method and apparatus in shield construction
US4895480A (en) * 1987-09-11 1990-01-23 Signode Corporation Method and apparatus for formation of a tunnel lining
JPH02171494A (en) * 1988-12-22 1990-07-03 Oomotogumi:Kk Inner form device for directly placed concrete lining method
JPH0618496U (en) * 1992-08-05 1994-03-11 大成建設株式会社 Backfill injection device in shield machine
JPH0748994A (en) * 1993-08-09 1995-02-21 Saga Kogyo Kk Concrete compaction in case of placement of tunnel lining concrete and concrete placing center used therefor
JPH11210393A (en) * 1998-01-26 1999-08-03 Gifu Kogyo Kk Method and device for placing concrete in tunnel construction
JP2009091751A (en) * 2007-10-04 2009-04-30 Nishimatsu Constr Co Ltd Form for tunnel
JP2010106609A (en) * 2008-10-31 2010-05-13 Shimizu Corp Shield method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655099U (en) * 1979-10-03 1981-05-13
JPS5873693A (en) * 1981-10-27 1983-05-02 川崎重工業株式会社 Partial widening of tunnel due to shield construction method
JPS59141698A (en) * 1983-02-01 1984-08-14 鹿島建設株式会社 Back filling material injection method and apparatus in shield construction
US4895480A (en) * 1987-09-11 1990-01-23 Signode Corporation Method and apparatus for formation of a tunnel lining
JPH02171494A (en) * 1988-12-22 1990-07-03 Oomotogumi:Kk Inner form device for directly placed concrete lining method
JPH0618496U (en) * 1992-08-05 1994-03-11 大成建設株式会社 Backfill injection device in shield machine
JPH0748994A (en) * 1993-08-09 1995-02-21 Saga Kogyo Kk Concrete compaction in case of placement of tunnel lining concrete and concrete placing center used therefor
JPH11210393A (en) * 1998-01-26 1999-08-03 Gifu Kogyo Kk Method and device for placing concrete in tunnel construction
JP2009091751A (en) * 2007-10-04 2009-04-30 Nishimatsu Constr Co Ltd Form for tunnel
JP2010106609A (en) * 2008-10-31 2010-05-13 Shimizu Corp Shield method

Also Published As

Publication number Publication date
JP5831749B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6762800B2 (en) Reinforcement method and structure of existing pile foundation
JP5055249B2 (en) Multiple tunnel construction method and multiple tunnel structure
JP2010090592A (en) Reinforced soil pile, method for manufacturing the same, and method for computing strength of spread foundation
JP6987559B2 (en) Construction method of continuous underground wall and steel pipe pile
JP2004092025A (en) Foundation pile and construction method thereof
JP4661937B2 (en) Segment reinforcing method and segment reinforcing structure
Li et al. The construction of the HADES underground research laboratory and its role in the development of the Belgian concept of a deep geological repository
JP5831749B2 (en) Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support
JP4356252B2 (en) Geological disposal facility and disposal tunnel segment
JP5839276B2 (en) Backfill material filling method
JP2017214722A (en) Construction method of base structure, and base structure
JP2015081807A (en) Radioactive waste disposal tunnel
JP2010270584A (en) Bridge pier reinforcing construction method with steel plate lining
CN114411745A (en) Post-grouting device for pile end of steel pipe pile and construction method thereof
CN109629590A (en) The construction method of Rock Region building pile foundation cushion cap
JP5140515B2 (en) Installation method of underground floor pillar and construction method of underground structure
JP6194223B2 (en) Pile head processing jig and pile head processing method
KR20130002797A (en) Reinforced concrete pile construction method for which steel pipe casing structure for steel pipe casing recovery this were used
JP2006272140A (en) Packing method
JP2014058861A (en) Segment and lining structure
JP2002214394A (en) Geological disposal facility and its execution method
JP2008082123A (en) Vertical shaft for waste underground burying disposal facility, and vertical shaft construction method of waste underground burying disposal facility
Ahuja et al. Numerical modelling approach for microtunnelling assisted pipe-roof support system
JP6630616B2 (en) Pile formation method, pile
JP4196290B2 (en) Reinforcement structure of the center pillar of a glasses tunnel and a tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5831749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150