JP5839276B2 - Backfill material filling method - Google Patents

Backfill material filling method Download PDF

Info

Publication number
JP5839276B2
JP5839276B2 JP2012008323A JP2012008323A JP5839276B2 JP 5839276 B2 JP5839276 B2 JP 5839276B2 JP 2012008323 A JP2012008323 A JP 2012008323A JP 2012008323 A JP2012008323 A JP 2012008323A JP 5839276 B2 JP5839276 B2 JP 5839276B2
Authority
JP
Japan
Prior art keywords
crushed stone
segment
block
compacted
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012008323A
Other languages
Japanese (ja)
Other versions
JP2013147830A (en
Inventor
熊坂 博夫
博夫 熊坂
多田 浩幸
浩幸 多田
亮 斉藤
亮 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012008323A priority Critical patent/JP5839276B2/en
Publication of JP2013147830A publication Critical patent/JP2013147830A/en
Application granted granted Critical
Publication of JP5839276B2 publication Critical patent/JP5839276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地山とセグメントとの間に充填する裏込め材の充填方法に関する。   The present invention relates to a method for filling a backfill material filled between a natural ground and a segment.

図1は、核燃料サイクルを示す模式図である。図1に示すように、再処理工場F1で処理され、利用できなくなった高レベルの放射性廃棄物は、高レベル放射性廃棄物貯蔵施設F2で一定期間貯蔵され、その後、地層処分される。このように、高レベルの放射性廃棄物を地層処分する施設が地層処分施設F3である。地層処分施設F3は、高レベルの放射性廃棄物を人間の生活圏や自然環境から約1万年以上の超長期間にわたり隔離することを目的として計画されている。地層処分施設は、硬岩と軟岩の二種類の岩種を対象にしており、施設計画やそれに関連した技術的な検討や計画が国や関連機関において行われている。   FIG. 1 is a schematic diagram showing a nuclear fuel cycle. As shown in FIG. 1, high-level radioactive waste that has been treated at the reprocessing plant F1 and is no longer usable is stored for a certain period in the high-level radioactive waste storage facility F2, and then disposed of in geological formation. Thus, the facility for geological disposal of high-level radioactive waste is the geological disposal facility F3. The geological disposal facility F3 is planned for the purpose of isolating high-level radioactive waste from the human living sphere and natural environment for an extremely long period of about 10,000 years or more. Geological disposal facilities target two types of rocks, hard rocks and soft rocks, and facility plans and related technical studies and plans are being conducted by the government and related organizations.

図2は、地層処分施設を示す概念図である。図2に示すように、地層処分施設F3は、地上施設S1と地下施設S2とから構成される。地下施設S2は、坑道群Tと、地上施設S1から坑道群Tにアクセスするための立坑T1または斜坑(図示せず)とから構成される。坑道群Tは、数km四方の広さに設けられ、その坑道延長は数百kmにわたることが想定されている。また、わが国では、坑道群Tを地下300m以深の地下施設とすることが法令で定められているが、高レベルの放射性廃棄物を地層処分することから、より深いところを目指すことになる。   FIG. 2 is a conceptual diagram showing a geological disposal facility. As shown in FIG. 2, the geological disposal facility F3 includes a ground facility S1 and an underground facility S2. The underground facility S2 includes a tunnel group T, and a vertical shaft T1 or an inclined shaft (not shown) for accessing the tunnel group T from the ground facility S1. The tunnel group T is provided in a width of several km square, and the tunnel extension is assumed to extend over several hundred km. In Japan, the statute stipulates that the tunnel group T should be an underground facility with a depth of 300 m or more. However, since high-level radioactive waste is disposed of in geological formations, it will aim at a deeper location.

ところで、軟岩を対象とする地層処分施設の場合、硬岩を対象とする地層処分施設に比べて地山の強度が小さく、また、地山の強度に比べて初期地圧が大きくなるため、建設、操業(維持管理段階)での坑道の安定を確保するためには、重厚な支保が必要となる。   By the way, in the case of a geological disposal facility that targets soft rock, the strength of the natural ground is lower than that of a geological disposal facility that targets hard rock, and the initial ground pressure is larger than the strength of natural ground, so In order to ensure the stability of the mine shaft during operation (maintenance and management stage), heavy support is required.

一方、高レベルの放射性廃棄物の地層処分施設において、支保工やグラウトに用いるセメント系材料は、地下水に溶出し、高アルカリ環境を生じさせる。このような高アルカリ環境は、緩衝材や埋め戻し材に使用するベントナイト系の土質材料や周辺岩盤を変質させるので、長期的な性能の確保に不確実性を増大させる結果となる。このような課題を解決すべく、図3に示すように、支保工に岩石を利用したセグメント104を用いる坑道が提案されている。図4に示すように、支保工に岩石を利用したセグメント104は、鋼製の型枠141に花崗岩等の岩石ブロック142を配置するとともに、岩石ブロック142と岩石ブロック142との間、岩石ブロック142と型枠141との間に生じた隙間にモルタル(図示せず)を充填した複合セグメントである(たとえば、特許文献1参照)。   On the other hand, in a geological disposal facility for high-level radioactive waste, cement materials used for supporting works and grouts are eluted into groundwater, creating a highly alkaline environment. Such a highly alkaline environment alters bentonite-based soil materials and surrounding rocks used as cushioning materials and backfill materials, resulting in increased uncertainty in securing long-term performance. In order to solve such a problem, as shown in FIG. 3, a mine shaft using a segment 104 using rock for supporting work has been proposed. As shown in FIG. 4, the segment 104 using rock for supporting work has a rock block 142 such as granite arranged on a steel mold 141, and a rock block 142 between the rock block 142 and the rock block 142. It is a composite segment in which a mortar (not shown) is filled in a gap generated between the frame and the mold 141 (see, for example, Patent Document 1).

他方、セグメントを用いて坑道を構築しても、坑道の掘削が進行するにつれて坑道の内壁面(地山の掘削壁面)がせり出してきたときに、その変形がセグメントに伝達されなければ、セグメントが地山の内空変形に抵抗することができない。これにより、支保工にセグメントを用いて坑道を構築する場合には、セグメントと坑道の内壁面との間に生じる空隙に裏込め材を充填することが要求される。   On the other hand, even if a mine is constructed using a segment, when the inner wall surface of the mine shaft (the excavation wall surface of the natural ground) protrudes as the mine excavation proceeds, if the deformation is not transmitted to the segment, the segment It cannot resist the deformation of the natural ground. Thereby, when constructing a mine shaft using a segment for supporting work, it is required to fill a gap formed between the segment and the inner wall surface of the mine shaft with a backfill material.

上述した高レベルの放射性廃棄物の地層処分施設では、セメント系材料を極力用いないことが求められることから、砕石などからなる非セメント系の裏込め材を用いることが提案されている(たとえば、非特許文献1および非特許文献2参照)。   In the above-mentioned geological disposal facility for high-level radioactive waste, it is required to use as little cement-based material as possible, and therefore it has been proposed to use a non-cement-based backfill material made of crushed stone (for example, Non-Patent Document 1 and Non-Patent Document 2).

特開2002−250795号公報JP 2002-250795 A

林克彦、野口聡ほか、「高レベル放射性廃棄物処分施設における坑道支保工に用いるセメント系材料の低減化技術に関する研究」日本原子力研究開発機構、地層処分研究開発部門、地層処分基盤研究開発ユニットKatsuhiko Hayashi, Satoshi Noguchi et al., "Research on reduction technology of cement materials used for tunnel support in high-level radioactive waste disposal facilities" Japan Atomic Energy Agency, Geological Disposal Research and Development Division, Geological Disposal Fundamental Research and Development Unit 多田浩幸、熊坂博夫ほか、「岩石利用セグメント支保工の裏込め砕石の変形特性試験と坑道の安定性の検討」土木学会、第66回年次学術講演会(平成23年度)p.117〜118Hiroyuki Tada, Hiroo Kumasaka, et al., “Deformation characteristics test of backfilled crushed stone of rock use segment support construction and examination of tunnel stability”, Japan Society of Civil Engineers, 66th Annual Scientific Lecture (2011) p. 117-118

しかしながら、地山とセグメントとの間に砕石からなる非セメント系の裏込め材を吹き込んでも、裏込め材を高い密度で充填することはできない。これにより、地山壁面が内空側に変位しても、その変位を裏込め材が吸収し、セグメントの支保反力が地山に十分に伝達されないことが予想される。   However, even if a non-cement backfill material made of crushed stone is blown between the natural ground and the segment, the backfill material cannot be filled at a high density. As a result, even if the natural wall surface is displaced toward the inside sky, it is expected that the backfill material absorbs the displacement and the supporting reaction force of the segment is not sufficiently transmitted to the natural mountain.

本発明は、上記に鑑みてなされたものであって、地山とセグメントとの間に砕石からなる非セメント系の裏込め材を高い密度で充填できる裏込め材の充填方法を提供することを目的とする。   This invention is made in view of the above, Comprising: It provides the filling method of the backfilling material which can be filled with the non-cement type backfilling material which consists of a crushed stone between a natural ground and a segment with high density. Objective.

上述した課題を解決し、目的を達成するために、本発明は、柔軟な包装容器に砕石を充填する充填工程と、前記包装容器に充填した砕石を締め固める締め固め工程と、締め固めた砕石を前記包装容器で包装する包装工程とを有することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a filling process for filling a flexible packaging container with crushed stone, a compacting process for compacting the crushed stone filled in the packaging container, and a compacted crushed stone And a packaging step of packaging in a packaging container.

また、本発明は、上記発明において、前記締め固め工程が、砕石が充填された包装容器を剛直な圧縮容器に収容した状態で砕石を締め固めることを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned invention, the compacting step compacts the crushed stone in a state where the packaging container filled with the crushed stone is accommodated in a rigid compression container.

また、本発明は、上記発明において、前記充填工程が、前記包装容器を前記圧縮容器に収容した状態で砕石を充填することを特徴とする。   Moreover, this invention is characterized by the said filling process filling the crushed stone in the state which accommodated the said packaging container in the said compression container in the said invention.

また、本発明は、掘削した坑道の内空側、肩上部までセグメントを組み立てた後に、地山とセグメントとの間に、あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材を設置することを特徴とする。   In addition, the present invention installs a backfill material made of crushed stone that has been compacted and packed in advance between the ground and the segment after assembling the segment to the inner side of the excavated tunnel and the upper shoulder. It is characterized by doing.

また、本発明は、上記発明において、あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材を設置した後に、地山とセグメントとの間に残る隙間に、砕石、砂または粉体ベントナイトを充填することを特徴とする。   Further, the present invention is the above invention, wherein in the above-mentioned invention, after installing a back-filling material made of crushed stone that has been compacted and packed in advance, crushed stone, sand, or powder bentonite is left in a gap remaining between the natural ground and the segment. It is characterized by filling.

また、本発明は、上記発明において、あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材をセグメントとともに天端部に設置することを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned invention, a back-filling material made of crushed stone that has been compacted in advance and packaged is installed at the top end together with the segment.

また、本発明は、あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材を地山とセグメントとの間に設置するとともに、流動性を有する状態で袋詰めされた砕石からなる隙間用の裏込め材を地山とセグメントとの間に残る隙間に充填することを特徴とする。   The present invention also provides a block-shaped backfill material made of crushed stone that has been compacted and packed in advance between a ground and a segment, and crushed stone that has been packed in a fluid state. The backfill material for gaps made of is filled in the gaps remaining between the ground and the segments.

また、本発明は、あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材を地山とセグメントとの間に設置した後に、地山とセグメントとの間に残る隙間に砕石を吹き込むことを特徴とする。   In addition, the present invention provides a gap remaining between the natural ground and the segment after the block-shaped backfill material made of crushed stone that has been compacted and packed in advance is placed between the natural ground and the segment. It is characterized by blowing crushed stone.

本発明にかかる裏込め材の充填方法は、柔軟な包装容器に砕石を充填する充填工程と、包装容器に充填した砕石を締め固める締め固め工程と、締め固めた砕石を包装容器で包装する包装工程とを有するので、砕石は、締め固められ、かつ、包装される。これにより、砕石からなる非セメント系の裏込め材は、高い密度となり、地山とセグメントとの間に高い密度で充填される。   The filling method of the backfilling material according to the present invention includes a filling step of filling a crushed stone in a flexible packaging container, a compacting step of compacting the crushed stone filled in the packaging container, and a packaging for packaging the compacted crushed stone in the packaging container. The crushed stone is compacted and packaged. As a result, the non-cement backfill material made of crushed stone has a high density and is filled at a high density between the natural ground and the segment.

本発明にかかる裏込め材の充填方法は、掘削した坑道の内空側、肩上部までセグメントを組み立てた後に、地山とセグメントとの間に、あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材を設置するので、砕石からなる非セメント系の裏込め材は、地山とセグメントとの間に高い密度で充填される。   The method of filling the backfilling material according to the present invention is based on the crushed stone that has been compacted and packed in advance between the ground and the segment after assembling the segment to the inner side of the excavated tunnel and the upper shoulder. Therefore, the non-cement backfill material made of crushed stone is filled with high density between the natural ground and the segment.

本発明にかかる裏込め材の充填方法は、あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材を地山とセグメントとの間に設置するとともに、流動性を有する状態で袋詰めされた砕石からなる隙間用の裏込め材を地山とセグメントとの間に残る隙間に充填するので、砕石からなる非セメント系の裏込め材は、地山とセグメントとの間に高い密度で充填される。   The filling method of the backfilling material according to the present invention is a state in which a block-like backfilling material made of crushed stone that has been compacted and packed in advance is placed between the ground and the segment and has fluidity. The backfill material for gaps made of crushed stone packed in the space is filled in the remaining gap between the ground and the segment, so the non-cement backfill material made of crushed stone is placed between the ground and the segment. Filled with high density.

本発明にかかる裏込め材の充填方法は、あらかじめ締め固められ、かつ、袋詰めされたブロック状の裏込め材を地山とセグメントとの間に設置した後に、地山とセグメントとの間に残る隙間に砕石を吹き込むので、砕石からなる非セメント系の裏込め材は、地山とセグメントとの間に高い密度で充填される。   The backfilling material filling method according to the present invention includes a block-shaped backfilling material, which has been compacted and packed in advance, between the ground and the segment, and then placed between the ground and the segment. Since the crushed stone is blown into the remaining gap, the non-cement backfill material made of crushed stone is filled with high density between the natural ground and the segment.

図1は、核燃料サイクルを示す模式図である。FIG. 1 is a schematic diagram showing a nuclear fuel cycle. 図2は、地層処分施設を示す概念図である。FIG. 2 is a conceptual diagram showing a geological disposal facility. 図3は、岩石を利用したセグメントを用いて構築した坑道を示す半断面鳥瞰図である。FIG. 3 is a half cross-sectional bird's-eye view showing a tunnel constructed using a segment using rocks. 図4は、図3に示した岩石を利用したセグメントを示す斜視図である。FIG. 4 is a perspective view showing a segment using the rock shown in FIG. 図5は、裏込め材の変形特性を試験する試験装置を示す概念図である。FIG. 5 is a conceptual diagram showing a test apparatus for testing the deformation characteristics of the backfill material. 図6は、試験により得られた裏込め材の変形特性を示す図である。FIG. 6 is a diagram showing the deformation characteristics of the backfill material obtained by the test. 図7は、本発明の実施の形態1である裏込め材の充填方法を示す工程図である。FIG. 7 is a process diagram illustrating the backfilling material filling method according to the first embodiment of the present invention. 図8は、砕石を充填する包装容器を示す斜視図である。FIG. 8 is a perspective view showing a packaging container filled with crushed stone. 図9は、圧縮容器に収容した包装容器に砕石を充填した状態を示す斜視図である。FIG. 9 is a perspective view showing a state in which crushed stone is filled in a packaging container housed in a compression container. 図10は、締め固められ、かつ、包装されたブロック状の裏込め材を示す斜視図である。FIG. 10 is a perspective view showing a block-like backfill material that has been compacted and packaged. 図11は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す概念図である。FIG. 11 is a conceptual diagram showing a state in which a block-like backfilling material is installed between a natural ground and a segment. 図12は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す横断面図である。FIG. 12 is a cross-sectional view showing a state in which a block-shaped backfill material is installed between the natural ground and the segment. 図13は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す斜視図である。FIG. 13 is a perspective view showing a state in which a block-like backfilling material is installed between the natural ground and the segment. 図14は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す横断面図である。FIG. 14 is a cross-sectional view showing a state in which a block-shaped backfill material is installed between the natural ground and the segment. 図15は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す斜視図である。FIG. 15 is a perspective view showing a state in which a block-like backfill material is installed between the natural ground and the segment.

まず、図5および図6に基づいて、砕石からなる非セメント系の裏込め材の変形特性について説明する。なお、図5は、裏込め材の変形特性を試験する試験装置を示す概念図であり、図6は、試験により得られた裏込め材の変形特性を示す図である。   First, based on FIG. 5 and FIG. 6, the deformation characteristics of a non-cement backfill material made of crushed stone will be described. FIG. 5 is a conceptual diagram showing a test apparatus for testing the deformation characteristics of the backfill material, and FIG. 6 is a diagram showing the deformation characteristics of the backfill material obtained by the test.

図5に示すように、非セメント系の裏込め材の変形特性を試験する試験装置は、台座Dの上に設置した鋼製枠Fに砕石Sを充填し、その上に設置した載荷板Pに載荷し、砕石Sに圧縮力を作用させるものである。図5に示す例では、上面が一辺450.0mmの正方形の台座Dの上に、直径が303.3mmの円筒型の鋼製枠Fを設置し、その中に、砕石Sを充填する。充填する砕石Sの厚みは、10cm、20cmであり、それぞれについて試験した。この試験では、載荷板Pに載荷した後、一旦除荷し、再び載荷板Pに載荷した。   As shown in FIG. 5, a test apparatus for testing the deformation characteristics of a non-cement-based backfilling material fills a steel frame F installed on a pedestal D with crushed stone S, and a loading plate P installed thereon. The compression force is applied to the crushed stone S. In the example shown in FIG. 5, a cylindrical steel frame F having a diameter of 303.3 mm is placed on a square pedestal D having an upper surface of 450.0 mm on a side, and crushed stone S is filled therein. The thickness of the crushed stone S to be filled was 10 cm and 20 cm, and each was tested. In this test, after loading on the loading plate P, it was once unloaded and loaded again on the loading plate P.

図6に示すように、一回目の載荷と二回目の載荷とでは、一回目の載荷で変位が大きく、二回目の載荷で変位が非常に小さいことがわかる。また、一回目の載荷における変位量は、砕石Sの厚みに左右され、砕石Sの厚みが10cmのときは、20cmのときの約半分(二分の一)となり、砕石Sの厚みが小さいほど変位量(変形量)が小さいことがわかる。   As shown in FIG. 6, it can be seen that in the first loading and the second loading, the displacement is large in the first loading and the displacement is very small in the second loading. Further, the amount of displacement in the first loading depends on the thickness of the crushed stone S. When the thickness of the crushed stone S is 10 cm, it becomes about half (1/2) of the 20 cm, and the smaller the thickness of the crushed stone S, the more the displacement. It can be seen that the amount (deformation amount) is small.

以上のことを鑑みて、以下に、本発明の裏込め材の充填方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   In view of the above, an embodiment of the backfilling material filling method of the present invention will be described in detail below with reference to the drawings. Note that the present invention is not limited to the embodiments.

[実施の形態1]
図7は、本発明の実施の形態1である裏込め材の充填方法を示す工程図である。図8は、砕石を充填する包装容器を示す斜視図であり、図9は、圧縮容器に収容した包装容器に砕石を充填した状態を示す斜視図である。図10は、締め固められ、かつ、包装されたブロック状の裏込め材を示す斜視図である。
[Embodiment 1]
FIG. 7 is a process diagram illustrating the backfilling material filling method according to the first embodiment of the present invention. FIG. 8 is a perspective view showing a packaging container filled with crushed stone, and FIG. 9 is a perspective view showing a state where the packaging container accommodated in the compression container is filled with crushed stone. FIG. 10 is a perspective view showing a block-like backfill material that has been compacted and packaged.

本発明の実施の形態1である裏込め材の充填方法は、図7に示すように、充填工程(ステップS1)、締め固め工程(ステップS2)、包装工程(ステップS3)を経ることにより、砕石Sが締め固められ、かつ、包装されたブロック状の裏込め材1とした後に、このブロック状の裏込め材1を掘削した坑道2の内空側、肩上部まで組み立てられたセグメント4と地山3との間に設置するものである(ステップS4)。   As shown in FIG. 7, the filling method of the backfill material according to the first embodiment of the present invention includes a filling process (step S1), a compacting process (step S2), and a packaging process (step S3). After the crushed stone S is compacted and the block-shaped backfilling material 1 is formed, the segment 4 is assembled to the inner side of the mine shaft 2 where the block-shaped backfilling material 1 is excavated and to the upper shoulder. It is installed between the natural ground 3 (step S4).

充填工程(ステップS1)は、図9に示すように、柔軟な包装容器10を剛直な圧縮容器Cに収容した状態で包装容器10に砕石Sを充填する工程である。包装容器10は、紙、布、不織布などの変形が可能なもので作成してあり、2MPa程度の応力が作用しても破れない程度の強度を有している。包装容器10は、図8に示すように、上面が開口した箱状に形成してあり、開口した上面は蓋部10aにより塞がれる。圧縮容器Cは、図9に示すように、隙間なく包装容器10を収容するように、包装容器10の体積と略同一の容積を有する箱状に形成してある。圧縮容器Cは、上面が開口しており、圧縮容器Cの上方から圧縮容器Cの内部に包装容器10が収容される。圧縮容器Cは、変形しないように剛直に作成してあり、包装容器10を収容した状態で包装容器10に砕石Sを充填し、砕石Sを締め固めても壊れない程度の強度を有している。   The filling step (step S1) is a step of filling the packaging container 10 with the crushed stone S in a state where the flexible packaging container 10 is accommodated in the rigid compression container C as shown in FIG. The packaging container 10 is made of a material that can be deformed, such as paper, cloth, and non-woven fabric, and has a strength that does not break even when a stress of about 2 MPa is applied. As shown in FIG. 8, the packaging container 10 is formed in a box shape having an upper surface opened, and the opened upper surface is closed by a lid portion 10a. As shown in FIG. 9, the compression container C is formed in a box shape having a volume substantially the same as the volume of the packaging container 10 so as to accommodate the packaging container 10 without a gap. The upper surface of the compression container C is open, and the packaging container 10 is accommodated in the compression container C from above the compression container C. The compression container C is made rigid so as not to be deformed, and has a strength that does not break even if the packaging container 10 is filled with the crushed stone S and the crushed stone S is compacted. Yes.

締め固め工程(ステップS2)は、圧縮容器Cに収容した包装容器10に充填した砕石Sを締め固める工程であり、これにより、砕石Sが充填された包装容器10を圧縮容器Cに収容した状態で砕石Sを締め固めることになる。締め固め工程(ステップS2)では、充填した砕石Sに所定の圧縮応力が作用するように、充填した砕石Sに載荷する。所定の圧縮応力は、たとえば、2MPaであり、これは、期待する支保反力に対応する。   The compacting step (step S2) is a step of compacting the crushed stone S filled in the packaging container 10 accommodated in the compression container C, whereby the packaging container 10 filled with the crushed stone S is accommodated in the compression container C. This will compact the crushed stone S. In the compacting step (step S2), the loaded crushed stone S is loaded so that a predetermined compressive stress acts on the filled crushed stone S. The predetermined compressive stress is, for example, 2 MPa, which corresponds to an expected support reaction force.

包装工程(ステップS3)は、図10に示すように、締め固めた砕石Sを包装容器10で包装する工程である。包装工程(ステップS3)では、開口した上面を蓋部10aにより閉じ、接着剤(図示せず)等で封印する。これにより、包装容器10に充填された砕石Sは、締め固められ、かつ、包装されたブロック状の裏込め材1となる。このブロック状の裏込め材1は、圧縮容器Cから取り出され、セグメント4と地山3との間に設置されるが、開口した上面を蓋部10aにより閉じ、接着剤等で封印してあるので、変形は制限される。   The packaging step (step S3) is a step of packaging the compacted crushed stone S in the packaging container 10 as shown in FIG. In the packaging process (step S3), the opened upper surface is closed with the lid 10a and sealed with an adhesive (not shown) or the like. Thereby, the crushed stone S filled in the packaging container 10 is compacted and becomes the packaged block-shaped backfilling material 1. This block-shaped backfilling material 1 is taken out from the compression container C and installed between the segment 4 and the ground pile 3, but the opened upper surface is closed by a lid 10a and sealed with an adhesive or the like. Therefore, deformation is limited.

図11は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す概念図である。上述したように、締め固められ、かつ、包装された砕石Sからなるブロック状の裏込め材1は、図11に示すように、掘削した坑道2の内空側、肩上部までセグメント4を組み立てた後に、地山3とセグメント4との間に設置される。セグメント4は、岩石を利用したセグメントであり、鋼製の型枠に花崗岩等の岩石ブロックを配置するとともに、岩石ブロックと岩石ブロックとの間、岩石ブロックと型枠との間に生じた隙間にモルタルを充填した複合セグメントである。そして、地山3と肩上部まで設置したセグメント4との間に残る隙間には、砕石、砂、または粉体ベントナイトを充填する。   FIG. 11 is a conceptual diagram showing a state in which a block-like backfilling material is installed between a natural ground and a segment. As described above, the block-shaped backfill material 1 made of the crushed stone S that has been compacted and packaged assembles the segment 4 up to the inner side of the excavated tunnel 2 and the upper shoulder as shown in FIG. After that, it is installed between the natural ground 3 and the segment 4. Segment 4 is a segment using rocks, and a rock block such as granite is placed on a steel formwork, and a gap formed between the rock block and the rock block is formed between the rock block and the rock block. A composite segment filled with mortar. And the crevice between the natural ground 3 and the segment 4 installed to the shoulder upper part is filled with crushed stone, sand, or powder bentonite.

坑道2の天端部には、ブロック状の裏込め材1をセグメント4とともに設置する。この場合に、接着剤や両面テープを用いてセグメント4の背面(地山3に対向する面)にブロック状の裏込め材1を接着すれば、よりスムースに設置することができる。そして、地山3と天端部に設置したセグメント4との間に残る隙間には、砕石、砂、または粉体ベントナイトを充填する。   A block-like backfilling material 1 is installed together with a segment 4 at the top end of the mine shaft 2. In this case, if the block-shaped backfilling material 1 is adhered to the back surface of the segment 4 (the surface facing the natural ground 3) using an adhesive or a double-sided tape, it can be installed more smoothly. And the crevice between the natural ground 3 and the segment 4 installed in the top part is filled with crushed stone, sand, or powder bentonite.

上述した本発明の実施の形態1である裏込め材の充填方法は、柔軟な包装容器10を剛直な圧縮容器Cに収容した状態で包装容器10に砕石Sを充填する充填工程(ステップS1)と、砕石Sが充填された包装容器10を圧縮容器Cに収容した状態で砕石Sを締め固める締め固め工程(ステップS2)と、締め固めた砕石Sを包装容器10で包装する包装工程(ステップS3)とを有するので、砕石Sは締め固められ、かつ、包装される。これにより、砕石Sからなる非セメント系の裏込め材(ブロック状の裏込め材1)は、高い密度となり、地山3とセグメント4との間に高い密度で充填される。   In the filling method of the backfilling material according to the first embodiment of the present invention described above, the filling step of filling the packaging container 10 with the crushed stone S in a state where the flexible packaging container 10 is accommodated in the rigid compression container C (step S1). And a compacting process (step S2) for compacting the crushed stone S in a state where the packaging container 10 filled with the crushed stone S is accommodated in the compression container C, and a packaging process (step S2) for packaging the compacted crushed stone S in the packaging container 10 Crushed stone S is compacted and packaged. Thereby, the non-cement backfill material (block-shaped backfill material 1) made of crushed stone S has a high density, and is filled between the natural ground 3 and the segment 4 at a high density.

また、砕石Sが締め固められ、かつ、包装されたブロック状の裏込め材1からは砕石Sがこぼれ落ちることがないので、切羽側に妻板(図示せず)等の対策を施す必要がない。   Further, since the crushed stone S is compacted and the crushed stone S does not spill out from the packaged back-filling material 1, it is not necessary to take measures such as a face plate (not shown) on the face side. .

また、砕石Sが締め固められ、かつ、包装されたブロック状の裏込め材1は、あらかじめ圧縮力が載荷してあるため、地山3の変位がセグメント4に直接伝達されることになり、その反力としての支保効果が高くなる。   In addition, since the crushed stone S is compacted and the packed block-shaped backfilling material 1 is loaded with a compressive force in advance, the displacement of the natural ground 3 is directly transmitted to the segment 4. The support effect as a reaction force is increased.

[実施の形態2]
図12は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す横断面図であり、図13は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す斜視図である。
[Embodiment 2]
FIG. 12 is a cross-sectional view showing a state in which a block-like backfilling material is installed between the natural ground and the segment, and FIG. 13 shows a block-like backfilling material installed between the natural ground and the segment. It is a perspective view which shows the state which carried out.

図12および図13に示すように、本発明の実施の形態2である裏込め材の充填方法は、あらかじめ締め固められ、かつ、袋詰めされた砕石Sからなるブロック状の裏込め材5(以下、「ブロック状の裏込め材5」という)を地山3と岩石を利用したセグメント4(以下、単に「セグメント4」という)との間に設置するとともに、流動性を有する状態で袋詰めされた砕石Sからなる隙間用の裏込め材6(以下、「隙間用の裏込め材6」という)を地山3とセグメント4との間に残る隙間に充填するものである。   As shown in FIG. 12 and FIG. 13, the backfilling material filling method according to the second embodiment of the present invention is a block-like backfilling material 5 made of crushed stone S that has been compacted and packed in advance ( (Hereinafter referred to as “block-shaped backfill material 5”) is placed between the natural ground 3 and the segment 4 using rock (hereinafter simply referred to as “segment 4”) and packed in a fluid state. The gap backfilling material 6 (hereinafter referred to as “gap backfilling material 6”) made of the crushed stone S is filled in the gap remaining between the natural ground 3 and the segment 4.

ブロック状の裏込め材5は、所定量の砕石Sを所定の圧縮力でブロック状に締め固め、これを袋詰めしたものである。なお、ブロック状の裏込め材5は、上述した本発明の実施の形態1である裏込め材の充填方法と同様に、砕石Sを袋詰めした後に、締め固め、その後、袋の口を閉じたものでもよい。   The block-shaped backfilling material 5 is obtained by compacting a predetermined amount of crushed stone S into a block shape with a predetermined compression force and packing it in a bag. In addition, the block-like backfill material 5 is compacted after crushing the crushed stone S after the bagging of the backfill material, which is the first embodiment of the present invention described above, and then the mouth of the bag is closed. May be good.

隙間用の裏込め材6は、袋詰めした状態でもある程度の変形が可能である。隙間用の裏込め材6は、ブロック状の裏込め材5よりも小さく、かつ、薄いものである。   The backfilling material 6 for the gap can be deformed to some extent even in a packed state. The gap backing material 6 is smaller and thinner than the block-like backing material 5.

本発明の実施の形態2である裏込め材の充填方法は、まず、地山3とセグメント4との間に、ブロック状の裏込め材5を設置する。そして、地山壁面とブロック状の裏込め材6との間、ブロック状の裏込め材6とセグメント4との間、に隙間が残るようであれば、ブロック状の裏込め材6がセグメント4の背面に接するように、地山壁面とブロック状の裏込め材5との間に隙間用の裏込め材6を押し込むことにより、裏込め材(隙間用の裏込め材6)を充填する。   In the backfilling material filling method according to the second embodiment of the present invention, first, a block-like backfilling material 5 is installed between the natural ground 3 and the segment 4. If a gap remains between the natural wall surface and the block-shaped backfilling material 6, or between the block-shaped backfilling material 6 and the segment 4, the block-shaped backfilling material 6 becomes the segment 4. The back-filling material (gap back-filling material 6) is filled by pushing the back-filling material 6 for the gap between the natural wall surface and the block-shaped back-filling material 5 so as to contact the back surface of the ground.

上述した本発明の実施の形態2である裏込め材の充填方法は、ブロック状の裏込め材5を地山3とセグメント4との間に設置するとともに、隙間用の裏込め材6を地山3とセグメント4との間に残る隙間に充填するので、砕石Sからなる非セメント系の裏込め材は、地山3とセグメント4との間に高い密度で充填される。   In the backfilling material filling method according to the second embodiment of the present invention described above, the block-like backfilling material 5 is installed between the ground 3 and the segment 4 and the backfilling material 6 for the gap is grounded. Since the gap remaining between the mountain 3 and the segment 4 is filled, the non-cement backfill material made of the crushed stone S is filled between the ground mountain 3 and the segment 4 at a high density.

また、ブロック状の裏込め材5がセグメント4の背面に接するように、地山壁面とブロック状の裏込め材5との間に隙間用の裏込め材6を押し込むので、地山壁面に不陸がある場合でも、隙間用の裏込め材6が変形し、充填される。これにより、裏込め材の未充填が生じない。したがって、地山3とブロック状の裏込め材5との間、ブロック状の裏込め材5とセグメント4との間、に砕石や砂を直接充填するような対策を必要としない。   Further, since the backfill material 6 for a gap is pushed between the ground wall surface and the block-shaped backfill material 5 so that the block-shaped backfill material 5 contacts the back surface of the segment 4, Even when there is land, the backfill material 6 for the gap is deformed and filled. Thereby, the unfilling of the backfill material does not occur. Therefore, it is not necessary to take measures to directly fill crushed stone or sand between the natural ground 3 and the block-shaped backfilling material 5 and between the block-shaped backfilling material 5 and the segment 4.

また、地山3とセグメント4との間には、ブロック状の裏込め材5と隙間用の裏込め材6が充填され、砕石や砂を直接充填することがないので、砕石や砂がこぼれ落ちることもなく、切羽側に妻板等の対策を施す必要がない。   In addition, between the natural ground 3 and the segment 4, a block-like backfill material 5 and a backfill material 6 for a gap are filled, and crushed stone and sand are not directly filled. There is no need to take measures such as a gable board on the face side.

また、ブロック状の裏込め材5は、あらかじめ締め固められ、かつ、袋詰めされた砕石Sからなるので、変形量が少なくなり、地山3の変位がセグメント4に直接伝達されることになり、その反力としての支保効果が高くなる。   Further, since the block-shaped backfill material 5 is made of the crushed stone S that has been compacted and packed in advance, the amount of deformation is reduced, and the displacement of the natural ground 3 is directly transmitted to the segment 4. The supporting effect as a reaction force is increased.

なお、上述した本発明の実施の形態2である裏込め材の充填方法では、ブロック状の裏込め材5がセグメント4の背面に接するように、地山壁面とブロック状の裏込め材5との間に隙間用の裏込め材6を押し込み、充填したが、セグメント4とブロック状の裏込め材5との間に隙間用の裏込め材6を押し込み、充填してもよい。   In the backfilling material filling method according to the second embodiment of the present invention described above, the ground wall surface and the blocky backfilling material 5 are arranged so that the block-like backfilling material 5 contacts the back surface of the segment 4. The gap back-filling material 6 is pushed and filled in between, but the gap back-filling material 6 may be pushed and filled between the segment 4 and the block-shaped back filling material 5.

[実施の形態3]
図14は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す横断面図であり、図15は、地山とセグメントとの間にブロック状の裏込め材を設置した状態を示す斜視図である。
[Embodiment 3]
FIG. 14 is a cross-sectional view showing a state in which a block-shaped backfilling material is installed between a natural ground and a segment, and FIG. It is a perspective view which shows the state which carried out.

図14および図15に示すように、本発明の実施の形態である裏込め材の充填方法は、あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材7(以下、「ブロック状の裏込め材7」という)を地山3と岩石を利用したセグメント4(以下、単に「セグメント4」という)との間に設置した後に、地山3とセグメント4との間に残る隙間に砕石Sを吹き込むものである。   As shown in FIGS. 14 and 15, the filling method of the backfilling material according to the embodiment of the present invention is a block-like backfilling material 7 (hereinafter referred to as “the backfilling material 7”) made of crushed stone that has been compacted and packed in advance. After installing the “block-shaped backfill material 7” between the natural ground 3 and the segment 4 using the rock (hereinafter simply referred to as “segment 4”), between the natural ground 3 and the segment 4 The crushed stone S is blown into the remaining gap.

ブロック状の裏込め材7は、所定量の砕石Sを所定の圧縮力でブロック状に締め固め、これを袋詰めしたものである。なお、ブロック状の裏込め材7は、上述した本発明の実施の形態1である裏込め材の充填方法と同様に、砕石Sを袋詰めした後に、締め固め、その後、袋の口を閉じたものでもよい。   The block-shaped backfill material 7 is obtained by compacting a predetermined amount of crushed stone S into a block shape with a predetermined compressive force, and packing it in a bag. In addition, the block-like backfill material 7 is compacted after crushing the crushed stone S after bagging in the same manner as the backfill material filling method according to the first embodiment of the present invention described above, and then the mouth of the bag is closed. May be good.

本発明の実施の形態3である裏込め材の充填方法は、まず、地山3とセグメント4との間に、ブロック状の裏込め材7を設置する。つぎに、地山壁面とブロック状の裏込め材7との間、ブロック状の裏込め材7とセグメント4との間、に残る隙間に砕石S(裏込め材)を吹き込み充填する。そして、ブロック状の裏込め材7の設置と砕石Sの吹き込み充填とを交互に繰り返すことにより、地山3とセグメントと4の間に裏込め材(ブロック状の裏込め材7と砕石S(裏込め材))を充填する。   In the backfilling material filling method according to the third embodiment of the present invention, first, a block-like backfilling material 7 is installed between the natural ground 3 and the segment 4. Next, crushed stone S (backfilling material) is blown and filled into the gaps remaining between the natural wall surface and the block-like backfilling material 7 and between the block-like backfilling material 7 and the segment 4. Then, by alternately repeating the installation of the block-shaped backfill material 7 and the blowing and filling of the crushed stone S, the backfill material (the block-shaped backfill material 7 and the crushed stone S ( Fill with backfill material)).

上述した本発明の実施の形態3である裏込め材の充填方法は、ブロック状の裏込め材7の設置と砕石Sの吹き込み充填とを交互に繰り返すことにより、地山3とセグメント4との間に裏込め材(ブロック状の裏込め材7と砕石S(裏込め材))を充填するので、裏込め材(砕石S)を吹き込み充填する場合よりも、高い密度で充填される。   In the filling method of the backfilling material according to the third embodiment of the present invention described above, the installation of the block-like backfilling material 7 and the blowing filling of the crushed stone S are alternately repeated, so that the natural ground 3 and the segment 4 Since the back-filling material (block-shaped back-filling material 7 and crushed stone S (back-filling material)) is filled in between, the back-filling material (crushed stone S) is filled at a higher density than when the back-filling material (crushed stone S) is blown and filled.

また、ブロック状の裏込め材7を設置した後に、地山3とセグメント4との間に残る隙間(地山壁面とブロック状の裏込め材7との間、ブロック状の裏込め材7とセグメント4との間)に砕石S(裏込め材)を充填するので、砕石Sがこぼれ落ちにくくなり、切羽側に妻板などの対策を施す必要がない。   In addition, after the block-shaped backfilling material 7 is installed, a gap remaining between the natural ground 3 and the segment 4 (between the natural ground wall surface and the block-shaped backfilling material 7, the block-shaped backfilling material 7 and Since the crushed stone S (backing material) is filled between the segment 4), the crushed stone S is not easily spilled and there is no need to take measures such as a face plate on the face side.

また、ブロック状の裏込め材7は、あらかじめ締め固められ、かつ、袋詰めされた砕石Sからなるので、変形量が少なくなり、地山3の変位がセグメント4に直接伝達されることになり、その反力としての支保効果が高くなる。   Further, since the block-shaped backfill material 7 is made of the crushed stone S that has been compacted and packed in advance, the amount of deformation is reduced, and the displacement of the natural ground 3 is directly transmitted to the segment 4. The supporting effect as a reaction force is increased.

1 ブロック状の裏込め材
10 包装容器
10a 蓋部
2 坑道
3 地山
4 セグメント
5 ブロック状の裏込め材
6 隙間用の裏込め材
7 ブロック状の裏込め材
C 圧縮容器
D 台座
F 鋼製枠
P 載荷板
S 砕石
DESCRIPTION OF SYMBOLS 1 Block-shaped backfilling material 10 Packaging container 10a Cover part 2 Tunnel 3 Ground mountain 4 Segment 5 Block-shaped backfilling material 6 Backfilling material for gaps 7 Block-shaped backfilling material C Compression container D Base F Steel frame P Loading plate S Crushed stone

Claims (7)

柔軟な包装容器に砕石を充填する充填工程と、
前記包装容器に充填した砕石を締め固める締め固め工程と、
締め固めた砕石を前記包装容器で包装する包装工程と
を有し、
前記締め固め工程は、砕石が充填された包装容器を剛直な圧縮容器に収容した状態で砕石を締め固めることを特徴とする裏込め材の充填方法。
Filling process for filling crushed stone in flexible packaging container;
A compacting step of compacting the crushed stone filled in the packaging container;
The crushed stone compacted possess a packaging process for packaging in the packaging container,
The compaction step, back-filling material filling method in which crushed stone is characterized Rukoto compacted crushed stone in a state accommodated in a rigid compression container packaging container filled.
前記充填工程は、前記包装容器を前記圧縮容器に収容した状態で砕石を充填することを特徴とする請求項に記載の裏込め材の充填方法。 2. The backfilling material filling method according to claim 1 , wherein the filling step fills the crushed stone in a state where the packaging container is accommodated in the compression container. 掘削した坑道の内空側、肩上部までセグメントを組み立てた後に、地山とセグメントとの間に、あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材を設置することを特徴とする裏込め材の充填方法。   After assembling the segment to the inner side of the excavated tunnel and the upper shoulder, a backfilling material made of crushed stone that has been compacted and packed in advance is installed between the ground and the segment. Backfill material filling method. あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材を設置した後に、地山とセグメントとの間に残る隙間に、砕石、砂または粉体ベントナイトを充填することを特徴とする請求項に記載の裏込め材の充填方法。 The ground space between the ground and the segment is filled with crushed stone, sand, or powdered bentonite after installing a backfill material made of crushed stone that has been compacted and packed in advance. backfill material filling method described in 3. あらかじめ締め固められ、かつ、包装された砕石からなる裏込め材をセグメントとともに天端部に設置することを特徴とする請求項またはに記載の裏込め材の充填方法。 5. The backfilling material filling method according to claim 3 or 4 , wherein a backfilling material made of crushed stone that has been compacted in advance and packaged is installed at the top end together with the segment. あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材を地山とセグメントとの間に設置するとともに、流動性を有する状態で袋詰めされた砕石からなる隙間用の裏込め材を地山とセグメントとの間に残る隙間に充填することを特徴とする裏込め材の充填方法。   A block-shaped backfill material made of crushed stone that has been compacted and packed in advance is placed between the ground and the segment, and the back for the gap made of crushed stone that is packed in a fluid state A backfilling material filling method comprising filling a gap remaining between a natural ground and a segment. あらかじめ締め固められ、かつ、袋詰めされた砕石からなるブロック状の裏込め材を地山とセグメントとの間に設置した後に、地山とセグメントとの間に残る隙間に砕石を吹き込むことを特徴とする裏込め材の充填方法。   A block-like backfill material made of crushed stone that has been compacted and packed in advance is installed between the ground and the segment, and then the crushed stone is blown into the gap remaining between the ground and the segment. Filling method of backfill material.
JP2012008323A 2012-01-18 2012-01-18 Backfill material filling method Expired - Fee Related JP5839276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008323A JP5839276B2 (en) 2012-01-18 2012-01-18 Backfill material filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008323A JP5839276B2 (en) 2012-01-18 2012-01-18 Backfill material filling method

Publications (2)

Publication Number Publication Date
JP2013147830A JP2013147830A (en) 2013-08-01
JP5839276B2 true JP5839276B2 (en) 2016-01-06

Family

ID=49045596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008323A Expired - Fee Related JP5839276B2 (en) 2012-01-18 2012-01-18 Backfill material filling method

Country Status (1)

Country Link
JP (1) JP5839276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107239645B (en) * 2017-08-10 2020-03-10 西南交通大学 Design method for probability reliability of non-backfill soil arch open cut tunnel structure under rockfall impact
CN117145523B (en) * 2023-10-31 2023-12-26 煤炭工业太原设计研究院集团有限公司 Sylvite inclined shaft mudstone section roof-falling treatment reinforcing structure and method

Also Published As

Publication number Publication date
JP2013147830A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Pham et al. 3D numerical modeling of a piled embankment under cyclic loading
Ong et al. Performance of field and numerical back-analysis of floating stone columns in soft clay considering the influence of dilatancy
Pusch et al. The concept of highly radioactive waste (HLW) disposal in very deep boreholes in a new perspective
Middelhoff et al. Combined impact of selected material properties and environmental conditions on the swelling pressure of compacted claystone/bentonite mixtures
Wang et al. Field load tests and modelling of soft foundation reinforced by soilbags
Kwon et al. An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository
Sahoo et al. Shaking table tests to evaluate the seismic performance of soil nailing stabilized embankments
JP5839276B2 (en) Backfill material filling method
Nikakhtar et al. Numerical modelling of backfill grouting approaches in EPB tunneling
Li et al. The construction of the HADES underground research laboratory and its role in the development of the Belgian concept of a deep geological repository
Verma et al. Effect of excavation stages on stress and pore pressure changes for an underground nuclear repository
Murphy The influence of geofoam creep on the performance of a compressible inclusion
Amini Physical modelling of vibro stone column using recycled aggregates
Antonaki et al. Centrifuge tests on comixing of mine tailings and waste rock
Tokiwa et al. Fracture characterization and rock mass damage induced by different excavation methods in the Horonobe URL of Japan
Armand et al. Contribution of HADES URL to the development of the Cigéo project, the French industrial centre for geological disposal of high-level and long-lived intermediate-level radioactive waste in a deep clay formation
Hardin et al. Alternative Concepts for Direct Disposal of Dual-Purpose Canisters.
Argilaga et al. Modelling of short-term interactions between concrete support and the excavated damage zone around galleries drilled in callovo–oxfordian claystone
Yamamoto et al. Mechanical stability of engineered barriers in a subsurface disposal facility during gas migration based on coupled hydromechanical modelling
KR101399295B1 (en) Method for constructing semi-basement structure for radioactive waste
JP5831749B2 (en) Method for confirming deformation characteristics of backfill material, method for improving deformation characteristics of backfill material, and segment assembly support
Alainachi Shaking Table Testing of Cyclic Behaviour of Fine-Grained Soils Undergoing Cementation: Cemented Paste Backfill
Bishwal et al. A study on the need of assessment of settlement properties of coal mine waste dumps
Sharma Cutoff Modelling for Excavation Sealing in Underground Nuclear Waste Repositories
Nowak et al. Initial Reference Seal System Design: Waste Isolation Pilot Plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5839276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees