JP2013084551A - Collector for dye sensitized solar cell, method for producing material for the same, and dye sensitized solar cell - Google Patents

Collector for dye sensitized solar cell, method for producing material for the same, and dye sensitized solar cell Download PDF

Info

Publication number
JP2013084551A
JP2013084551A JP2012068565A JP2012068565A JP2013084551A JP 2013084551 A JP2013084551 A JP 2013084551A JP 2012068565 A JP2012068565 A JP 2012068565A JP 2012068565 A JP2012068565 A JP 2012068565A JP 2013084551 A JP2013084551 A JP 2013084551A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
metal
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012068565A
Other languages
Japanese (ja)
Other versions
JP5805568B2 (en
Inventor
Mitsuru Kono
充 河野
Keiichiro Shiga
桂一郎 志賀
Toshihisa Fujitaka
俊久 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012068565A priority Critical patent/JP5805568B2/en
Publication of JP2013084551A publication Critical patent/JP2013084551A/en
Application granted granted Critical
Publication of JP5805568B2 publication Critical patent/JP5805568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide: a collector for a dye sensitized solar cell, which is excellent in liquid permeability of an electrolyte when used in a dye sensitized solar cell, so that high power generation efficiency can be obtained; a method for producing a material for the collector for a dye sensitized solar cell; and a dye sensitized solar cell including the collector for a dye sensitized solar cell.SOLUTION: A porous sintered metal sheet has a thickness of 5-60 μm and a porosity of 30-80%, and has a plurality of through holes which isotropically communicate with each other. A collector 18 for a dye sensitized solar cell comprises the porous sintered metal sheet.

Description

本発明は、色素増感太陽電池用集電体およびその材料の製造方法ならびに色素増感太陽電池に関する。   The present invention relates to a current collector for a dye-sensitized solar cell, a method for producing the current collector, and a dye-sensitized solar cell.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなく電解液を使用した電気化学的なセル構造を持つ点に特徴がある。例えば、透明な導電性ガラス板等の透明導電膜を使用したアノード電極に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)等からなる対極(カソード電極)の間に電解質としてヨウ素溶液等を配置した、簡易な構造を有する   The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure using an electrolytic solution without using a silicon semiconductor. For example, a porous semiconductor layer such as a titania layer formed by baking titanium dioxide powder or the like on an anode electrode using a transparent conductive film such as a transparent conductive glass plate and adsorbing a pigment to the anode, and a conductive glass plate (conductive A simple structure in which an iodine solution or the like is disposed as an electrolyte between a counter electrode (cathode electrode) composed of a conductive substrate)

色素増感太陽電池の発電メカニズムは、以下のとおりである。
受光面である透明導電膜面から入射した光を、多孔質半導体層に吸着された色素が吸収し、電子励起を引き起こし、その励起した電子が半導体へと移動し、導電性ガラスへと導かれる。ついで、対極に戻った電子はヨウ素などの電解液を介して電子を失った色素へと導かれ、色素が再生される。
The power generation mechanism of the dye-sensitized solar cell is as follows.
Light incident from the transparent conductive film surface, which is the light-receiving surface, is absorbed by the dye adsorbed on the porous semiconductor layer, causing electronic excitation, and the excited electrons move to the semiconductor and are guided to the conductive glass. . Next, the electrons that have returned to the counter electrode are led to the dye that has lost the electrons through an electrolyte such as iodine, and the dye is regenerated.

色素増感太陽電池は、シリコン系の太陽電池と比べて材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されており、さらなる低コスト化のため、例えば高価な透明導電膜を省略することが検討されている。なお、透明導電膜は電気抵抗が大きいため、電池の大型化に向かないという問題もあった。   Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are less expensive than silicon-based solar cells and do not require large-scale production facilities. For example, it is considered to omit an expensive transparent conductive film. In addition, since the transparent conductive film has a large electric resistance, there is also a problem that it is not suitable for increasing the size of the battery.

透明導電膜を省略する方法の一つとして、ガラス表面に配置される透明導電膜の代わりに導電性金属からなる配線を施すことが挙げられる。しかし、この場合、入射光の一部は金属配線部分に遮られることとなり、効率の低下を伴う。   One method for omitting the transparent conductive film is to provide a wiring made of a conductive metal instead of the transparent conductive film disposed on the glass surface. However, in this case, a part of the incident light is blocked by the metal wiring part, resulting in a decrease in efficiency.

この点を改善するものとして、例えば、光照射側となる透明導電膜を持たない透明基板に色素担持半導体層を形成し、色素担持半導体層の上に有孔集電電極を配置する光電変換素子が開示されている(特許文献1参照)。有孔集電電極は網目状または格子状の構造であり、多孔質半導体の基板への塗布膜上にこの集電電極を載置して500℃で30分焼成するものとされている。   To improve this point, for example, a photoelectric conversion element in which a dye-carrying semiconductor layer is formed on a transparent substrate that does not have a transparent conductive film on the light irradiation side, and a perforated current collecting electrode is disposed on the dye-carrying semiconductor layer Is disclosed (see Patent Document 1). The perforated current collecting electrode has a network or lattice structure, and is placed on a coating film on a porous semiconductor substrate and fired at 500 ° C. for 30 minutes.

また、例えば、孔を有する集電電極として線径が1μm〜10mmの金網を用い、この金網に多孔質半導体層の材料であるペーストを塗布し、ペーストを焼成して多孔質半導体層を形成した後に、透明導電膜を持たないガラス製透明基板に多孔質半導体層の側を向けて金網を配置する技術が開示されている(特許文献2参照)。   In addition, for example, a wire mesh having a wire diameter of 1 μm to 10 mm is used as a collecting electrode having holes, a paste which is a material of the porous semiconductor layer is applied to the wire mesh, and the paste is baked to form a porous semiconductor layer. Later, a technique has been disclosed in which a wire mesh is disposed with a porous semiconductor layer facing a glass transparent substrate having no transparent conductive film (see Patent Document 2).

しかし、これらの技術は、集電電極として予め加工形成された金網あるいはその他の有孔板等を用いるので、金属細線等材料のサイズの制約から、金網等の厚みを薄くすることには限界がある。そのため、金網等の厚みが厚いことに起因し、電解質が金網等を介して多孔質半導体層に移動する際の拡散抵抗が大きくなり、これにより光電変換効率の低下を来たすおそれがある。   However, these techniques use a wire mesh or other perforated plate that has been processed and formed in advance as a current collecting electrode, and therefore there is a limit to reducing the thickness of the wire mesh etc. due to the size restrictions of materials such as fine metal wires is there. Therefore, due to the thick thickness of the wire mesh or the like, the diffusion resistance when the electrolyte moves to the porous semiconductor layer through the wire mesh or the like is increased, which may cause a decrease in photoelectric conversion efficiency.

これに対して、例えば、集電電極として、スパッタリングや蒸着等の方法によってタングステン、チタン、ニッケル等の金属を堆積させ、その後、フォトリソグラフィー等によりパターニングする方法が開示されている(特許文献3参照)。得られる集電電極は、極めて薄い金属膜である。
しかし、この方法は、集電電極の製造工程が煩雑である。また、集電電極が過度に薄すぎると、集電電極としての役割、性能に不足を来たすおそれもある。このとき、集電電極を適度の厚膜に形成しようとすると、成膜に時間とコストがかかりすぎるおそれがある。
On the other hand, for example, a method of depositing a metal such as tungsten, titanium, nickel or the like as a collecting electrode by a method such as sputtering or vapor deposition and then patterning by photolithography or the like is disclosed (see Patent Document 3). ). The resulting collector electrode is a very thin metal film.
However, in this method, the manufacturing process of the collecting electrode is complicated. Moreover, when the current collecting electrode is too thin, there is a risk that the role and performance as the current collecting electrode may be insufficient. At this time, if it is attempted to form the current collecting electrode in a moderately thick film, the film formation may take too much time and cost.

一方、金属粉末を焼結させた金属焼結体からなり、内部に分散配置された複数の空孔部を有し、その気孔率が10体積%以上50体積%以下とされ、前記空孔部の平均孔径が1μm以上30μm以下とされており、複数の前記空孔部の一部が表面に開口するように配置されていることを特徴とする電気化学部材用焼結金属シート材が開示されている(特許文献4)。電気化学部材用焼結金属シート材は、原料スラリーをグリーンシートに成形したものを焼結して得られる。金属シート材の厚さは、例えば0.03mm以上0.3mm以下程度であるとされる。
上記の電気化学部材用焼結金属シート材は、明細書の技術分野の欄の記載振りから見て、電気分解装置の電極板、電気めっき装置の電極、電気二重層キャパシタの集電体、非水電解液2次電池の集電体等の用途における従来技術の不具合を改善することを目的とするものと考えられるが、具体的な開示は無い。また、グリーンシートをハンドリングする上記の電気化学部材用焼結金属シート材の製造方法では、下限値である0.03mm程度の厚みのシート材を得るのは実際には困難ではないかと思われる。
On the other hand, it is composed of a sintered metal body obtained by sintering metal powder, and has a plurality of pore portions dispersed and arranged therein, and the porosity thereof is 10% by volume or more and 50% by volume or less. A sintered metal sheet material for an electrochemical member is disclosed in which the average pore diameter is 1 μm or more and 30 μm or less, and a part of the plurality of pores is arranged to open to the surface. (Patent Document 4). The sintered metal sheet material for electrochemical members is obtained by sintering a raw material slurry formed into a green sheet. The thickness of the metal sheet material is, for example, about 0.03 mm to 0.3 mm.
In view of the description in the technical field column of the specification, the above sintered metal sheet material for an electrochemical member includes an electrode plate for an electrolysis apparatus, an electrode for an electroplating apparatus, a current collector for an electric double layer capacitor, Although it is thought that it aims at improving the malfunction of the prior art in uses, such as a collector of a water electrolyte secondary battery, there is no concrete disclosure. In addition, in the above-described method for producing a sintered metal sheet material for electrochemical members for handling a green sheet, it seems that it is actually difficult to obtain a sheet material having a thickness of about 0.03 mm which is the lower limit value.

また、原料粉末、バインダー、および水を含む材料からなり気泡が分散形成されたスラリーを調製するスラリー製造工程と、このスラリーからグリーン体を形成するグリーン体形成工程と、このグリーン体を焼結する焼結工程とを有する多孔質焼結体の製造方法であって、グリーン体形成工程が所定の安置工程、凍結固化工程および真空凍結乾燥工程を含む技術が開示されている(特許文献5)。スラリー製造工程は、材料を混練してスラリーを調整する混練工程と、スラリーから気泡および溶存ガスを除去する脱泡工程と、このスラリーに添加ガスを導入しながら攪拌することにより、スラリー中に添加ガスからなる気泡核を分散形成する気泡核形成工程と、を有すると、スラリー中に含まれる気体量を精密に制御することができるとされている。チタン粉末を原料とした実施例として、80%を大幅に上回る高い気孔率と、数百μm以上の平均気孔径を有する多孔質焼結体が開示されている。   In addition, a slurry manufacturing process for preparing a slurry made of a material containing a raw material powder, a binder, and water, in which bubbles are dispersed and formed, a green body forming process for forming a green body from the slurry, and sintering the green body A method for producing a porous sintered body having a sintering process is disclosed, wherein a green body forming process includes a predetermined resting process, a freeze-solidifying process, and a vacuum freeze-drying process (Patent Document 5). The slurry manufacturing process is added to the slurry by mixing the materials and adjusting the slurry, removing the bubbles and dissolved gas from the slurry, and stirring while introducing the additive gas into the slurry. It is said that the amount of gas contained in the slurry can be precisely controlled by having a bubble nucleus forming step of dispersing and forming bubble nuclei made of gas. As an example using titanium powder as a raw material, a porous sintered body having a high porosity significantly exceeding 80% and an average pore diameter of several hundred μm or more is disclosed.

また、上記した金属焼結体に関し、本発明者らは、色素増感太陽電池の集電電極として市販の多孔質チタンシート(商品名タイポラス 大阪チタニウム社製 厚み100μm)を用いる技術を開示している(特許文献6)。この多孔質チタンシートは多数の孔が等方的に連通する金属多孔体であり、発電効率の向上に寄与する。   In addition, regarding the metal sintered body described above, the present inventors have disclosed a technique of using a commercially available porous titanium sheet (trade name: Typorus, made by Osaka Titanium Co., Ltd., thickness: 100 μm) as a collecting electrode of a dye-sensitized solar cell. (Patent Document 6). This porous titanium sheet is a porous metal body in which a large number of pores communicate isotropically, and contributes to improvement in power generation efficiency.

特開2001−283941号公報JP 2001-283941 A 特開2007−73505号公報JP 2007-73505 A 特開2005−158470号公報JP 2005-158470 A 特開2011−99146号公報JP 2011-99146 A 特開2010−229432号公報JP 2010-229432 A WO2010/150461WO2010 / 150461

解決しようとする問題点は、色素増感太陽電池の集電電極として多孔質焼結金属シートを用いる従来の技術は、発電効率の一層の向上に寄与するうえで、さらなる改良が求められる点である。   The problem to be solved is that the conventional technique using a porous sintered metal sheet as a current collecting electrode of a dye-sensitized solar cell requires further improvement in order to contribute to further improvement in power generation efficiency. is there.

本発明に係る色素増感太陽電池用集電体は、厚みが5〜60μm、かつ空隙率が30〜80%であり、等方的に連通した多数の貫通孔を有する多孔質焼結金属シートからなる。   The current collector for a dye-sensitized solar cell according to the present invention has a thickness of 5 to 60 μm, a porosity of 30 to 80%, and a porous sintered metal sheet having a number of isotropically communicating through holes. Consists of.

また、本発明に係る色素増感太陽電池用集電体は、好ましくは、前記多孔質焼結金属シートが厚みが10〜30μm、かつ空隙率が30〜60%の非発泡多孔質焼結金属シートであることを特徴とする。   Further, the current collector for a dye-sensitized solar cell according to the present invention is preferably a non-foamed porous sintered metal in which the porous sintered metal sheet has a thickness of 10 to 30 μm and a porosity of 30 to 60%. It is a sheet.

また、本発明に係る色素増感太陽電池用集電体は、好ましくは、平均空孔直径が5〜25μmであることを特徴とする。
このとき、前記平均空孔直径が15μm以下であると、より好適である。
The dye-sensitized solar cell current collector according to the present invention is preferably characterized in that the average pore diameter is 5 to 25 μm.
At this time, the average pore diameter is more preferably 15 μm or less.

また、本発明に係る色素増感太陽電池用集電体は、好ましくは、前記多孔質焼結金属シートの金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることを特徴とする。   Moreover, the current collector for the dye-sensitized solar cell according to the present invention is preferably any one selected from Ti, W, Mo, Rh, Pt and Ta as the metal species of the porous sintered metal sheet or It is an alloy containing one or more of these.

また、本発明に係る色素増感太陽電池用集電体は、好ましくは、前記多孔質焼結金属シートの原料である金属粉末が水素化脱水素法により製造したチタン粉末であることを特徴とする。   Further, the current collector for a dye-sensitized solar cell according to the present invention is preferably characterized in that the metal powder as a raw material of the porous sintered metal sheet is a titanium powder produced by a hydrodehydrogenation method. To do.

また、本発明に係る色素増感太陽電池用集電体は、好ましくは、電気伝導率が0.5×10Ω−1・m−1以上であることを特徴とする。 The current collector for a dye-sensitized solar cell according to the present invention preferably has an electrical conductivity of 0.5 × 10 3 Ω −1 · m −1 or more.

また、本発明に係る色素増感太陽電池は、透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる上記の色素増感太陽電池用集電体を備え、電解質が封止されてなる。   The dye-sensitized solar cell according to the present invention is disposed between a transparent substrate, a conductive substrate serving as a cathode electrode, and between or in contact with the transparent substrate between the transparent substrate and the conductive substrate. A porous semiconductor layer adsorbed with a dye, and the above-described dye-sensitized solar cell current collector that is disposed in contact with the opposite side of the porous semiconductor layer to the transparent substrate and serves as an anode electrode. It is sealed.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含むことを特徴とする。   Also, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention comprises forming a slurry-like composition containing a metal powder and a solvent on a base material that is soluble in an acid and sintering it. Pre-sintered green body forming step for obtaining a pre-formed body, a sintering step for sintering the pre-sintered green body to obtain a sintered body, and base material removal for separating and removing the base material from the sintered body with an acid Including a process.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記基材がFeまたはFeを含む合金で形成されることを特徴とする。   In the method for producing a current collector material for a dye-sensitized solar cell according to the present invention, preferably, the base material is formed of Fe or an alloy containing Fe.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記焼結工程を、実質的に密閉状態の容器内で行い、炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、前記金属粉末より大きい値を持つ金属を前記焼結前成形体の近傍に配置することを特徴とする。   Further, in the method for producing a current collector material for a dye-sensitized solar cell according to the present invention, preferably, the sintering step is performed in a substantially sealed container, and the standard free energy of formation of carbides and oxides. A metal having a value larger than the metal powder in the sintering temperature range is disposed in the vicinity of the green body before sintering.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記金属がTi、ZrおよびHfから選ばれる1種であることを特徴とする。   Moreover, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention is preferably characterized in that the metal is one selected from Ti, Zr and Hf.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、基体金属と媒体金属の混合粉を成形して成形体を得る成形工程と、該成形体を加熱して焼結体を得る焼結工程と、該成形工程および該焼結工程のいずれか1つの工程または双方の工程の後に、該成形体または該焼結体を化学処理または物理処理して、該媒体金属を分離除去する媒体金属分離除去工程をさらに含むことを特徴とする。   In addition, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention includes a molding step of molding a mixed powder of a base metal and a medium metal to obtain a molded body, and heating and sintering the molded body. A sintering step for obtaining a body, and after one or both of the forming step and the sintering step, the formed body or the sintered body is chemically or physically treated to form the medium metal. The method further includes a medium metal separation and removal step of separating and removing.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記化学処理が、酸洗処理であることを特徴とする請求項12記載の色素増感太陽電池用集電体材料の製造方法。   Moreover, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention, Preferably, the said chemical treatment is a pickling process, It is for dye-sensitized solar cells of Claim 12 characterized by the above-mentioned. A method for producing a current collector material.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記物理処理が、揮発分離処理または溶融分離処理であることを特徴とする。   In the method for producing a current collector material for a dye-sensitized solar cell according to the present invention, preferably, the physical treatment is a volatile separation treatment or a melt separation treatment.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記基体金属が、TiまたはTi合金であることを特徴とする。   In the method for producing a current collector material for a dye-sensitized solar cell according to the present invention, preferably, the base metal is Ti or a Ti alloy.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、好ましくは、前記媒体金属が、鉄、鉄−クロム合金、銅、マグネシウム、セレン、カルシウム、亜鉛、カドミニウム、ビスマス、鉛および鉛−スズ合金から選ばれるいずれか1種または2種以上であることを特徴とする。   In the method for producing a dye-sensitized solar cell current collector material according to the present invention, preferably, the medium metal is iron, iron-chromium alloy, copper, magnesium, selenium, calcium, zinc, cadmium, bismuth, It is characterized by being one or more selected from lead and lead-tin alloys.

また、本発明に係る色素増感太陽電池は、透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる上記の色素増感太陽電池用集電体材料の製造方法により得られる色素増感太陽電池用集電体材料を用いた集電体を備え、電解質が封止されてなる。   The dye-sensitized solar cell according to the present invention is disposed between a transparent substrate, a conductive substrate serving as a cathode electrode, and between or in contact with the transparent substrate between the transparent substrate and the conductive substrate. And a method for producing a current collector material for a dye-sensitized solar cell that is disposed in contact with the opposite side of the porous semiconductor layer to the transparent substrate and serves as an anode electrode. A current collector using the obtained dye-sensitized solar cell current collector material is provided, and the electrolyte is sealed.

本発明に係る色素増感太陽電池用集電体は、厚みが5〜60μm、かつ空隙率が30〜80%であり、等方的に連通した多数の貫通孔を有する多孔質焼結金属シートからなるため、色素増感太陽電池に用いたときに電解質の通液性に優れて高い発電効率を得ることができる。
また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含み、または、基体金属と媒体金属の混合粉を成形して成形体を得る成形工程と、該成形体を加熱して焼結体を得る焼結工程と、該成形工程および該焼結工程のいずれか1つの工程または双方の工程の後に、該成形体または該焼結体を化学処理または物理処理して、該媒体金属を分離除去する媒体金属分離除去工程をさらに含むため、上記本発明に係る色素増感太陽電池用集電体を好適に得ることができる。
また、本発明に係る色素増感太陽電池は、上記本発明に係る色素増感太陽電池用集電体を備え、または、上記本発明に係る色素増感太陽電池用集電体材料の製造方法により得られる材料を用いた色素増感太陽電池用集電体を備えるため、電解質の通液性に優れて高い発電効率を得ることができる。
The current collector for a dye-sensitized solar cell according to the present invention has a thickness of 5 to 60 μm, a porosity of 30 to 80%, and a porous sintered metal sheet having a number of isotropically communicating through holes. Therefore, when used in a dye-sensitized solar cell, the electrolyte has excellent liquid permeability and high power generation efficiency can be obtained.
Also, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention comprises forming a slurry-like composition containing a metal powder and a solvent on a base material that is soluble in an acid and sintering it. Pre-sintered green body forming step for obtaining a pre-formed body, a sintering step for sintering the pre-sintered green body to obtain a sintered body, and base material removal for separating and removing the base material from the sintered body with an acid A molding step including molding a mixed powder of a base metal and a medium metal to obtain a molded body, a sintering process for heating the molded body to obtain a sintered body, the molding process and the sintering The method further includes a medium metal separation / removal step of separating or removing the medium metal by chemical treatment or physical treatment of the molded body or the sintered body after any one or both of the steps. The current collector for a dye-sensitized solar cell according to the invention can be suitably obtained.
Moreover, the dye-sensitized solar cell according to the present invention includes the current collector for a dye-sensitized solar cell according to the present invention, or a method for producing a current collector material for a dye-sensitized solar cell according to the present invention. Since the current collector for dye-sensitized solar cell using the material obtained by the above is provided, the electrolyte has excellent liquid permeability and high power generation efficiency can be obtained.

図1は本実施の形態に係る色素増感太陽電池の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a dye-sensitized solar cell according to the present embodiment. 図2は実施例1の多孔質チタンを主面(表面)から見たSEM写真を示す図である。FIG. 2 is a SEM photograph of the porous titanium of Example 1 as seen from the main surface (surface). 図3は実施例1の多孔質チタンの断面のSEM写真を示す図である。3 is a SEM photograph of a cross section of the porous titanium of Example 1. FIG.

本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。   An embodiment of the present invention (hereinafter referred to as this embodiment) will be described below.

まず、本実施の形態例に係る色素増感太陽電池用集電体について説明する。
本実施の形態例に係る色素増感太陽電池用集電体(以下、これを単に集電体ということがある。集電体はおおむね集電電極と同義である。)は、厚みが5〜60μm、かつ空隙率が30〜80%であり、等方的に連通した多数の貫通孔を有する多孔質焼結金属シートからなる。
多孔質焼結金属シートを用いるため、多孔質半導体層上等に薄膜形成法等で集電体を設ける場合に比べて、集電体の作製作業ひいては色素増感太陽電池の作製作業の煩雑さが大幅に軽減される。
First, the current collector for a dye-sensitized solar cell according to this embodiment will be described.
The current collector for a dye-sensitized solar cell according to the present embodiment (hereinafter, this may be simply referred to as a current collector. The current collector is generally synonymous with the current collector electrode) has a thickness of 5 to 5. The porous sintered metal sheet is 60 μm and has a porosity of 30 to 80% and has a number of isotropically communicating through holes.
Since a porous sintered metal sheet is used, compared with the case where a current collector is provided on the porous semiconductor layer by a thin film forming method, the current collector production work and thus the dye-sensitized solar cell production work are more complicated. Is greatly reduced.

多孔質焼結金属シートの厚みは、上記のように5〜60μmであるが、好ましくは5〜50μmであり、さらに好ましくは10〜30μmである。多孔質焼結金属シートの厚みが5μmを大きく下回ると、厚み方向に存在する粒子数が少なくなり、金属多孔体としての強度が損なわれるおそれがある。一方、多孔質焼結金属シートの厚みが60μmを大きく上回ると、色素増感太陽電池に用いたときに、シート内部での電解液の流動抵抗が大きくなりシートの内部あるいは両面間での電解質の流通性や拡散性が悪くなり、また、多孔質半導体層との密着性や接合力が損なわれる等の問題を生じるおそれがある。なお、多孔質焼結金属シートの厚みは平均厚みをいう。   As described above, the thickness of the porous sintered metal sheet is 5 to 60 μm, preferably 5 to 50 μm, and more preferably 10 to 30 μm. When the thickness of the porous sintered metal sheet is significantly less than 5 μm, the number of particles present in the thickness direction is reduced, and the strength as a metal porous body may be impaired. On the other hand, when the thickness of the porous sintered metal sheet greatly exceeds 60 μm, when used in a dye-sensitized solar cell, the flow resistance of the electrolyte solution inside the sheet increases, and the electrolyte inside the sheet or between both surfaces There is a possibility that the flowability and diffusibility are deteriorated, and that the adhesion to the porous semiconductor layer and the bonding force are impaired. The thickness of the porous sintered metal sheet refers to the average thickness.

多孔質焼結金属シートの空隙率は、上記のように30〜80%であるが、好ましくは30〜60%である。多孔質焼結金属シートの空隙率が30%を大きく下回ると、色素増感太陽電池に用いたときに、シート内部での電解液の流動抵抗が大きくなりシートの内部あるいは両面間での電解質の流通性や拡散性が悪くなり、シート内部での電解質の流通・拡散が不十分となり、これにより、多孔質半導体層への電解質の均一な浸透が損なわれるおそれがある。一方、多孔質焼結金属シートの空隙率が80%を大きく上回ると、多孔質半導体層との密着性や接合力が損なわれるおそれがある。また、金属多孔体としての強度が損なわれるおそれがある。また、電極として好適な導電性が得られないおそれがある。なお、用語の定義上、言うまでもなく明らかであるが、空隙率の単位は体積%である。   The porosity of the porous sintered metal sheet is 30 to 80% as described above, but preferably 30 to 60%. When the porosity of the porous sintered metal sheet is significantly lower than 30%, when used in a dye-sensitized solar cell, the flow resistance of the electrolytic solution inside the sheet increases, and the electrolyte inside the sheet or between both surfaces The flowability and diffusibility are deteriorated, and the distribution / diffusion of the electrolyte inside the sheet is insufficient, which may impair the uniform penetration of the electrolyte into the porous semiconductor layer. On the other hand, when the porosity of the porous sintered metal sheet greatly exceeds 80%, the adhesion and bonding strength with the porous semiconductor layer may be impaired. Moreover, there exists a possibility that the intensity | strength as a metal porous body may be impaired. Moreover, there exists a possibility that electroconductivity suitable as an electrode may not be obtained. In addition, it goes without saying that the definition of terms is obvious, but the unit of porosity is volume%.

多孔質焼結金属シートは、平均空孔直径が、好ましくは5〜25μmであり、さらに好ましくは5〜15μmである。多孔質焼結金属シートの平均空孔直径が5μmを大きく下回ると、色素増感太陽電池に用いたときに、シート内部での電解液の流動抵抗が大きくなりシートの内部あるいは両面間での電解質の流通性や拡散性が悪くなり、導電性金属層内部での電解質の流通・拡散が不十分となり、これにより、多孔質半導体層への電解質の均一な浸透が損なわれるおそれがある。一方、多孔質焼結金属シートの平均空孔直径が25μmを大きく上回ると、金属多孔体としての強度が損なわれおそれがある。また、平均空孔直径が過度に大きくなると、非空孔部の面積も大きくなるので、シート内部の電解質の均一な流通およびシートの開口から多孔質半導体層への電解質の均一な拡散が阻害されるおそれがある。   The porous sintered metal sheet has an average pore diameter of preferably 5 to 25 μm, more preferably 5 to 15 μm. When the average pore diameter of the porous sintered metal sheet is much less than 5 μm, the flow resistance of the electrolyte solution inside the sheet increases when used in a dye-sensitized solar cell, and the electrolyte inside or between both sides of the sheet As a result, the flowability and diffusibility of the electrolyte deteriorate, and the distribution / diffusion of the electrolyte inside the conductive metal layer becomes insufficient, which may impair the uniform penetration of the electrolyte into the porous semiconductor layer. On the other hand, when the average pore diameter of the porous sintered metal sheet greatly exceeds 25 μm, the strength as the metal porous body may be impaired. In addition, if the average pore diameter is excessively large, the area of the non-voided portion is also increased, so that the uniform distribution of the electrolyte inside the sheet and the uniform diffusion of the electrolyte from the opening of the sheet to the porous semiconductor layer are hindered. There is a risk.

なお、空隙率および平均空孔直径は、水銀圧入法により測定するときの値である。水銀圧入式細孔分布測定装置(CARLOERBA INSTRUMENTS社製PascaI 140およびPascal 440、測定可能範囲:比表面積0.1m/g以上、細孔分布0.0034〜400μm)を用いて、圧力範囲0.3〜400kPa、および0.1〜400MPaの範囲で、圧入体積を円筒細孔モデルに従って、側面積として計算し積算して測定する。 The porosity and the average pore diameter are values when measured by a mercury intrusion method. Using a mercury intrusion type pore distribution measuring device (Pascal I 140 and Pascal 440 manufactured by CARLOERBA INSTRUMENTS, measurable range: specific surface area 0.1 m 2 / g or more, pore distribution 0.0034 to 400 μm), pressure range 0. In the range of 3 to 400 kPa and 0.1 to 400 MPa, the press-fitted volume is calculated as a side area according to the cylindrical pore model, integrated and measured.

多孔質焼結金属シートは、上記したように、等方的に連通した多数の貫通孔を有する。ここで、等方的に連通するとは、多数の孔が多孔質焼結金属の厚みの方向にのみ、すなわち異方性を有するように連通して貫通孔を形成するだけではなく、多孔質焼結金属の平面に沿った方向にも、すなわち三次元的にあらゆる方向に等方性を有するように連通することをいう。これにより、色素増感太陽電池に用いたときに、シートにおいて、電解質がより均一に浸透するとともに、電解質がシートの開口から多孔質半導体層へより均一に拡散する。   As described above, the porous sintered metal sheet has a large number of through-holes communicating isotropically. Here, “isotropically communicating” means not only that a large number of pores communicate with each other only in the direction of the thickness of the porous sintered metal, that is, so as to have anisotropy, so that the through-holes are formed. The term “communication” means to communicate in a direction along the plane of the bonded metal so that it is isotropic in all directions in three dimensions. Thus, when used in a dye-sensitized solar cell, the electrolyte penetrates more uniformly in the sheet, and the electrolyte diffuses more uniformly from the opening of the sheet into the porous semiconductor layer.

多孔質焼結金属シートは、例えば前記した特許文献5の技術のような、スラリー発泡法やこれに準ずる技術を用いたいわゆる発泡金属を用いることができる。ただし、後述する本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法のような、スラリー発泡法等を用いることなくスラリーを形成した金属であると、上記した空隙率および平均空孔直径がより好適な範囲の多孔質焼結金属シートを得ることができて、より好ましい。本明細書では、このスラリー発泡法等を用いることなくスラリーを形成した金属を非発泡多孔質焼結金属シートと呼んで、発泡金属と区別する。   As the porous sintered metal sheet, for example, a so-called foam metal using a slurry foaming method or a technique equivalent thereto, such as the technique of Patent Document 5 described above, can be used. However, the porosity and the above-described porosity and the metal formed slurry without using the slurry foaming method, such as the method for producing the current collector material for dye-sensitized solar cell according to the present embodiment described later A porous sintered metal sheet having a more preferable average pore diameter can be obtained, which is more preferable. In this specification, the metal which formed the slurry without using this slurry foaming method etc. is called a non-foamed porous sintered metal sheet, and is distinguished from a foam metal.

多孔質焼結金属シートからなる集電体を集電電極として多孔質半導体層と接して色素増感太陽電池に用いたとき、粒子の凝集体である多孔質半導体層との接触面積が大きく、かつ、シートの表面の孔に多孔質半導体層の表面の粒子が、いわば噛み合った状態に係合する。これにより、シートと多孔質半導体層の接合力が大きい。これに対して、従来の薄膜形成法で形成した導電性金属層を集電体とする場合、貫通孔の開口は、導電性金属層の平面に沿った方向には離散的に配置され、かつ、開口の数にも限界があることが多いため、または、導電性金属層が平滑なシート状に形成されるため、導電性金属層と多孔質半導体層の接合力を大きくとることが難しいことがある。この不具合は、集電体として金網を用いる場合や薄板に加工によって貫通孔を形成する場合においてより顕著である。集電体と多孔質半導体層の接合力が小さいと、例えば500℃程度の加熱による電気的接合工程においてクラックを生じて、集電体と多孔質半導体層が剥離するおそれがある。   When a current collector made of a porous sintered metal sheet is used for a dye-sensitized solar cell in contact with the porous semiconductor layer as a current collecting electrode, the contact area with the porous semiconductor layer that is an aggregate of particles is large, In addition, the particles on the surface of the porous semiconductor layer engage with the pores on the surface of the sheet so as to engage with each other. Thereby, the bonding force between the sheet and the porous semiconductor layer is large. On the other hand, when the conductive metal layer formed by the conventional thin film forming method is used as the current collector, the openings of the through holes are discretely arranged in the direction along the plane of the conductive metal layer, and Because the number of openings is often limited, or because the conductive metal layer is formed in a smooth sheet, it is difficult to increase the bonding force between the conductive metal layer and the porous semiconductor layer. There is. This problem is more noticeable when a wire mesh is used as a current collector or when a through hole is formed in a thin plate by processing. If the bonding force between the current collector and the porous semiconductor layer is small, cracks may be generated in the electrical bonding step by heating at, for example, about 500 ° C., and the current collector and the porous semiconductor layer may be separated.

多孔質焼結金属シートは、金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることが、色素増感太陽電池に用いたときに電解質に対する高い耐食性を得、また、高い導電性を得るうえで好ましい。多孔質焼結金属シートは、電気伝導率が0.5×10Ω−1・m−1以上であることが好ましい。電気伝導率は4探針法により測定することができる。 The porous sintered metal sheet is a dye-sensitized solar cell in which the metal species is any one selected from Ti, W, Mo, Rh, Pt and Ta, or an alloy containing one or more of these. When it is used, it is preferable for obtaining high corrosion resistance to the electrolyte and obtaining high conductivity. The porous sintered metal sheet preferably has an electric conductivity of 0.5 × 10 3 Ω −1 · m −1 or more. Electrical conductivity can be measured by a four-probe method.

また、多孔質焼結金属シートは、原料である金属粉末がチタン粉末または水素化チタン粉末であることが好ましく、特に、水素化脱水素法により製造したチタン粉末であると、金属粉末間のネッキング部位が多い点で好ましい。そのほか、スポンジ金属粉末、ガスアトマイズ金属粉末等が適用できる。   In the porous sintered metal sheet, it is preferable that the metal powder as the raw material is titanium powder or titanium hydride powder. In particular, when the titanium powder is produced by hydrodehydrogenation, necking between the metal powders is performed. It is preferable in that there are many parts. In addition, sponge metal powder, gas atomized metal powder, and the like can be applied.

なお、多孔質焼結金属シートを集電体に用いるとき、ガラス繊維成形体、多孔質アルミナ板等の無機多孔体、耐熱性多孔質プラスチック等の有機多孔体、金属多孔体等を集電体の補助基板として設けてもよい。   When a porous sintered metal sheet is used as a current collector, a glass fiber molded body, an inorganic porous body such as a porous alumina plate, an organic porous body such as a heat-resistant porous plastic, a metallic porous body, etc. It may be provided as an auxiliary substrate.

多孔質焼結金属シートの製造方法は、特に限定するものではなく公知の適宜の方法を採用することができるが、次に説明する本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法を用いることが好適である。   The method for producing the porous sintered metal sheet is not particularly limited, and a known appropriate method can be adopted. However, the current collector for a dye-sensitized solar cell according to the present embodiment described below is used. It is preferable to use a method for manufacturing the material.

以上説明した本実施の形態例に係る色素増感太陽電池用集電体は、色素増感太陽電池用いたときに電解質の通液性に優れて高い発電効率を得ることができる。また、本実施の形態例に係る色素増感太陽電池用集電体は、フレキシブルであり、かつ軽量であるため、これを用いた色素増感太陽電池のフレキシブル化や軽量化を図ることができる。   The dye-sensitized solar cell current collector according to the present embodiment described above is excellent in liquid permeability of an electrolyte when using a dye-sensitized solar cell and can obtain high power generation efficiency. In addition, since the dye-sensitized solar cell current collector according to the present embodiment is flexible and lightweight, the dye-sensitized solar cell using the current collector can be made flexible and lightweight. .

つぎに、本実施の形態の第一および第二の例に係る色素増感太陽電池用集電体材料の製造方法について説明する。
本実施の形態の第一および第二の例に係る色素増感太陽電池用集電体材料の製造方法は、いずれも、厚みが5〜60μm、かつ空隙率が30〜80%であり、等方的に連通した多数の貫通孔を有する本実施の形態例に係る色素増感太陽電池用集電体材料を好適に得ることができるものである。本実施の形態の第一および第二の例に係る色素増感太陽電池用集電体材料の製造方法は、いずれも、焼結工程の前に成形工程を設けることで、成形体を極薄の薄膜でなくかつ厚すぎない所望の厚みに調製し、さらに、成形工程において原料として集電体材料となる金属粉に他の成分を配合して金属粉の粒子間に他の成分を介在させ、最終的に他の成分を除去することで、他の成分が抜けた箇所に空隙を生成する技術である点で共通する。
Below, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on the 1st and 2nd example of this Embodiment is demonstrated.
As for the manufacturing method of the collector material for dye-sensitized solar cells which concerns on the 1st and 2nd example of this Embodiment, all are 5-60 micrometers in thickness, and the porosity is 30-80%, etc. Thus, the current-collecting material for a dye-sensitized solar cell according to the present embodiment having a number of through-holes communicating in a rectangular manner can be suitably obtained. The manufacturing methods of the current collector material for dye-sensitized solar cells according to the first and second examples of the present embodiment are both extremely thin by providing a molding step before the sintering step. In addition, other components are mixed in the metal powder as a current collector material as a raw material in the molding process, and the other components are interposed between the metal powder particles. This is common in that it is a technology that finally removes other components, thereby generating voids at locations where other components are missing.

まず、本実施の形態の第一の例に係る色素増感太陽電池用集電体材料の製造方法について説明する。
本実施の形態の第一の例に係る色素増感太陽電池用集電体材料の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体(焼結前駆体)を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含む。
First, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on the 1st example of this Embodiment is demonstrated.
In the method for producing a current collector material for a dye-sensitized solar cell according to the first example of the present embodiment, a slurry-like composition containing a metal powder and a solvent is formed on a base material that is soluble in acid. Forming a pre-sintered green body forming step for forming a pre-sintered green body (sintered precursor), sintering step for obtaining a sintered body by sintering the pre-sintered green body, and the sintered body using an acid A substrate removing step of separating and removing the substrate from the substrate.

まず、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程について説明する。   First, a pre-sintered green body forming step for obtaining a pre-sintered green body by forming a slurry-like composition containing a metal powder and a solvent on a base material that is soluble in acid will be described.

多孔質焼結金属シートの原料である金属粉末の種類は、上記本実施の形態例に係る色素増感太陽電池用集電体について説明したとおりであり、重複する説明を省略する。
金属粉末の平均粒子直径は、溶剤を含む組成物に適度な粘性と流動性を付与し、かつ薄板状に成形し易くするためには、1μm〜50μmが好ましく、かつ粒子直径が1〜50μmである粒子を50vol%以上含むことが好ましい。これにより、より、均一な膜厚、空隙率および空孔直径の多孔質焼結金属シートが得られる。粒子直径が1μm未満であると、焼結時に粒子の大きさに対する不導体被膜の厚みが増して、十分な焼結体が得られないおそれがある。また、焼結後の多孔質焼結金属シートの導電性が損なわれるおそれがある。一方、粒子直径が50μmを超えると、多孔質焼結金属シートの厚みを例えば25μm以下程度に成形することが困難となる。
The kind of the metal powder that is a raw material of the porous sintered metal sheet is as described for the current collector for the dye-sensitized solar cell according to the above-described embodiment, and a duplicate description is omitted.
The average particle diameter of the metal powder is preferably 1 μm to 50 μm and has a particle diameter of 1 to 50 μm in order to impart appropriate viscosity and fluidity to the composition containing the solvent and to facilitate forming into a thin plate shape. It is preferable to contain 50 vol% or more of certain particles. Thereby, a porous sintered metal sheet having a more uniform film thickness, porosity, and pore diameter can be obtained. When the particle diameter is less than 1 μm, the thickness of the non-conductive coating with respect to the size of the particles increases during sintering, and a sufficient sintered body may not be obtained. Moreover, there exists a possibility that the electroconductivity of the porous sintered metal sheet after sintering may be impaired. On the other hand, when the particle diameter exceeds 50 μm, it becomes difficult to form the thickness of the porous sintered metal sheet to about 25 μm or less, for example.

溶剤は、水、またはエタノール、トルエン、イソプロパノール、ターピネオール、ブチルカルビトール、シクロヘキサン、メチルエチルケトン等の有機溶剤が使用できる。溶剤の割合は、使用する溶剤の種類や金属粉末の種類等によって適宜異なりうるが、金属粉末100質量部に対して25〜150質量部であることが好ましい。   As the solvent, water or an organic solvent such as ethanol, toluene, isopropanol, terpineol, butyl carbitol, cyclohexane, and methyl ethyl ketone can be used. The proportion of the solvent may vary depending on the type of solvent used, the type of metal powder, and the like, but is preferably 25 to 150 parts by mass with respect to 100 parts by mass of the metal powder.

さらに、結着剤を添加してもよく、溶剤が水または水溶性有機溶剤の場合はメチルセルロース系、エチルセルロース系、ポリビニルアルコール系の結着剤を使用でき、溶剤が非水溶性有機溶剤の場合は、アクリル系、ポリビニルブチラール系、エチルセルロース系の結着剤を使用できる。ただし、金属粉末に対する結着剤の割合が多すぎると焼結体に含まれる酸素、炭素、水素等の割合が大きくなり、脆化による焼結体の破損を招くおそれがある。このため、結着剤の割合は、金属粉末100質量部に対して30質量部以下であることが好ましい。
またさらに、可塑剤を添加してもよく、溶剤が水または水溶性有機溶剤の場合はグリセリン、エチレングリコール、ポリエチレングリコール等を使用でき、溶剤が非水溶性有機溶剤の場合は、フタル酸エステル等を使用できる。ただし、金属粉末に対する結着剤の割合が多すぎるとスラリー乾燥時のレベリング性が悪くなり、膜厚が不均一となり、一方、少なすぎると焼結前成形体の伸び性が悪くなり破損を招くおそれがある。このため、可塑剤の割合は、金属粉末100質量部に対して2〜30質量部であることが好ましい。
Furthermore, a binder may be added. When the solvent is water or a water-soluble organic solvent, a methylcellulose-based, ethylcellulose-based, or polyvinyl alcohol-based binder can be used. When the solvent is a water-insoluble organic solvent, Acrylic, polyvinyl butyral, and ethyl cellulose binders can be used. However, if the ratio of the binder to the metal powder is too large, the ratio of oxygen, carbon, hydrogen, etc. contained in the sintered body increases, and the sintered body may be damaged due to embrittlement. For this reason, it is preferable that the ratio of a binder is 30 mass parts or less with respect to 100 mass parts of metal powders.
Furthermore, a plasticizer may be added. When the solvent is water or a water-soluble organic solvent, glycerin, ethylene glycol, polyethylene glycol or the like can be used. When the solvent is a water-insoluble organic solvent, phthalate ester or the like can be used. Can be used. However, if the ratio of the binder to the metal powder is too large, the leveling property at the time of drying the slurry becomes poor and the film thickness becomes non-uniform. On the other hand, if the amount is too small, the extensibility of the pre-sintered compact deteriorates and causes damage There is a fear. For this reason, it is preferable that the ratio of a plasticizer is 2-30 mass parts with respect to 100 mass parts of metal powders.

基材は、酸に対して溶解性を有するものであるとともに、金属粉末の焼結温度における耐熱性を有することおよび金属粉末と反応しないものを用いる。基材の使用により、金属粉末の焼結時において、しわやクラックの発生と多孔質焼結金属シートの膜厚のばらつきを抑制することができる。そのために、基材は適度の剛性があることが好ましい。
上記の特性を有するものであれば基材の材料種類は特に限定しないが、Zn、Fe、これらを含む合金またはこれらを含む酸化物が好適であり、FeまたはFeを含む合金から構成されるものが特に好適である。
基材の厚みは特に限定しないが、燒結工程で反りを生じない程度に肉厚であることが好ましく、例えば100μm以上とすることができる。
基材は、単体であってもよいし、焼結体と接する面に、例えば離型剤が表面コートしてあるような複層構造であってもよい。
なお、基材を使わずに、スラリー状組成物に高粘度有機物をバインダーとして添加し、焼結前成形体を疑似的に自立膜(グリーンシート)とすることも考えられるが、高粘度有機物は残渣が残りやすく、焼結工程で炭化物や酸化物が形成され焼結阻害要因となるため、好ましくない。さらに、焼結工程でしわやクラックが発生する恐れがある。
The base material is soluble in acid, and has heat resistance at the sintering temperature of the metal powder and does not react with the metal powder. By using the base material, it is possible to suppress the occurrence of wrinkles and cracks and variations in the thickness of the porous sintered metal sheet during sintering of the metal powder. Therefore, it is preferable that the substrate has an appropriate rigidity.
The material type of the base material is not particularly limited as long as it has the above characteristics, but Zn, Fe, an alloy containing these, or an oxide containing them is suitable, and is composed of an alloy containing Fe or Fe Is particularly preferred.
Although the thickness of a base material is not specifically limited, It is preferable that it is thick so that it may not warp in a sintering process, for example, can be 100 micrometers or more.
The substrate may be a simple substance or may have a multilayer structure in which a release agent is surface-coated on the surface in contact with the sintered body.
In addition, it is possible to add a high-viscosity organic substance as a binder to the slurry composition without using a base material, and to form a pre-sintered molded body as a self-supporting film (green sheet). Residues are likely to remain, which is not preferable because carbides and oxides are formed in the sintering process and become a sintering inhibiting factor. Furthermore, wrinkles and cracks may occur during the sintering process.

金属粉末および溶剤を含むスラリー状組成物を、乾燥時の減量を考慮して、例えば6〜100μmの厚みに基材上に塗布し、成形する。
塗布法は、ドクターブレード法、ディップコーティング法、ダイコーティング法、コンマコーティング法、バーコーティング法、スクリーン印刷法、オフセット印刷法、グラビア印刷法、インクジェット法、スプレー法、ディスペンス法、スピンコート法等適宜の方法を用いることができる。
A slurry-like composition containing a metal powder and a solvent is applied onto a substrate to a thickness of, for example, 6 to 100 μm in consideration of weight loss during drying, and is molded.
Application method is doctor blade method, dip coating method, die coating method, comma coating method, bar coating method, screen printing method, offset printing method, gravure printing method, ink jet method, spray method, dispensing method, spin coating method, etc. This method can be used.

得られる焼結前成形体形は、有機溶剤等を除去するために、乾燥を行うことが好ましい。乾燥は、常圧下、減圧下、加圧下いずれの条件でも可能であるが、乾燥速度が速すぎると、焼結前成形体にクラックや反りが発生するおそれがあるため、焼結前成形体の物性に応じた適当な温度、圧力、風量等を選択して行う。なお、加圧下で乾燥する場合は、以下に説明する焼結前成形体のプレス処理を兼ねることになる。   The obtained pre-sintered molded body shape is preferably dried in order to remove the organic solvent and the like. Drying can be performed under normal pressure, reduced pressure, or increased pressure, but if the drying rate is too high, cracks and warpage may occur in the molded body before sintering. Select an appropriate temperature, pressure, air volume, etc. according to the physical properties. In addition, when drying under pressure, it will serve also as the press processing of the pre-sintering molded object demonstrated below.

焼結前成形体はプレス処理を行うことが好ましい。プレス処理により、金属粉末間の接触面積が増大するため、ネッキング部位が増える。また、プレス処理の圧力は高いほど、電気伝導度の向上、膜厚の低下、空隙率の低下が起こる。そのため、用途に応じて圧力の条件を選択する必要がある。ただし、プレス圧が低過ぎると金属粉末間の接触面積が増大せず、高すぎると空隙率が適切な範囲を外れて低下し、または金属粉末が塑性変形を起こす。そのため、好ましいプレス圧の範囲は0.1〜100MPaである。また、プレス処理において適切なクッション材を使用することが好ましい。クッション材としては紙、金属箔、シリコン、耐熱性プラスチック、ゴム等、適宜のものを使用することができる。プレス方法は、平板プレス、ロールプレス、真空ラミネーター等、適宜の方法で行うことができる。   The pre-sintered compact is preferably pressed. Since the contact area between the metal powders increases due to the press treatment, the number of necking sites increases. Moreover, the higher the pressure of the press treatment, the higher the electrical conductivity, the lower the film thickness, and the lower the porosity. Therefore, it is necessary to select a pressure condition according to the application. However, if the pressing pressure is too low, the contact area between the metal powders does not increase, and if it is too high, the porosity falls outside an appropriate range, or the metal powder undergoes plastic deformation. Therefore, the preferable press pressure range is 0.1 to 100 MPa. Moreover, it is preferable to use a suitable cushion material in a press process. As the cushioning material, an appropriate material such as paper, metal foil, silicon, heat resistant plastic, rubber or the like can be used. The pressing method can be performed by an appropriate method such as a flat plate press, a roll press, or a vacuum laminator.

次に、焼結前成形体を焼結して焼結体を製造する焼結工程について説明する。
焼結前成形体を焼結するに先立ち、脱脂処理を行うことが好ましい。脱脂処理は、焼結前成形体中に含まれる溶剤、結着剤および可塑剤(以下、あわせて残炭成分という)を熱分解又は蒸発させ除去することが目的である。通常は、残炭成分の大部分は、焼結工程における昇温時に除去されるが、残炭成分が焼結前成形体中に若干残る場合、焼結温度周辺の高温下で残炭成分と金属が反応し金属炭化物が形成することがある。その結果、焼結体の機械強度が低くなり、破損しやすくなる。特にチタンを焼結する場合は、800℃以上において容易に残炭成分とチタンが反応し炭化チタンが形成する。このため、脱脂処理を行い、確実に残炭成分を除去することが望ましい。
脱脂処理は、加熱処理、プラズマ処理、オゾン処理、溶剤による洗浄等の方法を用いることができる。加熱処理の場合は、焼結工程における昇温過程において、昇温速度を下げたり、保持時間を設けたりすることで、脱脂処理と焼結工程を連続して行うこともできる。このときの加熱環境は、アルゴン、窒素等の不活性ガス、酸素原子を含む気体、気流下または雰囲気下、真空下等、金属粉末の種類によって適宜選択できるが、残炭成分を効率良く除去できるという点で酸素原子を含む気体中が好ましく、酸素ガス、空気、酸素ガスと不活性ガスの混合ガス等酸素原子が1%以上含む気体中がより好ましい。また、加熱温度と加熱時間は、結着剤の種類と量やガス種により適宜選択することができるが、特に酸素原子を含む気体中で行う場合は、焼結前成形体の酸化を抑制するという点で、400℃以下、より好ましくは350℃未満であることが好ましい。また、加熱時間は0.1〜6時間であることが好ましい。
Next, a sintering process for producing a sintered body by sintering the green body before sintering will be described.
Prior to sintering the green body before sintering, it is preferable to perform a degreasing treatment. The purpose of the degreasing treatment is to thermally decompose or evaporate and remove the solvent, binder and plasticizer (hereinafter collectively referred to as residual carbon component) contained in the green body before sintering. Usually, most of the remaining carbon component is removed at the time of temperature increase in the sintering process, but when the remaining carbon component remains in the pre-sintered molded body, Metals may react to form metal carbides. As a result, the mechanical strength of the sintered body is lowered and is easily damaged. In particular, when titanium is sintered, the remaining carbon component and titanium easily react at 800 ° C. or higher to form titanium carbide. For this reason, it is desirable to perform a degreasing process and to reliably remove residual carbon components.
For the degreasing treatment, methods such as heat treatment, plasma treatment, ozone treatment, and cleaning with a solvent can be used. In the case of heat treatment, the degreasing treatment and the sintering step can be performed continuously by lowering the rate of temperature rise or providing a holding time in the temperature raising step in the sintering step. The heating environment at this time can be appropriately selected depending on the type of metal powder, such as an inert gas such as argon or nitrogen, a gas containing oxygen atoms, an air current or an atmosphere, or a vacuum, but can effectively remove residual carbon components. Therefore, a gas containing oxygen atoms is preferable, and a gas containing 1% or more of oxygen atoms, such as oxygen gas, air, or a mixed gas of oxygen gas and inert gas, is more preferable. Further, the heating temperature and the heating time can be appropriately selected depending on the type and amount of the binder and the gas type. In particular, when performed in a gas containing oxygen atoms, the oxidation of the green body before sintering is suppressed. In that respect, it is preferably 400 ° C. or lower, more preferably less than 350 ° C. The heating time is preferably 0.1 to 6 hours.

焼結の条件は、焼結する金属の種類によって異なる。例えばチタンの場合は、酸化物や窒化物を形成し易いことから、真空中またはアルゴン不活性雰囲気下で行い、700〜1100℃の温度で、0.1〜6時間保持することが好ましく、750〜1000℃、0.5〜4時間保持することがより好ましい。温度が低過ぎると焼結が十分でなく、温度が高すぎると金属多孔体の反りが生じ、また、金属粉末が溶融することにより孔が閉塞し、多孔体とならないおそれがある。   Sintering conditions vary depending on the type of metal to be sintered. For example, in the case of titanium, oxides and nitrides are easily formed. Therefore, it is preferably performed in a vacuum or under an inert atmosphere of argon and kept at a temperature of 700 to 1100 ° C. for 0.1 to 6 hours, 750 It is more preferable to hold at ˜1000 ° C. for 0.5 to 4 hours. When the temperature is too low, the sintering is not sufficient, and when the temperature is too high, the metal porous body is warped, and the metal powder is melted so that the pores are blocked and the porous body may not be formed.

焼結工程は、実質的に密閉状態の容器内で行い、焼結前成形体の近傍に炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、焼結する金属粉末より大きい値を持つ金属(以下、ゲッター材という。)を配置して行うことが好ましい。
実質的に密閉状態の容器は、例えば開口が扉で閉止された真空焼成炉等である。
ゲッター材を配置した容器中で焼結することで、容器外の酸素の混入を防ぐとともに、容器内の酸素はゲッター材が優先的に反応・消費するので、焼結体の酸化が抑えられるため、より好ましい。ゲッター材の材質は、焼結する金属の種類によって異なるが、例えば金属粉末がチタンの場合は、ゲッター材はTi、ZrまたはHfが好ましい。
The sintering process is performed in a substantially hermetically sealed container, and the standard free energy values of carbides and oxides in the vicinity of the green body before sintering are larger than the sintered metal powder in the sintering temperature range. It is preferable to perform by arranging a metal having the following (hereinafter referred to as a getter material).
The substantially sealed container is, for example, a vacuum baking furnace whose opening is closed by a door.
Sintering in a container with a getter material prevents oxygen from being mixed outside the container, and oxygen in the container is preferentially reacted and consumed by the getter material, so that oxidation of the sintered body is suppressed More preferable. The material of the getter material varies depending on the type of metal to be sintered. For example, when the metal powder is titanium, the getter material is preferably Ti, Zr or Hf.

最後に、酸により焼結体から基材を分離除去する基材除去工程について説明する。
酸を用いた基材除去方法は、剥離効率の点から好ましい。酸の種類は、基材が剥離するものであれば、塩酸、硫酸、硝酸、王水等の無機酸、リン酸、カルボン酸等の有機酸等、特に制限はないが、焼結体が溶解しない酸、焼結体と化学反応しないものが好ましい。具体的には硝酸、硫酸が好適に用いられる。酸を用いた基材除去方法は、特に限定されず、焼結体を酸溶液に浸漬させる方法でもよいし、焼結体に酸溶液をスプレーする方法でもよい。基材剥離後は、速やかに洗浄を行い、焼結体に残存する酸を除去する。洗浄用の液体は、水、有機溶剤等、酸が溶解するものであれば、制限なく使用することができる。
Finally, the base material removal step of separating and removing the base material from the sintered body with an acid will be described.
The substrate removing method using an acid is preferable from the viewpoint of peeling efficiency. The type of acid is not particularly limited as long as the base material is peeled off, such as inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, aqua regia, organic acid such as phosphoric acid, carboxylic acid, etc., but the sintered body dissolves. Acids that do not react and those that do not chemically react with the sintered body are preferred. Specifically, nitric acid and sulfuric acid are preferably used. The substrate removal method using an acid is not particularly limited, and a method of immersing the sintered body in an acid solution or a method of spraying the acid solution onto the sintered body may be used. After the substrate is peeled off, it is quickly washed to remove the acid remaining in the sintered body. The cleaning liquid can be used without limitation as long as it dissolves acid, such as water or an organic solvent.

以上説明した本実施の形態の第一の例に係る色素増感太陽電池用集電体材料の製造方法によれば、本実施の形態例に係る色素増感太陽電池用集電体の材料、すなわち、多孔質焼結金属シートを好適に得ることができる。   According to the method for producing a dye-sensitized solar cell current collector material according to the first example of the present embodiment described above, the material of the dye-sensitized solar cell current collector according to the present embodiment, That is, a porous sintered metal sheet can be suitably obtained.

つぎに、本実施の形態の第二の例に係る色素増感太陽電池用集電体材料の製造方法について説明する。
本実施の形態の第二の例に係る色素増感太陽電池用集電体材料の製造方法は、基体金属と媒体金属の混合粉を成形して成形体を得る成形工程と、成形体を加熱して焼結体を得る焼結工程と、成形工程および焼結工程のいずれか1つの工程または双方の工程の後に、成形体または焼結体を化学処理または物理処理して、媒体金属を分離除去する媒体金属分離除去工程をさらに含む。
ここで、基体金属と媒体金属は、予め基体金属および媒体金属をそれぞれ別に粉化したうえで混合することが、両者で異なる所望の粒径を得るうえで好ましく、また、粉砕性のことなる両者を所望の条件に粉砕するうえでも好ましい。一方、工程の簡略化を図る観点からは、基体金属と媒体金属を混合したうえで粉砕して粉化することが好ましい。
Below, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on the 2nd example of this Embodiment is demonstrated.
The method for producing a current collector material for a dye-sensitized solar cell according to the second example of the present embodiment includes a molding step of molding a mixed powder of a base metal and a medium metal to obtain a molded body, and heating the molded body After the sintering process to obtain a sintered body and one or both of the molding process and the sintering process, the molded body or sintered body is chemically or physically treated to separate the medium metal A medium metal separation / removal step for removing is further included.
Here, it is preferable to mix the base metal and the medium metal after previously pulverizing the base metal and the medium metal separately in order to obtain different desired particle diameters. Is also preferable when pulverizing to desired conditions. On the other hand, from the viewpoint of simplifying the process, it is preferable that the base metal and the medium metal are mixed and then pulverized to be pulverized.

基体金属粉は、色素増感太陽電池用集電体材料となる金属粉を意味し、その粒径は最大粒径を45μm以下に整粒しておくことが好ましい。粒径45μmを大きく上回る粒径の基体金属粉粒子を過剰に含むと、最終的に得られる焼結体の強度が不足するおそれがある。この粒度範囲に整粒しておくことにより、基体金属粉と媒体金属粉を均一混合することができるとともに、基体金属の焼結を好適に行うことができる。   The base metal powder means a metal powder that becomes a current-collecting material for a dye-sensitized solar cell, and the particle size thereof is preferably adjusted to a maximum particle size of 45 μm or less. If the base metal powder particles having a particle size greatly exceeding 45 μm are included excessively, the strength of the finally obtained sintered body may be insufficient. By adjusting the particle size within this particle size range, the base metal powder and the medium metal powder can be uniformly mixed, and the base metal can be suitably sintered.

基体金属粉の金属種は、特に制限なく、水素化脱水素法(HDH法)により製造した金属粉末、スポンジ金属粉末、ガスアトマイズ金属粉末等が適用できるが、好ましくは、金属粉末間のネッキング部位が多い水素化脱水素法により製造した金属粉末である。
また、例えば、フィルターや電極等への適応性の観点からは、チタン、タングステン、モリブデン、ロジウム、白金、タンタル、ルテニウム、パラジウム、ニッケル等またはこれらを含む合金が好ましく、さらにはチタンまたはチタン合金を使用することが好ましい。
The metal species of the base metal powder is not particularly limited, and metal powder produced by hydrodehydrogenation (HDH method), sponge metal powder, gas atomized metal powder, and the like can be applied. It is a metal powder produced by many hydrodehydrogenation methods.
Further, for example, from the viewpoint of adaptability to filters, electrodes, etc., titanium, tungsten, molybdenum, rhodium, platinum, tantalum, ruthenium, palladium, nickel, or an alloy containing these is preferable, and further, titanium or titanium alloy is used. It is preferable to use it.

媒体金属粉は、基体金属粉と混合され、色素増感太陽電池用集電体材料製造後は除去されて空隙を形成するための媒体として機能する金属粉を意味し、その粒径は、以下に説明するように、得られる多孔体、言い換えれば製造する集電体材料が所望の空隙寸法となるのに好適な粒径に整粒しておくことが好ましい。   The medium metal powder means a metal powder that is mixed with the base metal powder and is removed after the production of the current collector material for dye-sensitized solar cells to function as a medium for forming voids. As described above, it is preferable that the obtained porous body, in other words, the current collector material to be manufactured, is sized so as to have a particle size suitable for obtaining a desired void size.

媒体金属粉の粒径は、分離のしやすさと最終的な空隙寸法を考慮して決めるべきであるが、分離の方法によって、経験的に決めるのが実際的である。これは、空隙寸法は媒体金属の粒度だけでなく、媒体金属の分散程度や焼結工程での収縮など、いろいろな因子に影響されるからである。したがって、媒体金属粉の粒径は、具体的に設定される集電体材料の諸条件に応じて予備実験等による試行錯誤を経て最適な値が決定される。例えば、媒体金属粉として鉄粉を用いる場合、1〜10μmの粒径範囲のものを用いることは、酸洗処理により、鉄を溶解除去する際に好適な実施態様である。   The particle size of the medium metal powder should be determined in consideration of the ease of separation and the final void size, but it is practical to determine it empirically depending on the separation method. This is because the void size is influenced not only by the particle size of the medium metal but also by various factors such as the degree of dispersion of the medium metal and the shrinkage in the sintering process. Accordingly, the optimum particle size of the medium metal powder is determined through trial and error through preliminary experiments and the like according to the conditions of the current collector material that is specifically set. For example, when iron powder is used as the medium metal powder, using a powder having a particle size range of 1 to 10 μm is a preferred embodiment when iron is dissolved and removed by pickling treatment.

媒体金属粉の金属種は、焼結体から化学処理または物理処理により分離できるものであれば制限ないが、分離の容易さの点から、鉄、鉄−クロム合金、銅、マグネシウム、セレン、カルシウム、亜鉛、カドミニウム、ビスマス、鉛または鉛−スズ合金を使用することを好ましい態様とするものである。上記鉄−クロム合金は、例えば、鉄−9%クロム、鉄−11%クロム、鉄−13%クロム等の鉄基合金を好適に利用することができる。また、鉄や銅は、基体金属と反応しづらく、また、酸洗処理の際に容易に溶解するため、好ましい。   The metal species of the medium metal powder is not limited as long as it can be separated from the sintered body by chemical treatment or physical treatment, but from the viewpoint of ease of separation, iron, iron-chromium alloy, copper, magnesium, selenium, calcium It is preferable to use zinc, cadmium, bismuth, lead or a lead-tin alloy. As the iron-chromium alloy, for example, an iron-based alloy such as iron-9% chromium, iron-11% chromium, iron-13% chromium, or the like can be suitably used. Further, iron and copper are preferable because they hardly react with the base metal and are easily dissolved during the pickling treatment.

基体金属粉と媒体金属粉の配合比率は、得ようとする空隙の条件に応じて決定する。
基体金属粉と媒体金属粉の混合は、均一な混合粉を得ることができるならばどのような混合法でもよく、粉末冶金でよく用いられるV型混合器による混合で十分に目的を達せられる。
The mixing ratio of the base metal powder and the medium metal powder is determined according to the condition of the void to be obtained.
The base metal powder and the medium metal powder can be mixed by any mixing method as long as a uniform mixed powder can be obtained, and can be sufficiently achieved by mixing with a V-type mixer often used in powder metallurgy.

基体金属粉と媒体金属粉からなる混合粉は、焼結工程に先立ち、成形工程で成形する。
成形方法は特に限定するものではないが、プレス成形法や圧延成形法を好適に用いることができる。後者の圧延成形法を用いる場合、シース被覆圧延を行うことがより好ましい。シース被覆圧延により、圧延ロールを通過しない粉体が発生したときに、十分な圧延が行なえなくなるおそれをより確実に防止することができる。
プレス成形法の場合、好ましいプレス圧の範囲は1〜900MPaである。一方、圧延成形法の場合、好ましい圧延荷重の範囲はロール幅1mmあたり1ton以下である。シース材は延性に優れたアルミニウム等を用いることができる。
The mixed powder composed of the base metal powder and the medium metal powder is molded in the molding process prior to the sintering process.
Although a shaping | molding method is not specifically limited, The press molding method and the rolling shaping | molding method can be used suitably. When using the latter rolling forming method, it is more preferable to perform sheath-covered rolling. The sheath-covered rolling can more reliably prevent the possibility that sufficient rolling cannot be performed when powder that does not pass through the rolling roll is generated.
In the case of the press molding method, a preferable press pressure range is 1 to 900 MPa. On the other hand, in the case of the rolling forming method, a preferable range of rolling load is 1 ton or less per 1 mm of roll width. As the sheath material, aluminum having excellent ductility can be used.

得られる成形体を、必要に応じて媒体金属分離除去工程を経て、加熱して焼結体を得る。
成形体を焼結する温度は、800〜1400℃であることが好ましい。用いる基体金属および媒体金属の金属種によって異なるものの、温度が800℃を大きく下回ると、空隙率が過大となるおそれがあり、一方、温度が1400℃を大きく上回ると、空隙率が過小となるおそれがある。加熱時間は0.1〜2時間であることが好ましい。
焼結は、アルゴンなどの不活性ガス雰囲気下、もしくは水素ガス雰囲気下、または高真空下で行うことが好ましい。これにより、焼結時のチタンや鉄の酸化を効果的に抑制することができる。
The obtained molded body is heated through a medium metal separation and removal step as necessary to obtain a sintered body.
It is preferable that the temperature which sinters a molded object is 800-1400 degreeC. Although it depends on the metal species of the base metal and medium metal to be used, if the temperature is much lower than 800 ° C, the porosity may be excessive. On the other hand, if the temperature is significantly higher than 1400 ° C, the porosity may be excessively low. There is. The heating time is preferably 0.1 to 2 hours.
Sintering is preferably performed in an inert gas atmosphere such as argon, a hydrogen gas atmosphere, or a high vacuum. Thereby, oxidation of titanium and iron during sintering can be effectively suppressed.

媒体金属粉分離除去工程について説明する。
媒体金属粉分離除去工程は、成形工程および焼結工程のいずれか1つの工程または双方の工程の後に行う。成形工程後の媒体金属粉分離除去工程は、焼結工程後に媒体金属粉分離除去工程を必ず行う場合は工程簡略化の観点から省略することが可能である。逆に、焼結工程後の媒体金属粉分離除去工程は、成形工程後に媒体金属粉分離除去工程を必ず行う場合は工程簡略化の観点から省略することが可能である。成形工程後および焼結工程後にそれぞれ媒体金属粉分離除去工程を行うと、媒体金属粉分離除去をより確実に行うことができて好ましいことは勿論である。
化学処理は、基体金属が反応せず、媒体金属のみが反応する処理剤で媒体金属のみを溶解除去できるものであれば、例えばキレート化、アルカリ処理等の適宜の処理方法を用いることができるが、それらの中でも酸洗処理を用いることが最も簡便で好ましい。物理処理は、揮発分離処理や溶融分離処理等を用いることができる。
化学処理は、空隙率や平均空孔直径が比較的小さい焼結体を得るうえで好ましく、一方、物理処理は、空隙率や平均空孔直径が比較的大きい焼結体を得るうえで好ましい。なお、物理処理は化学処理に用いる酸洗処理等で発生する廃液の処理がないというメリットもある。
物理処理のうち揮発分離処理は、媒体金属として、基体金属との反応性が低く、また、基体金属よりも圧倒的に大きな蒸気圧を持っている亜塩やマグネシウム等を用いる場合に好ましい。一方、溶融分離処理は、媒体金属として、基体金属より低融点で、かつ融点付近の温度で基体金属と反応性が乏しい金属である錫、鉛、カルシウム、セレン、カドミウム、ビスマス、Pb−Sn合金あるいはその合金などを用いる場合に好ましい。
The medium metal powder separation and removal step will be described.
The medium metal powder separation / removal step is performed after one or both of the forming step and the sintering step. The medium metal powder separation / removal process after the forming process can be omitted from the viewpoint of process simplification when the medium metal powder separation / removal process is always performed after the sintering process. Conversely, the medium metal powder separation / removal step after the sintering step can be omitted from the viewpoint of process simplification when the medium metal powder separation / removal step is always performed after the molding step. Of course, it is preferable to perform the medium metal powder separation / removal step after the forming step and the sintering step, respectively, because the medium metal powder separation / removal can be performed more reliably.
As long as the chemical treatment is a treatment agent that does not react with the base metal and can react with only the medium metal and can remove only the medium metal, an appropriate treatment method such as chelation or alkali treatment can be used. Of these, pickling treatment is most convenient and preferable. As the physical process, a volatile separation process, a melt separation process, or the like can be used.
Chemical treatment is preferable for obtaining a sintered body having a relatively small porosity and average pore diameter, while physical treatment is preferred for obtaining a sintered body having a relatively large porosity and average pore diameter. The physical treatment also has an advantage that there is no treatment of the waste liquid generated in the pickling treatment used for the chemical treatment.
Among the physical treatments, the volatile separation treatment is preferable when using, as a medium metal, subsalt, magnesium, or the like that has low reactivity with the base metal and has a vapor pressure that is much higher than that of the base metal. On the other hand, in the melt separation treatment, tin, lead, calcium, selenium, cadmium, bismuth, Pb—Sn alloy, which is a metal having a lower melting point than the base metal and poor reactivity with the base metal at a temperature near the melting point, is used as a medium metal. Or when using the alloy etc., it is preferable.

酸洗処理する場合、酸の種類は特に限定するものではなく、例えば無機酸等を用いることができるが、基体金属と反応しない硝酸や硫酸を用いることがより好ましい。
酸洗処理は、例えば、成形体または焼結体を酸溶液に浸漬する方法であってもよく、また、成形体または焼結体に酸溶液をスプレーする方法であってもよい。少なくとも焼結体を酸洗処理した後は、速やかに水等により洗浄を行い焼結体に残存する酸を除去する。
In the pickling treatment, the type of acid is not particularly limited. For example, an inorganic acid or the like can be used, but it is more preferable to use nitric acid or sulfuric acid that does not react with the base metal.
The pickling treatment may be, for example, a method of immersing a molded body or a sintered body in an acid solution, or a method of spraying an acid solution onto the molded body or the sintered body. At least after the pickling treatment of the sintered body, the acid remaining in the sintered body is removed quickly by washing with water or the like.

揮発分離処理は、媒体金属の蒸気圧よりも高真空の例えば10−4Torr(1.3x10−2Pa)以下の減圧下で300℃以上の温度で加熱保持処理することで、媒体金属を選択的に蒸発させて(揮発処理)消滅させる。加熱温度は、成形体を揮発分離処理する場合は300〜400℃が好ましく、一方、焼結体を揮発分離処理する場合は800〜1400℃が好ましい。加熱保持時間はいずれの場合も1時間以上が好ましい。 Volatile separation treatment is performed by heating and holding at a temperature of 300 ° C. or higher under a reduced pressure of, for example, 10 −4 Torr (1.3 × 10 −2 Pa) or less, which is higher than the vapor pressure of the medium metal. Evaporate (volatilization treatment) and disappear. The heating temperature is preferably 300 to 400 ° C. when the molded body is subjected to volatile separation treatment, and is preferably 800 to 1400 ° C. when the sintered body is subjected to volatile separation treatment. The heating and holding time is preferably 1 hour or longer in any case.

溶融分離処理は、金属浴に浸漬した成形体または焼結体を基体金属粉を溶融しない限度で媒体金属の融点以上の高温に加熱保持して、媒体金属を溶融除去する。
金属浴の金属種は、カルシウム、セレン、カドミウム、鉛、ビスマス、Pb−Sn合金を用いることが好ましい。これらの金属は低融点であるために媒体金属のみを選択的に溶融させることができ、その結果、基体金属だけを効果的に残留させることができる。
In the melt separation treatment, a molded body or a sintered body immersed in a metal bath is heated and held at a temperature higher than the melting point of the medium metal without melting the base metal powder to melt and remove the medium metal.
As the metal species of the metal bath, calcium, selenium, cadmium, lead, bismuth, or a Pb—Sn alloy is preferably used. Since these metals have a low melting point, only the medium metal can be selectively melted, and as a result, only the base metal can be effectively left.

以上説明した本実施の形態の第二の例に係る色素増感太陽電池用集電体材料の製造方法例によれば、本実施の形態例に係る色素増感太陽電池用集電体の材料、すなわち、多孔質焼結金属シートを好適に得ることができる。   According to the example of the method for manufacturing the current collector material for dye-sensitized solar cell according to the second example of the present embodiment described above, the material of the current collector for dye-sensitized solar cell according to the present embodiment example That is, a porous sintered metal sheet can be suitably obtained.

次に、図1に模式的に示す本実施の形態例に係る色素増感太陽電池10は、透明基板12と、カソード極となる導電性基板14と、透明基板12と導電性基板14の間に、透明基板12に近接してまたは接触して配置され色素を吸着した多孔質半導体層16と、多孔質半導体層16の透明基板12とは反対側に接触して配置されアノード極となる色素増感太陽電池用集電体18を備え、電解質20が封止される。
色素増感太陽電池用集電体18は、本実施の形態例に係る色素増感太陽電池用集電体、または、本実施の形態の第一の例もしくは第二の例に係る色素増感太陽電池用集電体材料の製造方法により得られる材料を用いた色素増感太陽電池用集電体である。なお、図1中参照符号22は封止材を示す。
Next, the dye-sensitized solar cell 10 according to the present embodiment schematically shown in FIG. 1 includes a transparent substrate 12, a conductive substrate 14 serving as a cathode electrode, and a space between the transparent substrate 12 and the conductive substrate 14. Furthermore, the porous semiconductor layer 16 that is disposed in the vicinity of or in contact with the transparent substrate 12 and adsorbs the pigment, and the pigment that is disposed in contact with the opposite side of the porous semiconductor layer 16 to the transparent substrate 12 and serves as an anode electrode A sensitized solar cell current collector 18 is provided, and the electrolyte 20 is sealed.
The dye-sensitized solar cell current collector 18 is the dye-sensitized solar cell current collector according to the present embodiment, or the dye-sensitized solar cell according to the first or second example of the present embodiment. It is the collector for dye-sensitized solar cells using the material obtained by the manufacturing method of the collector material for solar cells. In FIG. 1, reference numeral 22 denotes a sealing material.

色素増感太陽電池用集電体18以外の色素増感太陽電池10の構成要素については、通常採用される適宜の材料を用い、適宜の方法で作製することができる。   The constituent elements of the dye-sensitized solar cell 10 other than the current collector 18 for the dye-sensitized solar cell can be produced by an appropriate method using an appropriate material that is usually employed.

透明基板12は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよいが、プラスチック板を用いた場合、色素増感太陽電池に柔軟性を付与できるため、好ましい。プラスチック板を用いる場合、例えば、PET、PEN、ポリイミド、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングプラスチックス、メタセシス重合で得られる環状ポリマ等が挙げられる。
導電性基板14は、透明基板12と同様の基板を用い、基板の電解質20に向けた面の一部に、例えば、ITO(スズをドープした酸化インジウム膜)、FTO(フッ素をド一プした酸化スズ膜)、SnO膜、Ti、W、Mo、Rh、Pt、Ta等の金属膜等の導電膜を積層し、さらに導電膜の上に例えば白金膜等の触媒膜を設ける。また、透明基板を省略し、金属箔に白金膜等の触媒膜を設けても良い。金属箔は、好ましくは、Tiである。
The transparent substrate 12 may be, for example, a glass plate or a plastic plate, but using a plastic plate is preferable because flexibility can be imparted to the dye-sensitized solar cell. When using a plastic plate, for example, PET, PEN, polyimide, cured acrylic resin, cured epoxy resin, cured silicone resin, various engineering plastics, cyclic polymers obtained by metathesis polymerization, and the like can be mentioned.
As the conductive substrate 14, a substrate similar to the transparent substrate 12 is used. For example, ITO (indium oxide film doped with tin) or FTO (fluorine is doped) on a part of the surface of the substrate facing the electrolyte 20. A conductive film such as a tin oxide film), a SnO 2 film, a metal film such as Ti, W, Mo, Rh, Pt, or Ta is laminated, and a catalyst film such as a platinum film is provided on the conductive film. Further, the transparent substrate may be omitted, and a catalyst film such as a platinum film may be provided on the metal foil. The metal foil is preferably Ti.

多孔質半導体層16は、材料として、ZnOやSnO等適宜のものを用いることができるが、TiOが好ましい。TiO等の微粒子形状は特に限定するものではないが、1nm〜100nm程度が好ましい。
多孔質半導体層16は、TiOのペーストの薄膜を形成した後に、例えば300〜550℃の温度で焼成する操作を繰り返して所望の厚膜にすると好ましい。
多孔質半導体層16を構成する微粒子の表面に、色素を吸着する。色素は、400nm〜1000nmの波長領域の少なくとも一部に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素などの金属錯体、シアニン色素などの有機色素を挙げることができる。吸着の方法は特に限定されず、例えば、色素溶液に多孔質半導体層16を形成した色素増感太陽電池用集電体18を浸し微粒子表面に色素を化学吸着させるいわゆる含浸法を用いることができる。
透明基板12と多孔質半導体層16は接触していても、接触していなくてもどちらでもよいが、両者の間隔はなるべく短いほうがよい。色素増感太陽電池用集電体18と導電性基板(対極) 14を接触しないように配置するため、例えば電解質20に対して耐腐食性を有し、かつ、電解質イオンの拡散を妨げないように十分な空孔を有するガラスペーパーなどのスペーサで絶縁する方法もある。色素増感太陽電池用集電体18と導電性基板14の間隔は100μm以下であることが好ましい。
The porous semiconductor layer 16 can be made of any suitable material such as ZnO or SnO 2, but TiO 2 is preferred. The shape of fine particles such as TiO 2 is not particularly limited, but is preferably about 1 nm to 100 nm.
The porous semiconductor layer 16 is preferably formed into a desired thick film by repeating the operation of baking at a temperature of, for example, 300 to 550 ° C. after forming a thin film of TiO 2 paste.
A dye is adsorbed on the surface of the fine particles constituting the porous semiconductor layer 16. The dye has absorption in at least part of the wavelength region of 400 nm to 1000 nm, and examples thereof include metal complexes such as ruthenium dye and phthalocyanine dye, and organic dyes such as cyanine dye. The adsorption method is not particularly limited, and for example, a so-called impregnation method in which a dye-sensitized solar cell current collector 18 in which a porous semiconductor layer 16 is formed in a dye solution is immersed and the dye is chemically adsorbed on the fine particle surface can be used. .
The transparent substrate 12 and the porous semiconductor layer 16 may or may not be in contact with each other, but the distance between the two is preferably as short as possible. Since the dye-sensitized solar cell current collector 18 and the conductive substrate (counter electrode) 14 are arranged so as not to contact each other, for example, the dye-sensitized solar cell current collector 18 has corrosion resistance to the electrolyte 20 and does not hinder the diffusion of the electrolyte ions. There is also a method of insulating with a spacer such as glass paper having sufficient pores. The distance between the dye-sensitized solar cell current collector 18 and the conductive substrate 14 is preferably 100 μm or less.

電解質20は、特に限定されないが、例えば、ヨウ素、リチウムイオン、イオン液体、t−ブチルピリジン等を含むものであり、ヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからのなる酸化還元体を用いることができる。また、コバルト等の金属錯体を酸化還元対として用いてもよい。また、この酸化還元体を溶解可能な溶媒を含むものであり、例えば、アセトニトリル、γブチロラクトン、プロピオニトリル、エチレンカーボネート、イオン性液体等が挙げられる。
電解質20の注入方法は特に限定されず、例えば封止材22の一部をシールせずに開口部にしておき、その開口部から電解質20を注入し、開口部をシールすることもできる。また、導電性基板14の一部に予め開口部を設けておき、そこから電解質20を注入した後に開口部をシールすることもできる。
透明基板12と導電性基板14との間に電解質20を注入して封止する封止材22は、硬化後の厚みが100μm以下の熱可塑性樹脂シートや、光硬化性樹脂、熱硬化性樹脂等を用いることができる。
The electrolyte 20 is not particularly limited, but includes, for example, iodine, lithium ions, ionic liquid, t-butylpyridine, and the like. In the case of iodine, an oxidation-reduction body composed of a combination of iodide ions and iodine is used. Can do. Further, a metal complex such as cobalt may be used as the redox pair. Moreover, it contains a solvent capable of dissolving this redox substance, and examples thereof include acetonitrile, γ-butyrolactone, propionitrile, ethylene carbonate, and ionic liquid.
The method for injecting the electrolyte 20 is not particularly limited, and for example, a part of the sealing material 22 may be left as an opening, and the electrolyte 20 may be injected from the opening to seal the opening. Alternatively, an opening may be provided in advance in a part of the conductive substrate 14, and the opening may be sealed after injecting the electrolyte 20 therefrom.
The sealing material 22 for sealing by injecting the electrolyte 20 between the transparent substrate 12 and the conductive substrate 14 is a thermoplastic resin sheet having a thickness of 100 μm or less after curing, a photocurable resin, a thermosetting resin. Etc. can be used.

以上説明した本実施の形態例に係る色素増感太陽電池10は、色素増感太陽電池用集電体18が電解質20の通液性に優れて高い発電効率を得ることができる。   In the dye-sensitized solar cell 10 according to the present embodiment described above, the current collector 18 for the dye-sensitized solar cell is excellent in liquid permeability of the electrolyte 20 and high power generation efficiency can be obtained.

なお、上記の本実施の形態例に係る色素増感太陽電池以外の色素増感太陽電池、例えば、透明基板に透明導電膜を設けたものに本実施の形態例に係る色素増感太陽電池の集電体を設けたものや、多孔質半導体層の透明基板とは反対側に接触して配置されるものとは別の部位に1または2以上の集電体が配置されるもの等、色素増感太陽電池全般について本実施の形態例に係る色素増感太陽電池用集電体を適宜用いることができることは言うまでもない。   In addition, the dye-sensitized solar cell other than the dye-sensitized solar cell according to the present embodiment described above, for example, the dye-sensitized solar cell according to the present embodiment is provided on a transparent substrate provided with a transparent conductive film. Dyes such as those provided with current collectors, or those in which one or more current collectors are arranged at a different site from those arranged on the opposite side of the porous semiconductor layer from the transparent substrate Needless to say, the dye-sensitized solar cell current collector according to the present embodiment can be used as appropriate for the entire sensitized solar cell.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to this Example.

(実施例1)
水素化脱水素法により製造したチタン粉末(粒径3〜40μm、平均粒径10μm)と、エチルセルロース系結着剤(日新化成(株)製EC−200FTD)を、配合比がチタン粉末60質量%、結着剤40質量%となるよう混合し、スラリー状組成物を調整した。なお、結着剤は約80質量%のターピネオールと約20質量%のエチルセルロースからなる。
次に、このスラリー状組成物を厚み50μm、開口部12mm×50mmのメタルマスクを使ってスキージ法(スクリーン印刷法)により基材である20mm×60mm、厚さ100μmの鉄箔上に塗布し、これを30kPa下で150℃、1.5時間の減圧乾燥を行い、焼成前成形体を得た。その後、焼成前成形体を68.6MPaでプレス処理した。
Example 1
Titanium powder produced by hydrodehydrogenation method (particle size 3 to 40 μm, average particle size 10 μm) and ethylcellulose binder (EC-200FTD manufactured by Nisshin Kasei Co., Ltd.), titanium powder 60 mass % And a binder composition of 40% by mass to prepare a slurry composition. The binder is composed of about 80% by mass of terpineol and about 20% by mass of ethyl cellulose.
Next, this slurry-like composition was applied onto an iron foil having a thickness of 20 mm × 60 mm and a thickness of 100 μm by a squeegee method (screen printing method) using a metal mask having a thickness of 50 μm and an opening of 12 mm × 50 mm, This was dried under reduced pressure at 150 ° C. for 1.5 hours under 30 kPa to obtain a molded body before firing. Thereafter, the molded body before firing was pressed at 68.6 MPa.

そして、この焼成前成形体を鉄箔ごと真空焼成炉に入れて1×10−1Pa、300℃、1時間加熱し、脱脂処理を行った。さらに、真空焼成炉中の焼結前成形体の上面全面を覆うようにチタン箔をかぶせた後、3×10−3Paの圧力下、800℃の温度で、2時間加熱して焼成し、焼結体を得た。 Then, this pre-fired compact was put together with the iron foil in a vacuum firing furnace and heated at 1 × 10 −1 Pa, 300 ° C. for 1 hour to perform a degreasing treatment. Furthermore, after covering the entire upper surface of the pre-sintered compact in a vacuum firing furnace with a titanium foil, it was fired at a temperature of 800 ° C. for 2 hours under a pressure of 3 × 10 −3 Pa, and fired. A sintered body was obtained.

さらに、この焼結体を、3N硫酸水溶液に1時間浸漬させて、焼結体と接触している鉄箔部分を溶解させて焼結体から鉄箔を剥離させた。
得られた焼結体を蒸留水および洗剤水で繰り返し洗浄し硫酸を除去した後、加熱乾燥して、多孔質チタン(多孔質焼結金属シート)を得た。
図2および図3に多孔質チタンのSEM写真を示す。図2は多孔質チタンを主面(表面)側から見たものであり、図中、参照符号24は多孔質チタンを、参照符号26は金属部を、参照符号28は孔部を、それぞれ示す。図3は多孔質チタンを断面側から見たものであり、図中、参照符号30は主面を、参照符号32は断面を、それぞれ示す。
得られた多孔質チタン(A−1)の厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
Further, the sintered body was immersed in a 3N sulfuric acid aqueous solution for 1 hour to dissolve the iron foil portion in contact with the sintered body, and the iron foil was peeled off from the sintered body.
The obtained sintered body was washed repeatedly with distilled water and detergent water to remove sulfuric acid, and then dried by heating to obtain porous titanium (porous sintered metal sheet).
2 and 3 show SEM photographs of porous titanium. FIG. 2 shows the porous titanium as viewed from the main surface (surface) side. In the figure, reference numeral 24 indicates porous titanium, reference numeral 26 indicates a metal part, and reference numeral 28 indicates a hole part. . FIG. 3 is a cross-sectional view of porous titanium. In the figure, reference numeral 30 indicates a main surface, and reference numeral 32 indicates a cross section.
The thickness, porosity, average pore diameter, and electric conductivity of the obtained porous titanium (A-1) were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

作製した多孔質チタン(A−1)の10mm×50mmの範囲にチタニアペースト(商品名NanoxideD、ソーラ口ニクス社製)を印刷し、乾燥後、425℃で30分、空気中で焼成した。焼成後のチタニア上に、さらにチタニアベーストを印刷、焼成する操作を合計3回繰り返し、チタニア層付き多孔質Tiシート基板を得た。   A titania paste (trade name Nanoxide D, manufactured by Solar Kunix Co., Ltd.) was printed in the range of 10 mm × 50 mm of the produced porous titanium (A-1), dried, and baked in air at 425 ° C. for 30 minutes. On the titania after firing, the operation of further printing and firing the titania base was repeated a total of 3 times to obtain a porous Ti sheet substrate with a titania layer.

N719色素(ソーラ口ニクス社製)のアセトニトリルとt‐ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシート基板を64時間含浸させ、チタニア表面に色素を吸着した。吸着後の基板をアセトニトリルとt‐ブチルアルコールの混合溶媒で洗浄して、色素吸着チタニア層付き多孔質Tiシート基板を得た。   The prepared porous Ti sheet substrate with titania layer was impregnated for 64 hours in a mixed solvent solution of N719 dye (manufactured by Solar Kuniix Co., Ltd.) and acetonitrile and t-butyl alcohol, and the dye was adsorbed on the titania surface. The substrate after adsorption was washed with a mixed solvent of acetonitrile and t-butyl alcohol to obtain a porous Ti sheet substrate with a dye-adsorbed titania layer.

15mm×40mm、厚み20μmのチタン箔を、上記色素吸着チタニア層付き多孔質Tiシート基板のチタニアペースト未製膜面の端部2mmに積層し、取り出し電極付きアノード極を得た。   A titanium foil having a size of 15 mm × 40 mm and a thickness of 20 μm was laminated on the end 2 mm of the surface of the porous Ti sheet substrate with the dye-adsorbing titania layer on which no titania paste was formed, to obtain an anode electrode with a takeout electrode.

12mm×50mm、厚み50μmのチタン箔の片面に、白金を400nm蒸着させ、Pt触媒層付きTi基板とした。さらに、上記Pt触媒層付きTi基板のPtのない面の端部2mmに15mm×40mm、厚み20μmのチタン箔を積層し、取り出し電極付きカソード極を得た。   On one side of a 12 mm × 50 mm titanium foil having a thickness of 50 μm, platinum was deposited by 400 nm to obtain a Ti substrate with a Pt catalyst layer. Further, a titanium foil of 15 mm × 40 mm and a thickness of 20 μm was laminated on the end 2 mm of the Pt-free surface of the Ti substrate with the Pt catalyst layer to obtain a cathode electrode with a takeout electrode.

24mm×60mm、厚み60μmの樹脂シート(SOLARONIX社製、商品名MELTONIX1170−60)を貼合せた24mm×60mm、厚み125μmのPENフィルムの、上記樹脂シート面と、上記取り出し電極付きカソード極のチタン箔面が向き合うように積層した。さらに、上記取り出し電極付き対極のPt触媒層面に、16mm×52mm、厚み50μm、空隙率85%以上のガラスペーパーを積層した。
さらに、上記取り出し電極付きアノード極のチタニアペースト未製膜面と、ガラスペーパーに向かい合うように積層した。さらに、24mm×60mm、厚み60μmの上記樹脂シートを貼合せた24mm×60mm、厚み125μmのPENフィルムの、上記樹脂シート面と、上記取り出し電極付きアノード極の色素吸着チタニア層面が向かい合うように積層した。また、カソード電極側のPENフィルムにφ3mmの電解液挿入穴を設けた。これらを温度130℃でロールプレスした。
さらに、上記電解液挿入穴から、ヨウ素、LiIを含むγ-ブチロラクトン溶媒の電解液を減圧注入した後、電解液挿入穴をUV硬化樹脂で封止し、色素増感太陽電池(C−1)を得た。
24 mm x 60 mm, 125 μm thick PEN film on which a 24 mm x 60 mm, 60 μm thick resin sheet (product name: MELTONIX 1170-60 manufactured by SOLARONIX) is bonded, and the cathode foil titanium foil with the take-out electrode Lamination was done so that the faces would face each other. Further, glass paper having a size of 16 mm × 52 mm, a thickness of 50 μm, and a porosity of 85% or more was laminated on the surface of the Pt catalyst layer of the counter electrode with the extraction electrode.
Furthermore, it laminated | stacked so that the titania paste non-film-forming surface of the said anode electrode with a taking-out electrode might face glass paper. Furthermore, the resin sheet surface of the 24 mm × 60 mm, 125 μm thick PEN film on which the resin sheet having a thickness of 24 mm × 60 mm and a thickness of 60 μm was laminated was laminated so that the dye adsorption titania layer surface of the anode electrode with the extraction electrode faced each other. . In addition, an electrolyte solution insertion hole of φ3 mm was provided in the PEN film on the cathode electrode side. These were roll-pressed at a temperature of 130 ° C.
Furthermore, after the electrolyte solution of γ-butyrolactone solvent containing iodine and LiI was injected under reduced pressure from the electrolyte solution insertion hole, the electrolyte solution insertion hole was sealed with a UV curable resin, and the dye-sensitized solar cell (C-1) Got.

得られた色素増感太陽電池の光電変換性能を、0.1mW/cmの強度の蛍光灯をアノード極側から照射したときのIV曲線を測定して調べた。得られた結果を表2に示す。 The photoelectric conversion performance of the obtained dye-sensitized solar cell was examined by measuring an IV curve when a fluorescent lamp having an intensity of 0.1 mW / cm 2 was irradiated from the anode electrode side. The obtained results are shown in Table 2.

(実施例2)
多孔質チタン(A−1)の代わりに、スラリー発泡法により製造された発泡金属である三菱マテリアル製多孔質チタンシート(A−2)を用いた以外は、実施例1と同様にして色素増感太陽電池(C−2)を得た。結果を表1および表2に示す。
(Example 2)
Instead of porous titanium (A-1), dye increase was performed in the same manner as in Example 1 except that a porous titanium sheet (A-2) manufactured by Mitsubishi Materials, which is a foam metal produced by a slurry foaming method, was used. A solar cell (C-2) was obtained. The results are shown in Tables 1 and 2.

(実施例3)
水素化脱水素法により製造したチタン粉末(粒径45μm以下、平均粒径24μm)572gとカルボニル・粉砕法で製造した鉄粉428g(粒径2〜9.6μm、平均粒径4.5μm)を徳寿製作所製の混合機(V−5型)を用いて均一混合し、金型に装入し、次いで200MPaで加圧して成形体を得た。得られた成形体を硝酸3%を含む水溶液に72時間浸漬し水洗した後、1150℃、2×10−5mbar、2時間焼結処理を行い、多孔質チタン(A−3)を得た。
得られた多孔質チタン(A−3)の厚み、空隙率、平均空孔直径、電気伝導率を測定した。さらに、多孔質チタン(A−1)の代わりに多孔質チタン(A−3)を用いた以外は実施例1と同様の方法で色素増感太陽電池(C−3)を得た。結果を表1および表2に示す。
(Example 3)
572 g of titanium powder (particle size 45 μm or less, average particle size 24 μm) manufactured by hydrodehydrogenation method and 428 g of iron powder (particle size 2 to 9.6 μm, average particle size 4.5 μm) manufactured by carbonyl and grinding method Using a mixer (V-5 type) manufactured by Tokuju Seisakusho, the mixture was uniformly mixed, charged into a mold, and then pressurized at 200 MPa to obtain a molded body. The obtained molded body was immersed in an aqueous solution containing 3% nitric acid for 72 hours and washed with water, and then sintered at 1150 ° C., 2 × 10 −5 mbar for 2 hours to obtain porous titanium (A-3). .
The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium (A-3) were measured. Furthermore, a dye-sensitized solar cell (C-3) was obtained in the same manner as in Example 1 except that porous titanium (A-3) was used instead of porous titanium (A-1). The results are shown in Tables 1 and 2.

(実施例4)
金型に装入する代わりに、シース圧延(株式会社吉田記念製、実験用圧延機)を用いて
加圧して成形体を得たこと以外は実施例3と同様にして多孔質チタン(A−4)及び色素増感太陽電池(C−4)を得た。結果を表1および表2に示す。
Example 4
Porous titanium (A-) in the same manner as in Example 3 except that a compact was obtained by pressurization using sheath rolling (Yoshida Memorial Co., Ltd., experimental rolling mill) instead of charging the mold. 4) and a dye-sensitized solar cell (C-4) were obtained. The results are shown in Tables 1 and 2.

(実施例5)
水素化脱水素法により製造したチタン粉末(粒径45μm以下、平均粒径24μm)596gと亜鉛粉404g(粒径8〜42μm、平均粒径20μm)を徳寿製作所製の混合機(V−5型)を用いて均一混合し、金型に装入し、次いで200MPaで加圧して成形体を得た。得られた成形体を日本真空技術製実験用加熱炉に挿入し、300℃、2時間、2×10−5mbarの真空で加熱後、温度を900℃に上げて2時間焼結処理を行い、多孔質チタン(A−5)を得た。
得られた多孔質チタン(A−5)の厚み、空隙率、平均空孔直径、電気伝導率を測定した。さらに、多孔質チタン(A−5)を用いて、実施例1と同様の方法で色素増感太陽電池(C−5)を得た。結果を表1および表2に示す。
(Example 5)
A blender (V-5 type) manufactured by Tokuju Seisakusho Co., Ltd. with 596 g of titanium powder (particle size 45 μm or less, average particle size 24 μm) and 404 g of zinc powder (particle size 8 to 42 μm, average particle size 20 μm) manufactured by hydrodehydrogenation method. ) Were uniformly mixed, charged into a mold, and then pressed at 200 MPa to obtain a molded body. The obtained molded body was inserted into a laboratory furnace manufactured by Japan Vacuum Technology, heated at 300 ° C for 2 hours in a vacuum of 2 x 10 -5 mbar, then heated to 900 ° C and sintered for 2 hours. Porous titanium (A-5) was obtained.
The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium (A-5) were measured. Furthermore, the dye-sensitized solar cell (C-5) was obtained by the method similar to Example 1 using porous titanium (A-5). The results are shown in Tables 1 and 2.

(実施例6)
アトマイズ法により製造したチタン粉末(粒径45μm以下、平均粒径32μm)687gとセレン粉313g(粒径10〜42μm、平均粒径24μm)を徳寿製作所製の混合機(V−5型)を用いて均一混合し、金型に装入し、次いで200MPaで加圧して成形体を得た。チタン製の容器の上にチタン製の金網を敷いて、その上に得られた成形体を置き、日本真空技術製実験用加熱炉に挿入した。800℃、2時間、2×10−5mbarの真空で加熱後、温度を1050℃に上げて2時間焼結処理を行い、多孔質チタン(A−6)を得た。
得られた多孔質チタン(A−6)の厚み、空隙率、平均空孔直径、電気伝導率を測定した。さらに、多孔質チタン(A−6)を用いて、実施例1と同様の方法で色素増感太陽電池(C−6)を得た。結果を表1および表2に示す。
(Example 6)
687 g of titanium powder (particle size of 45 μm or less, average particle size of 32 μm) and 313 g of selenium powder (particle size of 10 to 42 μm, average particle size of 24 μm) manufactured by the atomizing method were used using a mixer (V-5 type) manufactured by Tokuju Seisakusho. The mixture was uniformly mixed, charged into a mold, and then pressed at 200 MPa to obtain a molded body. A titanium wire mesh was laid on a titanium container, and the obtained molded body was placed thereon and inserted into an experimental heating furnace manufactured by Nippon Vacuum Technology. After heating in a vacuum of 2 × 10 −5 mbar at 800 ° C. for 2 hours, the temperature was raised to 1050 ° C. and sintering was performed for 2 hours to obtain porous titanium (A-6).
The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium (A-6) were measured. Furthermore, the dye-sensitized solar cell (C-6) was obtained by the method similar to Example 1 using porous titanium (A-6). The results are shown in Tables 1 and 2.

(実施例7)
鉄粉の代わりに水アトマイズ法で製造により製造したFe−12%Cr合金粉(最小粒径4μm、最大粒径9.8μm、平均粒径7μm)を使用し、硝酸3%の代わりにpH1.4の塩酸と硝酸を含む混合溶液を使用した以外は、実施例3と同様の方法で、多孔質チタン(A−7)および色素増感太陽電池(C−7)を得た。結果を表1および表2に示す。
(Example 7)
Instead of iron powder, Fe-12% Cr alloy powder (minimum particle size 4 μm, maximum particle size 9.8 μm, average particle size 7 μm) produced by the water atomization method is used, and pH 1. Porous titanium (A-7) and a dye-sensitized solar cell (C-7) were obtained in the same manner as in Example 3 except that the mixed solution containing hydrochloric acid 4 and nitric acid 4 was used. The results are shown in Tables 1 and 2.

(実施例8)
24mm×60mmの透明導電膜(FTO)付きガラスの透明導電膜側の10mm×50mmの範囲にチタニアペースト(商品名NanoxideD、ソーラ口ニクス社製)を印刷し、乾燥後、425℃で30分、空気中で焼成した。焼成後のチタニア上に、さらにチタニアベーストを印刷、焼成する操作を合計2回繰り返した。さらに焼成後のチタニア上に、チタニアベーストを印刷後、多孔質チタン(A−1)をチタニア側に積層して乾燥し、425℃で30分、空気中で焼成し、透明導電膜付きガラス、チタニア、多孔質Tiシートの積層体基板を得た。
N719色素(ソーラ口ニクス社製)のアセトニトリルとt‐ブチルアルコールの混合溶媒溶液に、作製した積層体基板を64時間含浸させ、チタニア表面に色素を吸着した。吸着後の基板をアセトニトリルとt‐ブチルアルコールの混合溶媒で洗浄して、色素吸着積層体基板を得た。
(Example 8)
Titania paste (trade name Nanoxide D, manufactured by Solar Kunix Co., Ltd.) is printed in a range of 10 mm × 50 mm on the transparent conductive film side of the glass with a transparent conductive film (FTO) of 24 mm × 60 mm, and after drying, at 425 ° C. for 30 minutes, Baked in air. On the titania after firing, the operation of further printing and firing the titania base was repeated twice in total. Furthermore, after printing titania base on the titania after firing, porous titanium (A-1) is laminated on the titania side and dried, and fired in air at 425 ° C. for 30 minutes, glass with a transparent conductive film, A laminate substrate of titania and porous Ti sheet was obtained.
The prepared laminate substrate was impregnated for 64 hours with a mixed solvent solution of N719 dye (manufactured by Solar Kunix Co., Ltd.) and acetonitrile and t-butyl alcohol, and the dye was adsorbed on the titania surface. The substrate after adsorption was washed with a mixed solvent of acetonitrile and t-butyl alcohol to obtain a dye adsorption laminate substrate.

15mm×40mm、厚み20μmのチタン箔を、上記色素吸着チタニア層付き多孔質Tiシート基板のチタニアペースト未製膜面の端部2mmに積層し、取り出し電極付きアノード極を得た。チタン箔は多孔質Tiシートと透明導電膜の両方に接触するよう配置して積層した。
24mm×60mm、厚み60μmの樹脂シート(SOLARONIX社製、商品名MELTONIX1170−60)に16mm×52mmの開口部を設けた封止部材を得た。上記封止部材を上記取り出し電極付きアノード極の色素吸着チタニア層面側の、取り出し電極とガラス基板の間で、取り出し電極が多孔質Tiシートと透明導電膜の両方に接触する事を阻害しない様に配置した。
A titanium foil having a size of 15 mm × 40 mm and a thickness of 20 μm was laminated on the end 2 mm of the surface of the porous Ti sheet substrate with the dye-adsorbing titania layer on which no titania paste was formed, to obtain an anode electrode with a takeout electrode. The titanium foil was disposed and laminated so as to be in contact with both the porous Ti sheet and the transparent conductive film.
A sealing member provided with an opening of 16 mm × 52 mm in a resin sheet (product name: MELTONIX 1170-60, manufactured by SOLARONIX) having a thickness of 24 mm × 60 mm and a thickness of 60 μm was obtained. The sealing member is not hindered from contacting the porous Ti sheet and the transparent conductive film between the extraction electrode and the glass substrate between the extraction electrode and the glass substrate on the side of the dye adsorption titania layer of the anode electrode with the extraction electrode. Arranged.

12mm×50mm、厚み50μmのチタン箔の片面に、白金を400nm蒸着させ、Pt触媒層付きTi基板とした。さらに、上記Pt触媒層付きTi基板のPtのない面の端部2mmに15mm×40mm、厚み20μmのチタン箔を積層し、取り出し電極付きカソード極を得た。   400 nm of platinum was vapor-deposited on one surface of a 12 mm × 50 mm titanium foil having a thickness of 50 μm to obtain a Ti substrate with a Pt catalyst layer. Further, a titanium foil of 15 mm × 40 mm and a thickness of 20 μm was laminated on the end 2 mm of the Pt-free surface of the Ti substrate with the Pt catalyst layer to obtain a cathode electrode with a takeout electrode.

24mm×60mm、厚み60μmの樹脂シート(SOLARONIX社製、商品名MELTONIX1170−60)を貼合せた、24mm×60mm、厚み125μmのPENフィルムの、上記樹脂シート面と、上記取り出し電極付きカソード極のチタン箔面が向き合うように積層した。さらに、上記取り出し電極付き対極のPt触媒層面に、16mm×52mm、厚み50μm、空隙率85%以上のガラスペーパーを積層した。さらに、上記16mm×52mmの開口部を設けた封止部材を配置した、取り出し電極付きアノード極の多孔質Tiシート側のチタニアペースト未製膜面と、ガラスペーパーに向かい合うように積層した。また、カソード電極側のPENフィルムにφ3mmの電解液挿入穴を設けた。これらを温度130℃でロールプレスした。
さらに、上記電解液挿入穴から、ヨウ素、LiIを含むγ-ブチロラクトン溶媒の電解液を減圧注入した後、電解液挿入穴をUV硬化樹脂で封止し、色素増感太陽電池(C−7)を得た。結果を表1および表2に示す。
24 mm x 60 mm, 125 μm thick PEN film bonded with a 24 mm x 60 mm, 60 μm thick resin sheet (product name: MELTONIX 1170-60, manufactured by SOLARONIX), and the cathode electrode titanium with the take-out electrode It laminated | stacked so that the foil surface might face. Further, glass paper having a size of 16 mm × 52 mm, a thickness of 50 μm, and a porosity of 85% or more was laminated on the surface of the Pt catalyst layer of the counter electrode with the extraction electrode. Furthermore, the titania paste non-film-forming surface on the porous Ti sheet side of the anode electrode with an extraction electrode on which the sealing member provided with the opening of 16 mm × 52 mm was disposed was laminated so as to face the glass paper. In addition, an electrolyte solution insertion hole of φ3 mm was provided in the PEN film on the cathode electrode side. These were roll-pressed at a temperature of 130 ° C.
Furthermore, after the electrolyte solution of γ-butyrolactone solvent containing iodine and LiI was injected under reduced pressure from the electrolyte solution insertion hole, the electrolyte solution insertion hole was sealed with a UV curable resin, and the dye-sensitized solar cell (C-7) Got. The results are shown in Tables 1 and 2.

(実施例9)
実施例1と同様にしてスラリー状組成物を調製し、このスラリー状組成物を塗布厚み75μmに設定したベーカー式アプリケーター(宝泉株式会社製)を使って基材である60mm×70mm、厚さ100μmの鉄箔上に塗布し、これを30kPaの圧力下、150℃の温度で、1.5時間減圧乾燥を行い、燒結前成形体を得た。
Example 9
A slurry-like composition was prepared in the same manner as in Example 1, and the base material was 60 mm × 70 mm in thickness using a baker-type applicator (manufactured by Hosen Co., Ltd.) having a coating thickness of 75 μm. It apply | coated on 100 micrometers iron foil, this was dried under reduced pressure at the temperature of 150 degreeC under the pressure of 30 kPa for 1.5 hours, and the compacting body before sintering was obtained.

そして、この燒結前成形体を鉄箔ごとシリコニット炉に入れて大気圧下、300℃の温度で、1時間加熱し、脱脂処理を行った。次に、脱脂処理を行った燒結前成形体を真空焼成炉に入れ、焼結前成形体の上面全面を覆うようにチタン箔をかぶせた後、3×10−3Paの圧力下、800℃の温度で、2時間加熱し、焼結体を得た。   Then, the green compact before sintering was put into a siliconit furnace together with the iron foil, and heated at 300 ° C. under atmospheric pressure for 1 hour to perform a degreasing treatment. Next, the green body before sintering that has been degreased is placed in a vacuum firing furnace and covered with a titanium foil so as to cover the entire upper surface of the green body before sintering, and then at 800 ° C. under a pressure of 3 × 10 −3 Pa. It heated at temperature for 2 hours and obtained the sintered compact.

さらに、この焼結体を、3N硫酸水溶液に1時間浸漬させて、焼結体と接触している鉄箔部分を溶解させて焼結体から鉄箔を剥離させた。
得られた焼結体を3N硫酸で酸洗した後、蒸留水および洗剤水で繰り返し洗浄し硫酸を除去した後、加熱乾燥して多孔質チタン(A−9)を得た。さらに、多孔質チタン(A−9)を用いて、実施例1と同様の方法で色素増感太陽電池(C−9)を得た。結果を表1および表2に示す。
Further, the sintered body was immersed in a 3N sulfuric acid aqueous solution for 1 hour to dissolve the iron foil portion in contact with the sintered body, and the iron foil was peeled off from the sintered body.
The obtained sintered body was pickled with 3N sulfuric acid, washed repeatedly with distilled water and detergent water to remove the sulfuric acid, and then dried by heating to obtain porous titanium (A-9). Furthermore, the dye-sensitized solar cell (C-9) was obtained by the method similar to Example 1 using porous titanium (A-9). The results are shown in Tables 1 and 2.

(実施例10)
燒結前成形体を294MPaでプレスした以外は、実施例2と同様にして多孔質チタン(A−10)及び色素増感太陽電池(C−10)を得た。結果を表1および表2に示す。
(Example 10)
Porous titanium (A-10) and a dye-sensitized solar cell (C-10) were obtained in the same manner as in Example 2 except that the compact before sintering was pressed at 294 MPa. The results are shown in Tables 1 and 2.

(実施例11)
平均粒径17μmのチタン粒子を用い、スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布した以外は、実施例2と同様にして多孔質チタン(A−11)及び色素増感太陽電池(C−11)を得た。結果を表1および表2に示す。
(Example 11)
Porous titanium (A--) was used in the same manner as in Example 2 except that titanium particles having an average particle diameter of 17 μm were used, and the slurry-like composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm. 11) and a dye-sensitized solar cell (C-11) were obtained. The results are shown in Tables 1 and 2.

(実施例12)
平均粒径10μmのチタン粒子30質量%と、平均粒径6μmの水素化チタン粒子30質量%と、エチルセルロース系結着剤40質量%を配合したスラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布した以外は、実施例2と同様にして多孔質チタン(A−12)及び色素増感太陽電池(C−12)を得た。結果を表1および表2に示す。
(Example 12)
A slurry composition containing 30% by mass of titanium particles having an average particle size of 10 μm, 30% by mass of titanium hydride particles having an average particle size of 6 μm, and 40% by mass of an ethylcellulose binder is 50 μm in thickness and has an opening of 10 × 30 mm. A porous titanium (A-12) and a dye-sensitized solar cell (C-12) were obtained in the same manner as in Example 2 except that the metal mask was used and applied by the squeegee method. The results are shown in Tables 1 and 2.

(実施例13)
燒結工程において、燒結前成形体の上面全面をジルコニウム箔で覆いかぶせた以外は、実施例2と同様にして多孔質チタン(A−13)及び色素増感太陽電池(C−13)を得た。結果を表1および表2に示す。
(Example 13)
In the sintering step, porous titanium (A-13) and dye-sensitized solar cell (C-13) were obtained in the same manner as in Example 2 except that the entire upper surface of the green compact before sintering was covered with zirconium foil. . The results are shown in Tables 1 and 2.

(実施例14)
スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布し、脱脂処理を1×10−1Pa下で行った以外は、実施例2と同様にして多孔質チタン(A−14)及び色素増感太陽電池(C−14)を得た。結果を表1および表2に示す。
(Example 14)
Porous titanium in the same manner as in Example 2 except that the slurry composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm, and degreasing was performed under 1 × 10 −1 Pa. (A-14) and a dye-sensitized solar cell (C-14) were obtained. The results are shown in Tables 1 and 2.

(実施例15)
スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布し、脱脂処理を1×10−1Pa下で行い、基材除去工程を3N硝酸で行った以外は、実施例2と同様にして多孔質チタン(A−15)及び色素増感太陽電池(C−15)を得た。結果を表1および表2に示す。
(Example 15)
The slurry-like composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm, the degreasing treatment was performed under 1 × 10 −1 Pa, and the substrate removal step was performed with 3N nitric acid. In the same manner as in Example 2, porous titanium (A-15) and a dye-sensitized solar cell (C-15) were obtained. The results are shown in Tables 1 and 2.

(比較例1)
多孔質チタン(A−1)の代わりに、大阪チタニウム製多孔質チタンシート(B−1)(商品名タイボラス)を用いた以外は、実施例1と同様にして色素増感太陽電池(D−1)を得た。結果を表1および表2に示す。
(比較例2)
水素化脱水素法により製造したチタン粉末(粒径3〜5μm、平均粒径4μm)を用い、実施例1と同様のスラリー状組成物を厚み20μm、開口部10mm×30mmのスクリーンマスクを使ってスクリーン印刷法により基材である20mm×40mm、厚さ100μmの鉄箔上に塗布した。その後実施例1と同様にして多孔質チタン(多孔質焼結金属シート B−2)を得た。得られた結果を、チタン粉末の粒径と併せて表1に示す。
作製した多孔質チタン(B−2)を用いて、実施例1と同様にしてチタニア層付き多孔質Tiシート基板を得た。得られたチタニア層付き多孔質Tiシート基板は、チタニア側にカールし、一部チタニアの剥離が見られた。多孔質チタン(B−2)を用いて、実施例1と同様の方法で色素増感太陽電池(D−2)を得た。結果を表1および表2に示す。
(Comparative Example 1)
A dye-sensitized solar cell (D-) was used in the same manner as in Example 1 except that the porous titanium sheet (B-1) (trade name Tybolus) made of Osaka Titanium was used instead of the porous titanium (A-1). 1) was obtained. The results are shown in Tables 1 and 2.
(Comparative Example 2)
Using titanium powder (particle size 3 to 5 μm, average particle size 4 μm) produced by hydrodehydrogenation, a slurry composition similar to that of Example 1 was used with a screen mask having a thickness of 20 μm and an opening of 10 mm × 30 mm. It apply | coated on the 20 mm x 40 mm and 100 micrometers thick iron foil which is a base material by the screen-printing method. Thereafter, in the same manner as in Example 1, porous titanium (porous sintered metal sheet B-2) was obtained. The obtained results are shown in Table 1 together with the particle size of the titanium powder.
Using the produced porous titanium (B-2), a porous Ti sheet substrate with a titania layer was obtained in the same manner as in Example 1. The obtained porous Ti sheet substrate with a titania layer was curled on the titania side, and a part of the titania was peeled off. A dye-sensitized solar cell (D-2) was obtained in the same manner as in Example 1 using porous titanium (B-2). The results are shown in Tables 1 and 2.

Figure 2013084551
Figure 2013084551

Figure 2013084551
Figure 2013084551

10 色素増感太陽電池
12 透明基板
14 導電性基板
16 多孔質半導体層
18 色素増感太陽電池用集電体
20 電解質
22 封止材
24 多孔質焼結金属シート
26 金属部
28 孔部
30 主面
32 断面
DESCRIPTION OF SYMBOLS 10 Dye-sensitized solar cell 12 Transparent substrate 14 Conductive substrate 16 Porous semiconductor layer 18 Current collector for dye-sensitized solar cell 20 Electrolyte 22 Sealing material 24 Porous sintered metal sheet 26 Metal portion 28 Hole portion 30 Main surface 32 cross section

Claims (18)

厚みが5〜60μm、かつ空隙率が30〜80%であり、等方的に連通した多数の貫通孔を有する多孔質焼結金属シートからなる色素増感太陽電池用集電体。   A collector for a dye-sensitized solar cell, comprising a porous sintered metal sheet having a thickness of 5 to 60 μm and a porosity of 30 to 80% and having a number of isotropically communicating through holes. 前記多孔質焼結金属シートが厚みが10〜30μm、かつ空隙率が30〜60%の非発泡多孔質焼結金属シートであることを特徴とする請求項1記載の色素増感太陽電池用集電体。   2. The dye-sensitized solar cell collection according to claim 1, wherein the porous sintered metal sheet is a non-foamed porous sintered metal sheet having a thickness of 10 to 30 [mu] m and a porosity of 30 to 60%. Electric body. 平均空孔直径が5〜25μmであることを特徴とする請求項2記載の色素増感太陽電池用集電体。   3. The dye-sensitized solar cell current collector according to claim 2, wherein an average pore diameter is 5 to 25 [mu] m. 前記平均空孔直径が15μm以下であることを特徴とする請求項3記載の色素増感太陽電池用集電体。   The current collector for a dye-sensitized solar cell according to claim 3, wherein the average pore diameter is 15 µm or less. 前記多孔質焼結金属シートの金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることを特徴とする請求項1記載の色素増感太陽電池用集電体。   The metal species of the porous sintered metal sheet is any one selected from Ti, W, Mo, Rh, Pt and Ta, or an alloy containing one or more of these. The collector for a dye-sensitized solar cell as described. 前記多孔質焼結金属シートの原料である金属粉末が水素化脱水素法により製造したチタン粉末であることを特徴とする請求項1記載の色素増感太陽電池用集電体。   The current collector for a dye-sensitized solar cell according to claim 1, wherein the metal powder as a raw material of the porous sintered metal sheet is a titanium powder produced by a hydrodehydrogenation method. 電気伝導率が0.5×10Ω−1・m−1以上であることを特徴とする請求項1記載の色素増感太陽電池用集電体。 2. The dye-sensitized solar cell current collector according to claim 1 , wherein the electrical conductivity is 0.5 × 10 3 Ω −1 · m −1 or more. 金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含むことを特徴とする色素増感太陽電池用集電体材料の製造方法。   A pre-sintered green body forming step for forming a pre-sintered green body by forming a slurry-like composition containing a metal powder and a solvent on a base material that is soluble in acid, and firing the pre-sintered green body. A method for producing a current-collecting material for a dye-sensitized solar cell, comprising: a sintering step for obtaining a sintered body by bonding; and a base material removing step for separating and removing the base material from the sintered body by an acid. . 前記基材がFeまたはFeを含む合金で形成されることを特徴とする請求項8記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a current-collecting material for a dye-sensitized solar cell according to claim 8, wherein the base material is formed of Fe or an alloy containing Fe. 前記焼結工程を、実質的に密閉状態の容器内で行い、炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、前記金属粉末より大きい値を持つ金属を前記焼結前成形体の近傍に配置することを特徴とする請求項8記載の色素増感太陽電池用集電体材料の製造方法。   The sintering step is performed in a substantially sealed container, and a metal having a standard free energy value of carbide and oxide that is larger than the metal powder in the sintering temperature range is formed before the sintering. The method for producing a current collector material for a dye-sensitized solar cell according to claim 8, wherein the current collector material is disposed in the vicinity of the body. 前記金属がTi、ZrおよびHfから選ばれる1種であることを特徴とする請求項10記載の色素増感太陽電池用集電体材料の製造方法。   The said metal is 1 type chosen from Ti, Zr, and Hf, The manufacturing method of the collector material for dye-sensitized solar cells of Claim 10 characterized by the above-mentioned. 基体金属と媒体金属の混合粉を成形して成形体を得る成形工程と、該成形体を加熱して焼結体を得る焼結工程と、該成形工程および該焼結工程のいずれか1つの工程または双方の工程の後に、該成形体または該焼結体を化学処理または物理処理して、該媒体金属を分離除去する媒体金属分離除去工程をさらに含むことを特徴とする色素増感太陽電池用集電体材料の製造方法。   A molding step of forming a mixed powder of a base metal and a medium metal to obtain a molded body, a sintering step of heating the molded body to obtain a sintered body, and any one of the molding step and the sintering step A dye-sensitized solar cell further comprising a medium metal separation and removal step of separating and removing the medium metal by chemical treatment or physical treatment of the molded body or the sintered body after the step or both steps Manufacturing method for current collector material. 前記化学処理が、酸洗処理であることを特徴とする請求項12記載の色素増感太陽電池用集電体材料の製造方法。   13. The method for producing a current collector material for a dye-sensitized solar cell according to claim 12, wherein the chemical treatment is pickling treatment. 前記物理処理が、揮発分離処理または溶融分離処理であることを特徴とする請求項12記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a current collector material for a dye-sensitized solar cell according to claim 12, wherein the physical treatment is a volatile separation treatment or a melt separation treatment. 前記基体金属が、TiまたはTi合金であることを特徴とする請求項12記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a current collector material for a dye-sensitized solar cell according to claim 12, wherein the base metal is Ti or a Ti alloy. 前記媒体金属が、鉄、鉄−クロム合金、銅、マグネシウム、セレン、カルシウム、亜鉛、カドミニウム、ビスマス、鉛および鉛−スズ合金から選ばれるいずれか1種または2種以上であることを特徴とする請求項12に記載の色素増感太陽電池用集電体材料の製造方法。   The medium metal is any one or more selected from iron, iron-chromium alloy, copper, magnesium, selenium, calcium, zinc, cadmium, bismuth, lead and lead-tin alloy. The manufacturing method of the collector material for dye-sensitized solar cells of Claim 12. 透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる請求項1〜7のいずれか1項に記載の色素増感太陽電池用集電体を備え、電解質が封止されてなる色素増感太陽電池。   A transparent substrate, a conductive substrate serving as a cathode electrode, a porous semiconductor layer that is disposed between or in contact with the transparent substrate and adsorbs a dye, between the transparent substrate and the conductive substrate; A dye-sensitized solar cell current collector according to any one of claims 1 to 7, which is disposed in contact with the opposite side of the transparent semiconductor layer to the transparent substrate and serves as an anode electrode, wherein the electrolyte is sealed A dye-sensitized solar cell. 透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる請求項8〜16のいずれか1項に記載の色素増感太陽電池用集電体材料の製造方法により得られる集電体材料を用いた集電体を備え、電解質が封止されてなる色素増感太陽電池。   A transparent substrate, a conductive substrate serving as a cathode electrode, a porous semiconductor layer that is disposed between or in contact with the transparent substrate and adsorbs a dye, between the transparent substrate and the conductive substrate; It obtains by the manufacturing method of the collector material for dye-sensitized solar cells of any one of Claims 8-16 arrange | positioned in contact with the opposite side to this transparent substrate of a porous semiconductor layer, and becoming an anode pole. A dye-sensitized solar cell including a current collector using a current collector material and having an electrolyte sealed.
JP2012068565A 2011-09-27 2012-03-26 Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell Expired - Fee Related JP5805568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068565A JP5805568B2 (en) 2011-09-27 2012-03-26 Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011210177 2011-09-27
JP2011210177 2011-09-27
JP2012068565A JP5805568B2 (en) 2011-09-27 2012-03-26 Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2013084551A true JP2013084551A (en) 2013-05-09
JP5805568B2 JP5805568B2 (en) 2015-11-04

Family

ID=48529536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068565A Expired - Fee Related JP5805568B2 (en) 2011-09-27 2012-03-26 Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5805568B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534628A (en) * 2011-10-11 2014-12-18 エクセジャー スウェーデン エービーExeger Sweden Ab Method for producing dye-sensitized solar cell and dye-sensitized solar cell produced by the production method
CN107250295A (en) * 2015-02-16 2017-10-13 Xjet有限公司 Titanium ink, its preparation method and the method that titanium article is prepared using it
WO2019181684A1 (en) * 2018-03-19 2019-09-26 東邦チタニウム株式会社 Porous titanium-based sintered compact, method for manufacturing same, and electrode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172848B1 (en) 2017-02-07 2020-11-02 주식회사 엘지화학 Preparation method of long-life electrode for secondary battery
KR102246622B1 (en) 2017-03-02 2021-04-30 주식회사 엘지화학 Preparation method of high-loading electrode for secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028616A (en) * 2004-07-20 2006-02-02 Toho Titanium Co Ltd Porous sintered compact and its production method
JP2008176948A (en) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same
WO2010150461A1 (en) * 2009-06-24 2010-12-29 新日鐵化学株式会社 Dye-sensitized solar cell
JP2011099146A (en) * 2009-11-06 2011-05-19 Mitsubishi Materials Corp Sintered metal sheet material for electrochemical member
JP2012074195A (en) * 2010-09-28 2012-04-12 Nippon Steel Chem Co Ltd Method of manufacturing three-dimensional electrode of dye-sensitized solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028616A (en) * 2004-07-20 2006-02-02 Toho Titanium Co Ltd Porous sintered compact and its production method
JP2008176948A (en) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same
WO2010150461A1 (en) * 2009-06-24 2010-12-29 新日鐵化学株式会社 Dye-sensitized solar cell
JP2011099146A (en) * 2009-11-06 2011-05-19 Mitsubishi Materials Corp Sintered metal sheet material for electrochemical member
JP2012074195A (en) * 2010-09-28 2012-04-12 Nippon Steel Chem Co Ltd Method of manufacturing three-dimensional electrode of dye-sensitized solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534628A (en) * 2011-10-11 2014-12-18 エクセジャー スウェーデン エービーExeger Sweden Ab Method for producing dye-sensitized solar cell and dye-sensitized solar cell produced by the production method
US11264180B2 (en) 2011-10-11 2022-03-01 Exeger Operations Ab Method for manufacturing dye-sensitized solar cells and solar cells so produced
CN107250295A (en) * 2015-02-16 2017-10-13 Xjet有限公司 Titanium ink, its preparation method and the method that titanium article is prepared using it
EP3259321A4 (en) * 2015-02-16 2018-07-04 Xjet Ltd. Titanium inks, methods of making and using the same to make titanium articles
US11059984B2 (en) 2015-02-16 2021-07-13 Xjet Ltd. Titanium inks, methods of making and using the same to make titanium articles
US11753559B2 (en) 2015-02-16 2023-09-12 Xjet Ltd. Titanium inks, methods of making and using the same to make titanium articles
WO2019181684A1 (en) * 2018-03-19 2019-09-26 東邦チタニウム株式会社 Porous titanium-based sintered compact, method for manufacturing same, and electrode
JP2019163503A (en) * 2018-03-19 2019-09-26 東邦チタニウム株式会社 Porous titanium-based sintered body and method for manufacturing same, and electrode
JP7077085B2 (en) 2018-03-19 2022-05-30 東邦チタニウム株式会社 Porous titanium-based sintered body, its manufacturing method, and electrodes

Also Published As

Publication number Publication date
JP5805568B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US20220139635A1 (en) Method for manufacturing dye-sensitized solar cells and solar cells so produced
JP5252488B2 (en) Semiconductor electrode and dye-sensitized photoelectrochemical cell using the same
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5805568B2 (en) Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell
JP5797555B2 (en) Dye-sensitized solar cell
JP2007128895A (en) Solar battery and its manufacturing method
US9251963B2 (en) Dye sensitized solar cell and method for manufacture
KR20080006735A (en) Photovoltaic cell using catalyst supporting carbon nanotube and method for producing the same
JP2014239023A (en) Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery
JP5976354B2 (en) Porous sintered metal and manufacturing method thereof
JP2009266798A (en) Method of manufacturing electrochemical device
WO2013128797A1 (en) Method for manufacturing current collector for dye‐sensitized solar cell comprising porous metal sheet, current collector for dye‐sensitized solar cell comprising porous metal sheet and dye‐sensitized solar cell
JP2015069824A (en) Laminate, anode electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing laminate
Jang et al. 3D (3-dimensional) porous silver nonwoven mats prepared with cellulosic templates and spray equipment for use as supercapacitor current collectors
JP5490229B2 (en) Photoelectrode manufacturing method, dye-sensitized solar cell manufacturing method, photoelectrode and dye-sensitized solar cell
JP4932200B2 (en) Electrode, manufacturing method thereof, and photoelectric conversion element
KR101386148B1 (en) manufacturing method non-sintered TiO2 electrode and the TiO2 electrode thereby
WO2013054487A1 (en) Semiconductor photoelectrode for dye-sensitized photoelectrochemical cell, method for producing said semiconductor photoelectrode, and dye-sensitized photoelectrochemical cell
TW202349735A (en) A solar cell comprising a plurality of porous layers and charge conducting medium penetrating the porous layers
TW201507183A (en) Solar cell and manufacturing method for dye-sensitized solar cell
JP2011171133A (en) Cathode electrode for dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees