JP2014239023A - Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery - Google Patents

Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery Download PDF

Info

Publication number
JP2014239023A
JP2014239023A JP2013185440A JP2013185440A JP2014239023A JP 2014239023 A JP2014239023 A JP 2014239023A JP 2013185440 A JP2013185440 A JP 2013185440A JP 2013185440 A JP2013185440 A JP 2013185440A JP 2014239023 A JP2014239023 A JP 2014239023A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013185440A
Other languages
Japanese (ja)
Inventor
河野 充
Mitsuru Kono
充 河野
桂一郎 志賀
Keiichiro Shiga
桂一郎 志賀
貴彦 吉野
Takahiko Yoshino
貴彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2013185440A priority Critical patent/JP2014239023A/en
Publication of JP2014239023A publication Critical patent/JP2014239023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Powder Metallurgy (AREA)
  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a current collector for a dye-sensitized solar battery which is superior in the capability of allowing an electrolyte to pass therethrough, and enables the achievement of a high power generation efficiency when being used for a dye-sensitized solar battery; method for manufacturing a material thereof; and dye-sensitized solar battery.SOLUTION: A current collector for a dye-sensitized solar battery comprises a porous sintered metallic thin film having a thickness of 5-60 μm and a porosity of 1-80%, and many through-holes isotropically communicating with one another. When folding the porous sintered metallic thin film while stepwise changing the diameter of a mandrel to a smaller one in a cylinder mandrel test, no crack is caused in the outer surface of a portion of the film where the film is folded until the diameter is made 6 mm.

Description

本発明は、色素増感太陽電池用集電体およびその材料の製造方法ならびに色素増感太陽電池に関する。   The present invention relates to a current collector for a dye-sensitized solar cell, a method for producing the current collector, and a dye-sensitized solar cell.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなく電解液を使用した電気化学的なセル構造を持つ点に特徴がある。例えば、透明な導電性ガラス板等の透明導電膜を使用したアノード電極に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)等からなる対極(カソード電極)の間に電解質としてヨウ素溶液等を配置した、簡易な構造を有する。   The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure using an electrolytic solution without using a silicon semiconductor. For example, a porous semiconductor layer such as a titania layer formed by baking titanium dioxide powder or the like on an anode electrode using a transparent conductive film such as a transparent conductive glass plate and adsorbing a pigment to the anode, and a conductive glass plate (conductive A simple structure in which an iodine solution or the like is disposed as an electrolyte between a counter electrode (cathode electrode) made of a conductive substrate).

色素増感太陽電池の発電メカニズムは、以下のとおりである。
受光面である透明導電膜面から入射した光を、多孔質半導体層に吸着された色素が吸収し、電子励起を引き起こし、その励起した電子が半導体へと移動し、導電性ガラスへと導かれる。ついで、対極に戻った電子はヨウ素などの電解液を介して電子を失った色素へと導かれ、色素が再生される。
The power generation mechanism of the dye-sensitized solar cell is as follows.
Light incident from the transparent conductive film surface, which is the light-receiving surface, is absorbed by the dye adsorbed on the porous semiconductor layer, causing electronic excitation, and the excited electrons move to the semiconductor and are guided to the conductive glass. . Next, the electrons that have returned to the counter electrode are led to the dye that has lost the electrons through an electrolyte such as iodine, and the dye is regenerated.

色素増感太陽電池は、シリコン系の太陽電池と比べて材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されており、さらなる低コスト化のため、例えば高価な透明導電膜を省略することが検討されている。なお、透明導電膜は電気抵抗が大きいため、電池の大型化に向かないという問題もあった。   Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are less expensive than silicon-based solar cells and do not require large-scale production facilities. For example, it is considered to omit an expensive transparent conductive film. In addition, since the transparent conductive film has a large electric resistance, there is also a problem that it is not suitable for increasing the size of the battery.

透明導電膜を省略する方法の一つとして、ガラス表面に配置される透明導電膜の代わりに導電性金属からなる配線を施すことが挙げられる。しかし、この場合、入射光の一部は金属配線部分に遮られることとなり、効率の低下を伴う。   One method for omitting the transparent conductive film is to provide a wiring made of a conductive metal instead of the transparent conductive film disposed on the glass surface. However, in this case, a part of the incident light is blocked by the metal wiring part, resulting in a decrease in efficiency.

この点を改善するものとして、例えば、光照射側となる透明導電膜を持たない透明基板に色素担持半導体層を形成し、色素担持半導体層の上に有孔集電電極を配置する光電変換素子が開示されている(特許文献1参照)。有孔集電電極は網目状または格子状の構造であり、多孔質半導体の基板への塗布膜上にこの集電電極を載置して500℃で30分焼成するものとされている。   To improve this point, for example, a photoelectric conversion element in which a dye-carrying semiconductor layer is formed on a transparent substrate that does not have a transparent conductive film on the light irradiation side, and a perforated current collecting electrode is disposed on the dye-carrying semiconductor layer Is disclosed (see Patent Document 1). The perforated current collecting electrode has a network or lattice structure, and is placed on a coating film on a porous semiconductor substrate and fired at 500 ° C. for 30 minutes.

また、例えば、孔を有する集電電極として線径が1μm〜10mmの金網を用い、この金網に多孔質半導体層の材料であるペーストを塗布し、ペーストを焼成して多孔質半導体層を形成した後に、透明導電膜を持たないガラス製透明基板に多孔質半導体層の側を向けて金網を配置する技術が開示されている(特許文献2参照)。   In addition, for example, a wire mesh having a wire diameter of 1 μm to 10 mm is used as a collecting electrode having holes, a paste which is a material of the porous semiconductor layer is applied to the wire mesh, and the paste is baked to form a porous semiconductor layer. Later, a technique has been disclosed in which a wire mesh is disposed with a porous semiconductor layer facing a glass transparent substrate having no transparent conductive film (see Patent Document 2).

しかしながら、これらの技術は、集電電極として予め加工形成された金網あるいはその他の有孔板等を用いるので、金属細線等材料のサイズの制約から、金網等の厚みを薄くすることには限界がある。そのため、金網等の厚みが厚いことに起因し、電解質が金網等を介して多孔質半導体層に移動する際の拡散抵抗が大きくなり、これにより光電変換効率の低下を来たすおそれがある。   However, these technologies use a wire mesh or other perforated plate that has been processed and formed in advance as a current collecting electrode, so there is a limit to reducing the thickness of the wire mesh etc. due to the size limitation of the material such as fine metal wires. is there. Therefore, due to the thick thickness of the wire mesh or the like, the diffusion resistance when the electrolyte moves to the porous semiconductor layer through the wire mesh or the like is increased, which may cause a decrease in photoelectric conversion efficiency.

これに対して、例えば、集電電極として、スパッタリングや蒸着等の方法によってタングステン、チタン、ニッケル等の金属を堆積させ、その後、フォトリソグラフィー等によりパターニングする方法が開示されている(特許文献3参照)。得られる集電電極は、極めて薄い金属膜である。   On the other hand, for example, a method of depositing a metal such as tungsten, titanium, nickel or the like as a collecting electrode by a method such as sputtering or vapor deposition and then patterning by photolithography or the like is disclosed (see Patent Document 3). ). The resulting collector electrode is a very thin metal film.

しかしながら、この方法は、集電電極の製造工程が煩雑である。また、集電電極が過度に薄すぎると、集電電極としての役割、性能に不足を来たすおそれもある。このとき、集電電極を適度の厚膜に形成しようとすると、成膜に時間とコストがかかりすぎるおそれがある。   However, in this method, the manufacturing process of the collecting electrode is complicated. Moreover, when the current collecting electrode is too thin, there is a risk that the role and performance as the current collecting electrode may be insufficient. At this time, if it is attempted to form the current collecting electrode in a moderately thick film, the film formation may take too much time and cost.

一方、金属粉末を焼結させた金属焼結体からなり、内部に分散配置された複数の空孔部を有し、その気孔率が10体積%以上50体積%以下とされ、前記空孔部の平均孔径が1μm以上30μm以下とされており、複数の前記空孔部の一部が表面に開口するように配置されていることを特徴とする電気化学部材用焼結金属シート材が開示されている(特許文献4参照)。電気化学部材用焼結金属シート材は、原料スラリーをグリーンシートに成形したものを焼結して得られる。金属シート材の厚さは、例えば0.03mm以上0.3mm以下程度であるとされる。   On the other hand, it is composed of a sintered metal body obtained by sintering metal powder, and has a plurality of pore portions dispersed and arranged therein, and the porosity thereof is 10% by volume or more and 50% by volume or less. A sintered metal sheet material for an electrochemical member is disclosed in which the average pore diameter is 1 μm or more and 30 μm or less, and a part of the plurality of pores is arranged to open to the surface. (See Patent Document 4). The sintered metal sheet material for electrochemical members is obtained by sintering a raw material slurry formed into a green sheet. The thickness of the metal sheet material is, for example, about 0.03 mm to 0.3 mm.

上記の電気化学部材用焼結金属シート材は、明細書の技術分野の欄の記載振りから見て、電気分解装置の電極板、電気めっき装置の電極、電気二重層キャパシタの集電体、非水電解液2次電池の集電体等の用途における従来技術の不具合を改善することを目的とするものと考えられるが、具体的な開示は無い。また、0.03mm程度の厚みのシート材を得るためには、平均粒子直径が0.015mm以下の金属粉末を用いることになるが、金属粉末がTiの場合には、表面積が大きく表面酸化が大きくなるため焼結不足が生じやすくなり、十分な強度を得ることができず、この製造方法では下限値である0.03mm程度の厚みのシート材を得るのは実際には困難ではないかと思われる。   In view of the description in the technical field column of the specification, the above sintered metal sheet material for an electrochemical member includes an electrode plate for an electrolysis apparatus, an electrode for an electroplating apparatus, a current collector for an electric double layer capacitor, Although it is thought that it aims at improving the malfunction of the prior art in uses, such as a collector of a water electrolyte secondary battery, there is no concrete disclosure. In order to obtain a sheet material having a thickness of about 0.03 mm, a metal powder having an average particle diameter of 0.015 mm or less is used. However, when the metal powder is Ti, the surface area is large and surface oxidation is caused. Since it becomes large, insufficient sintering is likely to occur, and sufficient strength cannot be obtained. In this manufacturing method, it is actually difficult to obtain a sheet material having a thickness of about 0.03 mm which is the lower limit value. It is.

また、原料粉末、バインダー、および水を含む材料からなり気泡が分散形成されたスラリーを調製するスラリー製造工程と、このスラリーからグリーン体を形成するグリーン体形成工程と、このグリーン体を焼結する焼結工程とを有する多孔質焼結体の製造方法であって、グリーン体形成工程が所定の安置工程、凍結固化工程および真空凍結乾燥工程を含む技術が開示されている(特許文献5参照)。スラリー製造工程は、材料を混練してスラリーを調整する混練工程と、スラリーから気泡および溶存ガスを除去する脱泡工程と、このスラリーに添加ガスを導入しながら攪拌することにより、スラリー中に添加ガスからなる気泡核を分散形成する気泡核形成工程と、を有すると、スラリー中に含まれる気体量を精密に制御することができるとされている。チタン粉末を原料とした実施例として、80%を大幅に上回る高い気孔率と、数百μm以上の平均気孔径を有する多孔質焼結体が開示されている。   In addition, a slurry manufacturing process for preparing a slurry made of a material containing a raw material powder, a binder, and water, in which bubbles are dispersed and formed, a green body forming process for forming a green body from the slurry, and sintering the green body A method for producing a porous sintered body having a sintering process, wherein a technique in which the green body forming process includes a predetermined archival process, a freeze-solidification process, and a vacuum freeze-drying process is disclosed (see Patent Document 5). . The slurry manufacturing process is added to the slurry by mixing the materials and adjusting the slurry, removing the bubbles and dissolved gas from the slurry, and stirring while introducing the additive gas into the slurry. It is said that the amount of gas contained in the slurry can be precisely controlled by having a bubble nucleus forming step of dispersing and forming bubble nuclei made of gas. As an example using titanium powder as a raw material, a porous sintered body having a high porosity significantly exceeding 80% and an average pore diameter of several hundred μm or more is disclosed.

また、上記した金属焼結体に関し、本発明者らは、色素増感太陽電池の集電電極として市販の多孔質チタンシート(商品名タイポラス 大阪チタニウム社製 厚み100μm)を用いる技術を開示している(特許文献6参照)。この多孔質チタンシートは多数の孔が等方的に連通する金属多孔体であり、発電効率の向上に寄与する。   In addition, regarding the metal sintered body described above, the present inventors have disclosed a technique of using a commercially available porous titanium sheet (trade name: Typorus, made by Osaka Titanium Co., Ltd., thickness: 100 μm) as a collecting electrode of a dye-sensitized solar cell. (See Patent Document 6). This porous titanium sheet is a porous metal body in which a large number of pores communicate isotropically, and contributes to improvement in power generation efficiency.

特開2001−283941号公報JP 2001-283941 A 特開2007−73505号公報JP 2007-73505 A 特開2005−158470号公報JP 2005-158470 A 特開2011−99146号公報JP 2011-99146 A 特開2010−229432号公報JP 2010-229432 A WO2010/150461WO2010 / 150461

本発明によって解決しようとする問題点は、色素増感太陽電池の集電電極として多孔質焼結金属シートを用いる従来の技術は、発電効率の一層の向上に寄与する上で、さらなる改良が求められる点である。   The problem to be solved by the present invention is that the conventional technique using a porous sintered metal sheet as a collecting electrode of a dye-sensitized solar cell contributes to further improvement in power generation efficiency, and further improvement is required. It is a point.

本発明に係る色素増感太陽電池用集電体は、厚みが5μm〜60μmおよび空隙率が1%〜80%であり、等方的に連通した多数の貫通孔を有し、かつ、円筒マンドレル試験でマンドレルの直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない多孔質焼結金属薄膜からなることを特徴とする。   The current collector for a dye-sensitized solar cell according to the present invention has a thickness of 5 μm to 60 μm, a porosity of 1% to 80%, has a number of isotropically communicating through holes, and a cylindrical mandrel In the test, when the diameter of the mandrel is gradually changed to a smaller one, it is characterized by comprising a porous sintered metal thin film that does not crack on the outer surface of the bent part up to a diameter of 6 mm.

また、本発明に係る色素増感太陽電池用集電体は、前記多孔質焼結金属薄膜の金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることが好ましい。   In the current collector for dye-sensitized solar cell according to the present invention, any one of the porous sintered metal thin films selected from Ti, W, Mo, Rh, Pt and Ta, or 1 of these may be used. It is preferable that it is a seed | species or an alloy containing 2 or more types.

また、本発明に係る色素増感太陽電池は、透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる上記の色素増感太陽電池用集電体を備え、電解質が封止されてなることを特徴とする。   The dye-sensitized solar cell according to the present invention is disposed between a transparent substrate, a conductive substrate serving as a cathode electrode, and between or in contact with the transparent substrate between the transparent substrate and the conductive substrate. A porous semiconductor layer adsorbed with a dye, and the above-described dye-sensitized solar cell current collector that is disposed in contact with the opposite side of the porous semiconductor layer to the transparent substrate and serves as an anode electrode. It is characterized by being sealed.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、以下の(a)、(b)、(c)および(d)の工程を含むことを特徴とする。
(a)基材上に、水素化金属粉末または脱水素金属粉末を含む金属原料、バインダー成分および溶剤成分を含むペースト状組成物を塗工して成膜した後、乾燥して溶剤成分を揮発させて乾燥成形体を得る成形体製造工程
(b)乾燥成形体を基材から剥離する剥離工程
(c)剥離した乾燥成形体を加熱し、バインダー成分を除去する脱バインダー工程
(d)脱バインダー後の乾燥成形体を700℃〜1100℃にて焼結する焼結工程
Moreover, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention is characterized by including the process of the following (a), (b), (c) and (d).
(A) A metal composition containing a metal hydride powder or dehydrogenated metal powder, a paste-like composition containing a binder component and a solvent component is applied onto a substrate, formed into a film, and then dried to volatilize the solvent component. (B) Debinding step for removing the binder component by heating the peeled dry molded body and removing the binder component (d) Debinding process Sintering step of sintering the subsequent dried molded body at 700 ° C to 1100 ° C

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記金属原料が水素化チタン粉末、または金属チタン粉末および水素化チタン粉末の混合物であり、金属原料中の水素化チタン粉末の量が0.1質量%〜100質量%であることが好ましい。   Further, in the method for producing a current collector material for a dye-sensitized solar cell according to the present invention, the metal raw material is titanium hydride powder, or a mixture of metal titanium powder and titanium hydride powder, and hydrogenation in the metal raw material is performed. The amount of titanium powder is preferably 0.1% by mass to 100% by mass.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記基材が、PET(ポリエチレンテレフタレート)であることが好ましい。   Moreover, it is preferable that the said base material is PET (polyethylene terephthalate) in the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記脱バインダー工程において、加熱温度が150℃〜450℃であることが好ましい。   Moreover, it is preferable that the manufacturing temperature of the collector material for dye-sensitized solar cells which concerns on this invention is 150 to 450 degreeC in heating temperature in the said binder removal process.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記脱バインダー工程の加熱雰囲気が、酸化性雰囲気であることが好ましい。   Moreover, it is preferable that the heating atmosphere of the said binder removal process is an oxidizing atmosphere in the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記焼結工程において、乾燥成形体を金属原料と反応しない材質のセッターの上に載置することが好ましい。   Moreover, it is preferable that the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention places the dry molded object on the setter of the material which does not react with a metal raw material in the said sintering process.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、前記焼結工程において、大気圧よりも低い圧力条件下で水素化チタンから水素が乖離する温度に加熱し、水素化チタンに含まれる水素を分離する工程を含むことが好ましい。   Moreover, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention comprises heating to a temperature at which hydrogen desorbs from titanium hydride under a pressure condition lower than atmospheric pressure in the sintering step. It is preferable to include a step of separating hydrogen contained in titanium fluoride.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、水素化チタンに含まれる水素を分離する工程の加熱温度が400℃〜600℃であることが好ましい。   Moreover, it is preferable that the manufacturing temperature of the collector material for dye-sensitized solar cells which concerns on this invention is the heating temperature of the process of isolate | separating the hydrogen contained in titanium hydride is 400 to 600 degreeC.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる上記の色素増感太陽電池用集電体材料の製造方法により得られる集電体材料を用いた集電体を備え、電解質が封止されてなる。   Further, the method for producing a current collector material for a dye-sensitized solar cell according to the present invention includes a transparent substrate, a conductive substrate to be a cathode electrode, and the transparent substrate between the transparent substrate and the conductive substrate. A porous semiconductor layer that is disposed close to or in contact with the dye and adsorbs a dye, and the above-described dye-sensitized solar cell that is disposed in contact with the opposite side of the porous semiconductor layer to the transparent substrate and serves as an anode A current collector using a current collector material obtained by a method for producing a current collector material is provided, and an electrolyte is sealed.

本発明に係る色素増感太陽電池用集電体は、厚みが5μm〜60μmおよび空隙率が1%〜80%であり、等方的に連通した多数の貫通孔を有し、かつ、円筒マンドレル試験でマンドレルの直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない多孔質焼結金属薄膜からなるため、色素増感太陽電池に用いたときに電解質の通液性に優れ、高い発電効率を得ることができる。   The current collector for a dye-sensitized solar cell according to the present invention has a thickness of 5 μm to 60 μm, a porosity of 1% to 80%, has a number of isotropically communicating through holes, and a cylindrical mandrel It was used for a dye-sensitized solar cell because it consists of a porous sintered metal thin film in which cracks do not occur on the outer surface of the bent part up to a diameter of 6 mm when the diameter of the mandrel is bent instead of gradually decreasing in the test. Sometimes the electrolyte has excellent liquid permeability and high power generation efficiency can be obtained.

また、本発明に係る色素増感太陽電池用集電体材料の製造方法は、(a)基材上に、水素化金属粉末または脱水素金属粉末を含む金属原料、バインダー成分および溶剤成分を含むペースト状組成物を塗工して成膜した後、乾燥して溶剤成分を揮発させて乾燥成形体を得る成形体製造工程、(b)乾燥成形体を基材から剥離する剥離工程、(c)剥離した乾燥成形体を加熱し、バインダー成分を除去する脱バインダー工程および(d)脱バインダー後の乾燥成形体を700℃〜1100℃にて焼結する焼結工程を含むため、本発明に係る色素増感太陽電池用集電体を好適に、かつ安価で得ることができ、また、このとき、脱バインダー処理時の酸化汚染、バインダーの有機物成分からの炭素汚染が少ない。   Moreover, the manufacturing method of the collector material for dye-sensitized solar cells which concerns on this invention includes the metal raw material containing a hydrogenated metal powder or a dehydrogenated metal powder on a base material, a binder component, and a solvent component. After forming a film by applying a paste-like composition, drying is performed to volatilize the solvent component to obtain a dried molded body, (b) a peeling process for peeling the dried molded body from the substrate, (c The present invention includes a debinding step for heating the peeled dry molded body to remove the binder component, and (d) a sintering step for sintering the dried molded body after debinding at 700 ° C to 1100 ° C. Such a dye-sensitized solar cell current collector can be suitably and inexpensively obtained, and at this time, there is little oxidation contamination during the binder removal treatment and carbon contamination from the organic component of the binder.

図1は本実施の形態に係る色素増感太陽電池の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a dye-sensitized solar cell according to the present embodiment.

本発明の実施の形態の例(以下、本実施の形態例という。)について、以下に説明する。   An example of an embodiment of the present invention (hereinafter referred to as this embodiment) will be described below.

まず、本実施の形態例に係る色素増感太陽電池用集電体について説明する。
本実施の形態例に係る色素増感太陽電池用集電体(以下、これを単に集電体ということがある。集電体はおおむね集電電極と同義である。)は、厚みが5μm〜60μmおよび空隙率が1%〜80%であり、等方的に連通した多数の貫通孔を有し、かつ、円筒マンドレル試験(円筒マンドレル屈曲試験)でマンドレルの直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない多孔質焼結金属薄膜からなる。
First, the current collector for a dye-sensitized solar cell according to this embodiment will be described.
A collector for a dye-sensitized solar cell according to the present embodiment (hereinafter, this may be simply referred to as a collector. The collector is generally synonymous with a collector electrode) has a thickness of 5 μm to 5 μm. 60 μm and porosity of 1% to 80%, having a large number of isotropically communicating through holes, and gradually changing the diameter of the mandrel to a smaller one in the cylindrical mandrel test (cylindrical mandrel bending test) When bent, it is made of a porous sintered metal thin film that does not crack on the outer surface of the bent portion up to a diameter of 6 mm.

多孔質焼結金属薄膜を用いるため、多孔質半導体層上等に薄膜形成法等で集電体を設ける場合に比べて、集電体の作製作業ひいては色素増感太陽電池の作製作業の煩雑さが大幅に軽減される。   Since a porous sintered metal thin film is used, compared with the case where a current collector is provided on a porous semiconductor layer or the like by a thin film forming method, etc., the current collector preparation work and thus the dye-sensitized solar cell preparation work are more complicated. Is greatly reduced.

多孔質焼結金属薄膜の厚みは、上記のように5μm〜60μmであるが、好ましくは5μm〜50μmであり、さらに好ましくは10μm〜30μmである。多孔質焼結金属薄膜の厚みが5μmを大きく下回ると、厚み方向に存在する粒子数が少なくなり、金属多孔体としての強度が損なわれるおそれがある。一方、多孔質焼結金属薄膜の厚みが60μmを大きく上回ると、色素増感太陽電池に用いたときに、薄膜内部での電解液の流動抵抗が大きくなり薄膜の内部あるいは両面間での電解質の流通性や拡散性が悪くなり、また、多孔質半導体層との密着性や接合力が損なわれる等の問題を生じるおそれがある。なお、多孔質焼結金属薄膜の厚みは平均厚みをいう。   As described above, the thickness of the porous sintered metal thin film is 5 μm to 60 μm, preferably 5 μm to 50 μm, and more preferably 10 μm to 30 μm. When the thickness of the porous sintered metal thin film is significantly less than 5 μm, the number of particles present in the thickness direction is decreased, and the strength as a metal porous body may be impaired. On the other hand, if the thickness of the porous sintered metal thin film greatly exceeds 60 μm, when used in a dye-sensitized solar cell, the flow resistance of the electrolyte solution inside the thin film increases, and the electrolyte inside or between both surfaces of the thin film becomes large. There is a possibility that the flowability and diffusibility are deteriorated, and that the adhesion to the porous semiconductor layer and the bonding force are impaired. The thickness of the porous sintered metal thin film means the average thickness.

多孔質焼結金属薄膜の空隙率は、上記のように1%〜80%であるが、好ましくは30%〜60%である。多孔質焼結金属薄膜の空隙率が1%を大きく下回ると、色素増感太陽電池に用いたときに、薄膜内部での電解液の流動抵抗が大きくなり薄膜の内部あるいは両面間での電解質の流通性や拡散性が悪くなり、薄膜内部での電解質の流通・拡散が不十分となり、これにより、多孔質半導体層への電解質の均一な浸透が損なわれるおそれがある。一方、多孔質焼結金属薄膜の空隙率が80%を大きく上回ると、多孔質半導体層との密着性や接合力が損なわれるおそれがある。また、金属多孔体としての強度が損なわれるおそれがある。また、電極として好適な導電性が得られないおそれがある。なお、用語の定義上、言うまでもなく明らかであるが、空隙率の単位は体積%である。
なお、空隙率は、後で説明する色素増感太陽電池用集電体材料の空隙率と同じ方法で測定する。
As described above, the porosity of the porous sintered metal thin film is 1% to 80%, preferably 30% to 60%. When the porosity of the porous sintered metal thin film is significantly lower than 1%, the flow resistance of the electrolyte solution inside the thin film increases when used in a dye-sensitized solar cell, and the electrolyte inside or between both surfaces of the thin film becomes large. The flowability and diffusibility are deteriorated, and the distribution and diffusion of the electrolyte inside the thin film are insufficient, which may impair the uniform penetration of the electrolyte into the porous semiconductor layer. On the other hand, if the porosity of the porous sintered metal thin film greatly exceeds 80%, the adhesion and bonding strength with the porous semiconductor layer may be impaired. Moreover, there exists a possibility that the intensity | strength as a metal porous body may be impaired. Moreover, there exists a possibility that electroconductivity suitable as an electrode may not be obtained. In addition, it goes without saying that the definition of terms is obvious, but the unit of porosity is volume%.
The porosity is measured by the same method as the porosity of the dye-sensitized solar cell current collector material described later.

多孔質焼結金属薄膜は、円筒マンドレル試験でマンドレル(mandrel:芯棒)の直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない。すなわち、直径6mmは、多孔質焼結金属薄膜を折り曲げた場合に、クラックが入らない条件における、マンドレルの最小直径を意味する。   In the porous sintered metal thin film, when the diameter of a mandrel (mandrel: core rod) is changed to a gradually smaller one in a cylindrical mandrel test and bent, the outer surface of the bent portion does not crack up to a diameter of 6 mm. That is, the diameter of 6 mm means the minimum diameter of the mandrel under the condition that no cracks occur when the porous sintered metal thin film is bent.

円筒マンドレル試験は、JIS―K5600−5−1に定められる方法で行う。マンドレルの直径を徐々に小さいものに代えて折り曲げを繰り返すと、屈曲率の増加に伴い多孔質焼結金属薄膜の外側表面にクラックを生じるに至る。したがって、円筒マンドレル試験は、多孔質焼結金属薄膜の屈曲性あるいは一種の強度を判定する試験ということができる。円筒マンドレル試験において、マンドレルの直径が4mmまでは外側表面にクラックが入らないことが好ましい。マンドレル直径が6mmを大きく上回る条件でクラックが入った場合、色素増感太陽電池に用いたときに、電極としての耐久性が低下するおそれがある。   The cylindrical mandrel test is performed by the method defined in JIS-K5600-5-1. If the bending is repeated while the diameter of the mandrel is gradually reduced, cracks are generated on the outer surface of the porous sintered metal thin film as the bending rate increases. Therefore, the cylindrical mandrel test can be said to be a test for determining the flexibility or a kind of strength of the porous sintered metal thin film. In the cylindrical mandrel test, it is preferable that the outer surface does not crack until the diameter of the mandrel is 4 mm. When a crack occurs under the condition that the mandrel diameter greatly exceeds 6 mm, the durability as an electrode may be lowered when used in a dye-sensitized solar cell.

多孔質焼結金属薄膜は、平均空孔直径が、好ましくは5μm〜25μmであり、さらに好ましくは5μm〜15μmである。多孔質焼結金属薄膜の平均空孔直径が5μmを大きく下回ると、色素増感太陽電池に用いたときに、薄膜内部での電解液の流動抵抗が大きくなり薄膜の内部あるいは両面間での電解質の流通性や拡散性が悪くなり、導電性金属層内部での電解質の流通・拡散が不十分となり、これにより、多孔質半導体層への電解質の均一な浸透が損なわれるおそれがある。一方、多孔質焼結金属薄膜の平均空孔直径が25μmを大きく上回ると、金属多孔体としての強度が損なわれおそれがある。また、平均空孔直径が過度に大きくなると、非空孔部の面積も大きくなるので、薄膜内部の電解質の均一な流通および薄膜の開口から多孔質半導体層への電解質の均一な拡散が阻害されるおそれがある。   The porous sintered metal thin film has an average pore diameter of preferably 5 μm to 25 μm, and more preferably 5 μm to 15 μm. When the average pore diameter of the porous sintered metal thin film is much less than 5 μm, the flow resistance of the electrolyte solution inside the thin film increases when used in a dye-sensitized solar cell, and the electrolyte inside or between both surfaces of the thin film As a result, the flowability and diffusibility of the electrolyte deteriorate, and the distribution / diffusion of the electrolyte inside the conductive metal layer becomes insufficient, which may impair the uniform penetration of the electrolyte into the porous semiconductor layer. On the other hand, if the average pore diameter of the porous sintered metal thin film greatly exceeds 25 μm, the strength of the metal porous body may be impaired. In addition, when the average pore diameter is excessively large, the area of the non-voided portion is also increased, so that the uniform flow of the electrolyte inside the thin film and the uniform diffusion of the electrolyte from the thin film opening to the porous semiconductor layer are hindered. There is a risk.

なお、平均空孔直径は、水銀圧入法により測定するときの値である。水銀圧入式細孔分布測定装置(CARLOERBA INSTRUMENTS社製PascaI 140およびPascal 440、測定可能範囲:比表面積0.1m/g以上、細孔分布0.0034〜400μm)を用いて、圧力範囲0.3kPa〜400kPa、および0.1MPa〜400MPaの範囲で、圧入体積を円筒細孔モデルに従って、側面積として計算し積算して測定する。 The average pore diameter is a value when measured by a mercury intrusion method. Using a mercury intrusion type pore distribution measuring device (Pascal I 140 and Pascal 440 manufactured by CARLOERBA INSTRUMENTS, measurable range: specific surface area 0.1 m 2 / g or more, pore distribution 0.0034 to 400 μm), pressure range 0. In the range of 3 kPa to 400 kPa, and 0.1 MPa to 400 MPa, the press-fitted volume is calculated as a side area according to the cylindrical pore model, integrated and measured.

多孔質焼結金属薄膜は、上記したように、等方的に連通した多数の貫通孔を有する。ここで、等方的に連通するとは、多数の孔が多孔質焼結金属の厚みの方向にのみ、すなわち異方性を有するように連通して貫通孔を形成するだけではなく、多孔質焼結金属の平面に沿った方向にも、すなわち三次元的にあらゆる方向に等方性を有するように連通することをいう。これにより、色素増感太陽電池に用いたときに、薄膜において、電解質がより均一に浸透するとともに、電解質が薄膜の開口から多孔質半導体層へより均一に拡散する。   As described above, the porous sintered metal thin film has a large number of through-holes communicating in an isotropic manner. Here, “isotropically communicating” means not only that a large number of pores communicate with each other only in the direction of the thickness of the porous sintered metal, that is, so as to have anisotropy, so that the through-holes are formed. The term “communication” means to communicate in a direction along the plane of the bonded metal so that it is isotropic in all directions in three dimensions. Thereby, when used in a dye-sensitized solar cell, the electrolyte penetrates more uniformly in the thin film, and the electrolyte diffuses more uniformly from the opening of the thin film into the porous semiconductor layer.

多孔質焼結金属薄膜は、例えば前記した特許文献5の技術のような、スラリー発泡法やこれに準ずる技術を用いたいわゆる発泡金属を用いることができる。ただし、後述する本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法のような、スラリー発泡法等を用いることなくスラリーを形成した、いわば非発泡金属であると、上記した空隙率および平均空孔直径がより好適な範囲の多孔質焼結金属薄膜を得ることができて、より好ましい。   As the porous sintered metal thin film, for example, a so-called foam metal using a slurry foaming method such as the technique of Patent Document 5 described above or a technique equivalent thereto can be used. However, in the case of a non-foamed metal, that is, a slurry formed without using a slurry foaming method, such as the method for producing a current collector material for a dye-sensitized solar cell according to this embodiment to be described later, A porous sintered metal thin film having a more preferable range of porosity and average pore diameter can be obtained, which is more preferable.

多孔質焼結金属薄膜からなる集電体を集電電極として多孔質半導体層と接して色素増感太陽電池に用いたとき、粒子の凝集体である多孔質半導体層との接触面積が大きく、かつ、薄膜の表面の孔に多孔質半導体層の表面の粒子が、いわば噛み合った状態に係合する。これにより、薄膜と多孔質半導体層の接合力が大きい。これに対して、従来の薄膜形成法で形成した導電性金属層を集電体とする場合、貫通孔の開口は、導電性金属層の平面に沿った方向には離散的に配置され、かつ、開口の数にも限界があることが多いため、または、導電性金属層が平滑なシート状に形成されるため、導電性金属層と多孔質半導体層の接合力を大きくとることが難しいことがある。この不具合は、集電体として金網を用いる場合や薄板に加工によって貫通孔を形成する場合においてより顕著である。集電体と多孔質半導体層の接合力が小さいと、例えば500℃程度の加熱による電気的接合工程においてクラックを生じて、集電体と多孔質半導体層が剥離するおそれがある。   When a current collector made of a porous sintered metal thin film is used as a current collecting electrode in contact with the porous semiconductor layer for a dye-sensitized solar cell, the contact area with the porous semiconductor layer, which is an aggregate of particles, is large, In addition, the particles on the surface of the porous semiconductor layer engage with the pores on the surface of the thin film in a so-called meshed state. Thereby, the bonding force between the thin film and the porous semiconductor layer is large. On the other hand, when the conductive metal layer formed by the conventional thin film forming method is used as the current collector, the openings of the through holes are discretely arranged in the direction along the plane of the conductive metal layer, and Because the number of openings is often limited or the conductive metal layer is formed in a smooth sheet, it is difficult to obtain a large bonding force between the conductive metal layer and the porous semiconductor layer. There is. This problem is more noticeable when a wire mesh is used as a current collector or when a through hole is formed in a thin plate by processing. If the bonding force between the current collector and the porous semiconductor layer is small, cracks may be generated in the electrical bonding step by heating at, for example, about 500 ° C., and the current collector and the porous semiconductor layer may be separated.

多孔質焼結金属薄膜は、金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることが、色素増感太陽電池に用いたときに電解質に対する高い耐食性を得、また、高い導電性を得るうえで好ましい。多孔質焼結金属薄膜は、電気伝導率が0.5×10Ω−1・m−1以上であることが好ましい。電気伝導率は4探針法により測定することができる。 The porous sintered metal thin film is a dye-sensitized solar cell in which the metal species is any one selected from Ti, W, Mo, Rh, Pt and Ta, or an alloy containing one or more of these. When it is used, it is preferable for obtaining high corrosion resistance to the electrolyte and obtaining high conductivity. The porous sintered metal thin film preferably has an electric conductivity of 0.5 × 10 3 Ω −1 · m −1 or more. Electrical conductivity can be measured by a four-probe method.

多孔質焼結金属薄膜は、金属原料が水素化金属粉末または脱水素金属粉末を含むことが好ましく、特に好ましくは、金属原料が水素化チタン粉末、脱水素金属粉末または金属チタン粉末および水素化チタン粉末の混合物であり、金属原料中の水素化チタン粉末の量が0.1質量%〜100質量%であることが好ましい。さらに好ましくは、後述する脱水素工程における脱水素のしやすさの点から、0.1〜30%であり、さらに好ましくは、0.1〜10%である。   In the porous sintered metal thin film, the metal raw material preferably contains a hydrogenated metal powder or a dehydrogenated metal powder, and particularly preferably, the metal raw material is a titanium hydride powder, a dehydrogenated metal powder or a metal titanium powder, and titanium hydride. It is a powder mixture, and the amount of titanium hydride powder in the metal raw material is preferably 0.1% by mass to 100% by mass. More preferably, it is 0.1 to 30%, more preferably 0.1 to 10% from the viewpoint of ease of dehydrogenation in the dehydrogenation step described later.

ここで、上記金属チタン粉末は、水素化脱水素法により製造したチタン粉末(以下、「脱水素チタン粉末」という。)、スポンジ金属粉末、ガスアトマイズ金属粉末等が適用できる。脱水素チタン粉末が好ましい。   Here, as the metal titanium powder, titanium powder produced by a hydrodehydrogenation method (hereinafter referred to as “dehydrogenated titanium powder”), sponge metal powder, gas atomized metal powder, and the like can be applied. Dehydrogenated titanium powder is preferred.

なお、多孔質焼結金属薄膜を集電体に用いるとき、ガラス繊維成形体、多孔質アルミナ板等の無機多孔体、耐熱性多孔質プラスチック等の有機多孔体、金属多孔体等を集電体の補助基板として設けてもよい。   When a porous sintered metal thin film is used as a current collector, a glass fiber molded body, an inorganic porous body such as a porous alumina plate, an organic porous body such as a heat-resistant porous plastic, a metallic porous body, etc. It may be provided as an auxiliary substrate.

多孔質焼結金属薄膜の製造方法は、特に限定するものではなく公知の適宜の方法を採用することができるが、次に説明する本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法を用いることが好ましい。   The method for producing the porous sintered metal thin film is not particularly limited, and a known appropriate method can be adopted. However, the current collector for dye-sensitized solar cell according to the present embodiment described below is used. It is preferable to use a material manufacturing method.

以上説明した本実施の形態例に係る色素増感太陽電池用集電体は、色素増感太陽電池用いたときに電解質の通液性に優れるため、高い発電効率を得ることができる。また、本実施の形態例に係る色素増感太陽電池用集電体は、耐屈曲性に優れるため、耐久性が良好である。また、本実施の形態例に係る色素増感太陽電池用集電体は、フレキシブルであり、かつ軽量であるため、これを用いた色素増感太陽電池のフレキシブル化や軽量化を図ることができる。   Since the current collector for a dye-sensitized solar cell according to the present embodiment described above is excellent in liquid permeability of an electrolyte when using a dye-sensitized solar cell, high power generation efficiency can be obtained. Further, the current collector for a dye-sensitized solar cell according to the present embodiment has excellent bending resistance and therefore has excellent durability. In addition, since the dye-sensitized solar cell current collector according to the present embodiment is flexible and lightweight, the dye-sensitized solar cell using the current collector can be made flexible and lightweight. .

次に、本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法について説明する。
本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法は、厚みが5μm〜60μmおよび空隙率が1%〜80%であり、等方的に連通した多数の貫通孔を有し、かつ、円筒マンドレル試験でマンドレルの直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない多孔質焼結金属薄膜からなる本実施の形態例に係る色素増感太陽電池用集電体材料を好適に得ることができるものである。
Next, the manufacturing method of the collector material for dye-sensitized solar cells according to this embodiment will be described.
The manufacturing method of the collector material for dye-sensitized solar cells according to the present embodiment has a thickness of 5 μm to 60 μm and a porosity of 1% to 80%, and has a large number of isotropically communicating through holes. In this embodiment, the cylindrical mandrel test is made of a porous sintered metal thin film that does not crack on the outer surface of the bent part up to a diameter of 6 mm when the mandrel diameter is gradually changed to a smaller one. The current collector material for a dye-sensitized solar cell according to the embodiment can be suitably obtained.

本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法は、以下の(a)、(b)、(c)および(d)の工程を含む。
(a)基材上に、水素化金属粉末または脱水素金属粉末を含む金属原料、バインダー成分および溶剤成分を含むペースト状組成物を塗工して成膜した後、乾燥して溶剤成分を揮発させて乾燥成形体を得る成形体製造工程
(b)乾燥成形体を基材から剥離する剥離工程
(c)剥離した乾燥成形体を加熱し、バインダー成分を除去する脱バインダー工程
(d)脱バインダー後の乾燥成形体を700℃〜1100℃にて焼結する焼結工程
The manufacturing method of the collector material for dye-sensitized solar cells according to this embodiment includes the following steps (a), (b), (c) and (d).
(A) A metal composition containing a metal hydride powder or dehydrogenated metal powder, a paste-like composition containing a binder component and a solvent component is applied onto a substrate, formed into a film, and then dried to volatilize the solvent component. (B) Debinding step for removing the binder component by heating the peeled dry molded body and removing the binder component (d) Debinding process Sintering step of sintering the subsequent dried molded body at 700 ° C. to 1100 ° C.

ペースト状組成物は、水素化金属粉末または脱水素金属粉末を含む金属原料、バインダー成分および溶剤成分を含む。   The paste-like composition includes a metal raw material including a metal hydride powder or a dehydrogenated metal powder, a binder component, and a solvent component.

上記水素化金属粉末または脱水素金属粉末における金属種は、Ti、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることが、色素増感太陽電池に用いたときに電解質に対する高い耐食性を得、また、高い導電性を得る上で好ましい。金属種は、特に好ましくは、Tiであり、具体的には水素化チタン粉末(TiH粉末)または脱水素チタン粉末である。
上記水素化金属粉末は、最大粒径が10μm以下、平均粒径は4〜7μmの微細粉が好ましい。
The metal species in the hydrogenated metal powder or dehydrogenated metal powder is any one selected from Ti, W, Mo, Rh, Pt and Ta, or an alloy containing one or more of these, When used in a sensitized solar cell, it is preferable for obtaining high corrosion resistance to the electrolyte and obtaining high conductivity. The metal species is particularly preferably Ti, specifically, titanium hydride powder (TiH 2 powder) or dehydrogenated titanium powder.
The metal hydride powder is preferably a fine powder having a maximum particle size of 10 μm or less and an average particle size of 4 to 7 μm.

水素化チタン粉末(TiH粉末)は、チタンを水素化処理して脆弱なチタン水素化物とし、これを機械的に粉砕することにより作製されたものである。水素化チタン粉末は、金属チタン粉末と比較して微細粉を得やすいため、薄いチタン多孔体薄膜の製造に適している。また、水素化チタン粉末を用いることで、靱性が高くかつ可撓性の高い、言い換えれば180°折り曲げても折れずに割れないチタン多孔体薄膜を得ることができる。更に、水素化チタン粉末は、金属チタン粉末より焼結性が高く、金属チタン粉末よりも焼結温度を低くすることができるので、焼結工程の設備に対する負荷(過酷度)を低く抑えることが可能となる。 The titanium hydride powder (TiH 2 powder) is produced by hydrogenating titanium to form a brittle titanium hydride and mechanically pulverizing it. The titanium hydride powder is suitable for the production of a thin porous titanium thin film because it is easy to obtain a fine powder as compared with the titanium metal powder. In addition, by using titanium hydride powder, a porous titanium thin film that has high toughness and high flexibility, in other words, that does not break even when bent by 180 ° can be obtained. Furthermore, titanium hydride powder has higher sinterability than metal titanium powder and can lower the sintering temperature than metal titanium powder, so that the load (severity) on the equipment in the sintering process can be kept low. It becomes possible.

また、金属原料の水素化金属粉末としてチタンを用いる場合、多孔質チタン薄膜の空隙率、膜厚を調整するために、水素化チタン粉末または金属チタン粉末と水素化チタン粉末の混合粉末を用いることが好ましい。この場合、金属チタン粉末の粒径は、最大粒径が20μm以下、平均粒径が10μm〜15μmの微細粉が好ましい。金属チタン粉末と水素化チタン粉末の混合比率は、任意に設定することが可能であるが、金属原料中の水素化チタン粉末の量が0.1質量%〜100質量%であることが好ましい。さらに好ましくは、後述する脱水素工程における脱水素のしやすさの点から、0.1〜30%であり、さらに好ましくは、0.1〜10%である。水素化チタン粉末は、金属チタン粉末よりも焼結性が高く、その混合比率によって、得られる多孔質チタン薄膜の空隙率が異なってくる。得たい空隙率によって、最適な混合比率が選ばれる。さらに、この範囲とすることで、靭性の高いチタン多孔体薄膜を得ることができる。金属チタン粉末は脱水素チタン粉末が好ましい。   When titanium is used as the metal hydride powder of the metal raw material, use a titanium hydride powder or a mixed powder of metal titanium powder and titanium hydride powder to adjust the porosity and film thickness of the porous titanium thin film. Is preferred. In this case, the metal titanium powder is preferably a fine powder having a maximum particle size of 20 μm or less and an average particle size of 10 μm to 15 μm. The mixing ratio of the titanium metal powder and the titanium hydride powder can be arbitrarily set, but the amount of the titanium hydride powder in the metal raw material is preferably 0.1% by mass to 100% by mass. More preferably, it is 0.1 to 30%, more preferably 0.1 to 10% from the viewpoint of ease of dehydrogenation in the dehydrogenation step described later. The titanium hydride powder has higher sinterability than the metal titanium powder, and the porosity of the resulting porous titanium thin film varies depending on the mixing ratio. The optimum mixing ratio is selected depending on the porosity to be obtained. Furthermore, the titanium porous body thin film with high toughness can be obtained by setting it as this range. The metal titanium powder is preferably dehydrogenated titanium powder.

金属原料は、水素化金属粉末のほかに、チタン、アルミニウム、バナジウム、ニオブ、ジルコニウム、タンタル、モリブデン、鉄等の金属元素を含み、好ましくは、これらの金属の合金粉末を含む。このような合金粉末として、具体的には、Ti−6質量%Al−4質量%V粉末、Ti−6質量%Al−7質量%Nb粉末、Ti−6質量%Al−2質量%Nb−1質量%Ta粉末、Ti−15質量%Zr−4質量%Nb−4質量%Ta粉末、Ti−3質量%Al−2.5質量%V粉末、Ti−13質量%Nb―13質量%Zr粉末、Ti−15質量%Mo−5質量%Zr−3質量%Al粉末、Ti−12質量%Mo−6質量%Zr−2質量%Fe粉末、Ti−15質量%Mo粉末等が挙げられる。   The metal raw material contains metal elements such as titanium, aluminum, vanadium, niobium, zirconium, tantalum, molybdenum and iron in addition to the metal hydride powder, and preferably contains an alloy powder of these metals. As such alloy powder, specifically, Ti-6 mass% Al-4 mass% V powder, Ti-6 mass% Al-7 mass% Nb powder, Ti-6 mass% Al-2 mass% Nb- 1 mass% Ta powder, Ti-15 mass% Zr-4 mass% Nb-4 mass% Ta powder, Ti-3 mass% Al-2.5 mass% V powder, Ti-13 mass% Nb-13 mass% Zr A powder, Ti-15 mass% Mo-5 mass% Zr-3 mass% Al powder, Ti-12 mass% Mo-6 mass% Zr-2 mass% Fe powder, Ti-15 mass% Mo powder, etc. are mentioned.

なお、上記の最大粒径、平均粒径は、レーザー回折式粒度分布測定装置(ベックマン・コールター社製LA−300)によって求めたものである。   In addition, said maximum particle size and average particle diameter are calculated | required with the laser diffraction type particle size distribution measuring apparatus (LA-300 by the Beckman Coulter company).

バインダー成分は、メチルセルロース系、ポリビニルアルコール系、エチルセルロース系、アクリル系、ポリビニルブチラール系などを用いることができる。また、溶剤成分は、水、エタノール、トルエン、イソプロパノール、ターピネオール、ブチルカルビトール、シクロヘキサン、メチルエチルケトンなどを用いることができる。また、必要に応じて、グリセリン、エチレングリコール等の可塑材やアルキルベンゼンスルホン酸塩等の界面活性材、炭酸水素アンモニウム等の発泡剤をペースト状組成物へ添加してもよい。   As the binder component, methyl cellulose, polyvinyl alcohol, ethyl cellulose, acrylic, polyvinyl butyral, and the like can be used. As the solvent component, water, ethanol, toluene, isopropanol, terpineol, butyl carbitol, cyclohexane, methyl ethyl ketone, or the like can be used. Moreover, you may add plasticizers, such as glycerol and ethylene glycol, surfactants, such as an alkylbenzenesulfonate, and foaming agents, such as ammonium hydrogencarbonate, to a paste-like composition as needed.

前記金属原料、前記バインダー成分と前記溶剤成分を混合し、ペースト状組成物を得る。金属原料、バインダー成分、溶剤成分の混合には、公知の方法を用いることができ、例えば、攪拌機付混合機、回転混合機、三本ロールミルなどが適宜使用できる。なお、混合は、粉砕を同時に行なっても良く、振動ミル、ボールミルなどの粉砕混合機等も使用できる。   The metal raw material, the binder component and the solvent component are mixed to obtain a paste-like composition. A known method can be used for mixing the metal raw material, the binder component, and the solvent component. For example, a mixer with a stirrer, a rotary mixer, a three-roll mill, or the like can be used as appropriate. The mixing may be performed simultaneously with pulverization, and a pulverizing mixer such as a vibration mill and a ball mill can also be used.

多孔質チタン薄膜の空隙率は、上記のチタン原料の粒径、チタン原料の種類、バインダーや発泡剤等の成分と添加量、後述する焼結温度により調整することができる。   The porosity of the porous titanium thin film can be adjusted by the particle size of the titanium raw material, the type of the titanium raw material, the components and addition amount of a binder and a foaming agent, and the sintering temperature described later.

ペースト状組成物を、基材上に塗工して成膜した後、溶剤を蒸発させて、膜状の乾燥成形体を作製する。ペースト状組成物は、例えば、20μm〜80μmの厚みで塗工、成膜する。   The paste-like composition is applied onto a substrate to form a film, and then the solvent is evaporated to produce a film-like dry molded body. The paste-like composition is applied and formed into a film with a thickness of 20 μm to 80 μm, for example.

基材は、剥離工程において乾燥成形体と剥離可能な材料であれば制限はない。例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)等のポリエステル類、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアルコール等のポリビニル類、金属箔、セラミック板等が挙げられるが、安価であるPETが好ましい。   If a base material is a material which can be peeled with a dry molded object in a peeling process, there will be no restriction | limiting. For example, polyesters such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate), polyvinyls such as polyethylene, polypropylene, polystyrene, and polyvinyl alcohol, metal foils, ceramic plates, and the like can be given, but inexpensive PET is preferable.

塗工・成膜方法としては、ドクターブレード法などの粘性組成物を基材上に直接塗工し成膜する方法、リップコーティング法などの粘性組成物を基材上に押出しながら塗工し成膜する方法、オフセット印刷、グラビア印刷などの粘性組成物を転写塗工し成膜する方法のいずれの方法を利用してもよい。例えば、リエアドクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースロールコーター、トランスファロールコーター、グラビアコーター、キスロールコーター、スロットダイコーター、キャストコーター、スプレイコーター、カーテンコーター、カレンダコーター、押出コーター、バーコーター等を用いることができる。中でも、連続的に成膜と乾燥を実施することができるドクターブレード法が好ましい。   Coating / film formation methods include a method in which a viscous composition such as a doctor blade method is directly applied onto a substrate to form a film, and a viscosity composition such as a lip coating method is applied while being extruded onto a substrate. Any of a film forming method, a method of transfer coating a viscous composition such as offset printing, and gravure printing to form a film may be used. For example, riad coater coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, slot die coater, cast coater, spray coater, curtain coater, A calendar coater, an extrusion coater, a bar coater or the like can be used. Among these, the doctor blade method that can continuously perform film formation and drying is preferable.

成膜後の成形体の厚さは、ペースト中に含まれる固体成分の粒径によって調整できる。本発明のように、最大粒径10μmの水素化チタン粉末、または最大粒径20μmの金属チタン粉末をペースト原料として使用することによって、20μmといった薄い膜も製造可能となる。勿論、微細なチタン原料を含むペーストを用いても、ドクターブレードのクリアランスを調整することにより、厚さ50μmや60μmのようなやや厚い膜を製造することも可能である。   The thickness of the molded body after film formation can be adjusted by the particle size of the solid component contained in the paste. By using titanium hydride powder having a maximum particle size of 10 μm or metal titanium powder having a maximum particle size of 20 μm as a paste raw material as in the present invention, a thin film of 20 μm can be produced. Of course, even if a paste containing a fine titanium raw material is used, it is possible to manufacture a slightly thick film having a thickness of 50 μm or 60 μm by adjusting the clearance of the doctor blade.

成膜後の成形体から溶剤成分を揮発させ、乾燥成形体を得る。乾燥工程は、常圧下、減圧下、加圧下のいずれの条件でも可能であるが、溶剤の蒸発が速すぎると乾燥成形体にクラックが入るため、クラックの入らないように温度、圧力及び風量を選び行なう。温度は80℃〜160℃、圧力は大気圧が望ましい。弱い風量を与えることも乾燥効率を高めるために効果的である。なお、加圧下で乾燥する場合は、以下に説明する焼結前成形体のプレス処理を兼ねることになる。   The solvent component is volatilized from the molded body after film formation to obtain a dried molded body. The drying process can be performed under normal pressure, reduced pressure, or pressurized conditions, but if the solvent evaporates too quickly, cracks will form in the dried molded product, so the temperature, pressure, and air volume should be adjusted so that cracks do not occur. Choose. The temperature is preferably 80 ° C. to 160 ° C., and the pressure is preferably atmospheric pressure. Giving a weak air flow is also effective for increasing the drying efficiency. In addition, when drying under pressure, it will serve also as the press processing of the pre-sintering molded object demonstrated below.

乾燥成形体はさらにプレス処理を行ってもよい。プレス処理により、金属粉末間の接触面積が増大するため、ネッキング部位が増える。また、プレス処理の圧力は高いほど、電気伝導度の向上、膜厚の低下、空隙率の低下が起こる。そのため、用途に応じて圧力の条件を選択する必要がある。ただし、プレス圧が低過ぎると金属粉末間の接触面積が増大せず、高すぎると空隙率が適切な範囲を外れて低下し、または金属粉末が塑性変形を起こす。そのため、好ましいプレス圧の範囲は0.1MPa〜100MPaである。また、プレス処理において適切なクッション材を使用することが好ましい。クッション材としては紙、金属箔、シリコン、耐熱性プラスチック、ゴム等、適宜のものを使用することができる。プレス方法は、平板プレス、ロールプレス、真空ラミネーター等、適宜の方法で行うことができる。   The dried molded body may be further pressed. Since the contact area between the metal powders increases due to the press treatment, the number of necking sites increases. Moreover, the higher the pressure of the press treatment, the higher the electrical conductivity, the lower the film thickness, and the lower the porosity. Therefore, it is necessary to select a pressure condition according to the application. However, if the pressing pressure is too low, the contact area between the metal powders does not increase, and if it is too high, the porosity falls outside an appropriate range, or the metal powder undergoes plastic deformation. Therefore, a preferable press pressure range is 0.1 MPa to 100 MPa. Moreover, it is preferable to use a suitable cushion material in a press process. As the cushioning material, an appropriate material such as paper, metal foil, silicon, heat resistant plastic, rubber or the like can be used. The pressing method can be performed by an appropriate method such as a flat plate press, a roll press, or a vacuum laminator.

得られた乾燥成形体から基材を剥離するには、乾燥成形体が破損または変形しない範囲で適宜の方法を採用できるが、例えば、基材と乾燥成形体の間に、圧縮空気を吹き付けるまたは鋭利なナイフ状の材料を差し込むことで、乾燥成形体から基材を一部剥離し、剥離した部分を機械的につまんで基材全体を引き離す方法が挙げられる。   In order to peel the base material from the obtained dry molded body, an appropriate method can be adopted as long as the dry molded body is not damaged or deformed. For example, compressed air is blown between the base material and the dry molded body or By inserting a sharp knife-like material, there is a method in which the substrate is partially peeled from the dried molded body, the peeled portion is mechanically pinched and the entire substrate is pulled apart.

基材を剥離しないで脱バインダー等の加熱を行うと、基材と乾燥成形体の融着、基材の熱変形または基材−乾燥成形体間の熱膨張差による乾燥成形体の変形または破損等が起こるため好ましくない。   If the binder is heated without peeling off the base material, the base material and the dry molded body are fused, the base material is thermally deformed, or the dry molded body is deformed or damaged due to a difference in thermal expansion between the base material and the dry molded body. Etc. are not preferable.

剥離した乾燥成形体は、次の脱バインダー工程及び焼結工程にてTiと反応しない材質からなるセッター(棚板)上に載置することが好ましい。   The peeled dried molded body is preferably placed on a setter (shelf plate) made of a material that does not react with Ti in the next debinding step and sintering step.

セッターは、例えば、BN、ZrO、Alが挙げられる。なお、本実施の形態例からは外れるが、モリブデン、ステンレス等のセッターと乾燥成形体の間にこれらの粉末を敷いてもよい。粉末を敷くことによって、焼結時の乾燥成形体の収縮に伴う材料移動が容易になり、焼結時の乾燥成形体のクラック防止に有効である。 Examples of the setter include BN, ZrO 2 , and Al 2 O 3 . Although not included in this embodiment, these powders may be placed between a setter such as molybdenum or stainless steel and a dry molded body. By laying the powder, the movement of the material accompanying the shrinkage of the dry molded body during sintering becomes easy, which is effective for preventing cracks in the dry molded body during sintering.

セッター上に載置した乾燥成形体は、焼結する前に、焼結温度より低温で加熱することで、乾燥成形体中のバインダー成分、溶剤、結着剤、可塑剤、その他不純物等を分解、蒸発または燃焼によって除去する(脱バインダー工程)。上記加熱は、好ましくは、大気圧よりも低い圧力条件下で行う。また、加熱は、不活性ガス雰囲気または酸化性ガス雰囲気のいずれかのガス雰囲気条件下で行うことが好ましい。不活性ガス雰囲気に用いるガスとしては、アルゴン、ヘリウム等が挙げられる。不活性ガス雰囲気の場合、大気圧よりも高い圧力条件下または大気圧よりも低い圧力条件下のいずれであってもよく、また、ガス流速のある状態であっても良い。これにより、酸化されることなく、靭性の高い色素増感太陽電池用集電体材料を得ることができる。酸化性ガス雰囲気に用いるガスは、酸素原子を1%以上含む気体であり、具体的には空気、酸素、酸素富化空気、酸素ガスと不活性ガスの混合ガス等が挙げられる。酸化性雰囲気での加熱の場合、炭素含有量の低いチタン多孔体薄膜を得ることができるので好ましく、また、空気雰囲気での処理は、コストが安いので好ましい。
また、脱バインダー工程は、プラズマ処理、オゾン処理を併用しても良い。
The dried molded body placed on the setter is heated at a temperature lower than the sintering temperature before sintering to decompose the binder component, solvent, binder, plasticizer, and other impurities in the dried molded body. And removed by evaporation or combustion (debinding step). The heating is preferably performed under a pressure condition lower than atmospheric pressure. Further, the heating is preferably performed under a gas atmosphere condition of either an inert gas atmosphere or an oxidizing gas atmosphere. Examples of the gas used in the inert gas atmosphere include argon and helium. In the case of an inert gas atmosphere, it may be under a pressure condition higher than atmospheric pressure or under a pressure condition lower than atmospheric pressure, or may be in a state with a gas flow rate. Thereby, the collector material for dye-sensitized solar cells with high toughness can be obtained without being oxidized. The gas used in the oxidizing gas atmosphere is a gas containing 1% or more of oxygen atoms. Specific examples thereof include air, oxygen, oxygen-enriched air, and a mixed gas of oxygen gas and inert gas. In the case of heating in an oxidizing atmosphere, a titanium porous thin film having a low carbon content can be obtained, and treatment in an air atmosphere is preferred because of its low cost.
In the binder removal step, plasma treatment and ozone treatment may be used in combination.

脱バインダー時の加熱条件は、使用するバインダー成分によって異なるが、その成分の揮発条件に応じて、150℃〜450℃で0.1時間〜6時間保持することが好ましい。   Although the heating conditions at the time of debinding vary depending on the binder component to be used, it is preferable to hold at 150 to 450 ° C. for 0.1 to 6 hours depending on the volatilization conditions of the component.

脱バインダー時の圧力は、低いほど、有機物成分の分解・蒸発が促進され好ましく、この観点からは、10−2mbar以下が特に好ましい。ただし、加熱により有機物が分解して蒸発すると、真空炉の内部が蒸発した有機物で汚染される。これを防ぐ観点からは、10−2mbarよりも高い圧力、例えば1mbar〜10−1mbarで脱バインダーを行うことが好ましい。この場合、減圧下でアルゴン等の不活性ガスを少量炉内に導入しながら加熱処理することが好ましい。 The lower the pressure at the time of binder removal, the better the decomposition / evaporation of the organic component is preferred. From this viewpoint, 10 −2 mbar or less is particularly preferred. However, when the organic substance is decomposed and evaporated by heating, the inside of the vacuum furnace is contaminated with the evaporated organic substance. From the viewpoint of preventing this, it is preferable to remove the binder at a pressure higher than 10 −2 mbar, for example, 1 mbar to 10 −1 mbar. In this case, it is preferable to perform heat treatment while introducing a small amount of an inert gas such as argon into the furnace under reduced pressure.

脱バインダーは、例えば、脱ワックス機能を有する真空焼結炉(例えば、島津メクテム株式会社の横型真空焼結炉 VHSG30/30/60)を用いた処理が好ましい。脱ワックス機能を有する真空焼結炉では、炉内を1mbar〜10−1mbarの圧力下で、Arガスを炉内に導入することで、蒸発した有機物成分をArガスの流れに沿ってコンデンサーに導くことが可能になる。脱ワックス機能を有する真空焼結炉の使用は、チタン乾燥成形体を酸化させることなく、かつ、炉内の汚染なしに脱バインダー処理を行えるだけでなく、脱バインダーとその後の焼結処理を同一炉で行えるという利点がある。 The binder removal is preferably performed using, for example, a vacuum sintering furnace having a dewaxing function (for example, a horizontal vacuum sintering furnace VHSG 30/30/60 manufactured by Shimadzu Mektem Co., Ltd.). In a vacuum sintering furnace having a dewaxing function, Ar gas is introduced into the furnace under a pressure of 1 mbar to 10 −1 mbar in the furnace, whereby the evaporated organic component is transferred to the condenser along the Ar gas flow. It becomes possible to guide. The use of a vacuum sintering furnace with a dewaxing function not only allows the titanium dry compact to be oxidized and does not contaminate the furnace, but also removes the binder from the sintering process. There is an advantage that it can be done in a furnace.

焼結工程では、脱バインダー後の乾燥成形体を700℃〜1100℃にて焼結する。焼結工程は、乾燥成形体が焼結される(本焼成工程)前に、水素化チタンから脱水素反応により未焼結の乾燥成形体から水素ガスが除去されることが好ましい(脱水素工程)。脱水素工程は、金属チタン粉末及び水素化チタン粉末の混合物中の水素化チタン粉末の割合が、質量比で10%以下のときは省略してもよい。   In the sintering step, the dried molded body after debinding is sintered at 700 ° C to 1100 ° C. In the sintering step, it is preferable that hydrogen gas is removed from the unsintered dry molded body by dehydrogenation reaction from titanium hydride before the dry molded body is sintered (main firing process) (dehydrogenation process). ). The dehydrogenation step may be omitted when the ratio of titanium hydride powder in the mixture of titanium metal powder and titanium hydride powder is 10% or less by mass ratio.

脱水素工程では、バインダー除去工程後の乾燥成形体から脱離(分離)される水素の発生が完全になくなるまで、400℃〜600℃の温度で処理を行うことが好ましい。脱水素に要する時間は、この場合、真空ポンプの到達圧力、排気量、水素化チタンの体積等の条件に応じて適宜選択されるが、例えば0.5時間〜96時間程度である。このとき、発生する水素を効率的に排気するために、アルゴン等の不活性ガス気流下で処理しても良く、また10−1mbar以下の圧力下で処理してもよい。後者の場合、圧力は、より好ましくは、10−3mbar以下である。 In the dehydrogenation step, the treatment is preferably performed at a temperature of 400 ° C. to 600 ° C. until the generation of hydrogen desorbed (separated) from the dried molded body after the binder removal step is completely eliminated. In this case, the time required for dehydrogenation is appropriately selected according to conditions such as the ultimate pressure of the vacuum pump, the displacement, the volume of titanium hydride, and the like, but is, for example, about 0.5 to 96 hours. At this time, in order to efficiently exhaust the generated hydrogen, the treatment may be performed under an inert gas stream such as argon, or may be performed under a pressure of 10 −1 mbar or less. In the latter case, the pressure is more preferably 10 −3 mbar or less.

本焼成工程では、その焼結温度、昇温速度により、多孔質チタン薄膜の空隙率、厚さによって適宜調整する。焼結温度は、700℃〜1100℃の範囲で選択し、0.1時間〜6時間保持する。また、昇温速度は、材料の収縮が昇温に追いつかずに、部分的な不均一収縮が発生し、材料のクラックにつながらないように設定する。例えば、昇温速度は5℃/min以下が好ましい。なお、2℃/min以下では昇温に時間がかかりすぎ経済的ではない。   In this baking process, it adjusts suitably with the porosity and thickness of a porous titanium thin film with the sintering temperature and the temperature increase rate. The sintering temperature is selected in the range of 700 ° C. to 1100 ° C. and held for 0.1 to 6 hours. The rate of temperature rise is set so that the material shrinkage does not catch up with the temperature rise and partial non-uniform shrinkage occurs, leading to cracks in the material. For example, the heating rate is preferably 5 ° C./min or less. In addition, if it is 2 degrees C / min or less, it will take time for temperature rising and it is not economical.

これらの一連の工程は、同一の設備で一つのプロセスとして連続して行ってもよい。
本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法により、靱性が高く、可撓性の高い色素増感太陽電池用集電体材料を得ることができる。これは、焼結性の高い水素化金属の微細粉を原料として用いていること、脱水素工程と本焼成工程を一連の工程で行なうため、例えば、脱水素工程で水素化チタン粉から活性の高い表面を有する純チタンができ、これが大気に曝されて表面が酸化されることなく、そのまま本焼成工程により焼結するためと考えられる。
These series of steps may be continuously performed as one process with the same equipment.
By the method for producing a dye-sensitized solar cell current collector material according to this embodiment, a tough and highly flexible dye-sensitized solar cell current collector material can be obtained. This is because fine hydrogenated metal hydride powder is used as a raw material, and the dehydrogenation step and the main firing step are performed in a series of steps. It is considered that pure titanium having a high surface is formed, and this is directly exposed to the atmosphere to oxidize the surface without being oxidized by the main firing step.

金属原料の種類と本焼成工程の焼結温度を適切に選ぶことによって、望む空隙率の色素増感太陽電池用集電体材料を1回の焼結で得ることができる。なお、バインダー成分の量を増減させることや発泡剤の添加量を増減させることで、色素増感太陽電池用集電体材料の空隙率を制御できる。   By appropriately selecting the kind of metal raw material and the sintering temperature in the main firing step, a current-collecting material for a dye-sensitized solar cell having a desired porosity can be obtained by a single sintering. In addition, the porosity of the collector material for dye-sensitized solar cells can be controlled by increasing / decreasing the amount of the binder component or increasing / decreasing the amount of the foaming agent added.

本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法により、空隙率1%〜80%、厚さ60μm以下の靱性及び可撓性が高くかつ高強度な色素増感太陽電池用集電体材料を得ることができる。   By the method for producing a current collector material for dye-sensitized solar cells according to the present embodiment, the dye-sensitized solar with high porosity and high toughness with a porosity of 1% to 80% and a thickness of 60 μm or less. A battery current collector material can be obtained.

なお、色素増感太陽電池用集電体材料の空隙率は、色素増感太陽電池用集電体材料の厚さと、面積から計算した体積(A)と、質量(W)と、真密度(ρ)より下式により算出する。なお、厚さは、マイクロメータを用い測定する。
空隙率(%)=(1−W/Aρ)×100=(A−W/ρ)/A×100
In addition, the porosity of the collector material for dye-sensitized solar cells is the volume (A), mass (W), true density (calculated from the thickness, area of the collector material for dye-sensitized solar cells) ρ) is calculated by the following formula. The thickness is measured using a micrometer.
Porosity (%) = (1−W / Aρ) × 100 = (A−W / ρ) / A × 100

本焼成工程は、実質的に密閉状態の容器内で行い、焼結前成形体の近傍に炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、焼結する金属粉末より大きい値を持つ金属(以下、ゲッター材という。)を配置して行うことが好ましい。
実質的に密閉状態の容器は、例えば開口が扉で閉止された真空焼成炉等である。
This firing step is performed in a substantially sealed container, and the standard free energy values of carbides and oxides in the vicinity of the green body before sintering are larger than the sintered metal powder in the sintering temperature range. It is preferable to perform by arranging a metal having the following (hereinafter referred to as getter material).
The substantially sealed container is, for example, a vacuum baking furnace whose opening is closed by a door.

ゲッター材を配置した容器中で焼結することで、容器外の酸素の混入を防ぐとともに、容器内の酸素はゲッター材が優先的に反応・消費するので、焼結体の酸化が抑えられるため、より好ましい。ゲッター材の材質は、焼結する金属の種類によって異なるが、例えば金属粉末がチタンの場合は、ゲッター材はTi、ZrまたはHfが好ましい。   Sintering in a container with a getter material prevents oxygen from being mixed outside the container, and oxygen in the container is preferentially reacted and consumed by the getter material, so that oxidation of the sintered body is suppressed More preferable. The material of the getter material varies depending on the type of metal to be sintered. For example, when the metal powder is titanium, the getter material is preferably Ti, Zr or Hf.

以上説明した本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法によれば、本実施の形態例に係る色素増感太陽電池用集電体の材料、言い換えれば、多孔質焼結金属薄膜を好適に得ることができる。   According to the manufacturing method of the current collector material for dye-sensitized solar cell according to the present embodiment described above, the material of the current collector for dye-sensitized solar cell according to the present embodiment, in other words, porous A sintered metal thin film can be suitably obtained.

次に、本実施の形態例に係る色素増感太陽電池10について、図1を参照して説明する。
図1に模式的に示す本実施の形態例に係る色素増感太陽電池10は、透明基板12と、カソード極となる導電性基板14と、透明基板12と導電性基板14の間に、透明基板12に近接してまたは接触して配置され色素を吸着した多孔質半導体層16と、多孔質半導体層16の透明基板12とは反対側に接触して配置されアノード極となる色素増感太陽電池用集電体18を備え、電解質20が封止されてなる。色素増感太陽電池用集電体18は、本実施の形態例に係る色素増感太陽電池用集電体、または、本実施の形態例に係る色素増感太陽電池用集電体材料の製造方法により得られる材料を用いた色素増感太陽電池用集電体である。なお、図1中参照符号22は封止材を示す。
Next, a dye-sensitized solar cell 10 according to this embodiment will be described with reference to FIG.
A dye-sensitized solar cell 10 according to this embodiment schematically shown in FIG. 1 is transparent between a transparent substrate 12, a conductive substrate 14 serving as a cathode electrode, and between the transparent substrate 12 and the conductive substrate 14. A porous semiconductor layer 16 that is disposed in proximity to or in contact with the substrate 12 and adsorbs a dye, and a dye-sensitized sun that is disposed in contact with the opposite side of the porous semiconductor layer 16 to the transparent substrate 12 and serves as an anode. A battery current collector 18 is provided, and an electrolyte 20 is sealed. The dye-sensitized solar cell current collector 18 is a dye-sensitized solar cell current collector according to the present embodiment, or a dye-sensitized solar cell current collector material according to the present embodiment. A current collector for a dye-sensitized solar cell using a material obtained by the method. In FIG. 1, reference numeral 22 denotes a sealing material.

色素増感太陽電池用集電体18以外の色素増感太陽電池10の構成要素については、通常採用される適宜の材料を用い、適宜の方法で作製することができる。   The constituent elements of the dye-sensitized solar cell 10 other than the current collector 18 for the dye-sensitized solar cell can be produced by an appropriate method using an appropriate material that is usually employed.

透明基板12は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよいが、プラスチック板を用いた場合、色素増感太陽電池に柔軟性を付与できるため、好ましい。プラスチック板を用いる場合、例えば、PET、PEN、ポリイミド、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングプラスチックス、メタセシス重合で得られる環状ポリマ等が挙げられる。また、透明基板12上に、ITO(スズをドープした酸化インジウム膜)、FTO(フッ素をド一プした酸化スズ膜)、SnO膜等の透明導電膜や、Ti、W、Mo、Rh、Pt、Ta等の金属細線を設けても良い。 The transparent substrate 12 may be, for example, a glass plate or a plastic plate, but using a plastic plate is preferable because flexibility can be imparted to the dye-sensitized solar cell. When using a plastic plate, for example, PET, PEN, polyimide, cured acrylic resin, cured epoxy resin, cured silicone resin, various engineering plastics, cyclic polymers obtained by metathesis polymerization, and the like can be mentioned. Further, on the transparent substrate 12, a transparent conductive film such as ITO (indium oxide film doped with tin), FTO (tin oxide film doped with fluorine), SnO 2 film, Ti, W, Mo, Rh, You may provide fine metal wires, such as Pt and Ta.

導電性基板14は、透明基板12と同様の基板を用い、基板の電解質20に向けた面の一部に、例えば、ITO、FTO、SnO膜、Ti、W、Mo、Rh、Pt、Ta等の金属膜等の導電膜を積層し、さらに導電膜の上に白金、導電性高分子(ポリアニリン、ポリピロール、ポリチオフェン等)、炭素材料(グラファイト、カーボンブラック、グラフェン、カーボンナノチューブ等)等の触媒膜を設ける。また、透明基板を省略し、金属箔に上記の触媒膜を設けても良い。金属箔は、Fe、SUS、Ti、Cu等が挙げられるが、好ましくは、Tiである。 The conductive substrate 14 is the same substrate as the transparent substrate 12, and is formed on a part of the surface of the substrate facing the electrolyte 20, for example, ITO, FTO, SnO 2 film, Ti, W, Mo, Rh, Pt, Ta A conductive film such as a metal film is laminated, and a catalyst such as platinum, conductive polymer (polyaniline, polypyrrole, polythiophene, etc.), carbon material (graphite, carbon black, graphene, carbon nanotube, etc.) is further formed on the conductive film. A membrane is provided. Further, the transparent substrate may be omitted and the catalyst film may be provided on the metal foil. Examples of the metal foil include Fe, SUS, Ti, and Cu, and Ti is preferable.

多孔質半導体層16は、材料として、ZnOやSnO等適宜のものを用いることができるが、TiOが好ましい。TiO等の微粒子形状は特に限定するものではないが、1nm〜100nm程度が好ましい。
多孔質半導体層16は、TiOのペーストの薄膜を形成した後に、例えば300℃〜550℃の温度で焼成する操作を繰り返して所望の厚膜にすると好ましい。
多孔質半導体層16を構成する微粒子の表面に、色素を吸着する。色素は、400nm〜1000nmの波長領域の少なくとも一部に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素などの金属錯体、シアニン色素などの有機色素を挙げることができる。吸着の方法は特に限定されず、例えば、色素溶液に多孔質半導体層16を形成した色素増感太陽電池用集電体18を浸し微粒子表面に色素を化学吸着させるいわゆる含浸法を用いることができる。
The porous semiconductor layer 16 can be made of any suitable material such as ZnO or SnO 2, but TiO 2 is preferred. The shape of fine particles such as TiO 2 is not particularly limited, but is preferably about 1 nm to 100 nm.
The porous semiconductor layer 16 is preferably formed into a desired thick film by repeating a firing operation at a temperature of, for example, 300 ° C. to 550 ° C. after forming a thin film of TiO 2 paste.
A dye is adsorbed on the surface of the fine particles constituting the porous semiconductor layer 16. The dye has absorption in at least part of the wavelength region of 400 nm to 1000 nm, and examples thereof include metal complexes such as ruthenium dye and phthalocyanine dye, and organic dyes such as cyanine dye. The adsorption method is not particularly limited, and for example, a so-called impregnation method in which a dye-sensitized solar cell current collector 18 in which a porous semiconductor layer 16 is formed in a dye solution is immersed and the dye is chemically adsorbed on the fine particle surface can be used. .

透明基板12と多孔質半導体層16は接触していても、接触していなくてもどちらでもよいが、両者の間隔はなるべく短いほうがよい。色素増感太陽電池用18と導電性基板(対極) 14を接触しないように配置するため、例えば電解質20に対して耐腐食性を有し、かつ、電解質イオンの拡散を妨げないように十分な空孔を有するガラスペーパーなどのスペーサで絶縁する方法もある。色素増感太陽電池用集電体18と導電性基板14の間隔は100μm以 下であることが好ましい。   The transparent substrate 12 and the porous semiconductor layer 16 may or may not be in contact with each other, but the distance between the two is preferably as short as possible. Since the dye-sensitized solar cell 18 and the conductive substrate (counter electrode) 14 are arranged so as not to contact each other, for example, the dye-sensitized solar cell 18 is sufficiently resistant to the electrolyte 20 and does not hinder the diffusion of the electrolyte ions. There is also a method of insulating with a spacer such as glass paper having holes. The distance between the dye-sensitized solar cell current collector 18 and the conductive substrate 14 is preferably 100 μm or less.

電解質20は、特に限定されないが、例えば、ヨウ素、リチウムイオン、イオン液体、t−ブチルピリジン等を含むものであり、ヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからのなる酸化還元体を用いることができる。また、コバルト等の金属錯体を酸化還元対として用いてもよい。また、この酸化還元体を溶解可能な溶媒を含むものであり、例えば、アセトニトリル、γブチロラクトン、プロピオニトリル、エチレンカーボネート、イオン性液体等が挙げられる。   The electrolyte 20 is not particularly limited, but includes, for example, iodine, lithium ions, ionic liquid, t-butylpyridine, and the like. In the case of iodine, an oxidation-reduction body composed of a combination of iodide ions and iodine is used. Can do. Further, a metal complex such as cobalt may be used as the redox pair. Moreover, it contains a solvent capable of dissolving this redox substance, and examples thereof include acetonitrile, γ-butyrolactone, propionitrile, ethylene carbonate, and ionic liquid.

電解質20の注入方法は特に限定されず、例えば封止材22の一部をシールせずに開口部にしておき、その開口部から電解質20を注入し、開口部をシールすることもできる。また、導電性基板14の一部に予め開口部を設けておき、そこから電解質20を注入した後に開口部をシールすることもできる。   The method for injecting the electrolyte 20 is not particularly limited, and for example, a part of the sealing material 22 may be left as an opening, and the electrolyte 20 may be injected from the opening to seal the opening. Alternatively, an opening may be provided in advance in a part of the conductive substrate 14, and the opening may be sealed after injecting the electrolyte 20 therefrom.

透明基板12と導電性基板14との間に電解質20を注入して封止する封止材22は、硬化後の厚みが100μm以下の熱可塑性樹脂シートや、光硬化性樹脂、熱硬化性樹脂等を用いることができる。   The sealing material 22 for sealing by injecting the electrolyte 20 between the transparent substrate 12 and the conductive substrate 14 is a thermoplastic resin sheet having a thickness of 100 μm or less after curing, a photocurable resin, a thermosetting resin. Etc. can be used.

以上説明した本実施の形態例に係る色素増感太陽電池10は、色素増感太陽電池用集電体18が電解質20の通液性に優れて高い発電効率を得ることができる。   In the dye-sensitized solar cell 10 according to the present embodiment described above, the current collector 18 for the dye-sensitized solar cell is excellent in liquid permeability of the electrolyte 20 and high power generation efficiency can be obtained.

なお、上記の本実施の形態例に係る色素増感太陽電池以外の色素増感太陽電池、例えば、透明基板に透明導電膜を設けたものに本実施の形態例に係る色素増感太陽電池の集電体を設けたものや、多孔質半導体層の透明基板とは反対側に接触して配置されるものとは別の部位に1または2以上の集電体が配置されるもの等、色素増感太陽電池全般について本実施の形態例に係る色素増感太陽電池用集電体を適宜用いることができることは言うまでもない。   In addition, the dye-sensitized solar cell other than the dye-sensitized solar cell according to the present embodiment described above, for example, the dye-sensitized solar cell according to the present embodiment is provided on a transparent substrate provided with a transparent conductive film. Dyes such as those provided with current collectors, or those in which one or more current collectors are arranged at a different site from those arranged on the opposite side of the porous semiconductor layer from the transparent substrate Needless to say, the dye-sensitized solar cell current collector according to the present embodiment can be used as appropriate for the entire sensitized solar cell.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this Example.

まず、実施例で用いられる各種特性の測定方法をまとめて説明する。
(最大粒径、平均粒径の測定方法)
最大粒径、平均粒径(体積積算粒度分布における積算粒度で50%の粒径)は、レーザー回折式粒度分布測定装置(ベックマン・コールター社製LA−300)を用い、フローセルに測定試料を投入して測定した。
(厚さの測定方法)
マイクロメータで、得られた多孔質チタン薄膜(長方形)を3方向に等間隔で3箇所、合計9箇所の厚さを測定し、その平均値を求めた。3方向とは、多孔質チタン薄膜の中央部、上辺部、下辺部である。
(空隙率の測定方法)
前記厚さと多孔質チタン薄膜(長方形)の大きさから計算した体積(A)と、測定試料の質量(W)と、チタンの真密度(4.506g/cm)から下式により算出した。
空隙率(%)=(A−W/4.506)/A×100
測定試料の大きさは、ノギスで測定し求めた。
(多孔質チタン薄膜の評価)
<マンドレル試験評価>
得られた多孔質チタン薄膜を、マンドレル試験(円筒形マンドレル法)により評価した。試験はJIS K5600−5−1に従って行った。マンドレルの直径を変え、クラックの発生しないマンドレルの最小直径を求めた。クラック等の発生の有無は目視により確認した。
<酸素含有量、炭素含有量の分析>
水素化チタン粉末、チタン粉末、チタン多孔体の酸素含有量、炭素含有量、それぞれ不活性ガス溶融―赤外線吸収法、燃焼―赤外線吸収法で測定した。
First, measurement methods of various characteristics used in the examples will be described together.
(Maximum particle size, average particle size measurement method)
For the maximum particle size and average particle size (50% particle size in the integrated particle size distribution), use a laser diffraction particle size distribution analyzer (LA-300 manufactured by Beckman Coulter, Inc.) and put the measurement sample into the flow cell. And measured.
(Thickness measurement method)
The thickness of the obtained porous titanium thin film (rectangular shape) was measured at three places at equal intervals in three directions, for a total of nine places, and the average value was obtained. The three directions are the central portion, the upper side portion, and the lower side portion of the porous titanium thin film.
(Measurement method of porosity)
The volume (A) calculated from the thickness and the size of the porous titanium thin film (rectangle), the mass (W) of the measurement sample, and the true density (4.506 g / cm 3 ) of titanium were calculated by the following formula.
Porosity (%) = (A−W / 4.506) / A × 100
The size of the measurement sample was determined by measuring with a caliper.
(Evaluation of porous titanium thin film)
<Evaluation of mandrel test>
The obtained porous titanium thin film was evaluated by a mandrel test (cylindrical mandrel method). The test was conducted according to JIS K5600-5-1. The diameter of the mandrel was changed and the minimum diameter of the mandrel without cracks was determined. The presence or absence of occurrence of cracks was confirmed visually.
<Analysis of oxygen content and carbon content>
Titanium hydride powder, titanium powder, the oxygen content of the porous titanium, a carbon content, inert gas melting, respectively - infrared absorption method, combustion - was measured by an infrared absorption method.

(実施例1)
最大粒径が8μm、平均粒径が5μm、酸素含有量0.22%、炭素含有量0.004%のTiH粉に、ポリビニルブチラール、イソプロピルアルコールを混合し、粘度が1200mPa・Sになるよう調整し、ペースト状組成物を作製した。ペースト状組成物はTiHの濃度が60wt%となるよう配合した。このペースト状組成物を、スロットダイヘッド式コーティングマシーンでPETシートにコーティングし、成形体を作製した。このとき、ペーストの吐出量とPETの走行速度を調整して、成形体厚みが30μmになるように調整した。また、成形体は150℃で乾燥処理を行い、成形体に含まれるイソプロピルアルコールは完全に除去し、乾燥成形体を得た。
Example 1
Polyvinyl butyral and isopropyl alcohol are mixed with TiH 2 powder having a maximum particle size of 8 μm, an average particle size of 5 μm, an oxygen content of 0.22%, and a carbon content of 0.004%, so that the viscosity becomes 1200 mPa · S. The paste-like composition was prepared by adjusting. The pasty composition was blended so that the concentration of TiH 2 was 60 wt%. This pasty composition was coated on a PET sheet with a slot die head type coating machine to produce a molded body. At this time, the paste discharge amount and the running speed of the PET were adjusted so that the thickness of the molded body was 30 μm. Further, the molded body was dried at 150 ° C., and isopropyl alcohol contained in the molded body was completely removed to obtain a dried molded body.

乾燥成形体を、300mm×300mmに切断し、乾燥成形体をPETシートから剥離した。乾燥成形体の一端をつまみ、乾燥成形体と基材のすき間にナイフを差し込むことで、乾燥成形体をPETから剥離させた。PETシートから剥した乾燥成形体を、BN板の上にセットし、大気炉にセットした。3℃/minの昇温速度で300℃まで昇温し、300℃で2時間保持した(脱バインダー工程)。この後、チタン成形体を大気炉から取り出し、真空焼結炉にセットした。炉内を真空排気し、1×10−4mbar以下の高真空で400℃まで昇温した。更に、真空排気システムを油拡散ポンプシステムに切換えて1×10−4mbarの真空度を維持しながら3℃/minの昇温速度で焼成温度800℃まで加熱し、1時間保持した。800℃での保持終了後、炉を冷却し、十分冷却してから、材料を取り出した(本焼成工程)。 The dried molded body was cut into 300 mm × 300 mm, and the dried molded body was peeled from the PET sheet. The dry molded body was peeled from the PET by picking one end of the dry molded body and inserting a knife between the dry molded body and the base material. The dried molded article peeled from the PET sheet was set on a BN plate and set in an atmospheric furnace. The temperature was raised to 300 ° C. at a rate of 3 ° C./min and held at 300 ° C. for 2 hours (debinding step). Thereafter, the titanium compact was taken out from the atmospheric furnace and set in a vacuum sintering furnace. The inside of the furnace was evacuated and heated up to 400 ° C. under a high vacuum of 1 × 10 −4 mbar or less. Further, the vacuum evacuation system was switched to the oil diffusion pump system and heated to a firing temperature of 800 ° C. at a temperature increase rate of 3 ° C./min while maintaining a vacuum degree of 1 × 10 −4 mbar and held for 1 hour. After completion of the holding at 800 ° C., the furnace was cooled and sufficiently cooled, and then the material was taken out (main firing step).

冷却後取出した多孔質チタン薄膜の空隙率、厚さを測定した。酸素含有量は粉末より0.02%増加していたが、炭素含有量は粉末と変わりなかった。マンドレル試験を行った結果、芯棒直径2mmまではクラックの発生が見られなかった。得られた多孔質チタン(A−1)の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表1に示す。   The porosity and thickness of the porous titanium thin film taken out after cooling were measured. The oxygen content was 0.02% higher than the powder, but the carbon content was unchanged from the powder. As a result of the mandrel test, no crack was observed up to a core rod diameter of 2 mm. Table 1 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the obtained porous titanium (A-1).

作製した多孔質チタン(A−1)を10mm×25mmのサイズにカットした。カットした多孔質チタンの5mm×20mmの範囲にチタニアペースト(商品名NanoxideD、ソーラロニクス社製)を印刷し、乾燥後、425℃で30分、空気中で焼成した。焼成後のチタニア上に、さらにチタニアベーストを印刷、焼成する操作を合計3回繰り返し、チタニア層付き多孔質チタン基板を得た。   The produced porous titanium (A-1) was cut into a size of 10 mm × 25 mm. A titania paste (trade name Nanoxide D, manufactured by Solaronics) was printed in the range of 5 mm × 20 mm of the cut porous titanium, dried, and baked in air at 425 ° C. for 30 minutes. On the titania after firing, the operation of further printing and firing titania base was repeated a total of 3 times to obtain a porous titanium substrate with a titania layer.

N719色素(ソーラロニクス社製)のアセトニトリルとt‐ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシート基板を64時間含浸させ、チタニア表面に色素を吸着した。吸着後の基板をアセトニトリルとt‐ブチルアルコールの混合溶媒で洗浄して、色素吸着チタニア層付き多孔質チタン基板を得た。   The prepared porous Ti sheet substrate with a titania layer was impregnated with a mixed solvent solution of N719 dye (manufactured by Solaronics) in acetonitrile and t-butyl alcohol for 64 hours, and the dye was adsorbed on the titania surface. The adsorbed substrate was washed with a mixed solvent of acetonitrile and t-butyl alcohol to obtain a porous titanium substrate with a dye-adsorbed titania layer.

20mm×25mm、厚み20μmのチタン箔を、上記色素吸着チタニア層付き多孔質Tiシート基板のチタニアペースト未製膜面の端部2mmに積層し、取り出し電極付きアノード極を得た。   Titanium foil having a size of 20 mm × 25 mm and a thickness of 20 μm was laminated on the end portion 2 mm of the surface of the porous Ti sheet substrate with the dye-adsorbing titania layer on which no titania paste was formed to obtain an anode electrode with a takeout electrode.

10mm×25mm、厚み50μmのチタン箔の片面に、白金を400nm蒸着させ、Pt触媒層付きTi基板とした。さらに、上記Pt触媒層付きTi基板のPtのない面の端部2mmに20mm×25mm、厚み20μmのチタン箔を積層し、取り出し電極付きカソード極を得た。   On one side of a 10 mm × 25 mm titanium foil having a thickness of 50 μm, platinum was deposited by 400 nm to obtain a Ti substrate with a Pt catalyst layer. Further, a 20 mm × 25 mm titanium foil having a thickness of 20 μm was laminated on the end 2 mm of the Pt-free surface of the Ti substrate with the Pt catalyst layer to obtain a cathode electrode with a takeout electrode.

30mm×40mm、厚み60μmの樹脂シート(SOLARONIX社製、商品名MELTONIX1170−60)を貼合せた30mm×40mm、厚み125μmのPENフィルムの、上記樹脂シート面と、上記取り出し電極付きカソード極のチタン箔面が向き合うように積層した。さらに、上記取り出し電極付き対極のPt触媒層面に、12mm×27mm、厚み50μm、空隙率85%以上のガラスペーパーを積層した。さらに、上記取り出し電極付きアノード極のチタニアペースト未製膜面と、ガラスペーパーに向かい合うように積層した。さらに、30mm×40mm、厚み60μmの上記樹脂シートを貼合せた厚み30mm×40mm、125μmのPENフィルムの、上記樹脂シート面と、上記取り出し電極付きアノード極の色素吸着チタニア層面が向かい合うように積層した。また、カソード電極側のPENフィルムにφ3mmの電解液挿入穴を設けた。これらを温度130℃でロールプレスした。
さらに、上記電解液挿入穴から、ヨウ素、LiIを含むγ-ブチロラクトン溶媒の電解液を減圧注入した後、電解液挿入穴をUV硬化樹脂で封止し、色素増感太陽電池(C−1)を得た。
30 mm x 40 mm, 60 μm thick PEN film bonded with a resin sheet (product name: MELTONIX 1170-60, manufactured by SOLARONIX) The above resin sheet surface and the cathode electrode titanium foil with the take-out electrode Lamination was done so that the faces would face each other. Further, glass paper having a size of 12 mm × 27 mm, a thickness of 50 μm, and a porosity of 85% or more was laminated on the surface of the Pt catalyst layer of the counter electrode with the extraction electrode. Furthermore, it laminated | stacked so that the titania paste non-film-forming surface of the said anode electrode with a taking-out electrode might face glass paper. Further, the PEN film having a thickness of 30 mm × 40 mm and a thickness of 125 μm obtained by laminating the resin sheet having a thickness of 30 mm × 40 mm and a thickness of 60 μm was laminated so that the surface of the dye adsorption titania layer of the anode electrode with the extraction electrode faces each other. . In addition, an electrolyte solution insertion hole of φ3 mm was provided in the PEN film on the cathode electrode side. These were roll-pressed at a temperature of 130 ° C.
Furthermore, after the electrolyte solution of γ-butyrolactone solvent containing iodine and LiI was injected under reduced pressure from the electrolyte solution insertion hole, the electrolyte solution insertion hole was sealed with a UV curable resin, and the dye-sensitized solar cell (C-1) Got.

得られた色素増感太陽電池の光電変換性能を、100mW/cmの強度の擬似太陽光をアノード極側から照射したときのIV曲線を測定して調べた。得られた結果を表2に示す。 The photoelectric conversion performance of the obtained dye-sensitized solar cell was examined by measuring an IV curve when pseudo-sunlight having an intensity of 100 mW / cm 2 was irradiated from the anode electrode side. The obtained results are shown in Table 2.

(実施例2)
スラリー状組成物を用いて、実施例1と同じ設備でPETシートにコーティングする際、ペーストの吐出量とPETの走行速度を調整して、乾燥成形体厚みが60μmになるように調整した以外は、実施例1と同じ手順で、剥離、大気炉での脱バインダー工程、真空焼結炉での本焼成工程を行った。
(Example 2)
When coating a PET sheet with the same equipment as in Example 1 using the slurry composition, except adjusting the discharge amount of the paste and the traveling speed of the PET so that the dry molded body thickness is adjusted to 60 μm. In the same procedure as in Example 1, peeling, debinding step in an atmospheric furnace, and main firing step in a vacuum sintering furnace were performed.

冷却後取出した多孔質チタン薄膜(A−2)の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表1に示す。
実施例1と同様にして色素増感太陽電池(C−2)を得た。結果を表2に示す。
Table 1 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the porous titanium thin film (A-2) taken out after cooling.
A dye-sensitized solar cell (C-2) was obtained in the same manner as in Example 1. The results are shown in Table 2.

(実施例3)
真空焼結炉での本焼成工程の際、焼成温度を、700℃とした以外は、実施例1を同じ手順で、剥離、大気炉での脱バインダーをおこなった。
冷却後取出した多孔質チタン薄膜(A−3)の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表1に示す。
実施例1と同様にして色素増感太陽電池(C−3)を得た。結果を表2に示す。
Example 3
In the main firing step in the vacuum sintering furnace, exfoliation and debinding in an atmospheric furnace were performed in the same manner as in Example 1 except that the firing temperature was set to 700 ° C.
Table 1 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the porous titanium thin film (A-3) taken out after cooling.
A dye-sensitized solar cell (C-3) was obtained in the same manner as Example 1. The results are shown in Table 2.

(実施例4)
TiH濃度が50wt%となるよう配合したペースト状組成物を用いた以外は、実施例2と同様の手順で、ペースト塗工、剥離、脱バインダー工程、本焼成工程を行い多孔質チタン薄膜(A−4)を得た。得られた多孔質チタン薄膜の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表1に示す。
実施例1と同様にして色素増感太陽電池(C−4)を得た。結果を表2に示す。
Example 4
A porous titanium thin film (paste coating, peeling, debinding process, and main firing process were performed in the same procedure as in Example 2 except that a paste-like composition blended so that the TiH 2 concentration was 50 wt% was used. A-4) was obtained. Table 1 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the obtained porous titanium thin film.
In the same manner as in Example 1, a dye-sensitized solar cell (C-4) was obtained. The results are shown in Table 2.

Figure 2014239023
Figure 2014239023

Figure 2014239023
Figure 2014239023

(比較例1)
脱バインダー工程を実施せず、本焼成工程を900℃で実施した以外は、実施例2と同様にして多孔質チタン薄膜(B−1)を得た。得られた多孔質チタン薄膜の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表3に示す。
実施例1と同様にして色素増感太陽電池(D−1)を得た。結果を表4に示す。
(Comparative Example 1)
A porous titanium thin film (B-1) was obtained in the same manner as in Example 2 except that the debinding step was not performed and the main baking step was performed at 900 ° C. Table 3 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the obtained porous titanium thin film.
In the same manner as in Example 1, a dye-sensitized solar cell (D-1) was obtained. The results are shown in Table 4.

(比較例2)
TiH濃度が50wt%となるよう配合したペースト状組成物を用いた以外は、比較例1と同様の手順で、ペースト塗工、剥離、脱バインダー工程、本焼成工程を行い多孔質チタン薄膜(B−2)を得た。得られた多孔質チタン薄膜の空隙率、厚さ、マンドレル試験結果、酸素含有量、炭素含有量を表3に示す。
実施例1と同様にして色素増感太陽電池(D−2)を得た。結果を表4に示す。
(Comparative Example 2)
A porous titanium thin film (paste coating, peeling, debinding process, and main firing process were performed in the same procedure as Comparative Example 1 except that a paste-like composition blended so that the TiH 2 concentration was 50 wt% was used. B-2) was obtained. Table 3 shows the porosity, thickness, mandrel test results, oxygen content, and carbon content of the obtained porous titanium thin film.
In the same manner as in Example 1, a dye-sensitized solar cell (D-2) was obtained. The results are shown in Table 4.

Figure 2014239023
Figure 2014239023

Figure 2014239023
Figure 2014239023

10 色素増感太陽電池
12 透明基板
14 導電性基板
16 多孔質半導体層
18 色素増感太陽電池用集電体
20 電解質
22 封止材
DESCRIPTION OF SYMBOLS 10 Dye-sensitized solar cell 12 Transparent substrate 14 Conductive substrate 16 Porous semiconductor layer 18 Current collector for dye-sensitized solar cell 20 Electrolyte 22 Sealing material

Claims (12)

厚みが5μm〜60μmおよび空隙率が1%〜80%であり、等方的に連通した多数の貫通孔を有し、かつ、円筒マンドレル試験でマンドレルの直径を徐々に小さいものに代えて折り曲げたときに、直径6mmまでは折り曲げ部の外側表面にクラックが入らない多孔質焼結金属薄膜からなる色素増感太陽電池用集電体。   The thickness is 5 μm to 60 μm, the porosity is 1% to 80%, and there are a large number of through holes that are isotropically communicated. In the cylindrical mandrel test, the diameter of the mandrel is gradually changed to a smaller one and bent. Sometimes, a collector for a dye-sensitized solar cell comprising a porous sintered metal thin film that does not crack on the outer surface of the bent portion up to a diameter of 6 mm. 前記多孔質焼結金属薄膜の金属種がTi、W、Mo、Rh、PtおよびTaから選ばれるいずれか1種またはこれらを1種または2種以上含む合金であることを特徴とする請求項1に記載の色素増感太陽電池用集電体。   The metal species of the porous sintered metal thin film is any one selected from Ti, W, Mo, Rh, Pt and Ta, or an alloy containing one or more of these. A current collector for a dye-sensitized solar cell according to 1. 以下の(a)、(b)、(c)および(d)の工程を含むことを特徴とする色素増感太陽電池用集電体材料の製造方法。
(a)基材上に、水素化金属粉末または脱水素金属粉末を含む金属原料、バインダー成分および溶剤成分を含むペースト状組成物を塗工して成膜した後、乾燥して溶剤成分を揮発させて乾燥成形体を得る成形体製造工程
(b)乾燥成形体を基材から剥離する剥離工程
(c)剥離した乾燥成形体を加熱し、バインダー成分を除去する脱バインダー工程
(d)脱バインダー後の乾燥成形体を700℃〜1100℃にて焼結する焼結工程
The manufacturing method of the collector material for dye-sensitized solar cells characterized by including the process of the following (a), (b), (c), and (d).
(A) A metal composition containing a metal hydride powder or dehydrogenated metal powder, a paste-like composition containing a binder component and a solvent component is applied onto a substrate, formed into a film, and then dried to volatilize the solvent component. (B) Debinding step for removing the binder component by heating the peeled dry molded body and removing the binder component (d) Debinding process Sintering step of sintering the subsequent dried molded body at 700 ° C. to 1100 ° C.
前記金属原料が水素化チタン粉末、脱水素チタン粉末または金属チタン粉末および水素化チタン粉末の混合物であり、金属原料中の水素化チタン粉末の量が0.1質量%〜100質量%であることを特徴とする請求項3に記載の色素増感太陽電池用集電体材料の製造方法。   The metal raw material is titanium hydride powder, dehydrogenated titanium powder or a mixture of metal titanium powder and titanium hydride powder, and the amount of titanium hydride powder in the metal raw material is 0.1% by mass to 100% by mass. The manufacturing method of the collector material for dye-sensitized solar cells of Claim 3 characterized by these. 前記基材が、PETであることを特徴とする請求項3に記載の色素増感太陽電池用集電体材料の製造方法。   The said base material is PET, The manufacturing method of the collector material for dye-sensitized solar cells of Claim 3 characterized by the above-mentioned. 前記脱バインダー工程において、加熱温度が150℃〜450℃であることを特徴とする請求項3に記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a current collector material for a dye-sensitized solar cell according to claim 3, wherein, in the debinding step, a heating temperature is 150C to 450C. 前記脱バインダー工程において、加熱雰囲気が酸化性雰囲気であることを特徴とする請求項3に記載の色素増感太陽電池用集電体材料の製造方法。   In the said binder removal process, heating atmosphere is oxidizing atmosphere, The manufacturing method of the collector material for dye-sensitized solar cells of Claim 3 characterized by the above-mentioned. 前記焼結工程において、乾燥成形体を金属原料と反応しない材質のセッターの上に載置することを特徴とする請求項3に記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a current collector material for a dye-sensitized solar cell according to claim 3, wherein, in the sintering step, the dried molded body is placed on a setter made of a material that does not react with the metal raw material. 前記焼結工程において、大気圧よりも低い圧力条件下で水素化チタンから水素が乖離する温度に加熱し、水素化チタンに含まれる水素を分離する工程を含むことを特徴とする請求項4に記載の色素増感太陽電池用集電体材料の製造方法。   5. The sintering step includes a step of separating hydrogen contained in titanium hydride by heating to a temperature at which hydrogen detaches from titanium hydride under a pressure condition lower than atmospheric pressure. The manufacturing method of the collector material for dye-sensitized solar cells of description. 水素化チタンに含まれる水素を分離する工程の加熱温度が400℃〜600℃であることを特徴とする請求項9に記載の色素増感太陽電池用集電体材料の製造方法。   The method for producing a collector material for a dye-sensitized solar cell according to claim 9, wherein the heating temperature in the step of separating hydrogen contained in titanium hydride is 400C to 600C. 透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる請求項1または2のいずれか1項に記載の色素増感太陽電池用集電体を備え、電解質が封止されてなる色素増感太陽電池。   A transparent substrate, a conductive substrate serving as a cathode electrode, a porous semiconductor layer that is disposed between or in contact with the transparent substrate and adsorbs a dye, between the transparent substrate and the conductive substrate; 3. The dye-sensitized solar cell current collector according to claim 1, which is disposed in contact with the opposite side of the transparent semiconductor layer to the transparent substrate and serves as an anode electrode, wherein the electrolyte is sealed A dye-sensitized solar cell. 透明基板と、カソード極となる導電性基板と、該透明基板と該導電性基板の間に、該透明基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層の該透明基板とは反対側に接触して配置されアノード極となる請求項3〜10のいずれか1項に記載の色素増感太陽電池用集電体材料の製造方法により得られる集電体材料を用いた集電体を備え、電解質が封止されてなる色素増感太陽電池。

A transparent substrate, a conductive substrate serving as a cathode electrode, a porous semiconductor layer that is disposed between or in contact with the transparent substrate and adsorbs a dye, between the transparent substrate and the conductive substrate; It obtains with the manufacturing method of the collector material for dye-sensitized solar cells of any one of Claims 3-10 arrange | positioned in contact with the opposite side to this transparent substrate of a porous semiconductor layer, and becoming an anode pole. A dye-sensitized solar cell including a current collector using a current collector material and having an electrolyte sealed.

JP2013185440A 2012-09-07 2013-09-06 Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery Pending JP2014239023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185440A JP2014239023A (en) 2012-09-07 2013-09-06 Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012196694 2012-09-07
JP2012196694 2012-09-07
JP2013098886 2013-05-08
JP2013098886 2013-05-08
JP2013185440A JP2014239023A (en) 2012-09-07 2013-09-06 Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2014239023A true JP2014239023A (en) 2014-12-18

Family

ID=52136010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185440A Pending JP2014239023A (en) 2012-09-07 2013-09-06 Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2014239023A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065968A (en) * 2012-09-07 2014-04-17 Toho Titanium Co Ltd Porous titanium thin film and method of fabricating the same
JP2017537225A (en) * 2014-10-31 2017-12-14 成都易態科技有限公司 Flexible porous metal foil and method for producing the same
CN110899703A (en) * 2019-11-20 2020-03-24 南京工业大学 Preparation method of high-porosity metal film
WO2022075038A1 (en) 2020-10-05 2022-04-14 東邦チタニウム株式会社 Production method for porous metal body, and porous metal body
JP7300022B1 (en) 2022-01-31 2023-06-28 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
JP7300023B1 (en) 2022-01-31 2023-06-28 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
EP4292731A1 (en) * 2022-06-17 2023-12-20 Element 22 GmbH Method for producing layered sheet structures from titanium or titanium alloys for use in electrodes of pem-type electrolyzers and/or fuel cells
KR20240063946A (en) 2021-12-27 2024-05-10 도호 티타늄 가부시키가이샤 Titanium porous body and method for producing the titanium porous body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065968A (en) * 2012-09-07 2014-04-17 Toho Titanium Co Ltd Porous titanium thin film and method of fabricating the same
JP2017537225A (en) * 2014-10-31 2017-12-14 成都易態科技有限公司 Flexible porous metal foil and method for producing the same
CN110899703A (en) * 2019-11-20 2020-03-24 南京工业大学 Preparation method of high-porosity metal film
CN110899703B (en) * 2019-11-20 2022-07-05 南京工业大学 Preparation method of high-porosity metal film
WO2022075038A1 (en) 2020-10-05 2022-04-14 東邦チタニウム株式会社 Production method for porous metal body, and porous metal body
KR20240063946A (en) 2021-12-27 2024-05-10 도호 티타늄 가부시키가이샤 Titanium porous body and method for producing the titanium porous body
JP7300023B1 (en) 2022-01-31 2023-06-28 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
WO2023145374A1 (en) * 2022-01-31 2023-08-03 東邦チタニウム株式会社 Titanium porous body, and titanium porous body manufacturing method
WO2023145375A1 (en) * 2022-01-31 2023-08-03 東邦チタニウム株式会社 Titanium porous body, and titanium porous body manufacturing method
JP2023111138A (en) * 2022-01-31 2023-08-10 東邦チタニウム株式会社 Titanium porous body and production method of the same
JP2023111139A (en) * 2022-01-31 2023-08-10 東邦チタニウム株式会社 Titanium porous body and production method of the same
JP7300022B1 (en) 2022-01-31 2023-06-28 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
EP4292731A1 (en) * 2022-06-17 2023-12-20 Element 22 GmbH Method for producing layered sheet structures from titanium or titanium alloys for use in electrodes of pem-type electrolyzers and/or fuel cells
WO2023242430A1 (en) * 2022-06-17 2023-12-21 Element 22 GmbH Method for producing layered sheet structures from titanium or titanium alloys for use in electrodes of pem-type electrolyzers and/or fuel cells

Similar Documents

Publication Publication Date Title
JP2014239023A (en) Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery
Chen et al. Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet
Kim et al. Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells
Joshi et al. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells
TWI506800B (en) Pigment sensitized solar cell and its manufacturing method
EP2625703B1 (en) Method for manufacture of an improved dye- sensitized solar cell
Gong et al. Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells
JP5797555B2 (en) Dye-sensitized solar cell
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
JP5252488B2 (en) Semiconductor electrode and dye-sensitized photoelectrochemical cell using the same
CN108447695B (en) Preparation method of foldable paper-based micro supercapacitor
WO2004109840A1 (en) Electrode, method of forming the same, photoelectric conversion device, process for producing the same, electronic apparatus and process for producing the same
Dileep et al. Room-temperature curable carbon cathode for hole-conductor free perovskite solar cells
JP5805568B2 (en) Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell
Cai et al. Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells
US8992635B2 (en) Distortion-free screen-printed anodes on Ta/Nb sheet
Ito et al. Porous carbon layers for counter electrodes in dye-sensitized solar cells: Recent advances and a new screen-printing method
Parvazian et al. Photovoltaic characterization and electrochemical impedance spectroscopy analysis of dye-sensitized solar cells based on composite TiO 2–MWCNT photoelectrodes
WO2013128797A1 (en) Method for manufacturing current collector for dye‐sensitized solar cell comprising porous metal sheet, current collector for dye‐sensitized solar cell comprising porous metal sheet and dye‐sensitized solar cell
Kim et al. Low-temperature-fabricated ZnO, AZO, and SnO 2 nanoparticle-based dye-sensitized solar cells
Yilmaz et al. Dye-sensitized solar cells using carbon nanotube-based counter electrodes in planar and micro-array patterned configurations
JP2015069824A (en) Laminate, anode electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing laminate
Park et al. Synthesis and characterization of dye-sensitized solar cell using photoanode of TiO 2 nanoparticles/Ti-mesh electrode
Wang et al. A simple method to synthesize low-cost carbon modified TiO2 counter electrodes for high-efficiency dye-sensitized solar cells
WO2011145229A1 (en) Process for production of photoelectrode, process for production of dye-sensitized solar cell, photoelectrode, and dye-sensitized solar cell