JP5976354B2 - Porous sintered metal and manufacturing method thereof - Google Patents

Porous sintered metal and manufacturing method thereof Download PDF

Info

Publication number
JP5976354B2
JP5976354B2 JP2012068564A JP2012068564A JP5976354B2 JP 5976354 B2 JP5976354 B2 JP 5976354B2 JP 2012068564 A JP2012068564 A JP 2012068564A JP 2012068564 A JP2012068564 A JP 2012068564A JP 5976354 B2 JP5976354 B2 JP 5976354B2
Authority
JP
Japan
Prior art keywords
metal
porous
sintered
porous sintered
sintered metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068564A
Other languages
Japanese (ja)
Other versions
JP2013082990A (en
Inventor
貴彦 吉野
貴彦 吉野
佐々木 健了
健了 佐々木
河野 充
充 河野
菅原 智
智 菅原
治 叶野
治 叶野
茂久 竹中
茂久 竹中
藤井 秀樹
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel Corp filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012068564A priority Critical patent/JP5976354B2/en
Publication of JP2013082990A publication Critical patent/JP2013082990A/en
Application granted granted Critical
Publication of JP5976354B2 publication Critical patent/JP5976354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔質焼結金属およびその製造方法に関する。   The present invention relates to a porous sintered metal and a method for producing the same.

鉄あるいは非鉄金属を加工する鋳鍛造等の素形材産業は、川下の機械組み立て産業に機械部品等を供給する重要な産業分野である。中でも、多孔質金属は、緻密金属では限界のある機械部品等の軽量化を実現できる材料として注目を集めており、近年、製造技術の研究開発が進みつつある。多孔質金属は、軽量化を実現できるだけではなく、比表面積が大きい構造のため、高いエネルギー吸収能、熱交換容量、断熱特性、吸音特性等を有する機能性材料としても有望である。現在、多孔質金属の構造、製造技術は種々あり、これによって期待される特性も多岐に亘る。従って使用目的に適合する多孔質構造の制御技術、加工技術の開発が望まれている。   The raw material industry such as cast forging for processing ferrous or non-ferrous metals is an important industrial field for supplying machine parts and the like to the downstream machine assembly industry. Among these, porous metals are attracting attention as materials that can realize weight reduction of mechanical parts and the like, which are limited by dense metals, and in recent years, research and development of manufacturing techniques are being advanced. Porous metal not only realizes weight reduction, but also has a large specific surface area, and therefore is promising as a functional material having high energy absorption capacity, heat exchange capacity, heat insulation characteristics, sound absorption characteristics, and the like. At present, there are various structures and manufacturing techniques for porous metals, and various properties are expected accordingly. Therefore, it is desired to develop a porous structure control technique and processing technique suitable for the purpose of use.

多孔質金属は、金属の種類に応じて機械的、物理的、熱的および電気的に様々な特徴を有するだけでなく、空孔の構造、大きさおよび数がその特性を左右する。例えば、構造体の内外を連通する多数の空孔を有する多孔質金属では、その比表面積を大きくすることができ、従ってその特徴を生かしてエネルギー吸収材料、電極材料、フィルター材料などの用途展開が期待される。加えて、高機能化の実現とともに、より板厚の薄い多孔質金属が開発されれば、多孔質金属の利用範囲が拡大すると考えられる。   Porous metals not only have various mechanical, physical, thermal, and electrical characteristics depending on the type of metal, but also the structure, size, and number of pores influence their properties. For example, a porous metal having a large number of pores communicating with the inside and outside of the structure can increase the specific surface area, and therefore, the application development of energy absorbing materials, electrode materials, filter materials, etc. can be made by utilizing the characteristics. Be expected. In addition, with the realization of high functionality, if a porous metal with a thinner plate thickness is developed, it is considered that the range of use of the porous metal is expanded.

多孔質金属は種々の方法により製造されるが、例えば太陽電池用電極や薄膜フィルター等の用途において望ましい板厚が数十μm以下のような極薄い厚みの多孔質金属については、製造が極めて難しい。
なお、上記した用途に例えばスポンジ金属や金属不織布を用いることも考えられるが、製造プロセス上の制約や不織布を構成する金属細線のサイズの制約から、上記のような薄い厚みのものを製造することは困難である。
従って、一旦厚膜の多孔質金属を製造し、それを切削や研磨により用途等に応じた所望の厚みに薄膜化する必要がある。しかし、薄膜化時に発生する応力により空孔の構造が変わるおそれがある等、薄膜の多孔質金属を欠陥なく製造することは技術的に極めて困難である。
Porous metal is produced by various methods, but it is extremely difficult to produce a porous metal having an extremely thin thickness such as a desirable plate thickness of several tens of μm or less in applications such as solar cell electrodes and thin film filters. .
In addition, although it is conceivable to use, for example, a sponge metal or a metal nonwoven fabric for the above-mentioned use, it is necessary to produce a thin product as described above due to restrictions on the manufacturing process and the size of the fine metal wire constituting the nonwoven fabric. It is difficult.
Therefore, it is necessary to once manufacture a thick porous metal and reduce it to a desired thickness according to the application by cutting or polishing. However, it is technically very difficult to manufacture a thin-film porous metal without defects, such as the possibility that the structure of the pores may change due to the stress generated when the film is thinned.

例えば、金属箔の構成材料と異質の材料からなる被覆体を、キャリア箔上に0.001〜1μmの厚さで形成し、その上に前記金属箔の構成材料を電解めっきによって電析させて金属箔を形成する多孔質金属箔の製造方法が開示されている(特許文献1)。得られる多孔質金属箔は、直径0.01〜200μmの微細孔を多数有し、微細孔の存在密度が5〜10000個/cm 2 で、厚さが1〜100μmであり、非水電解液二次電池用負極として用いられる。
しかし、この場合、金属箔をキャリア箔および被覆体から剥離して用いるとき、極薄膜である金属箔が自立性に欠け、言い換えれば、形状を保持できるだけの剛性に欠けるため、金属箔のハンドリングに難があり、一方、自立性を有する程度の厚みの金属箔を得るには電解めっきプロセスは必ずしも実用的ではない。また、電気メッキのような、原子を堆積させる手法により形成した薄膜は高い空孔率と大きな空孔を両立させることが困難になる。
For example, a covering made of a material different from the constituent material of the metal foil is formed on the carrier foil with a thickness of 0.001 to 1 μm, and the constituent material of the metal foil is electrodeposited thereon by electrolytic plating. The manufacturing method of the porous metal foil which forms metal foil is disclosed (patent document 1). The resulting porous metal foil has a large number of micropores having a diameter of 0.01 to 200 μm, a density of micropores of 5 to 10,000 / cm 2 , a thickness of 1 to 100 μm, and a non-aqueous electrolyte. Used as a negative electrode for secondary batteries.
However, in this case, when the metal foil is peeled off from the carrier foil and the cover, the metal foil that is an ultrathin film lacks self-supporting property, in other words, lacks rigidity enough to hold the shape. On the other hand, the electroplating process is not always practical for obtaining a metal foil having a thickness that is self-supporting. In addition, it is difficult for a thin film formed by a technique of depositing atoms such as electroplating to achieve both a high porosity and a large porosity.

また、例えば、球状ガスアトマイズチタン粉末を焼結して形成された板状の多孔質体からなり、該多孔質体の板厚が500μm以下のチタン粉末焼結体が開示されている(特許文献2)。チタン粉末焼結体は、球状ガスアトマイズチタン粉末の平均粒径が150μm以下、多孔質体の空隙率が35〜55%であり、曲げ加工することにより円筒状フィルターや分散板等に使用される。
しかし、実施例として示されるチタン粉末焼結体は厚みが100〜600μmであり、これは円筒状フィルター等の用途上、一定の強度を持つのに必要な厚みと解されるが、このことは、同時に、数十μm以下の薄膜は機械的強度が極めて低く、作製が困難であること、特にチタンは酸化および窒化しやすいため機械的強度が特に低いことが考えられる。
Further, for example, a titanium powder sintered body made of a plate-like porous body formed by sintering spherical gas atomized titanium powder and having a thickness of 500 μm or less is disclosed (Patent Document 2). ). The titanium powder sintered body has an average particle diameter of spherical gas atomized titanium powder of 150 μm or less and a porosity of the porous body of 35 to 55%, and is used for a cylindrical filter, a dispersion plate or the like by bending.
However, the titanium powder sintered body shown as an example has a thickness of 100 to 600 μm, which is understood to be a thickness necessary to have a certain strength for applications such as a cylindrical filter. At the same time, it is conceivable that a thin film of several tens of μm or less has extremely low mechanical strength and is difficult to produce. In particular, titanium is easily oxidized and nitrided, so that mechanical strength is particularly low.

また、金属粉末を焼結させた金属焼結体からなり、内部に分散配置された複数の空孔部を有し、その気孔率が10体積%以上50体積%以下とされ、前記空孔部の平均孔径が1μm以上30μm以下とされており、複数の前記空孔部の一部が表面に開口するように配置されていることを特徴とする電気化学部材用焼結金属シート材が開示されている(特許文献3)。電気化学部材用焼結金属シート材は、原料スラリーをグリーンシートに成形したものを焼結して得られ、電極や集電体等の電気化学部材として用いられる。
しかし、グリーンシートをハンドリングする上記の電気化学部材用焼結金属シート材の製造方法では、数十μm以下のような極薄い厚みのシート材を得るには限界があるものと思われる。
Further, it is made of a metal sintered body obtained by sintering metal powder, and has a plurality of pore portions dispersed and arranged therein, and the porosity thereof is 10% by volume or more and 50% by volume or less. A sintered metal sheet material for an electrochemical member is disclosed in which the average pore diameter is 1 μm or more and 30 μm or less, and a part of the plurality of pores is arranged to open to the surface. (Patent Document 3). The sintered metal sheet material for electrochemical members is obtained by sintering a material slurry formed into a green sheet, and is used as an electrochemical member such as an electrode or a current collector.
However, the above-described method for producing a sintered metal sheet material for electrochemical members that handles a green sheet seems to have a limit in obtaining a sheet material having an extremely thin thickness of several tens of μm or less.

特開2005−129264号公報JP 2005-129264 A 特開2002−317207号公報JP 2002-317207 A 特開2011−099146号公報JP 2011-099146 A

解決しようとする問題点は、従来の多孔質金属の製造法では、用途に応じた数十μm以下の極薄い厚みであって、所望の多孔質構造を有する多孔質金属を得ることは容易ではないと考えられる点である。   The problem to be solved is that the conventional method for producing a porous metal has an extremely thin thickness of several tens of μm or less depending on the application, and it is not easy to obtain a porous metal having a desired porous structure. It is a point considered not to be.

本発明に係る多孔質焼結金属は、厚みが5〜30μm、空隙率が25〜70%および平均空孔直径が0.2〜40μmであり、多数の孔が等方的に連通した貫通孔であることを特徴とする。   The porous sintered metal according to the present invention has a thickness of 5 to 30 μm, a porosity of 25 to 70%, an average pore diameter of 0.2 to 40 μm, and a through hole in which a large number of holes are connected isotropically. It is characterized by being.

また、本発明に係る多孔質焼結金属の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含むことを特徴とする。   In the method for producing a porous sintered metal according to the present invention, a slurry-like composition containing a metal powder and a solvent is formed on a base material that is soluble in an acid to obtain a pre-sintered compact. Including a pre-sintered green body forming step, a sintering step of sintering the pre-sintered green body to obtain a sintered body, and a base material removing step of separating and removing the base material from the sintered body with an acid. Features.

また、本発明に係る多孔質焼結金属の製造方法は、好ましくは、前記基材がFeまたはFeを含む合金で形成されることを特徴とする。   The method for producing a porous sintered metal according to the present invention is preferably characterized in that the base material is formed of Fe or an alloy containing Fe.

また、本発明に係る多孔質焼結金属の製造方法は、好ましくは、前記焼結工程を、実質的に密閉状態の容器内で行い、炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、前記金属粉末より大きい値を持つ金属を前記焼結前成形体の近傍に配置することを特徴とする。   Further, in the method for producing a porous sintered metal according to the present invention, preferably, the sintering step is performed in a substantially sealed container, and the standard free energy value of carbide and oxide is determined by sintering. In the temperature range, a metal having a value larger than that of the metal powder is disposed in the vicinity of the green body before sintering.

また、本発明に係る多孔質焼結金属の製造方法は、好ましくは、前記金属がTi、ZrおよびHfから選ばれる1種もしくは2種以上、またはこれらの合金であることを特徴とする。   The method for producing a porous sintered metal according to the present invention is preferably characterized in that the metal is one or more selected from Ti, Zr and Hf, or an alloy thereof.

また、本発明に係る多孔質焼結金属の製造方法は、好ましくは、前記焼結工程の前に、前記焼結前成形体を、酸素原子を含む気体中で加熱処理することを特徴とする。   The method for producing a porous sintered metal according to the present invention is preferably characterized in that the pre-sintered compact is heat-treated in a gas containing oxygen atoms before the sintering step. .

本発明に係る多孔質焼結金属は、厚みが5〜30μm、空隙率が25〜70%および平均空孔直径が0.2〜40μmであり、多数の孔が等方的に連通した貫通孔であるため、薄膜であって、かつ優れた多孔質構造を有する多孔質焼結金属が求められる用途に好適である。
また、本発明に係る多孔質焼結金属の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、焼結前成形体を焼結して焼結体を得る焼結工程および酸により焼結体から基材を分離除去する基材除去工程を含むため、上記本発明に係る多孔質焼結金属を好適に得ることができる。
The porous sintered metal according to the present invention has a thickness of 5 to 30 μm, a porosity of 25 to 70%, an average pore diameter of 0.2 to 40 μm, and a through hole in which a large number of holes are connected isotropically. Therefore, it is suitable for applications requiring a porous sintered metal that is a thin film and has an excellent porous structure.
In the method for producing a porous sintered metal according to the present invention, a slurry-like composition containing a metal powder and a solvent is formed on a base material that is soluble in an acid to obtain a pre-sintered compact. The present invention includes a pre-sintered green body forming step, a sintering step of sintering the pre-sintered green body to obtain a sintered body, and a base material removing step of separating and removing the base material from the sintered body with an acid. The porous sintered metal which concerns on can be obtained suitably.

図1は本実施の形態例に係る多孔質焼結金属を主面(表面)から見たSEM写真を示す図である。FIG. 1 is a view showing an SEM photograph of a porous sintered metal according to this embodiment viewed from the main surface (surface). 図2は本実施の形態例に係る多孔質焼結金属の断面のSEM写真を示す図である。FIG. 2 is a view showing an SEM photograph of a cross section of the porous sintered metal according to the present embodiment.

本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。   An embodiment of the present invention (hereinafter referred to as this embodiment) will be described below.

まず、本実施の形態例に係る多孔質焼結金属について説明する。
本実施の形態例に係る多孔質焼結金属は、厚みが5〜30μm、空隙率が25〜70%および平均空孔直径が0.2〜40μmであり、多数の孔が等方的に連通した貫通孔である。なお、用語の定義上、言うまでもなく明らかであるが、空隙率の単位は体積%である。
多孔質焼結金属は、厚みが、好ましくは25μm以下であり、かつ、空隙率が、好ましくは30%以上である。
First, the porous sintered metal according to the present embodiment will be described.
The porous sintered metal according to the present embodiment has a thickness of 5 to 30 μm, a porosity of 25 to 70%, an average pore diameter of 0.2 to 40 μm, and a large number of pores communicating isotropically. Through hole. In addition, it goes without saying that the definition of terms is obvious, but the unit of porosity is volume%.
The porous sintered metal has a thickness of preferably 25 μm or less and a porosity of preferably 30% or more.

多孔質焼結金属の厚みは、5μmを大きく下回ると、厚み方向に存在する粒子数が少なくなり、金属多孔体としての強度が損なわれるおそれがある。一方、多孔質焼結金属の厚みは、25μmを大きく上回り30μmを超えると、多孔質焼結金属の内部あるいは両面間での流体等の物質の流通性が悪くなる、多孔質焼結金属の柔軟性が失われる、多孔質焼結金属が重くなる、多孔質焼結金属の体積が大きくなる等の問題が起こり、多孔質焼結金属を所望の材料用途に用いるときの適用性が悪化する問題を生じるおそれがある。   If the thickness of the porous sintered metal is significantly less than 5 μm, the number of particles present in the thickness direction is reduced, and the strength as a metal porous body may be impaired. On the other hand, if the thickness of the porous sintered metal greatly exceeds 25 μm and exceeds 30 μm, the flowability of a substance such as a fluid inside the porous sintered metal or between both surfaces deteriorates. Problems such as loss of properties, heavy porous sintered metal, large volume of porous sintered metal, and deterioration of applicability when porous sintered metal is used for desired materials May occur.

多孔質焼結金属の空隙率は、上記のように、25〜70%である。空隙率が30%を大きく下回り、25%未満となると、多孔質焼結金属が有する軽量化のメリットが小さい。また、多孔質焼結金属内部あるいは内外間の物質の流通性が悪くなる等の問題が起こるおそれがある。一方、空隙率が70%を大きく上回ると、多孔質焼結金属の強度が損なわれるおそれがある。また、多孔質焼結金属が良導電性金属の場合、好適な導電性が得られず、例えば電極等の用途においては好適に利用できないおそれがある。   As described above, the porosity of the porous sintered metal is 25 to 70%. When the porosity is significantly lower than 30% and less than 25%, the weight saving merit of the porous sintered metal is small. Moreover, there is a possibility that problems such as deterioration of the flowability of the substance inside or outside the porous sintered metal may occur. On the other hand, if the porosity is significantly higher than 70%, the strength of the porous sintered metal may be impaired. Moreover, when a porous sintered metal is a highly conductive metal, suitable conductivity cannot be obtained, and there is a possibility that it cannot be suitably used in applications such as electrodes.

多孔質焼結金属の平均空孔直径は、上記のように、0.2〜40μmである。平均空孔直径が0.2μmを大きく下回ると、多孔質焼結金属内部あるいは内外間の物質の流通性が悪くなり、例えばフィルター用途や電極用途として好適な多孔体とならないおそれがある。一方、平均空孔直径が40μmを大きく上回ると、金属多孔体としての強度が損なわれおそれがある。   The average pore diameter of the porous sintered metal is 0.2 to 40 μm as described above. If the average pore diameter is much less than 0.2 μm, the flowability of the substance inside or outside the porous sintered metal is deteriorated, and for example, there is a possibility that the porous body is not suitable for use as a filter or an electrode. On the other hand, if the average pore diameter greatly exceeds 40 μm, the strength of the metal porous body may be impaired.

なお、空隙率および平均空孔直径は、水銀圧入法により測定するときの値である。水銀圧入式細孔分布測定装置(CARLOERBA INSTRUMENTS社製PascaI 140およびPascal 440、測定可能範囲:比表面積0.1m/g以上、細孔分布0.0034〜400μm)を用いて、圧力範囲0.3〜400kPa、および0.1〜400MPaの範囲で、圧入体積を円筒細孔モデルに従って、側面積として計算し積算して測定する。 The porosity and the average pore diameter are values when measured by a mercury intrusion method. Using a mercury intrusion type pore distribution measuring device (Pascal I 140 and Pascal 440 manufactured by CARLOERBA INSTRUMENTS, measurable range: specific surface area 0.1 m 2 / g or more, pore distribution 0.0034 to 400 μm), pressure range 0. In the range of 3 to 400 kPa and 0.1 to 400 MPa, the press-fitted volume is calculated as a side area according to the cylindrical pore model, integrated and measured.

多孔質焼結金属の多数の孔は、上記のように、等方的に連通した貫通孔である。ここで、等方的に連通するとは、多数の孔が多孔質焼結金属の厚みの方向にのみ、すなわち異方性を有するように連通して貫通孔を形成するだけではなく、多孔質焼結金属の平面に沿った方向にも、すなわち三次元的にあらゆる方向に等方性を有するように連通することをいう。これにより、多孔質焼結金属内部において、物質がより均一に浸透するとともに、多孔質焼結金属の開口から物質がより均一に拡散する。そのため、例えばフィルターや電極等の用途において性能が向上する。また、例えば熱や音等のエネルギー吸収体用途において、内部での反響の回数が大きく高機能となる。   As described above, the numerous holes of the porous sintered metal are through holes that are isotropically communicated. Here, “isotropically communicating” means not only that a large number of pores communicate with each other only in the direction of the thickness of the porous sintered metal, that is, so as to have anisotropy, so that the through-holes are formed. The term “communication” means to communicate in a direction along the plane of the bonded metal so that it is isotropic in all directions in three dimensions. Accordingly, the substance penetrates more uniformly inside the porous sintered metal, and the substance diffuses more uniformly from the opening of the porous sintered metal. Therefore, performance is improved in applications such as filters and electrodes. In addition, for example, in energy absorber applications such as heat and sound, the number of internal echoes is large and the function becomes high.

多孔質焼結金属は、電気伝導率が0.5×10Ω−1・m−1以上であることが好ましい。電気伝導率は4探針法により測定することができる。 The porous sintered metal preferably has an electric conductivity of 0.5 × 10 3 Ω −1 · m −1 or more. Electrical conductivity can be measured by a four-probe method.

多孔質焼結金属は、好ましくは、自立性、すなわち、形状を保持できるだけの剛性を有し、シート体として好適にハンドリングできるものである。ただし、ガラス繊維成形体、多孔質アルミナ板等の無機多孔体、耐熱性多孔質プラスチック等の有機多孔体、金属多孔体等の補助基板の上に多孔質焼結金属を形成したものであってもよい。この場合、柔軟性、耐薬品性、耐熱性、の観点からは、ガラス繊維成形体を用いることがより好ましい。   The porous sintered metal is preferably self-supporting, that is, has a rigidity sufficient to maintain its shape, and can be suitably handled as a sheet body. However, a porous sintered metal is formed on an auxiliary substrate such as a glass fiber molded body, an inorganic porous body such as a porous alumina plate, an organic porous body such as a heat-resistant porous plastic, or a metal porous body. Also good. In this case, it is more preferable to use a glass fiber molded body from the viewpoints of flexibility, chemical resistance, and heat resistance.

以上説明した本実施の形態例に係る多孔質焼結金属は、金属多孔体として機械的、化学的、熱的および電気的に優れた特性を有し、また、軽量である。このため、多孔質焼結金属を、音、熱等のエネルギー吸収体、フィルター、あるいは燃料電池や色素増感太陽電池の電極等の用途に用いる場合に、既存のものより優れた特性を付与することができる。   The porous sintered metal according to the present embodiment described above has excellent mechanical, chemical, thermal and electrical properties as a metal porous body, and is lightweight. For this reason, when using porous sintered metal for applications such as energy absorbers such as sound and heat, filters, or electrodes of fuel cells and dye-sensitized solar cells, it gives superior characteristics to existing ones. be able to.

次に、上記本実施の形態例に係る多孔質焼結金属を好適に得ることができる本実施の形態例に係る多孔質焼結金属の製造方法について説明する。
本実施の形態例に係る多孔質焼結金属の製造方法は、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体(焼結前駆体)を得る焼結前成形体形成工程、焼結前成形体を焼結して焼結体を得る焼結工程および酸により焼結体から基材を分離除去する基材除去工程を含む。
Next, a method for manufacturing a porous sintered metal according to this embodiment, which can suitably obtain the porous sintered metal according to this embodiment, will be described.
In the method for producing a porous sintered metal according to the present embodiment, a slurry-like composition containing a metal powder and a solvent is formed on a base material having solubility with respect to an acid, and a pre-sintered compact ( Forming a pre-sintered compact to obtain a sintered precursor), a sintering process to obtain a sintered compact by sintering the pre-sintered compact, and a base material removing process to separate and remove the base material from the sintered compact by acid including.

まず、金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程について説明する。   First, a pre-sintered green body forming step for obtaining a pre-sintered green body by forming a slurry-like composition containing a metal powder and a solvent on a base material that is soluble in acid will be described.

多孔質焼結金属の原料である金属粉末の種類は特に制限なく、水素化脱水素法により製造した金属粉末、スポンジ金属粉末、ガスアトマイズ金属粉末等が適用できるが、好ましくは、金属粉末間のネッキング部位が多い水素化脱水素法により製造した金属粉末を用いる。また、金属粉末の金属種は、例えばフィルターや電極等への適応性の観点からは、Ti、W、Mo、Rh、Pt、Ta、Ru、Pd,Ni等またはこれらを含む合金が好ましく、チタン粉末、水素化チタン粉末またはこれらの混合粉がさらに好ましい。
金属粉末の平均粒子直径(平均粒径ともいう。)は、溶剤を含む組成物に適度な粘性と流動性を付与し、かつ薄板状に成形し易くするためには、1μm〜50μmが好ましく、かつ粒子直径が1〜50μmである粒子を50vol%以上含むことが好ましい。これにより、より、均一な膜厚、空隙率および空孔直径の多孔質焼結金属が得られる。粒子直径が1μm未満であると、焼結時に粒子の大きさに対する不導体被膜の厚みが増して、十分な焼結体が得られないおそれがある。また、金属粉末が良導電性金属の場合、焼結後の多孔質焼結金属の導電性が損なわれるおそれがある。一方、粒子直径が50μmを超えると、多孔質焼結金属の厚みを25μm以下に成形することが困難となる。
The type of metal powder that is a raw material of the porous sintered metal is not particularly limited, and metal powder produced by hydrodehydrogenation method, sponge metal powder, gas atomized metal powder, etc. can be applied, preferably necking between metal powders Metal powder produced by hydrodehydrogenation method with many sites is used. The metal species of the metal powder is preferably Ti, W, Mo, Rh, Pt, Ta, Ru, Pd, Ni or an alloy containing these from the viewpoint of adaptability to a filter, an electrode, etc. A powder, a titanium hydride powder or a mixed powder thereof is more preferable.
The average particle diameter (also referred to as average particle diameter) of the metal powder is preferably 1 μm to 50 μm in order to impart an appropriate viscosity and fluidity to the composition containing the solvent and to facilitate forming into a thin plate shape, And it is preferable to contain 50 vol% or more of particles having a particle diameter of 1 to 50 μm. As a result, a porous sintered metal having a more uniform film thickness, porosity, and pore diameter can be obtained. When the particle diameter is less than 1 μm, the thickness of the non-conductive coating with respect to the size of the particles increases during sintering, and a sufficient sintered body may not be obtained. Moreover, when metal powder is a highly conductive metal, there exists a possibility that the electroconductivity of the porous sintered metal after sintering may be impaired. On the other hand, when the particle diameter exceeds 50 μm, it becomes difficult to form the thickness of the porous sintered metal to 25 μm or less.

溶剤は、水、またはエタノール、トルエン、イソプロパノール、ターピネオール、ブチルカルビトール、シクロヘキサン、メチルエチルケトン等の有機溶剤が使用できる。溶剤の割合は、使用する溶剤の種類や金属粉末の種類等によって適宜異なりうるが、金属粉末100質量部に対して25〜150質量部であることが好ましい。   As the solvent, water or an organic solvent such as ethanol, toluene, isopropanol, terpineol, butyl carbitol, cyclohexane, and methyl ethyl ketone can be used. The proportion of the solvent may vary depending on the type of solvent used, the type of metal powder, and the like, but is preferably 25 to 150 parts by mass with respect to 100 parts by mass of the metal powder.

さらに、結着剤を添加してもよく、溶剤が水または水溶性有機溶剤の場合はメチルセルロース系、エチルセルロース系、ポリビニルアルコール系の結着剤を使用でき、溶剤が非水溶性有機溶剤の場合は、アクリル系、ポリビニルブチラール系、エチルセルロース系の結着剤を使用できる。ただし、金属粉末に対する結着剤の割合が多すぎると焼結体に含まれる酸素、炭素、水素等の割合が大きくなり、脆化による焼結体の破損を招くおそれがある。このため、結着剤の割合は、金属粉末100質量部に対して30質量部以下であることが好ましい。
またさらに、可塑剤を添加してもよく、溶剤が水または水溶性有機溶剤の場合はグリセリン、エチレングリコール、ポリエチレングリコール等を使用でき、溶剤が非水溶性有機溶剤の場合は、フタル酸エステル等を使用できる。ただし、金属粉末に対する結着剤の割合が多すぎるとスラリー乾燥時のレベリング性が悪くなり、膜厚が不均一となり、一方、少なすぎると焼結前成形体の伸び性が悪くなり破損を招くおそれがある。このため、可塑剤の割合は、金属粉末100質量部に対して2〜30質量部であることが好ましい。
Furthermore, a binder may be added. When the solvent is water or a water-soluble organic solvent, a methylcellulose-based, ethylcellulose-based, or polyvinyl alcohol-based binder can be used. When the solvent is a water-insoluble organic solvent, Acrylic, polyvinyl butyral, and ethyl cellulose binders can be used. However, if the ratio of the binder to the metal powder is too large, the ratio of oxygen, carbon, hydrogen, etc. contained in the sintered body increases, and the sintered body may be damaged due to embrittlement. For this reason, it is preferable that the ratio of a binder is 30 mass parts or less with respect to 100 mass parts of metal powders.
Furthermore, a plasticizer may be added. When the solvent is water or a water-soluble organic solvent, glycerin, ethylene glycol, polyethylene glycol or the like can be used. When the solvent is a water-insoluble organic solvent, phthalate ester or the like can be used. Can be used. However, if the ratio of the binder to the metal powder is too large, the leveling property at the time of drying the slurry becomes poor and the film thickness becomes non-uniform. There is a fear. For this reason, it is preferable that the ratio of a plasticizer is 2-30 mass parts with respect to 100 mass parts of metal powders.

基材は、酸に対して溶解性を有するものであるとともに、金属粉末の焼結温度における耐熱性を有することおよび金属粉末と反応しないものを用いる。
上記の特性を有するものであれば基材の材料種類は特に限定しないが、Zn、Fe、これらを含む合金またはこれらを含む酸化物が好適であり、FeまたはFeを含む合金から構成されるものが特に好適である。
基材の厚みは特に限定しないが、燒結工程で反りを生じない程度に肉厚であることが好ましく、例えば100μm以上程度とすることができる。
基材は、単体であってもよいし、焼結体と接する面に、例えば離型剤が表面コートしてあるような複層構造であってもよい。
なお、基材を使わずに、スラリー状組成物に高粘度有機物をバインダーとして添加し、焼結前成形体を疑似的に自立膜(グリーンシート)とすることも考えられるが、高粘度有機物は残渣が残りやすく、焼結工程で炭化物や酸化物が形成され焼結阻害要因となるため、好ましくない。
The base material is soluble in acid, and has heat resistance at the sintering temperature of the metal powder and does not react with the metal powder.
The material type of the base material is not particularly limited as long as it has the above characteristics, but Zn, Fe, an alloy containing these, or an oxide containing them is suitable, and is composed of an alloy containing Fe or Fe Is particularly preferred.
The thickness of the substrate is not particularly limited, but is preferably thick enough to prevent warping in the sintering step, and can be, for example, about 100 μm or more.
The substrate may be a simple substance or may have a multilayer structure in which a release agent is surface-coated on the surface in contact with the sintered body.
In addition, it is possible to add a high-viscosity organic substance as a binder to the slurry composition without using a base material, and to form a pre-sintered molded body as a self-supporting film (green sheet). Residues are likely to remain, which is not preferable because carbides and oxides are formed in the sintering process and become a sintering inhibiting factor.

金属粉末および溶剤を含むスラリー状組成物を、例えば6〜100μmの厚みに基材上に塗布し、成形する。
塗布法は、ドクターブレード法、ディップコーティング法、ダイコーティング法、コンマコーティング法、バーコーティング法、スクリーン印刷法、オフセット印刷法、グラビア印刷法、インクジェット法、スプレー法、ディスペンス法、スピンコート法等適宜の方法を用いることができる。
A slurry-like composition containing a metal powder and a solvent is applied onto a substrate to a thickness of 6 to 100 μm, for example, and molded.
Application method is doctor blade method, dip coating method, die coating method, comma coating method, bar coating method, screen printing method, offset printing method, gravure printing method, ink jet method, spray method, dispensing method, spin coating method, etc. This method can be used.

得られる焼結前成形体形は、有機溶剤等を除去するために、乾燥を行うことが好ましい。乾燥は、常圧下、減圧下、加圧下いずれの条件でも可能であるが、乾燥速度が速すぎると、焼結前成形体にクラックや反りが発生するおそれがあるため、焼結前成形体の物性に応じた適当な温度、圧力、風量等を選択して行う。なお、加圧下で乾燥する場合は、以下に説明する焼結前成形体のプレス処理を兼ねることになる。   The obtained pre-sintered molded body shape is preferably dried in order to remove the organic solvent and the like. Drying can be performed under normal pressure, reduced pressure, or increased pressure, but if the drying rate is too high, cracks and warpage may occur in the molded body before sintering. Select an appropriate temperature, pressure, air volume, etc. according to the physical properties. In addition, when drying under pressure, it will serve also as the press processing of the pre-sintering molded object demonstrated below.

焼結前成形体はプレス処理を行うことが好ましい。プレス処理により、金属粉末間の接触面積が増大するため、ネッキング部位が増える。また、プレス処理の圧力は高いほど、電気伝導度の向上、膜厚の低下、空隙率の低下が起こる。そのため、用途に応じて圧力の条件を選択する必要がある。ただし、プレス圧が低過ぎると金属粉末間の接触面積が増大せず、高すぎると空隙率が適切な範囲を外れて低下し、または金属粉末が塑性変形を起こす。そのため、好ましいプレス圧の範囲は0.1〜100MPaである。また、プレス処理において適切なクッション材を使用することが好ましい。クッション材としては紙、金属箔、シリコン、耐熱性プラスチック、ゴム等、適宜のものを使用することができる。プレス方法は、平板プレス、ロールプレス、真空ラミネーター等、適宜の方法で行うことができる。   The pre-sintered compact is preferably pressed. Since the contact area between the metal powders increases due to the press treatment, the number of necking sites increases. Moreover, the higher the pressure of the press treatment, the higher the electrical conductivity, the lower the film thickness, and the lower the porosity. Therefore, it is necessary to select a pressure condition according to the application. However, if the pressing pressure is too low, the contact area between the metal powders does not increase, and if it is too high, the porosity falls outside an appropriate range, or the metal powder undergoes plastic deformation. Therefore, the preferable press pressure range is 0.1 to 100 MPa. Moreover, it is preferable to use a suitable cushion material in a press process. As the cushioning material, an appropriate material such as paper, metal foil, silicon, heat resistant plastic, rubber or the like can be used. The pressing method can be performed by an appropriate method such as a flat plate press, a roll press, or a vacuum laminator.

次に、焼結前成形体を焼結して焼結体を製造する焼結工程について説明する。
焼結工程の前に、脱脂処理を行うことが好ましい。脱脂処理は、焼結前成形体中に含まれる溶剤、結着剤および可塑剤(以下、あわせて残炭成分という)を熱分解又は蒸発させ除去することが目的である。通常は、残炭成分の大部分は、焼結工程における昇温時に除去されるが、残炭成分が焼結前成形体中に若干残る場合、焼結温度周辺の高温下で残炭成分と金属が反応し金属炭化物が形成することがある。その結果、焼結体の機械強度が低くなり、破損しやすくなる。特にチタンを焼結する場合は、800℃以上において容易に残炭成分とチタンが反応し炭化チタンが形成する。このため、脱脂処理を行い、確実に残炭成分を除去することが望ましい。
脱脂処理は、加熱処理、プラズマ処理、オゾン処理、溶剤による洗浄等の方法を用いることができる。加熱処理の場合は、焼結工程における昇温過程において、昇温速度を下げたり、保持時間を設けたりすることで、脱脂処理と焼結工程を連続して行うこともできる。このときの加熱環境は、アルゴン、窒素等の不活性ガス、酸素原子を含む気体、気流下または雰囲気下、真空下等、金属粉末の種類によって適宜選択できるが、残炭成分を効率良く除去できるという点で酸素原子を含む気体中が好ましく、酸素ガス、空気、酸素ガスと不活性ガスの混合ガス等酸素原子を1%以上含む気体中がより好ましい。また、加熱温度と加熱時間は、結着剤の種類と量やガス種により適宜選択することができるが、特に酸素原子を含む気体中で行う場合は、焼結前成形体の酸化を抑制するという点で、400℃以下、より好ましくは350℃未満であることが好ましい。また、加熱時間は0.1〜6時間であることが好ましい。
Next, a sintering process for producing a sintered body by sintering the green body before sintering will be described.
It is preferable to perform a degreasing treatment before the sintering step. The purpose of the degreasing treatment is to thermally decompose or evaporate and remove the solvent, binder and plasticizer (hereinafter collectively referred to as residual carbon component) contained in the green body before sintering. Usually, most of the remaining carbon component is removed at the time of temperature increase in the sintering process, but when the remaining carbon component remains in the pre-sintered molded body, Metals may react to form metal carbides. As a result, the mechanical strength of the sintered body is lowered and is easily damaged. In particular, when titanium is sintered, the remaining carbon component and titanium easily react at 800 ° C. or higher to form titanium carbide. For this reason, it is desirable to perform a degreasing process and to reliably remove residual carbon components.
For the degreasing treatment, methods such as heat treatment, plasma treatment, ozone treatment, and cleaning with a solvent can be used. In the case of heat treatment, the degreasing treatment and the sintering step can be performed continuously by lowering the rate of temperature rise or providing a holding time in the temperature raising step in the sintering step. The heating environment at this time can be appropriately selected depending on the type of metal powder, such as an inert gas such as argon or nitrogen, a gas containing oxygen atoms, an air current or an atmosphere, or a vacuum, but can effectively remove residual carbon components. Therefore, a gas containing oxygen atoms is preferable, and a gas containing 1% or more of oxygen atoms such as oxygen gas, air, a mixed gas of oxygen gas and inert gas is more preferable. Further, the heating temperature and the heating time can be appropriately selected depending on the type and amount of the binder and the gas type. In particular, when performed in a gas containing oxygen atoms, the oxidation of the green body before sintering is suppressed. In that respect, it is preferably 400 ° C. or lower, more preferably less than 350 ° C. The heating time is preferably 0.1 to 6 hours.

焼結の条件は、焼結する金属の種類によって異なる。例えばチタンの場合は、酸化物や窒化物を形成し易いことから、真空中またはアルゴン不活性雰囲気下で行い、700〜1100℃の温度で、0.1〜6時間保持することが好ましく、750〜1000℃、0.5〜4時間保持することがより好ましい。温度が低過ぎると焼結が十分でなく、温度が高すぎると金属多孔体の反りが生じ、また、金属粉末が溶融することにより孔が閉塞し、多孔体とならないおそれがある。   Sintering conditions vary depending on the type of metal to be sintered. For example, in the case of titanium, oxides and nitrides are easily formed. Therefore, it is preferably performed in a vacuum or under an inert atmosphere of argon and kept at a temperature of 700 to 1100 ° C. for 0.1 to 6 hours, 750 It is more preferable to hold at ˜1000 ° C. for 0.5 to 4 hours. When the temperature is too low, the sintering is not sufficient, and when the temperature is too high, the metal porous body is warped, and the metal powder is melted so that the pores are blocked and the porous body may not be formed.

焼結工程は、実質的に密閉状態の容器内で行い、焼結前成形体の近傍に炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、焼結する金属粉末より大きい値を持つ金属(以下、ゲッター材という。)を配置して行うことが好ましい。
実質的に密閉状態の容器は、例えば開口が扉で閉止された真空焼成炉等である。
ゲッター材を配置した容器中で焼結することで、容器外の酸素の混入を防ぐとともに、容器内の酸素はゲッター材が優先的に反応・消費するので、焼結体の酸化が抑えられるため、より好ましい。ゲッター材の材質は、焼結する金属の種類によって異なるが、例えば金属粉末がチタンの場合は、ゲッター材はTi、ZrまたはHfが好ましい。Ti、ZrおよびHfから選ばれる1種もしくは2種以上、またはこれらの1種もしくは2種以上の金属の合金を用いる。
The sintering process is performed in a substantially hermetically sealed container, and the standard free energy values of carbides and oxides in the vicinity of the green body before sintering are larger than the sintered metal powder in the sintering temperature range. It is preferable to perform by arranging a metal having the following (hereinafter referred to as a getter material).
The substantially sealed container is, for example, a vacuum baking furnace whose opening is closed by a door.
Sintering in a container with a getter material prevents oxygen from being mixed outside the container, and oxygen in the container is preferentially reacted and consumed by the getter material, so that oxidation of the sintered body is suppressed More preferable. The material of the getter material varies depending on the type of metal to be sintered. For example, when the metal powder is titanium, the getter material is preferably Ti, Zr or Hf. One kind or two or more kinds selected from Ti, Zr and Hf, or an alloy of one or more kinds of these metals is used.

最後に、酸により焼結体から基材を分離除去する基材除去工程について説明する。
酸を用いた基材除去方法は、剥離効率の点から好ましい。酸の種類は、基材が剥離するものであれば、塩酸、硫酸、硝酸、王水等の無機酸、リン酸、カルボン酸等の有機酸等、特に制限はないが、焼結体が溶解しない酸、焼結体と化学反応しないものが好ましい。具体的には硝酸、硫酸が好適に用いられる。酸を用いた基材除去方法は、特に限定されず、焼結体を酸溶液に浸漬させる方法でもよいし、焼結体に酸溶液をスプレーする方法でもよい。基材剥離後は、速やかに洗浄を行い、焼結体に残存する酸を除去する。洗浄用の液体は、水、有機溶剤等、酸が溶解するものであれば、制限なく使用することができる。
Finally, the base material removal step of separating and removing the base material from the sintered body with an acid will be described.
The substrate removing method using an acid is preferable from the viewpoint of peeling efficiency. The type of acid is not particularly limited as long as the base material is peeled off, such as inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, aqua regia, organic acid such as phosphoric acid, carboxylic acid, etc., but the sintered body dissolves. Acids that do not react and those that do not chemically react with the sintered body are preferred. Specifically, nitric acid and sulfuric acid are preferably used. The substrate removal method using an acid is not particularly limited, and a method of immersing the sintered body in an acid solution or a method of spraying the acid solution onto the sintered body may be used. After the substrate is peeled off, it is quickly washed to remove the acid remaining in the sintered body. The cleaning liquid can be used without limitation as long as it dissolves acid, such as water or an organic solvent.

以上説明した本実施の形態例に係る多孔質焼結金属の製法方法によれば、厚みが5〜25μm、空隙率が30〜70%および平均空孔直径が0.2〜40μmであり、多数の孔が等方的に連通した貫通孔である本実施の形態例に係る多孔質焼結金属を好適に得ることができる。また、厚みが25μmを越えて60μm以下程度の多孔質焼結金属も好適に得ることができ、燃料電池や色素増感太陽電池の電極等の用途に用いることができる。   According to the method for producing a porous sintered metal according to the embodiment described above, the thickness is 5 to 25 μm, the porosity is 30 to 70%, the average pore diameter is 0.2 to 40 μm, and many The porous sintered metal according to the present embodiment, which is a through hole in which the holes are isotropically communicated, can be suitably obtained. In addition, a porous sintered metal having a thickness of more than 25 μm and not more than 60 μm can be suitably obtained, and can be used for applications such as electrodes of fuel cells and dye-sensitized solar cells.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to this Example.

(実施例1)
水素化脱水素法により製造したチタン粉末(平均粒径10μm)と、エチルセルロース系結着剤(日新化成(株)製EC−200FTD)を、配合比がチタン粉末60質量%、結着剤40質量%となるよう混合し、スラリー状組成物を調製した。なお、結着剤は約80質量%のターピネオールと約20質量%のエチルセルロースからなる。
次に、このスラリー状組成物を厚み50μm、開口部10mm×30mmのメタルマスクを使ってスキージ法(スクリーン印刷法)により基材である20mm×40mm、厚さ100μmの鉄箔上に塗布し、これを30kPaの圧力下、150℃の温度で、1.5時間減圧乾燥を行い、焼成前成形体を得た。その後、焼成前成形体を68.6MPaの圧力でプレス処理した。
Example 1
Titanium powder (average particle size 10 μm) produced by hydrodehydrogenation method and ethyl cellulose binder (EC-200FTD manufactured by Nisshin Kasei Co., Ltd.) with a blending ratio of 60% by mass of titanium powder and binder 40 A slurry-like composition was prepared by mixing to a mass%. The binder is composed of about 80% by mass of terpineol and about 20% by mass of ethyl cellulose.
Next, this slurry-like composition is applied onto an iron foil having a thickness of 20 μm × 40 mm and a thickness of 100 μm by a squeegee method (screen printing method) using a metal mask having a thickness of 50 μm and an opening of 10 mm × 30 mm, This was dried under reduced pressure at a temperature of 150 ° C. under a pressure of 30 kPa for 1.5 hours to obtain a molded body before firing. Then, the green body before firing was pressed at a pressure of 68.6 MPa.

そして、この焼成前成形体を鉄箔ごと真空焼成炉に入れて大気圧下、300℃の温度で、1時間加熱し、脱脂処理を行った。さらに、真空焼成炉中の焼結前成形体の上面全面を覆うようにチタン箔をかぶせた後、3×10−3Paの圧力下、800℃の温度で、2時間加熱して焼成し、焼結体を得た。 Then, this pre-fired shaped body was put together with the iron foil in a vacuum firing furnace and heated at 300 ° C. under atmospheric pressure for 1 hour for degreasing treatment. Furthermore, after covering the entire upper surface of the pre-sintered compact in a vacuum firing furnace with a titanium foil, it was fired at a temperature of 800 ° C. for 2 hours under a pressure of 3 × 10 −3 Pa, and fired. A sintered body was obtained.

さらに、この焼結体を、3N硫酸水溶液に1時間浸漬させて、焼結体と接触している鉄箔部分を溶解させて焼結体から鉄箔を剥離させた。
得られた焼結体を蒸留水および洗剤水で繰り返し洗浄し硫酸を除去した後、加熱乾燥して、厚みが27μmの多孔質チタン(多孔質焼結金属)を得た。
図1および図2に多孔質チタンのSEM写真を示す。図1は多孔質チタンを主面(表面)側から見たものであり、図中、参照符号10は多孔質焼結金属(多孔質チタン)を、参照符号12は金属部を、参照符号14は孔部を、それぞれ示す。図2は多孔質チタンを断面側から見たものであり、図中、参照符号16は主面を、参照符号18は断面を、それぞれ示す。
Further, the sintered body was immersed in a 3N sulfuric acid aqueous solution for 1 hour to dissolve the iron foil portion in contact with the sintered body, and the iron foil was peeled off from the sintered body.
The obtained sintered body was washed repeatedly with distilled water and detergent water to remove sulfuric acid, and then dried by heating to obtain porous titanium (porous sintered metal) having a thickness of 27 μm.
1 and 2 show SEM photographs of porous titanium. FIG. 1 is a view of porous titanium as viewed from the main surface (surface) side. In the figure, reference numeral 10 indicates a porous sintered metal (porous titanium), reference numeral 12 indicates a metal portion, and reference numeral 14. Indicates holes. FIG. 2 is a view of porous titanium as viewed from the cross section side. In the figure, reference numeral 16 indicates a main surface, and reference numeral 18 indicates a cross section.

得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。   The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例2)
水素化脱水素法により製造したチタン粉末(平均粒径10μm)と、エチルセルロース系結着剤(日新化成株式会社製EC−200FTD)を、配合比がチタン粉末60質量%、結着剤40質量%となるよう混合し、スラリー状組成物を調製した。なお、結着剤は約80質量%のターピネオールと約20質量%のエチルセルロースからなる。
次に、このスラリー状組成物を塗布厚み75μmに設定したベーカー式アプリケーター(宝泉株式会社製)を使って基材である60mm×70mm、厚さ100μmの鉄箔上に塗布し、これを30kPaの圧力下、150℃の温度で、1.5時間減圧乾燥を行い、燒結前成形体を得た。
(Example 2)
Titanium powder (average particle size 10 μm) produced by the hydrodehydrogenation method and ethyl cellulose binder (EC-200FTD manufactured by Nisshin Kasei Co., Ltd.), titanium powder 60 mass%, binder 40 mass % To prepare a slurry composition. The binder is composed of about 80% by mass of terpineol and about 20% by mass of ethyl cellulose.
Next, this slurry-like composition was applied onto a base material of 60 mm × 70 mm and 100 μm thick iron foil using a Baker type applicator (manufactured by Hosen Co., Ltd.) having a coating thickness of 75 μm, and this was applied to 30 kPa. Under reduced pressure, it was dried under reduced pressure at a temperature of 150 ° C. for 1.5 hours to obtain a molded body before sintering.

そして、この燒結前成形体を鉄箔ごとシリコニット炉に入れて大気圧下、300℃の温度で、1時間加熱し、脱脂処理を行った。次に、脱脂処理を行った燒結前成形体を真空焼成炉に入れ、焼結前成形体の上面全面を覆うようにチタン箔をかぶせた後、3×10−3Paの圧力下、800℃の温度で、2時間加熱し、焼結体を得た。 Then, the green compact before sintering was put into a siliconit furnace together with the iron foil, and heated at 300 ° C. under atmospheric pressure for 1 hour to perform a degreasing treatment. Next, the degreased pre-sintered compact was placed in a vacuum firing furnace and covered with a titanium foil so as to cover the entire upper surface of the pre-sintered compact, and then at 800 ° C. under a pressure of 3 × 10 −3 Pa. Was heated for 2 hours to obtain a sintered body.

さらに、この焼結体を、3N硫酸水溶液に1時間浸漬させて、焼結体と接触している鉄箔部分を溶解させて焼結体から鉄箔を剥離させた。
得られた焼結体を3N硫酸で酸洗した後、蒸留水および洗剤水で繰り返し洗浄し硫酸を除去した後、加熱乾燥して、厚みが23μmの多孔質チタン(多孔質焼結金属)を得た。
図1および図2に多孔質チタンのSEM写真を示す。図1は多孔質チタンを主面(表面)側から見たものであり、図中、参照符号10は多孔質焼結金属(多孔質チタン)を、参照符号12は金属部を、参照符号14は孔部を、それぞれ示す。図2は多孔質チタンを断面側から見たものであり、図中、参照符号16は主面を、参照符号18は断面を、それぞれ示す。
Further, the sintered body was immersed in a 3N sulfuric acid aqueous solution for 1 hour to dissolve the iron foil portion in contact with the sintered body, and the iron foil was peeled off from the sintered body.
The obtained sintered body is pickled with 3N sulfuric acid, washed repeatedly with distilled water and detergent water to remove sulfuric acid, and then dried by heating to obtain porous titanium (porous sintered metal) having a thickness of 23 μm. Obtained.
1 and 2 show SEM photographs of porous titanium. FIG. 1 is a view of porous titanium as viewed from the main surface (surface) side. In the figure, reference numeral 10 indicates a porous sintered metal (porous titanium), reference numeral 12 indicates a metal portion, and reference numeral 14. Indicates holes. FIG. 2 is a view of porous titanium as viewed from the cross section side. In the figure, reference numeral 16 indicates a main surface, and reference numeral 18 indicates a cross section.

得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。   The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例3)
燒結前成形体を294MPaでプレスした以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
(Example 3)
Porous titanium was obtained in the same manner as in Example 1 except that the green compact was pressed at 294 MPa. The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例4)
平均粒径17μmのチタン粒子を用い、スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布した以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
Example 4
Porous titanium was obtained in the same manner as in Example 1 except that titanium particles having an average particle diameter of 17 μm were used, and the slurry-like composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm. . The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例5)
平均粒径10μmのチタン粒子30質量%と、平均粒径6μmの水素化チタン粒子30質量%と、エチルセルロース系結着剤40質量%を配合したスラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布した以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
(Example 5)
A slurry composition containing 30% by mass of titanium particles having an average particle size of 10 μm, 30% by mass of titanium hydride particles having an average particle size of 6 μm, and 40% by mass of an ethylcellulose binder is 50 μm in thickness and has an opening of 10 × 30 mm. A porous titanium was obtained in the same manner as in Example 1 except that the metal mask was applied by the squeegee method. The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例6)
燒結工程において、燒結前成形体の上面全面をジルコニウム箔で覆いかぶせた以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
(Example 6)
In the sintering step, porous titanium was obtained in the same manner as in Example 1 except that the entire upper surface of the molded body before sintering was covered with a zirconium foil. The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例7)
スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布し、脱脂処理を1×10−1Pa下で行った以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
(Example 7)
Porous in the same manner as in Example 1 except that the slurry composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm, and degreasing was performed under 1 × 10 −1 Pa. Titanium was obtained. The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(実施例8)
スラリー状組成物を厚み50μm、開口部10×30mmのメタルマスクを使い、スキージ法で塗布し、脱脂処理を1×10−1Pa下で行い、基材除去工程を3N硝酸で行った以外は、実施例1と同様にして多孔質チタンを得た。得られた多孔質チタンの厚み、空隙率、平均空孔直径、電気伝導率を測定した。得られた結果を、チタン粉末の粒径と併せて表1に示す。
(Example 8)
The slurry composition was applied by a squeegee method using a metal mask having a thickness of 50 μm and an opening of 10 × 30 mm, the degreasing treatment was performed under 1 × 10 −1 Pa, and the substrate removal step was performed with 3N nitric acid. In the same manner as in Example 1, porous titanium was obtained. The thickness, porosity, average pore diameter, and electrical conductivity of the obtained porous titanium were measured. The obtained results are shown in Table 1 together with the particle size of the titanium powder.

(比較例1)
基材としてTiを用いた以外は、実施例1と同様にして多孔質チタンを得ようとしたところ、基材と焼結体を剥離することができず、目的とする多孔質チタンを得られなかった。
(Comparative Example 1)
Except for using Ti as a base material, when trying to obtain porous titanium in the same manner as in Example 1, the base material and the sintered body could not be peeled off, and the intended porous titanium was obtained. There wasn't.

(比較例2)
基材としてPETを用い、燒結前成形体を焼成前に基材から機械的剥離した以外は、実施例1と同様にして多孔質チタンを得ようとしたところ、基材除去工程において燒結前成形体に割れが生じ、目的とする多孔質チタンを得られなかった。
(Comparative Example 2)
Porous titanium was obtained in the same manner as in Example 1 except that PET was used as the base material and the pre-sintered compact was mechanically peeled off from the base material before firing. The body was cracked and the intended porous titanium could not be obtained.

(比較例3)
基材としてテフロンシートを用い、燒結前成形体を焼成前に基材から機械的剥離した以外は、実施例1と同様にして多孔質チタンを得ようとしたところ、基材除去工程において燒結前成形体に割れが生じ、目的とする多孔質チタンを得られなかった。
(Comparative Example 3)
A porous titanium was obtained in the same manner as in Example 1 except that a Teflon sheet was used as a base material and the green body before sintering was mechanically peeled from the base material before firing. The molded body was cracked, and the intended porous titanium could not be obtained.

(比較例4)
ベーカー式アプリケーターの設定塗布厚みを10μmにした以外は、実施例1と同様にして多孔質チタンを得ようとしたところ、スラリー状組成物を基材上に塗布することができなかった。
(Comparative Example 4)
Except for setting the application thickness of the Baker type applicator to 10 μm, an attempt was made to obtain porous titanium in the same manner as in Example 1, but the slurry-like composition could not be applied on the substrate.

Figure 0005976354
Figure 0005976354

10 多孔質焼結金属
12 金属部
14 孔部
16 主面
18 断面
DESCRIPTION OF SYMBOLS 10 Porous sintered metal 12 Metal part 14 Hole part 16 Main surface 18 Cross section

Claims (6)

金属がTiまたはTi合金であり、厚みが5〜30μm、空隙率が25〜70%および平均空孔直径が0.2〜40μmであり、多数の孔が等方的に連通した貫通孔であることを特徴とする多孔質焼結金属。 The metal is Ti or Ti alloy , the thickness is 5 to 30 μm, the porosity is 25 to 70%, the average pore diameter is 0.2 to 40 μm, and many holes are isotropic through holes. A porous sintered metal characterized by that. TiまたはTi合金である金属粉末および溶剤を含むスラリー状組成物を、酸に対して溶解性を有する基材上に成形して焼結前成形体を得る焼結前成形体形成工程、該焼結前成形体を焼結して焼結体を得る焼結工程および酸により該焼結体から該基材を分離除去する基材除去工程を含み、得られる多孔質焼結金属の厚みが5〜30μm、空隙率が25〜70%および平均空孔直径が0.2〜40μmであることを特徴とする多孔質焼結金属の製造方法。 A pre-sintered green body forming step for forming a pre-sintered green body by forming a slurry-like composition containing a metal powder that is Ti or a Ti alloy and a solvent on a substrate that is soluble in acid, look containing a substrate removal step of separating and removing the substrate a sintered preform by sintering step and acid to obtain a sintered sintered body from the sintered body, the thickness of the porous sintered metal obtained A method for producing a porous sintered metal, comprising 5 to 30 μm, a porosity of 25 to 70%, and an average pore diameter of 0.2 to 40 μm . 前記基材がFeまたはFeを含む合金で形成されることを特徴とする請求項2記載の多孔質焼結金属の製造方法。   3. The method for producing a porous sintered metal according to claim 2, wherein the base material is formed of Fe or an alloy containing Fe. 前記焼結工程を、実質的に密閉状態の容器内で行い、炭化物および酸化物の標準生成自由エネルギー値が、焼結温度範囲で、前記金属粉末より大きい値を持つゲッター材としての金属を前記焼結前成形体の近傍に配置することを特徴とする請求項2記載の多孔質焼結金属の製造方法。   The sintering step is performed in a substantially sealed container, and a metal as a getter material having a standard free energy value for formation of carbides and oxides that is larger than the metal powder in the sintering temperature range. 3. The method for producing a porous sintered metal according to claim 2, wherein the porous sintered metal is disposed in the vicinity of the green body before sintering. 前記ゲッター材としての金属がTi、ZrおよびHfから選ばれる1種もしくは2種以上、またはこれらの合金であることを特徴とする請求項4記載の多孔質焼結金属の製造方法。   5. The method for producing a porous sintered metal according to claim 4, wherein the metal as the getter material is one or more selected from Ti, Zr and Hf, or an alloy thereof. 前記焼結工程の前に、前記焼結前成形体を、酸素原子を含む気体中で加熱処理することを特徴とする請求項2記載の多孔質焼結金属の製造方法。   The method for producing a porous sintered metal according to claim 2, wherein the pre-sintered compact is heat-treated in a gas containing oxygen atoms before the sintering step.
JP2012068564A 2011-09-27 2012-03-26 Porous sintered metal and manufacturing method thereof Active JP5976354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068564A JP5976354B2 (en) 2011-09-27 2012-03-26 Porous sintered metal and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011210176 2011-09-27
JP2011210176 2011-09-27
JP2012068564A JP5976354B2 (en) 2011-09-27 2012-03-26 Porous sintered metal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013082990A JP2013082990A (en) 2013-05-09
JP5976354B2 true JP5976354B2 (en) 2016-08-23

Family

ID=48528452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068564A Active JP5976354B2 (en) 2011-09-27 2012-03-26 Porous sintered metal and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5976354B2 (en)
MY (1) MY185062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580902A (en) * 2018-05-02 2018-09-28 东北大学 A kind of electrochemistry adjuvant powders metallurgy prepares POROUS TITANIUM or the method for titanium alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173129B2 (en) * 2013-08-29 2017-08-02 東邦チタニウム株式会社 Sheet-like titanium porous body and method for producing the same
CN104588651A (en) * 2014-10-31 2015-05-06 成都易态科技有限公司 Flexible multi-hole metal foil and manufacturing method thereof
CN104588662B (en) * 2014-10-31 2017-02-15 成都易态科技有限公司 Flexible multi-hole metal foil and manufacturing method thereof
JP7191390B2 (en) * 2017-05-16 2022-12-19 エルジー・ケム・リミテッド METHOD OF MANUFACTURING METAL FOAM
CN107838427A (en) * 2017-10-31 2018-03-27 成都易态科技有限公司 Porous sintered metal laminated film and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483811A (en) * 1990-07-27 1992-03-17 Sumitomo Metal Ind Ltd Manufacture of porous combined material
JPH06145711A (en) * 1992-11-06 1994-05-27 Shin Etsu Chem Co Ltd Production of rare earth metal sintered body
JP3707507B2 (en) * 1996-06-25 2005-10-19 セイコーエプソン株式会社 Manufacturing method of sintered body
JP2001040402A (en) * 1999-07-29 2001-02-13 Daido Steel Co Ltd Porous metallic thin sheet body and its manufacture
JP4911566B2 (en) * 2005-12-05 2012-04-04 三菱マテリアル株式会社 MEDICAL DEVICE AND MEDICAL DEVICE SURFACE MODIFICATION METHOD
JP2007242574A (en) * 2006-03-13 2007-09-20 Hitachi Metal Precision:Kk Porous liquid holding member, and alcohol holding member
JP5421617B2 (en) * 2008-03-17 2014-02-19 大陽日酸株式会社 Method for producing porous metal body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580902A (en) * 2018-05-02 2018-09-28 东北大学 A kind of electrochemistry adjuvant powders metallurgy prepares POROUS TITANIUM or the method for titanium alloy
CN108580902B (en) * 2018-05-02 2019-06-04 东北大学 A kind of method that electrochemistry adjuvant powders metallurgy prepares POROUS TITANIUM or titanium alloy

Also Published As

Publication number Publication date
JP2013082990A (en) 2013-05-09
MY185062A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP5976354B2 (en) Porous sintered metal and manufacturing method thereof
TWI478185B (en) Super capacitor and method for manufacturing the same
CN102009170B (en) The porous aluminum material that bending strength is improved and manufacture method thereof
JP5182648B2 (en) Method for producing porous aluminum sintered body
JP5573110B2 (en) Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member
CN102714098B (en) Electrode material for aluminum electrolytic capacitor and production method therefor
JP2008235897A5 (en)
CN103563028B (en) Electrode material and its manufacture method for aluminium electrolutic capacitor
JP6628057B2 (en) Porous metal body, fuel cell, and method for manufacturing porous metal body
JP2005527934A (en) Open structure substrate having porous coating and method for producing the same
JP2007182360A (en) Article having whisker formed thereon and electrochemical capacitor using same
JP2022051582A (en) Titanium base material, method for manufacturing the same, electrode for water electrolysis and water electrolysis apparatus
JP5805568B2 (en) Current collector for dye-sensitized solar cell, method for producing the material, and dye-sensitized solar cell
JP2014239023A (en) Current collector for dye-sensitized solar battery, method for manufacturing material therefor, and dye-sensitized solar battery
WO2007077612A1 (en) Porous valve metal thin film, method for production thereof and thin film capacitor
TW201323372A (en) Distortion-free stencil-printed anodes on Ta/Nb sheet
TW200809884A (en) Method for producing a coating of a porous, electrically conductive substrate material with a dielectric and production of high capacitance density capacitors by using this method
US3356912A (en) Porous electrode
JP2009231209A (en) Method of manufacturing fuel cell
KR101338047B1 (en) Cathode for molten carbonate fuel cell and manufacturing method of the same
JP2007504604A5 (en)
JP7300022B1 (en) Titanium porous body and method for producing titanium porous body
JP7467743B1 (en) Titanium laminate and manufacturing method thereof
JP2010238517A (en) Solid polymer fuel cell using porous metal gas diffusion sheet performing outstanding contact surface conductivity for long period of time as structural member
JP4868231B2 (en) Porous titanium having low contact resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250