JP2013083545A - Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method - Google Patents

Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method Download PDF

Info

Publication number
JP2013083545A
JP2013083545A JP2011223618A JP2011223618A JP2013083545A JP 2013083545 A JP2013083545 A JP 2013083545A JP 2011223618 A JP2011223618 A JP 2011223618A JP 2011223618 A JP2011223618 A JP 2011223618A JP 2013083545 A JP2013083545 A JP 2013083545A
Authority
JP
Japan
Prior art keywords
steel pipe
resin lining
ultrasonic
attenuation
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011223618A
Other languages
Japanese (ja)
Inventor
Tetsuo Fukuchi
哲生 福地
Taro Nakano
多郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2011223618A priority Critical patent/JP2013083545A/en
Publication of JP2013083545A publication Critical patent/JP2013083545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detailedly and quickly determine mutual boundary surface states of a steel pipe 10 and resin lining 9 constituting multilayer pipeline at a plurality of parts thereof using difference in acoustic impedance densities for every steel pipe 10 and resin lining 9.SOLUTION: The apparatus for detecting boundary surface states of multilayer pipeline: applies ultrasonic waves to the surface of a steel pipe 10 the inner face of which is treated by resin lining 9; detects reflection light corresponding to ultrasonic waves reflected from their boundary with an ultrasonic detector 6 by advancement of ultrasonic waves excited at the surface of the steel pipe 10, to the inside of the steel pipe 10 and the resin lining 9; causes an arithmetic processing unit 8 to collect an attenuated waveform of the acoustic impedance density for every virtual lattice point on the steel pipe 10; and visualizes physical defect information generated on the boundary surface from the comparison results of integrated values, convergence widths and the like of exponential and approximation curves of attenuation waveforms at τ time.

Description

本発明は、多層配管の製造工程において、該多層配管を構成する鋼管と該鋼管内面に被覆される樹脂ライニングとの界面に発生する欠陥を検出する超音波減衰法による多層配管の界面状態検出方法および界面状態検出装置に関する。   The present invention relates to a method for detecting an interface state of a multilayer pipe by an ultrasonic attenuation method for detecting a defect generated at an interface between a steel pipe constituting the multilayer pipe and a resin lining coated on the inner surface of the steel pipe in a manufacturing process of the multilayer pipe. And an interface state detection device.

配水管、特に鋼管では長年の通水により内面の腐食が進み、赤水や濁水の発生あるいはスケールの付着等さまざまの問題が発生している。このため、今日では、耐環境性重視の観点から耐久性、耐蝕性に優れた多層配管の普及が図られるようになった。前記多層配管は、例えば鋼管の内面に硬質塩化ビニールやポリエチレンを被覆(ライニング)した樹脂ライニング構成を持つ。     In distribution pipes, especially steel pipes, corrosion of the inner surface has progressed due to water flow for many years, and various problems such as generation of red water and muddy water or adhesion of scale have occurred. For this reason, today, from the viewpoint of emphasizing environmental resistance, the spread of multilayer piping excellent in durability and corrosion resistance has been achieved. The multilayer pipe has a resin lining configuration in which, for example, hard vinyl chloride or polyethylene is coated (lining) on the inner surface of a steel pipe.

前記樹脂ライニングは、多層配管の生産ラインにおいて、硬質塩化ビニール管やポリエチレン管を鋼管の内面に圧入し、さらに加熱融着することによって得られ、これらの密着強度が管材としての品質要素になっている。従って、これらの間に隙間があると品質保全上重大な問題となる。つまり、長期間に亘って所期の耐食性や耐久性を維持するためには、前記加熱融着後の密着力や厚みの品質管理が重要になってくる。これまでの品質管理では多層配管の生産ラインで多層配管を任意個数抜き取って、鋼管に対する樹脂ライニングの接着性、密着性、界面状態の試験を種々の方法を用いて実施している。     The resin lining is obtained by press-fitting a hard vinyl chloride pipe or polyethylene pipe into the inner surface of a steel pipe in a multilayer pipe production line, and further heat-sealing, and these adhesion strengths become a quality factor as a pipe material. Yes. Therefore, if there is a gap between them, it becomes a serious problem in terms of quality maintenance. That is, in order to maintain the desired corrosion resistance and durability over a long period of time, quality control of the adhesive strength and thickness after the heat fusion becomes important. In quality control so far, an arbitrary number of multilayer pipes are extracted from the production line of multilayer pipes, and tests of the adhesiveness, adhesion and interface state of the resin lining to the steel pipe are carried out using various methods.

しかしながら、前記のような多層配管の抜き取りによって鋼管に対する樹脂ライニングの良否判定をする場合には、生産ラインを一時停止させて、電磁膜厚計により樹脂ライニングの膜厚を測定しなければならない。また、かかる測定を多層配管の全長に亘って実施する必要があるところから、測定時間および測定工数が多くなり、結果として多層配管の生産効率が低下するという不都合があった。     However, when the quality of the resin lining for the steel pipe is determined by extracting the multilayer pipe as described above, the production line must be temporarily stopped and the film thickness of the resin lining must be measured with an electromagnetic film thickness meter. In addition, since it is necessary to perform such measurement over the entire length of the multilayer pipe, the measurement time and the number of measurement steps are increased, resulting in a disadvantage that the production efficiency of the multilayer pipe decreases.

これに対して、パルス状の信号を励起源としてパイプ状物体内に弾性波を発生させ、欠陥部分からの反射波を検出して、そのパイプ状物体上の欠陥の位置を特定する欠陥検査方法が知られている(例えば、特許文献1参照)。また、超音波を送信して、管材からの反射波を捉えて、管材の厚さ、欠損、損傷などを非接触で検出する超音波反射法なども提案されている。   On the other hand, a defect inspection method for generating an elastic wave in a pipe-like object using a pulsed signal as an excitation source, detecting a reflected wave from the defect portion, and specifying the position of the defect on the pipe-like object Is known (see, for example, Patent Document 1). In addition, an ultrasonic reflection method that transmits ultrasonic waves, captures reflected waves from the tube material, and detects the thickness, defect, damage, etc. of the tube material in a non-contact manner has been proposed.

特開2006−058291号公報JP 2006-058291 A

しかしながら、この欠陥検査方法では励起源直下の欠陥しか検出できず、多層配管全体を検査するには多くの時間が掛かり、欠陥を見逃す可能性が大きいほか、特に管材層の接着状態、密接状態や材質の性状に応じた欠陥情報を捕らえることが難しいという不都合があった。   However, this defect inspection method can only detect defects directly under the excitation source, and it takes a lot of time to inspect the entire multi-layer piping, and there is a high possibility of overlooking the defects. There is an inconvenience that it is difficult to capture defect information according to the properties of the material.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、多層配管を構成する鋼管および樹脂ライニングごとの音響インピーダンスの減衰波形を利用して、鋼管および樹脂ライニング相互の接着状態、密接状態、界面状態をこれらの複数部位について詳細かつ迅速に判別することができる超音波減衰法による多層配管の界面状態検出方法および界面状態検出装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and the purpose thereof is to utilize the attenuation waveform of the acoustic impedance for each steel pipe and resin lining constituting the multilayer pipe, and the adhesion state between the steel pipe and the resin lining, It is an object of the present invention to provide an interface state detection method and an interface state detection device for multilayer pipes by an ultrasonic attenuation method capable of discriminating the close state and the interface state in detail and quickly with respect to these plural parts.

前述した目的を達成するために、本発明に係る超音波減衰法による多層配管の界面状態検出装置は、内面に樹脂ライニングを施した鋼管の表面に超音波を照射し、前記鋼管の表面に励起された超音波が前記鋼管および樹脂ライニング内に進行することによって、前記鋼管および樹脂ライニングの界面と樹脂ライニング内面とから反射される超音波対応の反射光をそれぞれ検出する超音波超音波検出器と、該超音波検出器で得られる前記鋼管上に設定された仮想上の格子点ごとの、音響インピーダンス密度による減衰波形を採取し、その減衰波形の指数近似曲線どうしの比較結果から、前記鋼管と樹脂ライニングとの界面に発生した物理的な欠陥情報を可視化する演算処理部とを備えることを特徴とする。   In order to achieve the above-described object, the interface state detection apparatus for multilayer piping by the ultrasonic attenuation method according to the present invention irradiates the surface of the steel pipe with the resin lining on the inner surface, and excites the surface of the steel pipe. An ultrasonic ultrasonic detector for detecting reflected light corresponding to ultrasonic waves reflected from the interface of the steel pipe and the resin lining and the inner surface of the resin lining as a result of the generated ultrasonic waves traveling into the steel pipe and the resin lining, The attenuation waveform due to the acoustic impedance density for each virtual lattice point set on the steel pipe obtained by the ultrasonic detector is collected, and from the comparison result of exponential approximation curves of the attenuation waveform, the steel pipe and And an arithmetic processing unit that visualizes physical defect information generated at the interface with the resin lining.

上記構成により、多層配管を構成する鋼管の表面に集光された超音波が、該集光部付近を局所的に温度上昇させて、体積膨張を惹起させる。このため、前記鋼管の表面に超音波が励起され、該超音波は内部に拡散するように伝播して、鋼管と樹脂ライニングとの界面および樹脂ライニング内面で反射を繰り返しながら減衰する。その各反射波の減衰波形が超音波検出器を用いて観測される。   With the above-described configuration, the ultrasonic waves collected on the surface of the steel pipe constituting the multi-layer pipe locally raise the temperature in the vicinity of the light collecting portion and cause volume expansion. For this reason, ultrasonic waves are excited on the surface of the steel pipe, the ultrasonic waves propagate so as to diffuse inside, and are attenuated while being repeatedly reflected at the interface between the steel pipe and the resin lining and the inner surface of the resin lining. The attenuation waveform of each reflected wave is observed using an ultrasonic detector.

前記の観測情報は、鋼管および樹脂ライニングのそれぞれが持つ密度と音速との積で表される音響インピーダンス密度である。従って、この音響インピーダンスによって反射波が減衰する減衰時間および反射出力、つまり減衰波形を採取し、その指数近似曲線どうしを減衰時間τで比較、検証することにより、鋼管と樹脂ライニングとの接着度、密接度、界面状態を正確に判定することができる。   The observation information is an acoustic impedance density represented by the product of the density and sound velocity of each of the steel pipe and the resin lining. Therefore, by collecting the decay time and reflected output in which the reflected wave is attenuated by this acoustic impedance, that is, the decay waveform, comparing and verifying the exponential approximation curves with the decay time τ, the degree of adhesion between the steel pipe and the resin lining, It is possible to accurately determine the closeness and the interface state.

また、本発明に係る超音波減衰法による多層配管の界面状態検出方法は、内面に樹脂ライニングを施した鋼管の表面に超音波を励起し、前記超音波が前記鋼管および樹脂ライニング内に進行することによって、材質固有の音響インピーダンスにより減衰した音波の振動をexp−βx(βは減衰定数)にあてはめ、演算処理によりその減衰波形の指数近似曲線どうしの減衰時間γまでの積分値および収束幅Φ等を比較し、前記鋼管と樹脂ライニングとの界面に発生した物理的な欠陥情報を可視化することを特徴とする。 In the method for detecting an interface state of a multilayer pipe by the ultrasonic attenuation method according to the present invention, ultrasonic waves are excited on the surface of a steel pipe whose inner surface is resin-lined, and the ultrasonic waves proceed into the steel pipe and the resin lining. Thus, the vibration of the sound wave attenuated by the acoustic impedance peculiar to the material is applied to exp −βx (β is an attenuation constant), and the integrated value up to the attenuation time γ between the exponential approximation curves of the attenuation waveform and the convergence width Φ And the like, and the physical defect information generated at the interface between the steel pipe and the resin lining is visualized.

これにより、多層配管を構成する鋼管と樹脂ライニングとの接合度、密着度および界面状態等の物理状態を、鋼管における仮想上の格子点における音響インピーダンスによる減衰波形を指数近似曲線どうしの減衰時間τにおける積分値並びに収束幅Φ、Φ等の比較によって正確に推測することができるとともに、これを多層配管の生産ラインを止めることなく、非接触、非破壊で高精度かつ効率的に実施可能にする。 As a result, the physical state such as the bonding degree, adhesion degree and interface state between the steel pipe and the resin lining constituting the multilayer pipe, the attenuation waveform due to the acoustic impedance at the virtual lattice point in the steel pipe, the attenuation time τ between the exponential approximation curves Can be accurately estimated by comparing the integral value and convergence widths Φ 1 , Φ 2, etc., and can be carried out with high accuracy and efficiency in a non-contact, non-destructive manner without stopping the production line for multilayer piping. To.

本発明によれば、多層配管の複数箇所で観測された音響インピーダンス密度の減衰波形を利用して、鋼管および樹脂ライニング相互の界面状態を各管材各部について詳細かつ迅速に検査することができる。   ADVANTAGE OF THE INVENTION According to this invention, the interface state between a steel pipe and resin lining can be test | inspected in detail and rapidly about each pipe material using the attenuation waveform of the acoustic impedance density observed in the multiple places of multilayer piping.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための最良の形態を添付の図面を参照して詳細に説明する。   The present invention has been briefly described above. Further, the best mode for carrying out the invention described below will be described in detail with reference to the accompanying drawings.

本発明の実施形態による超音波減衰法による多層配管の界面状態検出装置を示すブロック接続図である。It is a block connection diagram showing an interface state detection device for multilayer piping by an ultrasonic attenuation method according to an embodiment of the present invention. 図1の多層配管の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the multilayer piping of FIG. 多層配管の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of multilayer piping. 超音波装置の制御系を示す説明図である。It is explanatory drawing which shows the control system of an ultrasonic device. 図4に示す制御系のインパルス応答特性図である。FIG. 5 is an impulse response characteristic diagram of the control system shown in FIG. 4. 多層配管の層間が健全な箇所の反射波の減衰波形図である。It is an attenuation waveform figure of the reflected wave of the part where the interlayer of multilayer piping is sound. 多層配管の層間に剥離があるときの反射波の減衰波形図である。It is an attenuation waveform figure of a reflected wave when there is exfoliation between layers of multilayer piping. 図6に示す多層配管の層間が健全である場合における反射波の減衰波形の指数近似曲線である。FIG. 7 is an exponential approximation curve of a reflection wave attenuation waveform when the layers of the multilayer pipe shown in FIG. 6 are healthy. 図7に示す多層配管の層間に剥離がある場合における反射波の減衰波形図の指数近似曲線である。FIG. 8 is an exponential approximation curve of an attenuation waveform diagram of a reflected wave when there is separation between layers of the multilayer pipe shown in FIG. 7. 鋼管上の仮想上の格子点に得られる指数近似曲線である。It is an exponential approximation curve obtained at a virtual lattice point on a steel pipe. 鋼管上における仮想上の格子点の設定例を示す説明図である。It is explanatory drawing which shows the example of a setting of the virtual lattice point on a steel pipe. 鋼管上にa、b、cの音響インピーダンス密度の異なる領域についても、判定化する例を示す説明図である。It is explanatory drawing which shows the example which also makes judgment about the area | region where the acoustic impedance density of a, b, and c differs on a steel pipe. 本実施形態における多層配管の各メッシュ点の欠陥情報をAND回路で論理構成する真理値表である。It is a truth table which logically constitutes defect information of each mesh point of multilayer piping in this embodiment with an AND circuit.

以下、本発明の一実施の形態にかかる超音波減衰法による多層配管の界面状態検出装置を、図面を参照して説明する。   Hereinafter, an interface state detection device for multilayer piping by an ultrasonic attenuation method according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態による超音波減衰法による多層配管の界面状態検出装置は、内面に樹脂ライニングを施した鋼管の表面に超音波を照射する超音波発振器と、前記超音波を受けて前記鋼管の表面に励起された超音波が前記鋼管および樹脂ライニング内に進行することによって、前記鋼管および樹脂ライニングの界面と樹脂ライニング内面とから反射される超音波対応の反射光をそれぞれ光学的に検出する超音波検出器と前記鋼管上に設定された仮想上の格子点ごとに、音響インピーダンス密度の減衰波形を採取し、その減衰波形の指数近似曲線どうしの時間τにおける積分値、収束幅Φ<ΦまたはΦ>Φ等の比較結果から、前記鋼管と樹脂ライニングとの界面に発生した物理的な欠陥情報を可視化可能にする演算処理部とを備えて構成される。 An apparatus for detecting an interface state of a multilayered pipe by an ultrasonic attenuation method according to the present embodiment includes an ultrasonic oscillator that irradiates ultrasonic waves on the surface of a steel pipe whose inner surface is resin-lined, and the surface of the steel pipe that receives the ultrasonic waves. Ultrasonic detection that optically detects reflected light corresponding to ultrasonic waves reflected from the interface of the steel pipe and the resin lining and the inner surface of the resin lining as the excited ultrasonic waves travel into the steel pipe and the resin lining. For each virtual lattice point set on the vessel and the steel pipe, an attenuation waveform of the acoustic impedance density is sampled, and an integrated value at a time τ between the exponential approximation curves of the attenuation waveform, a convergence width Φ 12 or An arithmetic processing unit that makes it possible to visualize physical defect information generated at the interface between the steel pipe and the resin lining based on a comparison result such as Φ 1 > Φ 2. The

この構成によって、鋼管と樹脂ライニングとの接合度、密着度および界面状態等の物理状態を、鋼管における仮想上の複数格子点における、音響インピーダンス密度の減衰波形を採取し、これらの指数近似曲線どうしの時間τにおける積分値、収束幅Φ、Φ等を比較することによって正常の判定出力を得ることができる。 With this configuration, the physical state of the steel pipe and the resin lining, such as the degree of adhesion, adhesion, and interface state, is collected, and the attenuation waveform of the acoustic impedance density at multiple virtual lattice points in the steel pipe is collected. A normal determination output can be obtained by comparing the integral values at the time τ, the convergence widths Φ 1 , Φ 2, and the like.

本実施形態による超音波減衰法による多層配管の界面状態検出装置は、図1に示すように、超音波発振器1と、投光用の反射ミラー2と、投光側集光レンズ3と、受光側集光レンズ4と、受光用の反射ミラー5と、超音波検出器6と、波形描画部7と、演算処理部(CPU)8とからなる。   As shown in FIG. 1, an apparatus for detecting an interface state of a multilayer pipe by an ultrasonic attenuation method according to the present embodiment includes an ultrasonic oscillator 1, a reflecting mirror 2 for projecting light, a light condensing lens 3 on a light projecting side, and light receiving. It comprises a side condenser lens 4, a light receiving reflection mirror 5, an ultrasonic detector 6, a waveform drawing unit 7, and an arithmetic processing unit (CPU) 8.

これらのうち、前記超音波発振器1は超音波を発生する。前記反射ミラー2は、超音波発振器1からの超音波を被検体としての、図2に示すような多層配管、具体的には、内周面に硬質塩化ビニールなどの樹脂ライニング9を施した鋼管10に向けて照射するように機能する。集光レンズ3は、反射ミラー2で反射された超音波のエネルギレベルを高めて鋼管10の表面に照射する。なお、この鋼管10の外周面には亜鉛メッキ層11による防錆処理がなされている。別の多層配管として、図3に示すように、鋼管(炭素鋼)10の内周面および外周面の両方に硬質塩化ビニールなどの樹脂ライニング9を施したものがある。このような3層構造の多層配管も、本発明による接合度、密着度および界面状態等の物理状態の検査対象にすることができる。   Among these, the ultrasonic oscillator 1 generates ultrasonic waves. The reflection mirror 2 is a multi-layer pipe as shown in FIG. 2 using ultrasonic waves from the ultrasonic oscillator 1 as an object, specifically, a steel pipe having a resin lining 9 such as hard vinyl chloride on the inner peripheral surface. It functions to irradiate 10. The condenser lens 3 increases the energy level of the ultrasonic wave reflected by the reflection mirror 2 and irradiates the surface of the steel pipe 10. The outer peripheral surface of the steel pipe 10 is rust-proofed by the galvanized layer 11. As another multilayer pipe, as shown in FIG. 3, there is one in which a resin lining 9 such as hard vinyl chloride is applied to both an inner peripheral surface and an outer peripheral surface of a steel pipe (carbon steel) 10. Multi-layer piping having such a three-layer structure can also be an inspection target for physical states such as the degree of bonding, the degree of adhesion, and the interface state according to the present invention.

また、前記集光レンズ4は、超音波の照射によって鋼管10の表面に発生し
た超音波情報を光情報として集光するものであり、反射ミラー5はその光情報の光を受けて、前記超音波検出器6へ入力するように機能する。
The condensing lens 4 condenses ultrasonic information generated on the surface of the steel pipe 10 by irradiation of ultrasonic waves as optical information, and the reflection mirror 5 receives the light of the optical information, and It functions to input to the sound wave detector 6.

前記超音波検出器6は、集光レンズ4および反射ミラー5を介して入射した前記光情報を持つ反射光と、これらを介して前記鋼管10の表面に照射される照射光とを混合することにより回折光を発生させ、反射光と回折光との干渉信号を光情報として得る。なお、鋼管10の表面における超音波検出器6の出力は100mW以下で、スポット径は約2mmとされ、前記波形描画部7は超音波検出器6で計測される前記反射波や干渉信号波形等を描画表示するように機能する。   The ultrasonic detector 6 mixes the reflected light having the optical information incident through the condenser lens 4 and the reflection mirror 5 and the irradiation light irradiated on the surface of the steel pipe 10 through these. Diffracted light is generated by, and an interference signal between the reflected light and the diffracted light is obtained as optical information. The output of the ultrasonic detector 6 on the surface of the steel pipe 10 is 100 mW or less, the spot diameter is about 2 mm, and the waveform drawing unit 7 is used for the reflected wave and interference signal waveform measured by the ultrasonic detector 6. Function to draw and display.

演算処理部8は、前記鋼管10上に予め設けた仮想上の格子点ごとに音響インピーダンス密度の減衰波形を採取し、この減衰波形の指数近似曲線どうしの時間τにおける指数近似曲線における積分値、収束幅Φ、Φ等の比較結果から、前記鋼管10と樹脂ライニング9との界面に発生した空隙や樹脂ライニングに発生したピンホールなどの物理的な欠陥情報の可視化を可能にする。前記空隙やピンホールが存在する場合には、鋼管との表面波(界面)と底面波(内面)のみの減衰波形しか現れない。即ち、超音波は空気抵抗を受けて伝播しなくなりまたは伝播し難くなる。従って樹脂ライニング9の内壁からの反射波形レベルは極端に小さくなるか、殆ど現れなくなる。 The arithmetic processing unit 8 collects an attenuation waveform of the acoustic impedance density for each virtual lattice point provided in advance on the steel pipe 10, and an integrated value in the exponential approximation curve at the time τ between the exponential approximation curves of the attenuation waveform, From the comparison results such as the convergence widths Φ 1 and Φ 2 , it is possible to visualize physical defect information such as voids generated at the interface between the steel pipe 10 and the resin lining 9 and pinholes generated in the resin lining. When the voids and pinholes are present, only the attenuation waveform of the surface wave (interface) and the bottom wave (inner surface) with the steel pipe appears. That is, the ultrasonic wave is not propagated due to the air resistance or becomes difficult to propagate. Therefore, the level of the reflected waveform from the inner wall of the resin lining 9 becomes extremely small or hardly appears.

一般に、異なる物質から構成される複層構造物の表面から垂直に超音波を入射すると、材質が異なっても、音響インピーダンスの等しい物質間の層間面においては、超音波は、その界面を通り抜けてしまう。音響インピーダンスZ(材質が持つ密度ρ(g/cm3)と音速C(m/sec)との積で表される)の異なる物質の音響インピーダンスZ、Zの層で構成される複数層の物体や層間に空隙が存在する物体に超音波を入射した場合、超音波は境界面における反射率r=Z−Z/Z+Zによりその界面で一部が反射される。つまり、速度に比例した材質の粘性密度の抵抗力である音響インピーダンス密度によって音響エネルギーを消費して時間とともに前記減衰振動がexp-βx(βは減衰定数)に比例して減衰する。 In general, when ultrasonic waves are incident perpendicularly from the surface of a multi-layered structure composed of different materials, even if the materials are different, the ultrasonic waves pass through the interface at the interlayer surface between materials with the same acoustic impedance. End up. A plurality of layers composed of layers of acoustic impedances Z 1 and Z 2 of materials having different acoustic impedances Z (expressed by a product of density ρ (g / cm 3 ) and sound velocity C (m / sec)) When an ultrasonic wave is incident on the object or an object having a gap between layers, a part of the ultrasonic wave is reflected at the interface by the reflectivity r = Z 2 −Z 1 / Z 2 + Z 1 at the boundary surface. In other words, the acoustic energy is consumed by the acoustic impedance density which is the resistance force of the viscosity density of the material proportional to the speed, and the damped vibration is attenuated in proportion to exp- βx (β is a damping constant) with time.

今、超音波装置を図4に示すような入出力情報の制御系としてみると、信号入力x(t)を他の信号に変換して送り出す伝達関数g(t)を有する減衰振動をとるインパルス応答y(t)と想定できる。図5において、送信波形を任意の時刻tにおいて高さx(t)で微小時間Δtの単位インパルスを与えたとする。この強さをx(t)Δ(t)とすることができる。時間tで観測した応答をy(t)とするとy(t)=∫ g(t−τ)x(t)dtとなり、時間tの値の情報は制御面積総和(積分値)を対象から2分の1で求めることができる。ここで、τ<tとした。 Now, when the ultrasonic apparatus is viewed as a control system for input / output information as shown in FIG. 4, an impulse that takes a damped oscillation having a transfer function g (t) that converts the signal input x (t) into another signal and sends it out. A response y (t) can be assumed. In FIG. 5, it is assumed that the transmission waveform is given a unit impulse of a minute time Δt at a height x (t) at an arbitrary time t. This strength can be set to x (t) Δ (t). If the response observed at time t is y (t), then y (t) = ∫ 0 X g (t−τ) x (t) dt, and information on the value of time t is for the control area sum (integral value). Can be obtained in half. Here, τ <t.

インパルス応答は指数関数近似と仮定し取り扱うことができるので、図11に示すような鋼管10上の微小メッシュにおける各格子点の固有の音響特性ごとに、多重反射超音波の減衰の関係を電圧(mv)と時間(μs)との関係を一定時間τまでの情報として、音波の減衰を測定する。この結果は実験式で求めることができる。
図6は、層間に空隙(剥離)が生じていない場合の反射出力の減衰特性を示し、図7は、層間に空隙(剥離)が生じている場合の反射出力の減衰特性を示す。図6は、反射出力の波形の振幅が10μsより1/15程度に略収束して時間τで収束幅がΦとなり、図11における鋼管10と樹脂ライニング9との接合状態が完全である。一方、図7は、反射出力の波形の振幅が最大振幅(6μs付近)の1/6程度に収束し、時間τで収束幅はΦとなる。よって、これらの波形の収束状態の比較結果から層間空隙(剥離)の有無が判別可能になる。
Since the impulse response can be handled assuming that it is an exponential function approximation, the relationship between the attenuation of the multi-reflection ultrasonic wave is expressed by the voltage (for each acoustic characteristic unique to each lattice point in the fine mesh on the steel pipe 10 as shown in FIG. mv) and time (μs) are used as information up to a certain time τ to measure attenuation of sound waves. This result can be obtained by an empirical formula.
FIG. 6 shows the attenuation characteristic of the reflected output when no gap (separation) occurs between the layers, and FIG. 7 shows the attenuation characteristic of the reflected output when the gap (separation) occurs between the layers. In FIG. 6, the amplitude of the waveform of the reflected output substantially converges to about 1/15 from 10 μs, and the convergence width becomes Φ 1 at time τ, and the joining state between the steel pipe 10 and the resin lining 9 in FIG. 11 is complete. On the other hand, in FIG. 7, the amplitude of the waveform of the reflected output converges to about 1/6 of the maximum amplitude (near 6 μs), and the convergence width becomes Φ 2 at time τ. Therefore, it is possible to determine the presence or absence of an interlayer gap (peeling) from the comparison result of the convergence states of these waveforms.

本実施形態では、音響インピーダンスρCに着目し、図11における鋼管10および樹脂ライニング9からの反射波の減衰波形、つまり反射波の状態から減衰時間τ(t)および反射出力C(mv)を、予め鋼管10上に設定された仮想上の格子点ごとに捉えた情報として数値化し、収束幅Φ、Φを比較する。これにより多層配管を構成する各管材の接着度、密接度、正常を推定できる。これらの数値を、図10に示すように反射出力(mV)対時間(τ)の座標上にプロットして、時間(μs)とともに変化する図10に示すような反射出力の減衰特性曲線Bを得るとともに、この減衰特性曲線Bの近似曲線Aを得る。 In the present embodiment, paying attention to the acoustic impedance ρC, the attenuation waveform of the reflected wave from the steel pipe 10 and the resin lining 9 in FIG. 11, that is, the decay time τ (t) and the reflected output C (mv) from the state of the reflected wave, The information is digitized as information captured for each virtual lattice point set on the steel pipe 10 in advance, and the convergence widths Φ 1 and Φ 2 are compared. Thereby, the adhesiveness, closeness, and normality of each pipe material which comprises multilayer piping can be estimated. These numerical values are plotted on the coordinates of the reflected output (mV) versus time (τ) as shown in FIG. 10, and an attenuation characteristic curve B of the reflected output as shown in FIG. 10 changing with time (μs) is obtained. At the same time, an approximate curve A of this attenuation characteristic curve B is obtained.

また、図11は、鋼管10にxy方向に例えば5mm間隔のメッシュの格子点を持つメッシュパターンを設定したものを示し、図12はその一部を拡大して示す。音響エネルギーは媒質それぞれの密度ρ(kg/m)と媒質の粒子速度C(m/s)に比例した抵抗力による伝播エネルギーの損失があり、図11に示す多層配管を構成する鋼管10および樹脂ライニング9の各格子点ごとに減衰する。この伝播エネルギーの時間的減衰量として、減衰係数βをパラメータとする指数近似曲線から音響の異なる領域a、b、cについてもその結果を、図12に示すようにメッシュパターン上に領域を分けて表示する。これにより可視化が可能になり、図11に示す鋼管10および樹脂ライニング9の接着、密接、界面の各状態を推定することができる。 Moreover, FIG. 11 shows what set the mesh pattern which has a grid point of the mesh of a 5-mm space | interval in the xy direction, for example in the xy direction, and FIG. 12 expands and shows a part. The acoustic energy has a loss of propagation energy due to a resistance force proportional to the density ρ (kg / m 2 ) of each medium and the particle velocity C (m / s) of the medium, and the steel pipe 10 constituting the multilayer pipe shown in FIG. It attenuates for each lattice point of the resin lining 9. As the temporal attenuation of this propagation energy, the results of the acoustic regions a, b, and c from the exponential approximation curve with the attenuation coefficient β as a parameter are divided into regions on the mesh pattern as shown in FIG. indicate. As a result, visualization becomes possible, and it is possible to estimate the states of adhesion, close contact, and interface between the steel pipe 10 and the resin lining 9 shown in FIG.

鋼管10の内部の状態により、格子点の音響インピーダンス密度による反射を点として捉え、多重反射超音波として送り出される信号をインパルス応答として捉えると、印加された信号が入力と出力の関係でどのように変化しているか、過渡応答を実測することで面として捉えることができる。実測した箇所の個々の伝達関数を時間軸にとり比較することで、境界面の状態を推定することができる。個々の伝達関数は鋼管10内部の情報であり、多層配管の界面状態など重要な意味を持つ。従って、反射応答の時間ごとの格子点(測定点)を結んだ線で近似すると、等高線を描画することができる。高分子物質である塩化ビニールの音波吸収により、多層配管の多重反射エコーは減衰する。図6の健全部、図7の剥離部の測定結果から図8(実験式y=13.425e−0.06631x+0.6434)および図9(実験式y=7.926e−0.05017x+2.9825)に示すように、実験式から時間τが限りなく∞に近づくことで収束幅Φ=0.6434mv、Φ=2.9825mvで収束し、Φ>Φとなる。 Depending on the internal state of the steel pipe 10, if the reflection due to the acoustic impedance density at the lattice point is regarded as a point, and the signal sent as a multiple reflection ultrasonic wave is regarded as an impulse response, how the applied signal is related to the relationship between input and output Whether it is changing or not can be grasped as a surface by measuring the transient response. The state of the boundary surface can be estimated by comparing the individual transfer functions of the actually measured locations on the time axis. Each transfer function is information inside the steel pipe 10 and has an important meaning such as an interface state of the multilayer pipe. Therefore, contour lines can be drawn by approximating with a line connecting grid points (measurement points) for each reflection response time. The multi-reflection echo of the multilayer pipe is attenuated by the sound wave absorption of the vinyl chloride polymer. FIG. 8 (empirical formula y = 13.425e−0.06631x + 0.6434) and FIG. 9 (experimental formula y = 7.926e− 0.05017x + 2. 9825), when the time τ approaches ∞ from the empirical formula, it converges with the convergence width Φ 1 = 0.6434 mv and Φ 2 = 2.9825 mv, and Φ 2 > Φ 1 .

このように、本実施形態では多層配管の表面に仮想上の格子点を設定し、その格子点上の音響インピーダンス密度の減衰波形を採取し、指数近似曲線による比較を行なうことで、多層配管の層間の接合、密着、界面状態を推定することとしている。なお、超音波の発生手段はレーザをはじめEMAT型、圧電型等が用いられるが、減衰の原理からこれらのいずれかに限定されるものではない。   As described above, in this embodiment, a virtual lattice point is set on the surface of the multilayer pipe, an attenuation waveform of the acoustic impedance density on the lattice point is sampled, and comparison is performed using an exponential approximation curve. Interlayer bonding, adhesion, and interface state are estimated. The ultrasonic wave generating means may be a laser, an EMAT type, a piezoelectric type, or the like, but is not limited to any one of them due to the principle of attenuation.

以上のように、本実施形態では、超音波発振器1から内面に樹脂ライニング9を施した鋼管10の表面に超音波を照射し、超音波を受けて前記鋼管10の表面に励起された超音波が鋼管10および樹脂ライニング9内に進行することによって、鋼管10および樹脂ライニング9の界面と樹脂ライニング9の内面とから反射される超音波対応の反射光を超音波検出器6によりそれぞれ光学的に検出し、演算処理部8により前記鋼管10上に設定された仮想上の格子点ごとに音響インピーダンス密度の減衰波形を採取し、その減衰波形の指数近似曲線どうしの減衰時間τまでの積分値と収束幅φ等の比較結果を演算することで、前記鋼管10と樹脂ライニング9との界面に発生した物理的な欠陥情報を可視化可能にすることとしている。   As described above, in this embodiment, the ultrasonic wave is applied to the surface of the steel pipe 10 by irradiating the surface of the steel pipe 10 with the resin lining 9 on the inner surface from the ultrasonic oscillator 1 and receiving the ultrasonic wave. Is propagated into the steel pipe 10 and the resin lining 9, and the reflected light corresponding to the ultrasonic waves reflected from the interface of the steel pipe 10 and the resin lining 9 and the inner surface of the resin lining 9 are optically reflected by the ultrasonic detector 6, respectively. An attenuation waveform of the acoustic impedance density is sampled for each virtual lattice point set on the steel pipe 10 by the arithmetic processing unit 8, and an integration value up to the attenuation time τ between the exponential approximation curves of the attenuation waveform and By calculating a comparison result such as the convergence width φ, it is possible to visualize physical defect information generated at the interface between the steel pipe 10 and the resin lining 9.

これによって、多層配管を構成する鋼管10および樹脂ライニング9ごとに格子点の音響インピーダンス密度が異なることを利用して、鋼管10および樹脂ライニング9相互の界面状態をこれらの複数部位について詳細かつ迅速に判定することができる。   Thus, by utilizing the fact that the acoustic impedance density of the lattice points is different for each of the steel pipe 10 and the resin lining 9 constituting the multi-layer pipe, the interface state between the steel pipe 10 and the resin lining 9 is detailed and rapidly obtained for these plural parts. Can be determined.

また、前記の各メッシュ点(格子点)における減衰波形をもとに、それぞれ下記判定要素(入力信号)i、iに対してビット信号〔0〕、〔1〕を設定すると、前記演算処理部8により各メッシュ点における欠陥情報を演算して設定された前記ビット信号を参照して、図13に示すような真理値表を得ることができる。この真理値表において、i〜iの一つでも〔0〕ビット信号となった場合にAND回路の演算処理を行い、この演算結果(各メッシュ点の判定出力X)から容易に異常判定することができる。この異常判定結果は、視覚や聴覚にて認知できる周知の表示手段を用いて表示することができる。 Further, when the bit signals [0] and [1] are set for the following determination elements (input signals) i 1 and i 2 based on the attenuation waveform at each mesh point (lattice point), the calculation is performed. A truth table as shown in FIG. 13 can be obtained by referring to the bit signal set by calculating defect information at each mesh point by the processing unit 8. In this truth table, if at least one of i 1 to in is a [0] bit signal, the AND circuit performs arithmetic processing, and it is easy to determine an abnormality from this arithmetic result (determination output X of each mesh point). can do. This abnormality determination result can be displayed using a known display means that can be recognized visually or auditorily.

:時間τにおける収束幅φ(mv)≦正常収束幅φ(mv)即ちΦ<Φのとき〔1〕の対応をとる。 i 1 : Convergence width φ (mv) ≦ normal convergence width φ (mv) at time τ, that is, [1] when Φ 12 .

:積分値∫ 0y(t)dt≦正規積分値即ち(I)<(II)のとき〔1〕の対応となる。 i 2 : integral value ∫ z 0 y (t) dt ≦ normal integral value, that is, when (I) <(II), it corresponds to [1].

:品質保持から音響インピーダンス密度の異なる鋼管接合部の減衰情報等論理構成を追加することにより必要情報を加味することで、より精度の高い演算処理を可能にする。 i n : By adding necessary information by adding a logical configuration such as attenuation information of steel pipe joints having different acoustic impedance densities in order to maintain quality, more accurate arithmetic processing can be performed.

以上のように、本発明は、超音波の照射にもとづく多層配管の界面からの反射光を検出し、この検出情報を演算するものとは異なり、前述のように超音波の照射にもとづく材質固有の音響インピーダンス密度の減衰波形を採取して、その指数近似曲線どうしの比較、検証を行なう超音波減衰法による多層配管の界面状態検出方法および界面状態検出装置を提供するものである。   As described above, the present invention detects the reflected light from the interface of the multi-layer pipe based on the ultrasonic irradiation, and differs from the calculation of the detection information, as described above, the material specific to the material based on the ultrasonic irradiation. It is intended to provide an interface state detection method and an interface state detection apparatus for multilayer piping by an ultrasonic attenuation method that collects attenuation waveforms of acoustic impedance densities of the above, and compares and verifies the exponential approximation curves.

本発明は、鋼管および樹脂ライニング相互の界面状態をこれらの複数部位について詳細かつ迅速に判定することができるという効果を有し、多層配管を構成する鋼管と該鋼管内面に被覆される樹脂ライニングとの界面に発生する欠陥を検出する超音波減衰法による多層配管の界面状態検出方法および界面状態検出装置に有用である。   The present invention has an effect that the interface state between a steel pipe and a resin lining can be determined in detail and quickly for these plural parts, and a steel pipe constituting a multilayer pipe and a resin lining coated on the inner surface of the steel pipe, The present invention is useful for an interface state detection method and an interface state detection apparatus for multilayer pipes by an ultrasonic attenuation method for detecting defects generated at the interface of the pipe.

1 超音波発振器
2 反射ミラー
3 投光側集光レンズ
4 受光側集光レンズ
5 反射ミラー
6 超音波検出器
7 波形描画部
8 演算処理部
9 樹脂ライニング
10 鋼管
11 亜鉛メッキ層
DESCRIPTION OF SYMBOLS 1 Ultrasonic oscillator 2 Reflection mirror 3 Light emission side condensing lens 4 Light reception side condensing lens 5 Reflection mirror 6 Ultrasonic detector 7 Waveform drawing part 8 Arithmetic processing part 9 Resin lining 10 Steel pipe 11 Zinc plating layer

Claims (2)

内面に樹脂ライニングを施した鋼管の表面に超音波を照射し、前記鋼管の表面に励起された超音波が前記鋼管および樹脂ライニング内に進行することによって、前記鋼管および樹脂ライニングの界面と樹脂ライニング内面とから反射される超音波対応の反射光をそれぞれ検出する超音波検出器と、該超音波検出器で得られる前記鋼管上に設定された仮想上の格子点ごとの、音響インピーダンス密度の減衰波形を採取し、その減衰波形の指数近似曲線どうしの比較結果から、前記鋼管と樹脂ライニングとの界面に発生した物理的な欠陥情報を可視化する演算処理部とを備えることを特徴とする超音波減衰法による多層配管の界面状態検出装置。 By irradiating the surface of the steel pipe with the resin lining on the inner surface with ultrasonic waves, and the ultrasonic waves excited on the surface of the steel pipe proceed into the steel pipe and the resin lining, the interface between the steel pipe and the resin lining and the resin lining are obtained. An ultrasonic detector for detecting reflected light corresponding to ultrasonic waves reflected from the inner surface, and attenuation of acoustic impedance density for each virtual lattice point set on the steel pipe obtained by the ultrasonic detector An ultrasonic processing system comprising: an operation processing unit that collects a waveform and visualizes physical defect information generated at an interface between the steel pipe and the resin lining from a comparison result of exponential approximation curves of the attenuation waveform Multi-layer piping interface state detection device using the attenuation method. 内面に樹脂ライニングを施した鋼管の表面に超音波を励起し、前記超音波が前記鋼管および樹脂ライニング内に進行することによって、材質固有の音響インピーダンスにより減衰した音波の振動をexp−βx(βは減衰定数)にあてはめ、演算処理によりその減衰波形の指数近似曲線どうしの減衰時間τまでの積分値および収束幅φ等を比較し、前記鋼管と樹脂ライニングとの界面に発生した物理的な欠陥情報を可視化することを特徴とする超音波減衰法による多層配管の界面状態検出方法。 Ultrasonic waves are excited on the surface of the steel pipe with the resin lining on the inner surface, and the ultrasonic waves travel into the steel pipe and the resin lining, so that the vibration of the sound wave attenuated by the acoustic impedance inherent to the material is expressed as exp −βx (β Is an attenuation constant), and the integral value up to the decay time τ of the exponential approximation curves of the decay waveform and the convergence width φ are compared by arithmetic processing, and physical defects generated at the interface between the steel pipe and the resin lining A method for detecting an interface state of a multilayer pipe by an ultrasonic attenuation method characterized by visualizing information.
JP2011223618A 2011-10-11 2011-10-11 Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method Pending JP2013083545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223618A JP2013083545A (en) 2011-10-11 2011-10-11 Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223618A JP2013083545A (en) 2011-10-11 2011-10-11 Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method

Publications (1)

Publication Number Publication Date
JP2013083545A true JP2013083545A (en) 2013-05-09

Family

ID=48528885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223618A Pending JP2013083545A (en) 2011-10-11 2011-10-11 Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method

Country Status (1)

Country Link
JP (1) JP2013083545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194299A (en) * 2016-04-18 2017-10-26 日鉄住金防蝕株式会社 Coat soundness evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194299A (en) * 2016-04-18 2017-10-26 日鉄住金防蝕株式会社 Coat soundness evaluation method

Similar Documents

Publication Publication Date Title
KR101513142B1 (en) Layered-body detachment-testing method and detachment-testing device
CN106706751B (en) Ultrasound system for non-destructive testing
CN103512951B (en) The method of low frequency ultrasound Guided waves Pipeline butt seam defect
Römmeler et al. Air coupled ultrasonic defect detection in polymer pipes
JP3299655B2 (en) Ultrasonic flaw detector and method for inspecting multilayer structure
CN108225632A (en) A kind of residual stress non-linear ultrasonic detection method
JP5922558B2 (en) Ultrasonic thickness measurement method and apparatus
US8739630B2 (en) Pulse-echo method for determining the damping block geometry
Maio et al. Ultrasonic and IR thermographic detection of a defect in a multilayered composite plate
Bustamante et al. Hybrid laser and air-coupled ultrasonic defect detection of aluminium and CFRP plates by means of Lamb mode
Yang et al. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network
Aldrin et al. Fundamentals of angled-beam ultrasonic NDE for potential characterization of hidden regions of impact damage in composites
Hu et al. Scattering characteristics of quasi-Scholte waves at blind holes in metallic plates with one side exposed to water
Gros Current and future trends in non-destructive testing of composite materials
JP7300383B2 (en) LAMINATED PEELING INSPECTION METHOD AND PEELING INSPECTION APPARATUS
Kažys et al. Investigation of accurate imaging of the defects in composite materials using ultrasonic air-coupled technique
JP2013083545A (en) Method and apparatus for detecting boundary surface states of multilayer pipeline by ultrasonic attenuation method
JP2009098031A (en) Detecting apparatus and detecting method for interfacial condition of multilayered tube
Edalati et al. Defect detection in thin plates by ultrasonic lamb wave techniques
Fadaeifard et al. Rail inspection technique employing advanced nondestructive testing and Structural Health Monitoring (SHM) approaches—A review
Saitoh et al. Automatic detection of concrete surface defects using deep learning and laser ultrasonic visualization testing
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
Murat et al. Characterization of impact damage in composite plates
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP2010223608A (en) Method for inspecting corrosion-proof coating