JP2013083235A - Solar power generator with hot water effect - Google Patents

Solar power generator with hot water effect Download PDF

Info

Publication number
JP2013083235A
JP2013083235A JP2011234366A JP2011234366A JP2013083235A JP 2013083235 A JP2013083235 A JP 2013083235A JP 2011234366 A JP2011234366 A JP 2011234366A JP 2011234366 A JP2011234366 A JP 2011234366A JP 2013083235 A JP2013083235 A JP 2013083235A
Authority
JP
Japan
Prior art keywords
steam
power generation
unit
heat
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234366A
Other languages
Japanese (ja)
Other versions
JP5585918B2 (en
Inventor
Teruaki Okunishi
輝彰 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011234366A priority Critical patent/JP5585918B2/en
Publication of JP2013083235A publication Critical patent/JP2013083235A/en
Application granted granted Critical
Publication of JP5585918B2 publication Critical patent/JP5585918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system which obtains electricity by a generator by heating a thermal medium by solar heat and by driving a turbine by obtaining steam, and a solar power generator with a hot water effect.SOLUTION: In a hot water system, heat which deteriorates the efficiency of power generation of a sunlight power generation panel is cooled, a steam force is converted into a drive force by using a turbine unit located at the downstream side of the system which keeps the efficiency of power generation of the sunlight power generation panel constant and obtains steam by the solar heat by using a steam heating unit located at the downstream side of a heat exchange system, and obtains hot water by a water temperature rasing unit by using waste heat which is emitted at the cooling of the steam by using a condensation unit which is located at the downstream side of a turbine system for increasing a total power generation amount by generating power once again by driving the generator by using the drive force and adding it to power generated at the sunlight power generation panel. At present, there are individual commodities for sunlight power generation and a sunlight hot water device, respectively, however, in this invention, there is constituted a solar heat power generator system with the hot water effect having a function which can reduce a total energy amount in a household by integrating the commodities.

Description

本発明は、現在市販されているほとんどの太陽光発電パネルは、温度の上昇により発電効率が低下するので、太陽光発電パネルを冷却しその廃熱を利用して発電と温水を得ることができる給湯効果付き太陽熱発電器を提供する。According to the present invention, most of the photovoltaic power panels currently on the market are reduced in power generation efficiency due to a rise in temperature. Therefore, it is possible to cool the solar power panel and use the waste heat to obtain power generation and hot water. Provide solar power generator with hot water supply effect.

現在太陽光を利用した発電および給湯の技術は個々の分野で広く提案されており、個々の設備として広く一般に利用されている。Currently, power generation and hot water supply technologies using sunlight have been widely proposed in individual fields, and are widely used as individual facilities.

しかし現在市販されているほとんどの太陽光発電パネルは、温度の上昇により発電効率が低下する欠点があった。However, most of the photovoltaic power panels currently on the market have a drawback that the power generation efficiency decreases due to an increase in temperature.

特開2009−283640JP2009-283640

本発明は太陽光発電パネルの熱による発電効率低下を、太陽光発電パネルを冷却することにより夏場などの高温並びに直射日光による輻射熱などを取り除き、太陽光発電パネルの効率を向上させ本来の性能を発揮させるため給湯効果付き太陽熱発電機を提供する。The present invention reduces the power generation efficiency due to the heat of the photovoltaic power generation panel, removes the high temperature in summer and radiant heat due to direct sunlight, etc. by cooling the photovoltaic power generation panel, thereby improving the efficiency of the photovoltaic power generation panel and improving the original performance. A solar power generator with a hot water supply effect is provided in order to demonstrate it.

太陽光発電パネルの発電効率を阻害する熱を冷却するシステムにより、太陽光発電パネルの発電効率を一定に保ち、冷却の際に出る廃熱から再度発電し太陽光発電パネルで発電した電力にプラスすることにより総発電量を増加させる、現状では太陽光発電と太陽光給湯装置はそれぞれ個別の商品であるが本発明では一体化させることにより給湯も出来、家庭内の総エネルギー量を削減できる。The system that cools the heat generation efficiency of the solar power generation panel keeps the power generation efficiency of the solar power generation panel constant, and it generates power from the waste heat generated during cooling and adds to the power generated by the solar power generation panel. In the present situation, the solar power generation and the solar water heater are separate products, but in the present invention, hot water can be supplied by integrating them, and the total energy in the home can be reduced.

以上の説明から明らかなように、本発明にあたっては次に列挙する効果が得られる。
(1)太陽熱を利用して熱媒を蒸気化しタービンを駆動して発電機にて電力を得る。
(2)太陽光発電パネルを冷却することにより夏場などの高温並びに直射日光による輻射熱などを取り除き、太陽光発電パネルの効率を向上させ本来の性能を発揮させる。
(3)太陽熱を利用して熱媒を蒸気化しタービンを駆動して発電に使用した蒸気を凝縮するときに出る廃熱を再加熱により給湯に利用する温水を得る。
As is clear from the above description, the following effects can be obtained in the present invention.
(1) The heat medium is vaporized using solar heat, the turbine is driven, and electric power is obtained by a generator.
(2) The solar power generation panel is cooled to remove high temperatures such as in summer and radiant heat due to direct sunlight, thereby improving the efficiency of the solar power generation panel and exhibiting the original performance.
(3) Hot water used for hot water supply is obtained by reheating waste heat generated when the heat medium is vaporized using solar heat to drive the turbine and condense the steam used for power generation.

回路全体の構成図Overall circuit diagram 熱交換ユニット構成図Heat exchange unit configuration diagram 蒸気加熱ユニット構成図Steam heating unit configuration diagram 凝縮ユニット構成図Condensing unit configuration diagram 水温上昇ユニット構成図Water temperature rise unit configuration diagram 熱媒液タンクユニット構成図Heat transfer fluid tank unit configuration diagram

以下本発明の実施の形態を図に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.

熱交換ユニット1の構造について
太陽光パネルAの熱を冷却し発電効率の向上を図り、その廃熱で発電給湯を担う蒸気を得るユニットである。
ユニットの主たる素材としては、温度変化と蒸気による圧力変化があることから金属であることが望ましいが、扁平状のチューブでも熱交換は可能と考える。
太陽光パネルAと熱交換ユニット1の接着は両面テープ等で固定するものとして、素材や冷却面積や液体などの重量を支えきれる接着力と耐久力が求められる。
冷却ユニット1は金属が望ましが、太陽光パネルAの冷却効果を説明するためここでは、あえてチューブを例に挙げて説明する、チューブの走行経路は太陽光パネルAの傾斜下部から平行に始まりつづら折りで太陽光パネルAの背面を蛇行し上部に至る経路をとり、チューブ同士の走行間隔は高熱環境での実験を繰り返し実施して、最適な間隔を割り出すことにより冷却温度の割り出しの資料となる。
熱交換ユニットの入り口と出口には一方弁を便い熱媒液の逆流を防止しタービンの回転抵抗にならないようにする。
熱媒は夏場では高温、冬場は低温となりそれぞれの気候に耐用出来る物が求められ、またある程度の温度で蒸気と化す物として、アルコールもしくは油やアンモニアなどを主体とした物とする、その求められる条件として高温下では沸点が約40度で、低温下では零下20度で液体であることが求められる、この熱交換ユニット1では高温では蒸気圧が上昇すると熱媒の循環速度も上がるので、自然に冷却効果が変化する、低温では配管内での凍結による破損を防止するため低温になると強制的に熱媒を循環させることにより凍結を防止する、強制的に熱媒を循環させるためには循環ポンプ7を蓄電池で駆動させる制御回路8が必要である。
熱交換ユニット1の入り口には異物除去のフィルターにより配管の目詰まりを防止する。
熱交換ユニット1内の熱媒は太陽光パネルAの発電が始まるのと同じような時期から循環するものとし、その動力源として制御回路8用に別に小規模の太陽光パネルが必要となる。
About the structure of the heat exchange unit 1, it is a unit which cools the heat | fever of the solar panel A, aims at the improvement of power generation efficiency, and obtains the steam which bears power generation hot water with the waste heat.
The main material of the unit is preferably metal because of temperature changes and pressure changes due to steam, but heat exchange is also possible with flat tubes.
Adhesion between the solar panel A and the heat exchange unit 1 is fixed with a double-sided tape or the like, and an adhesive force and durability that can support the weight of a material, a cooling area, a liquid, and the like are required.
The cooling unit 1 is preferably made of metal, but in order to explain the cooling effect of the solar panel A, here, a tube will be described as an example. The travel path of the tube starts in parallel from the inclined lower part of the solar panel A. The back surface of the solar panel A meanders in a zigzag way and takes a route leading to the upper part. The distance between the tubes is repeatedly measured in a high-temperature environment, and the optimum distance is determined to provide a material for determining the cooling temperature. .
One-way valves are provided at the inlet and outlet of the heat exchange unit to prevent the backflow of the heat transfer liquid so that it does not become a rotational resistance of the turbine.
The heat medium is required to be able to withstand each climate due to high temperatures in the summer and low temperatures in the winter. In addition, as a material that turns into steam at a certain temperature, it is required to be mainly composed of alcohol, oil or ammonia. As a condition, it is required that the boiling point is about 40 degrees at high temperature and 20 degrees below zero at low temperature. In this heat exchange unit 1, the circulation rate of the heat medium increases as the vapor pressure increases at high temperature. The cooling effect changes at a low temperature. To prevent damage due to freezing in the piping at low temperatures, the heat medium is forcibly circulated at low temperatures to prevent freezing. To forcibly circulate the heat medium, it is circulated. A control circuit 8 for driving the pump 7 with a storage battery is required.
The entrance of the heat exchange unit 1 is prevented from being clogged by a filter for removing foreign substances.
The heat medium in the heat exchange unit 1 is circulated from the same time as the start of power generation of the solar panel A, and a separate small solar panel is required for the control circuit 8 as a power source.

蒸気過熱ユニット2の構造について
蒸気加熱ユニット2では熱交換ユニットにて暖められた熱媒を再加熱し蒸気温度と蒸気圧力をあげることを目的とする。
熱交換ユニット1で暖められた熱媒は、熱交換ユニット1内で蒸気になる温度まで加熱すると太陽光パネルAの温度を有効に下げることが出来ないので、熱交換ユニット1とは別に熱媒液を加熱し沸騰させる場所が必要となる、その場所が蒸気加熱ユニット2であり、本発明の動力源である。
ユニットの主たる素材としては、温度変化と蒸気による圧力変化があることから金属であること、表面は黒色とし太陽熱の吸収を良くする、さらに外ケースを取り付けガラスを上面に使用することにより温室状態で温度を高く長時間維持する。
ユニットの構造は金属の長方形とし、表面積を大きくすることにより太陽熱を集める
熱交換ユニット1と蒸気加熱ユニット2を分けることにより太陽光パネルAの冷却効果を上げることが出来る、このことにより太陽光パネルAの温度を低い状態で維持する(夏場の太陽光パネル温度は約45℃あるとして、冷却液温度20℃と仮定して約20℃冷却できる、その温度差から太陽光パネルAの発電効果を約10パーセント向上できる。
Concerning the structure of the steam superheating unit 2, the steam heating unit 2 aims to increase the steam temperature and the steam pressure by reheating the heat medium heated by the heat exchange unit.
Since the heating medium heated by the heat exchange unit 1 cannot be effectively lowered when heated to a temperature at which the heat exchange unit 1 becomes steam, the heat medium separately from the heat exchange unit 1 A place where the liquid is heated and boiled is required, and that place is the steam heating unit 2, which is the power source of the present invention.
The main material of the unit is metal because of the temperature change and pressure change due to steam, the surface is black and the solar heat absorption is improved, and the outer case is attached and the glass is used on the top surface in the greenhouse state. Keep the temperature high for a long time.
The structure of the unit is a metal rectangle, and the cooling effect of the solar panel A can be improved by separating the heat exchange unit 1 that collects solar heat and the steam heating unit 2 by increasing the surface area. A temperature is maintained at a low state (assuming that the solar panel temperature in summer is about 45 ° C., assuming that the coolant temperature is 20 ° C., the temperature can be cooled by about 20 ° C. It can improve about 10 percent.

タービンユニット3の構造について
蒸気過熱ユニット2で加熱され蒸気となった熱媒の力をタービンで回転力に変え、発電機9と循環ポンプ7の動力とする
タービンはターボシャフトで発電機9と循環ポンプ7を回すものとし温度変化に強い素材が求められる。
Regarding the structure of the turbine unit 3, the power of the heat medium heated by the steam superheating unit 2 and converted into steam is converted into rotational force by the turbine, and the turbine used as the power of the generator 9 and the circulation pump 7 is circulated with the generator 9 by a turbo shaft. A material that is resistant to temperature changes is required to rotate the pump 7.

凝縮ユニット4の構造について
凝縮ユニット4の蒸気タービン3から排出された蒸気を再び熱媒を液体に戻し低温の熱媒を作る役割を担う。
凝縮ユニット4は二重配管で外周には水、内周には蒸気を通すことにより再び熱媒を得る
外周の水温調整は水を給水することによる温度を維持するものとし、温度管理は蒸気タービン側(蒸気の入り口側)に温度センサーにより約40℃設定を取り付けることにより凝縮ユニット4内の温度上昇を制御することにより外周配管内の水の循環流速も制御することとなる、温度センサーを取り付けることにより冬季の凍結防止にも制御回路8で管理が出来る、制御回路8の電源は循環ポンプ7を初期駆動させる制御回路8用の小規模の太陽光パネルで発電される電源をバッテリーで維持する。
凝縮ユニット4の最終端の冷媒温度は水の温度と同等にするため配管長は実験を繰り返し決めることが望まれる、凝縮ユニット4の素材は温度変化に耐えうる金属とし表面には外気温変化の影響を受けにくいように、ウレタン巻きのような遮熱物が必要である。
The structure of the condensing unit 4 plays a role of returning the steam discharged from the steam turbine 3 of the condensing unit 4 to a liquid again and creating a low-temperature heat medium.
Condensing unit 4 is a double pipe with water on the outer periphery and steam on the inner periphery. The temperature of the outer periphery is adjusted to maintain the temperature by supplying water. Attach a temperature sensor that will control the circulating flow rate of water in the outer pipe by controlling the temperature rise in the condensing unit 4 by attaching a temperature sensor to the side (steam inlet side) at about 40 ° C setting. Therefore, the control circuit 8 can also manage the prevention of freezing in winter. The power source of the control circuit 8 maintains a power source generated by a small solar panel for the control circuit 8 that initially drives the circulation pump 7 with a battery. .
It is desirable that the pipe length should be determined repeatedly so that the refrigerant temperature at the final end of the condensing unit 4 is equal to the water temperature. The material of the condensing unit 4 is a metal that can withstand temperature changes, and the surface is subject to changes in the outside air temperature. A heat shield such as a urethane roll is required so that it is not easily affected.

水温上昇ユニット5の構造について
水温上昇ユニット5は凝縮ユニット4から得た温水を給湯用に加熱することを目的とする
水温上昇ユニット5の配管は金属製とし表面を黒色とし太陽熱の吸収を良くし長方形にすることにより表面積を大きくし太陽熱を集める、さらに外ケースを取り付けガラスを上面に使用することにより温室状態で温度を高く長時間維持する。
配管は長方形配管に中間しきりを付け、中間しきりはさらに集熱フィンを構成することにより、配管の断面は円盤状となる、それにより水温の加熱面積が増加することになる。
About the structure of the water temperature raising unit 5 The water temperature raising unit 5 is made of metal for the pipe of the water temperature raising unit 5 for heating hot water obtained from the condensing unit 4 for hot water supply, and improves the absorption of solar heat. By making it rectangular, the surface area is increased and solar heat is collected, and an outer case is attached and glass is used on the upper surface to maintain a high temperature in a greenhouse state for a long time.
The pipes are provided with intermediate cuts on the rectangular pipes, and the intermediate cuts further constitute heat collecting fins, so that the pipes have a disk-like cross section, thereby increasing the water temperature heating area.

熱媒液タンク6の構造について
熱媒液タンク6は凝縮ユニット4で液体となった熱媒を貯留するタンクである。
構造は熱媒液タンク6の下一面に水が流れる配管を有し、水で液体の熱媒を常に冷却出来る構造とする。
熱媒は各ユニットを循環するが密閉回路となるので液量変化を確認出来る用に確認窓を備え付け、熱媒注水口はねじ式等の栓とする。
Regarding the structure of the heat medium liquid tank 6 The heat medium liquid tank 6 is a tank that stores the heat medium that has become liquid in the condensing unit 4.
The structure has a pipe through which water flows on the lower surface of the heat medium liquid tank 6 so that the liquid heat medium can always be cooled with water.
The heat medium circulates through each unit, but since it becomes a closed circuit, a confirmation window is provided to check the change in liquid volume, and the heat medium inlet is a screw-type plug.

循環ポンプ7の構造について
循環ポンプ7は熱交換ユニット1の温度を一定に保つ役割を担い、太陽光発電パネルAが作動する時期から駆動するために、制御回路8用に別に小規模の太陽光パネルが必要となる。
循環ポンプ7はターボシャフトで発電機9とタービン3を回すものとし、太陽光発電パネルAが作動する時期と低温では配管内での凍結による破損を防止するため低温になると強制的に冷却液を循環させることにより凍結を防止する、そのため循環ポンプ7を蓄電池で駆動させる制御回路8が必要である。
Regarding the structure of the circulation pump 7 The circulation pump 7 plays a role of keeping the temperature of the heat exchange unit 1 constant, and is driven from the time when the photovoltaic power generation panel A operates. A panel is required.
The circulation pump 7 rotates the generator 9 and the turbine 3 with a turbo shaft. When the solar panel A operates and at low temperatures, the coolant is forced to be discharged when the temperature is low to prevent breakage due to freezing in the piping. A control circuit 8 for preventing the freezing by circulation and driving the circulation pump 7 with a storage battery is necessary.

制御回路8の構造について
温度センサーにより水温調整と凍結防止を目的として蓄電池で作動するものとする。
制御回路の作動部は循環ポンプと凝縮ユニットを制御する。
It is assumed that the structure of the control circuit 8 is operated by a storage battery for the purpose of adjusting the water temperature and preventing freezing by a temperature sensor.
The operating part of the control circuit controls the circulation pump and the condensing unit.

発電機9の構造について
タービンユニット3で得られた回転力を電力に換える働きをになう。
The structure of the generator 9 serves to change the rotational force obtained by the turbine unit 3 into electric power.

Claims (3)

太陽熱を利用して熱媒を蒸発させるための蒸気発生ユニットと、熱媒の蒸気によって回転させるタービンユニットに駆動連結された発電機と、熱媒蒸気を液体に戻すための凝縮ユニットと、前記蒸気発生ユニット及び前記凝縮ユニットを通して熱媒を循環させる循環ラインと、前記循環ラインに配設された循環ポンプとを備え、前記循環ポンプによって液体の熱媒が前記蒸気発生ユニットに送られ、前記蒸気発生ユニットにて発生した熱媒蒸気によって前記タービンが回転されて前記発電機により発電され、前記タービンを流れた蒸気は前記凝縮ユニットにて液化されることを特徴とする太陽熱利用発電システム。A steam generating unit for evaporating the heat medium using solar heat, a generator drivingly connected to a turbine unit rotated by the steam of the heat medium, a condensing unit for returning the heat medium steam to a liquid, and the steam A circulation line that circulates the heat medium through the generation unit and the condensing unit, and a circulation pump disposed in the circulation line, and a liquid heat medium is sent to the steam generation unit by the circulation pump, and the steam generation The solar power generation system, wherein the turbine is rotated by the heat medium steam generated in the unit and is generated by the generator, and the steam flowing through the turbine is liquefied by the condensing unit. 前記蒸気発生ユニットに関与して太陽光発電パネルが設けられ、前記太陽光発電パネルに関与してさらに熱交換器が配置され、前記循環ラインは前記熱交換器を通して前記蒸気発生ユニットに導かる、液体の熱媒は前記熱交換器にて太陽光発電パネルとの熱交換によって温められ、温められた液体の熱媒が前記蒸気発生ユニットに送られることを特徴とする請求項1に記載の太陽熱利用発電システム。A solar power generation panel is provided in connection with the steam generation unit, a heat exchanger is further provided in connection with the solar power generation panel, and the circulation line leads to the steam generation unit through the heat exchanger. 2. The solar heat according to claim 1, wherein the liquid heat medium is heated by heat exchange with the photovoltaic power generation panel in the heat exchanger, and the heated liquid heat medium is sent to the steam generation unit. Utilization power generation system. 前記凝縮ユニットには水が供給され、前記凝縮ユニットにて熱媒蒸気との間で熱交換が行われ、熱交換により温められた水が水温上昇ユニットに送られることを特徴とする請求項1又は2に記載の太陽熱利用発電システム。The water is supplied to the condensing unit, heat exchange is performed with the heat medium vapor in the condensing unit, and water heated by the heat exchange is sent to the water temperature raising unit. Or a solar thermal power generation system according to 2;
JP2011234366A 2011-10-06 2011-10-06 Solar power generator with hot water supply effect Expired - Fee Related JP5585918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234366A JP5585918B2 (en) 2011-10-06 2011-10-06 Solar power generator with hot water supply effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234366A JP5585918B2 (en) 2011-10-06 2011-10-06 Solar power generator with hot water supply effect

Publications (2)

Publication Number Publication Date
JP2013083235A true JP2013083235A (en) 2013-05-09
JP5585918B2 JP5585918B2 (en) 2014-09-10

Family

ID=48528654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234366A Expired - Fee Related JP5585918B2 (en) 2011-10-06 2011-10-06 Solar power generator with hot water supply effect

Country Status (1)

Country Link
JP (1) JP5585918B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023869A (en) * 2014-07-22 2016-02-08 大和ハウス工業株式会社 Heat utilization system
CN108869045A (en) * 2018-06-29 2018-11-23 中国华电科工集团有限公司 Utilize the system and method for photovoltaic waste heat cooling gas turbine air inlet
CN114477343A (en) * 2022-01-28 2022-05-13 曹树梁 Ceramic solar panel for desalinating seawater and brackish water and heat exchanger thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189457A (en) * 1994-11-01 1996-07-23 Mitsubishi Heavy Ind Ltd Solar thermal power generation system
JPH1131835A (en) * 1997-07-11 1999-02-02 Natl Aerospace Lab Solar thermal power generation system
JP2003113771A (en) * 2001-10-04 2003-04-18 Kawasaki Heavy Ind Ltd Power generating device using solar energy
JP2006169970A (en) * 2004-12-13 2006-06-29 Sanden Corp Rankine system
JP2007205645A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Solar heat collector and solar heat utilization device having the same
JP2008133991A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Solar heat collector
JP2011089502A (en) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp Electric power generation system using solar energy
JP2011117597A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Pipe and water heating system provided with the pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189457A (en) * 1994-11-01 1996-07-23 Mitsubishi Heavy Ind Ltd Solar thermal power generation system
JPH1131835A (en) * 1997-07-11 1999-02-02 Natl Aerospace Lab Solar thermal power generation system
JP2003113771A (en) * 2001-10-04 2003-04-18 Kawasaki Heavy Ind Ltd Power generating device using solar energy
JP2006169970A (en) * 2004-12-13 2006-06-29 Sanden Corp Rankine system
JP2007205645A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Solar heat collector and solar heat utilization device having the same
JP2008133991A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Solar heat collector
JP2011089502A (en) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp Electric power generation system using solar energy
JP2011117597A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Pipe and water heating system provided with the pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023869A (en) * 2014-07-22 2016-02-08 大和ハウス工業株式会社 Heat utilization system
CN108869045A (en) * 2018-06-29 2018-11-23 中国华电科工集团有限公司 Utilize the system and method for photovoltaic waste heat cooling gas turbine air inlet
CN114477343A (en) * 2022-01-28 2022-05-13 曹树梁 Ceramic solar panel for desalinating seawater and brackish water and heat exchanger thereof

Also Published As

Publication number Publication date
JP5585918B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
CN103574916B (en) Multimedium solar energy heating assisted heat pump system
CN109114804A (en) Photovoltaic-alternating current joint driving photovoltaic and photothermal integral double-source heat pump water heating system and its operation method
KR100968751B1 (en) Solar power generation system and air-conditioning system using it
CN101964606A (en) Solar energy combined energy supply system and method
CN102705925A (en) Dual-source heat pump air conditioner
JP2013113521A (en) Solar heat water heater
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
JP5585918B2 (en) Solar power generator with hot water supply effect
CN206094374U (en) Components of a whole that can function independently low temperature frequency conversion trigeminy supplies heat pump system
CN103528291B (en) The solar energy regenerative system of the water-soluble anti-icing fluid in frostless heat pump
CN101235995A (en) Hot pipe solar air-conditioner system
CN106765752A (en) A kind of solar energy photovoltaic panel and solution-type air-conditioning energy storage co-feeding system and implementation
CN103629769B (en) Solar energy central air conditioning system integrating device and heat-exchange method
KR20100054288A (en) Cooling and heating system of greenhouse using heat pump
CN204535158U (en) A kind of for solar water heater new heat pipe defroster
CN101280962B (en) Solar energy or exhaust heat energy supply system based on supercritical carbon dioxide cycle utilization
CN203719000U (en) Solar heat and cold central air conditioner heating and recycling system
JP2011080724A (en) Solar energy utilization system
CN106533358A (en) Photovoltaic-thermal comprehensive utilization device capable of automatically adjusting driving power of circulating pump and control method
CN102538286A (en) Solar refrigerating system and refrigerating method thereof
WO2012011656A3 (en) Composite air conditioning and heating device of a heat-self-sufficient type
CN205373094U (en) Compound hot -water heating system of solar energy loop heat pipe heat pump
CN205208969U (en) Dull and stereotyped solar heater and solar water heater
CN207407517U (en) Thermal power plant unit
CN201945088U (en) Heat pump type solar heat source system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5585918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees