JP2013082788A - Rubber composition and tire using the same - Google Patents

Rubber composition and tire using the same Download PDF

Info

Publication number
JP2013082788A
JP2013082788A JP2011222688A JP2011222688A JP2013082788A JP 2013082788 A JP2013082788 A JP 2013082788A JP 2011222688 A JP2011222688 A JP 2011222688A JP 2011222688 A JP2011222688 A JP 2011222688A JP 2013082788 A JP2013082788 A JP 2013082788A
Authority
JP
Japan
Prior art keywords
mass
rubber
group
silica
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222688A
Other languages
Japanese (ja)
Other versions
JP2013082788A5 (en
JP5930649B2 (en
Inventor
Kin Yamagishi
欣 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011222688A priority Critical patent/JP5930649B2/en
Publication of JP2013082788A publication Critical patent/JP2013082788A/en
Publication of JP2013082788A5 publication Critical patent/JP2013082788A5/ja
Application granted granted Critical
Publication of JP5930649B2 publication Critical patent/JP5930649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber composition made by compounding a butadiene-based polymer with silica and a hydrazide compound, and excellent in abrasion resistance, low fuel consumption property, and wet grip property, and to provide a tire using the rubber compound.SOLUTION: The rubber composition comprises at least 10 mass% modified butadiene-based polymer rubber (A) as a rubber component, that is prepared by solution polymerization and whose mass average molecular weight is 6,000-1,7000,000 and is comprised of a modified butadiene polymer and/or a modified styrene-butadiene copolymer, and 80-250 pts.mass silica (B) as a reinforcing filler against the rubber composition of 100 pts.mass, whose BET specific surface area is 100-350 m/g and water content of the surface is 0.50-5.00 mass%, also comprises (C) the hydrazide compound of 0.2-4 pts, mass against the rubber composition of 100 pts.mass.

Description

本発明は、ゴム組成物及びそれを用いたタイヤに関するものであり、より詳細には、変性ブタジエン系重合体ゴムに補強充填剤としてシリカ及びヒドラジド化合物とを配合した物性特性に優れるゴム組成物及びそれを用いた、低燃費性(RR)に優れたタイヤに関するものである。   The present invention relates to a rubber composition and a tire using the same, and more specifically, a rubber composition excellent in physical properties obtained by blending a modified butadiene polymer rubber with silica and a hydrazide compound as a reinforcing filler, and The present invention relates to a tire excellent in low fuel consumption (RR) using the same.

高速走行で使用される空気入りタイヤのトレッドゴムには、タイヤの湿潤路面上におけるタイヤの制動・駆動性能(ウェットグリップ性能(WET))共に低燃費性(RR)及び耐摩耗性の向上が安全面からも非常に重要な特性となっている。   The tread rubber of pneumatic tires used for high-speed driving is safe to improve fuel efficiency (RR) and wear resistance, as well as tire braking and driving performance (wet grip performance (WET)) on the wet road surface of the tire. It is a very important characteristic from the aspect.

近年、補強充填剤としてタイヤ用ゴム組成物に広く一般的に配合されるカーボンブラックに替え、シリカを配合することによりウェットグリップ性能等を高めている。高速走行主体を目的としたタイヤでは、ゴム成分100質量部に対し、100質量部以上のシリカを配合したゴム組成物等を開示している(例えば特許文献1参照)。
ところで、シリカは、その表面官能基であるシラノール基の水素結合によりシリカ粒子同士が凝集する傾向にある。このため、ゴム中へのシリカ粒子の分散が不十分になり、シリカ粒子同士の相互作用が大きくなるとゴム収縮が生じ、ゴムの加工性が悪化する。そこで、シリカ表面のシラノール基がアルコキシシランと縮合反応することを利用して種々のアルコキシシランが、シリカ表面処理剤あるいはカップリング剤として用いられている(例えば、特許文献2参照)。
In recent years, wet grip performance and the like have been improved by blending silica instead of carbon black that is widely blended in tire rubber compositions as a reinforcing filler. In a tire intended for high-speed running, a rubber composition containing 100 parts by mass or more of silica with respect to 100 parts by mass of a rubber component is disclosed (for example, see Patent Document 1).
By the way, silica particles tend to aggregate together due to hydrogen bonding of silanol groups which are surface functional groups. For this reason, when the dispersion | distribution of the silica particle in rubber | gum becomes inadequate and interaction between silica particles becomes large, rubber shrinkage will arise and the workability of rubber | gum will deteriorate. Therefore, various alkoxysilanes are used as silica surface treatment agents or coupling agents by utilizing the fact that the silanol groups on the silica surface undergo a condensation reaction with alkoxysilanes (see, for example, Patent Document 2).

一方、高速走行用のタイヤゴムとしての高分子量のブタジエン重合ゴム又はスチレン−ブタジエン共重合ゴムは、力学的特性に優れ、耐破壊特性や耐摩耗性などに優れるゴム組成物を与えることが知られている。また、このような重合ゴムに補強充填剤としてヒドラジド化合物を加えると、耐テアー性、耐亀裂性が向上し、高速走行タイヤに好適となる一方、耐摩耗性やウェットグリップ性能等に影響を与える。また、ヒドラジド化合物の配合によるゴム分子鎖同士の結合により、上述のシリカの相互作用によるゴム収縮等の影響と相まって高速走行タイヤに必要な低燃費性にも影響を与える問題がある。
このため、反応性及び特性に優れたブタジエン系重合体ゴムと特定の性能を備えたシリカ及びヒドラジド化合物等の充填補強剤を組み合わせた耐摩耗性、低燃費性、ウェットグリップ性能に優れているゴム組成物及びそのタイヤの提供が望まれている。
On the other hand, high-molecular weight butadiene polymer rubber or styrene-butadiene copolymer rubber as tire rubber for high-speed running is known to give a rubber composition having excellent mechanical properties and excellent fracture resistance and wear resistance. Yes. In addition, adding a hydrazide compound as a reinforcing filler to such a polymer rubber improves tear resistance and crack resistance and is suitable for high-speed running tires, while affecting wear resistance and wet grip performance. . In addition, there is a problem in that the low molecular fuel efficiency required for high-speed running tires is affected by the combination of the rubber molecular chains by the blending of the hydrazide compound together with the influence of the above-described rubber shrinkage due to the interaction of silica.
For this reason, rubber with excellent abrasion resistance, low fuel consumption, and wet grip performance, which combines a butadiene polymer rubber with excellent reactivity and characteristics and a filler reinforcing agent such as silica and hydrazide compounds with specific performance. It is desired to provide a composition and its tire.

特開2000−204198号公報JP 2000-204198 A 特表2001−505225号公報Special table 2001-505225 gazette

従って、本発明は、特性を持たせたブタジエン系重合体ゴムに特定のシリカ及びヒドラジド化合物を配合した、耐摩耗性、低燃費性、及びウェットグリップ性に優れたゴム組成物、及びそれを用いたタイヤを提供することを目的とする。   Accordingly, the present invention relates to a rubber composition excellent in abrasion resistance, low fuel consumption, and wet grip properties, in which a specific silica and hydrazide compound is blended with a butadiene polymer rubber having characteristics, and to use the rubber composition. It aims at providing the tire which was.

本発明は、ゴム成分として、(A)質量平均分子量が0.6〜170万である溶液重合した変性ブタジエン重合体及び/又は変性スチレン−ブタジエン共重合体からなる変性ブタジエン系重合体ゴムに、補強充填剤として、特定の比表面積で示した、また、その表面の含水率が一定しているシリカ及びヒドラジド化合物を配合することにより、耐摩耗性、低燃費性、及びウェットグリップ性に優れたゴム組成物及びそのタイヤとなることを見出し、本発明の課題を解決したものである。
即ち、本発明のゴム組成物及びタイヤは、以下の構成又は構造を特徴とするものである。
The present invention provides (A) a modified butadiene polymer rubber comprising a solution-polymerized modified butadiene polymer and / or a modified styrene-butadiene copolymer having a mass average molecular weight of 0.6 to 1.7 million. As a reinforcing filler, it has excellent wear resistance, low fuel consumption, and wet grip by blending silica and hydrazide compounds that have a specific surface area and have a constant moisture content on the surface. The present invention has been found to be a rubber composition and its tire and solves the problems of the present invention.
That is, the rubber composition and tire of the present invention are characterized by the following configuration or structure.

本発明のゴム組成物は、ゴム成分として、(A)質量平均分子量が0.6〜140万である溶液重合した変性ブタジエン重合体及び/又は変性スチレン−ブタジエン共重合体からなる変性ブタジエン系重合体ゴムを10質量%以上含み、補強充填剤として、(B)100〜350m/gのBET比表面積で、表面の含水率が0.50〜5.00質量%のシリカをゴム成分100質量部に対して80〜250質量部含み、また、(C)ヒドラジド化合物をゴム成分100質量部に対して0.2〜4質量部を含むことを特徴とする。
また、前記変性ブタジエン系重合体ゴムに導入される官能基は、ヒドロキシシリル基、アルコキシシリル基、アミノ基またはハロゲン原子の少なくとも1つであることが好ましい。
また、前記変性ブタジエン系重合体ゴムに、下記式(I)及び(II)で表わされるアミノ基及び環状のアミノ基からなる群から選択された少なくとも1以上の官能基を有する変性ブタジエン系重合体ゴムをゴム成分100質量部中に10質量部以上含むことが好ましい。
(R)N− ・・・(I)(式中、複数のRは、それぞれ異なっても良い総炭素数1〜12の範囲にある、アルキル基、シクロアルキル基及びアラルキル基を示す。)
=N− ・・・(II)(式中、R=はイレン結合を示し、Rは総炭素数3〜16の範囲にある、アルキレン基、ハロゲン、OH、又はNHの置換基を有するアルキレン基、アルキルオキシアルキレン基、又はアルキルアミノアルキレン基を示す。)
更に、前記ブタジエン系重合体ゴムは、活性部位にヒドロカルビロキシシラン化合物を反応させて得られる変性重合体ゴムであることが好ましい。その活性部位は炭化水素溶媒中でアルカリ金属系又はアルカリ土類金属系の開始剤を用いてアニオン重合させて得られる金属の活性部位である。
補強充填剤として更に、シランカップリング剤をシリカ量に対して、1〜20質量%含むことが好ましい。
本発明はまた、上記記載のゴム組成物を用いたタイヤである。
The rubber composition of the present invention comprises, as a rubber component, (A) a modified butadiene-based polymer comprising a solution-polymerized modified butadiene polymer and / or a modified styrene-butadiene copolymer having a mass average molecular weight of 0.6 to 1,400,000. 100% by mass of silica containing 10% by mass or more of a combined rubber, and (B) silica having a BET specific surface area of 100 to 350 m 2 / g and a water content of 0.50 to 5.00% by mass as a reinforcing filler. 80 to 250 parts by mass with respect to part, and (C) 0.2 to 4 parts by mass of hydrazide compound with respect to 100 parts by mass of the rubber component.
The functional group introduced into the modified butadiene-based polymer rubber is preferably at least one of a hydroxysilyl group, an alkoxysilyl group, an amino group, or a halogen atom.
The modified butadiene polymer rubber has a modified butadiene polymer having at least one functional group selected from the group consisting of an amino group represented by the following formulas (I) and (II) and a cyclic amino group: It is preferable to contain 10 parts by mass or more of rubber in 100 parts by mass of the rubber component.
R 1 (R 1 ) N— (I) (wherein the plurality of R 1 are alkyl groups, cycloalkyl groups, and aralkyl groups each having a total carbon number of 1 to 12 which may be different from each other. Show.)
R 2 = N— (II) (wherein R 2 = represents an ylene bond, and R 2 is an alkylene group, halogen, OH, or NH 2 in the range of 3 to 16 carbon atoms in total. An alkylene group having a group, an alkyloxyalkylene group, or an alkylaminoalkylene group.)
Furthermore, the butadiene-based polymer rubber is preferably a modified polymer rubber obtained by reacting a hydrocarbyloxysilane compound with an active site. The active site is a metal active site obtained by anionic polymerization using an alkali metal or alkaline earth metal initiator in a hydrocarbon solvent.
Furthermore, it is preferable that 1-20 mass% of silane coupling agents are included with respect to the amount of silica as a reinforcing filler.
The present invention is also a tire using the rubber composition described above.

本発明に係るゴム組成物によれば、特性及び反応性の高い変性ブタジエン系重合体ゴムに、比較的比表面積が大きく、その表面、表層の水分量が適宜にコントロールされたシリカを補強充填剤としたことより、表面の適宜なOH基の存在でシリカ同士の相互作用が抑えられ、シリカはゴム成分中での分散性を十分に発揮し、且つ変性ブタジエン系重合体ゴムとの結合も十分に生じ、その一方で、ゴム分子同士の結合を良くして耐テアーを発揮するヒドラジド化合物を一緒に加えてもゴム組成物の耐摩耗性を低下させることなく高め、その結果、耐摩耗性、低燃費性(RR)及びウエットグリップ(WET)の優れたタイヤを得ることができる。   According to the rubber composition according to the present invention, a modified butadiene polymer rubber having high characteristics and reactivity, silica having a relatively large specific surface area and appropriately controlled surface and surface water content are reinforced filler. As a result, the presence of an appropriate OH group on the surface suppresses the interaction between the silicas, and the silica sufficiently exhibits dispersibility in the rubber component and also has a sufficient bond with the modified butadiene polymer rubber. On the other hand, even if a hydrazide compound that improves the bonding between rubber molecules and exhibits tear resistance is added together, the wear resistance of the rubber composition is increased without deteriorating, resulting in wear resistance, A tire excellent in fuel efficiency (RR) and wet grip (WET) can be obtained.

本発明のゴム組成物は、ゴム成分として、(A)質量平均分子量が0.6〜170万である溶液重合した変性ブタジエン重合体及び/又は変性スチレン−ブタジエン共重合体からなる変性ブタジエン系重合体ゴムを10質量%以上含み、補強充填剤として、(B)100〜350m/gのBET比表面積で、表面の含水率が0.50〜5.00質量%のシリカをゴム成分100質量部に対して80〜250質量部含み、また、(C)ヒドラジド化合物をゴム成分100質量部に対して0.2〜4質量部を含むものである。 The rubber composition of the present invention comprises (A) a modified butadiene-based polymer comprising a solution-polymerized modified butadiene polymer and / or a modified styrene-butadiene copolymer having a mass average molecular weight of 0.6 to 1.7 million. 100% by mass of silica containing 10% by mass or more of a combined rubber, and (B) silica having a BET specific surface area of 100 to 350 m 2 / g and a water content of 0.50 to 5.00% by mass as a reinforcing filler. 80 to 250 parts by mass with respect to part, and (C) the hydrazide compound includes 0.2 to 4 parts by mass with respect to 100 parts by mass of the rubber component.

<(A)変性ブタジエン系重合体ゴム>
本発明に用いる(A)変性ブタジエン系重合体ゴムは、ブタジエン系モノマーを単独で、又はブタジエン系モノマーとスチレンモノマーと共重合して得られるブタジエン重合体及び/又はスチレン−ブタジエン共重合体の変性物であり、その製造方法に溶液重合法が用いられる。溶液重合法では、溶媒中のモノマー濃度は、好ましくは5〜50質量%、より好ましくは10〜30質量%である。
ブタジエン系モノマーとスチレンモノマーを用いて共重合を行う場合、仕込み単量体混合物中のスチレンモノマーの含量は0〜55質量%の範囲、好ましくは3〜50質量%、より好ましくは6〜45質量%の範囲である。重合形式は、回分式及び連続式のいずれであってもよい。
ブタジエン系モノマーとしては、例えば1,3−ブタジエン;イソプレン;1,3−ペンタジエン;2,3−ジメチル−1,3−ブタジエン;2−フェニル−1,3−ブタジエン;1、3−ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよい。モノマーの入手の容易さなどの実用面、及びアニオン重合特性においてリビング性などの点で優れることなどから、1,3−ブタジエンの使用が好適である。
溶液重合法においては、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物、特にリチウム化合物を重合開始剤とし、ブタジエン系モノマー単独又はこれらとスチレンモノマーをアニオン重合させることにより、目的の重合体を製造することができる。
ブタジエン系重合体ゴムの変性は、(1)重合開始剤を用いてモノマーを重合させ、重合活性部位を有する重合体を生成させた後、重合活性部位に官能基を導入する方法や、(2)官能基を有する重合開始剤を用いてモノマーを重合させる方法によって行うことができる。
<(A) Modified butadiene polymer rubber>
(A) Modified butadiene polymer rubber used in the present invention is a modified butadiene polymer and / or styrene-butadiene copolymer obtained by copolymerizing a butadiene monomer alone or with a butadiene monomer and a styrene monomer. The solution polymerization method is used for the manufacturing method. In the solution polymerization method, the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
When copolymerization is performed using a butadiene monomer and a styrene monomer, the content of the styrene monomer in the charged monomer mixture is in the range of 0 to 55 mass%, preferably 3 to 50 mass%, more preferably 6 to 45 mass%. % Range. The polymerization mode may be either a batch type or a continuous type.
Examples of butadiene monomers include 1,3-butadiene; isoprene; 1,3-pentadiene; 2,3-dimethyl-1,3-butadiene; 2-phenyl-1,3-butadiene; 1,3-hexadiene and the like. Can be mentioned. These may be used alone or in combination of two or more. The use of 1,3-butadiene is preferred because it is excellent in terms of practicality such as the availability of monomers and anionic polymerization characteristics such as living properties.
In the solution polymerization method, for example, an alkali metal compound and / or an alkaline earth metal compound, especially a lithium compound is used as a polymerization initiator, and a target polymer is produced by anionic polymerization of a butadiene monomer alone or a styrene monomer. can do.
The modification of the butadiene-based polymer rubber includes (1) a method in which a monomer is polymerized using a polymerization initiator to form a polymer having a polymerization active site, and then a functional group is introduced into the polymerization active site (2 ) It can be carried out by a method in which a monomer is polymerized using a polymerization initiator having a functional group.

例えば、前者の変性方法では、ハロゲン含有モノマーを混在させ、ポリマー中のハロゲン原子を有機金属化合物によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラブロモメチルスチレン単位を含む共重合体の臭素部分をリチオ化して活性部位とすることも有効である。活性部位は、重合体分子中に存在すればよく、限定されないが、重合体がアルカリ金属化合物及び/又はアルカリ土類金属化合物を重合開始剤としたアニオン重合によるものである場合、一般に活性部位は分子の末端に来るもので、このように活性末端を有する重合体が好ましい。
特に、前記活性部位を分子内に有するブタジエン系重合体ゴムでは、官能基を有しているヒドロカルビロキシシラン化合物を反応させて官能基を導入した変性重合体であってもよい。また周期律表の4族、12族、13族、14族及び15族の少なくとも一つに属する元素の化合物からなる縮合促進剤の存在下、前記官能基部位に縮合反応を行なって得られる変性重合体でもよい。
また、後者の変性方法としては、窒素含有官能基を有した重合開始剤、例えば、リチウムアミド化合物を使用して直接官能基を導入することができる。
これにより、本発明の変性ブタジエン系重合体ゴムには、ヒドロキシシリル基、アルコキシシリル基、アミノ基、水酸基またはハロゲン原子等の官能基が導入される。
For example, in the former modification method, it is also effective to mix a halogen-containing monomer and activate a halogen atom in the polymer with an organometallic compound. For example, it is also effective to lithiate the bromine moiety of a copolymer containing an isobutylene unit, a paramethylstyrene unit and a parabromomethylstyrene unit to form an active site. The active site only needs to be present in the polymer molecule, and is not limited. However, when the polymer is based on anionic polymerization using an alkali metal compound and / or alkaline earth metal compound as a polymerization initiator, the active site is generally Polymers that come to the end of the molecule and thus have an active end are preferred.
In particular, the butadiene polymer rubber having the active site in the molecule may be a modified polymer in which a functional group is introduced by reacting a hydrocarbyloxysilane compound having a functional group. Further, a modification obtained by subjecting the functional group site to a condensation reaction in the presence of a condensation accelerator comprising a compound of an element belonging to at least one of groups 4, 12, 13, 14, and 15 of the periodic table. It may be a polymer.
As the latter modification method, a functional group can be directly introduced using a polymerization initiator having a nitrogen-containing functional group, for example, a lithium amide compound.
Thereby, a functional group such as a hydroxysilyl group, an alkoxysilyl group, an amino group, a hydroxyl group or a halogen atom is introduced into the modified butadiene polymer rubber of the present invention.

上記の重合開始剤のアルカリ金属化合物及び/又はアルカリ土類金属化合物としては、特に制限はないが、ヒドロカルビルリチウムおよびリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。これらの重合開始剤の使用量は、好ましくはモノマー100g当たり、0.2〜20ミリモルの範囲である。   The alkali metal compound and / or alkaline earth metal compound of the polymerization initiator is not particularly limited, but hydrocarbyl lithium and lithium amide compounds are preferably used. When the former hydrocarbyl lithium is used, a polymerization initiation terminal is used. A conjugated diene polymer having a hydrocarbyl group at the other end and a polymerization active site at the other end can be obtained. When the latter lithium amide compound is used, a conjugated diene polymer having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site is obtained. The amount of these polymerization initiators used is preferably in the range of 0.2 to 20 mmol per 100 g of monomer.

ヒドロカルビルリチウムとしては、例えばメチルリチウム、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチル−フェニルリチウム、4−フェニル−ブチルリチウム、シクロへキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、特にn−ブチルリチウムが好適である。   Examples of the hydrocarbyl lithium include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-octyl lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2- Examples include butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, cyclopentyllithium, reaction products of diisopropenylbenzene and butyllithium, and among these, n-butyllithium is particularly preferable. It is.

リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミドなどが挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミドなどの環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。   Examples of lithium amide compounds include lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium dipropyl amide, and lithium di Such as butylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiperazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, lithium methylphenethylamide, etc. Can be mentioned. Among these, cyclic lithium amides such as lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, and lithium dodecamethylene imide are preferable from the viewpoint of the interaction effect on carbon black and the ability to initiate polymerization. Particularly preferred are lithium hexamethylene imide and lithium pyrrolidide.

前記変性ブタジエン系重合体ゴムに、下記式(I)及び(II)で表わされるアミノ基及び環状のアミノ基からなる群から選択された少なくとも1以上の官能基を有する変性ブタジエン系重合体ゴムを変性ブタジエン系重合体ゴム全体の100質量部に対して10質量部以上含むことが好ましい。
(R)N− ・・・(I)、式中、複数のRは、それぞれ異なっても良い総炭素数1〜12の範囲にある、アルキル基、シクロアルキル基及びアラルキル基を示す。
=N− ・・・(II)、式中、R=はイレン結合を示し、Rは総炭素数3〜16の範囲にある、アルキレン基、ハロゲン、OH、又はNHの置換基を有するアルキレン基、アルキルオキシアルキレン基、又はアルキルアミノアルキレン基を示す。
A modified butadiene polymer rubber having at least one functional group selected from the group consisting of an amino group and a cyclic amino group represented by the following formulas (I) and (II): It is preferable to contain 10 parts by mass or more with respect to 100 parts by mass of the whole modified butadiene polymer rubber.
R 1 (R 1 ) N— (I), wherein a plurality of R 1 s are alkyl groups, cycloalkyl groups, and aralkyl groups in the range of 1 to 12 carbon atoms, which may be different from each other. Show.
R 2 = N- (II), wherein R 2 = represents an ylene bond, and R 2 is an alkylene group, halogen, OH, or NH 2 substitution in the range of 3 to 16 carbon atoms in total. An alkylene group, an alkyloxyalkylene group, or an alkylaminoalkylene group having a group is shown.

上記リチウムアミド化合物として、式:Li−AM[式中、AMは、上記式(I)で表される置換アミノ基又は式(II)で表される環状アミノ基である]で表されるリチウムアミド化合物を用いることで、式(I)で表される置換アミノ基及び式(II)で表される環状アミノ基からなる群から選択される少なくとも一種の窒素含有官能基が導入された変性ブタジエン系重合体ゴムが得られる。例えば、リチウムヘキサメチレンイミドを用いた場合、少なくとも一つのヘキサメチレンイミノ基が導入された変性共役ジエン系重合体が得られる。   As the lithium amide compound, lithium represented by the formula: Li-AM [wherein AM is a substituted amino group represented by the above formula (I) or a cyclic amino group represented by the formula (II)] Modified butadiene into which at least one nitrogen-containing functional group selected from the group consisting of a substituted amino group represented by formula (I) and a cyclic amino group represented by formula (II) has been introduced by using an amide compound A polymer rubber is obtained. For example, when lithium hexamethyleneimide is used, a modified conjugated diene polymer into which at least one hexamethyleneimino group is introduced is obtained.

式(I)において、Rは、炭素数1〜12のアルキル基、シクロアルキル基又はアラルキル基であり、具体的には、メチル基、エチル基、ブチル基、オクチル基、シクロヘキシル基、3-フェニル-1-プロピル基及びイソブチル基等が好適に挙げられる。なお、Rは、それぞれ同じでも異なってもよい。一方、式(II)において、Rは、3〜16個のメチレン基を有するアルキレン基、置換アルキレン基、オキシアルキレン基又はN-アルキルアミノ-アルキレン基である。ここで、置換アルキレン基には、一置換から八置換のアルキレン基が含まれ、置換基としては、炭素数1〜12の鎖状若しくは分枝状アルキル基、シクロアルキル基、ビシクロアルキル基、アリール基及びアラルキル基が挙げられる。また、Rとして、具体的には、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オキシジエチレン基、N-アルキルアザジエチレン基、ドデカメチレン基及びヘキサデカメチレン基等が好ましい。
前記リチウム化合物を重合開始剤として用い、アニオン重合によってブタジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、ブタジエン系モノマー、又はそれらとスチレンモノマーを、前記リチウム化合物を重合開始剤として、所望により用いられるランダマイザーの存在下にアニオン重合させることにより、目的の共役ジエン系重合体が得られる。
In the formula (I), R 1 is an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, or an aralkyl group. Specifically, a methyl group, an ethyl group, a butyl group, an octyl group, a cyclohexyl group, a 3- Preferable examples include phenyl-1-propyl group and isobutyl group. R 1 may be the same or different from each other. On the other hand, in the formula (II), R 2 is an alkylene group having 3 to 16 methylene groups, a substituted alkylene group, an oxyalkylene group or an N-alkylamino-alkylene group. Here, the substituted alkylene group includes a mono- to octa-substituted alkylene group, and examples of the substituent include a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, a bicycloalkyl group, and an aryl group. Groups and aralkyl groups. Further, R 2 is specifically preferably a trimethylene group, a tetramethylene group, a hexamethylene group, an oxydiethylene group, an N-alkylazadiethylene group, a dodecamethylene group, a hexadecamethylene group, or the like.
There is no restriction | limiting in particular as a method of manufacturing a butadiene-type polymer by anionic polymerization using the said lithium compound as a polymerization initiator, A conventionally well-known method can be used.
Specifically, in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic, or aromatic hydrocarbon compound, a butadiene monomer, or a styrene monomer thereof, and the lithium compound The target conjugated diene polymer is obtained by anionic polymerization in the presence of a randomizer used as desired as a polymerization initiator.

前記炭化水素系溶剤としては、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−へキセン、2−へキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
なお、重合反応の反応温度は、0〜150℃の範囲が好ましく、20〜130℃の範囲が更に好ましい。
Examples of the hydrocarbon solvent include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2-butene, cis-2-butene, 1 -Pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like. These may be used alone or in combination of two or more.
The reaction temperature for the polymerization reaction is preferably in the range of 0 to 150 ° C, more preferably in the range of 20 to 130 ° C.

前記で得られる変性ブタジエン重合体ゴム及び/又は変性スチレン−ブタジエン重合体ゴムからなる変性ブタジエン系重合体ゴムは、質量平均分子量が0.6〜170万のものが用いられる。質量平均分子量が範囲内にあれば、耐摩耗性に優れる空気入りタイヤが得ら、そのゴム組成物の加工性も良い。好ましくは、0.6〜170万、より好ましくは、10〜120万の範囲のものである。尚、変性スチレン−ブタジエン重合体ゴムにあっては、その質量平均分子量が170万〜100万の範囲が好ましく、変性ブタジエン重合体ゴムにあっては、その質量平均分子量が10万〜100万の範囲が好ましい。
なお、前記質量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定されたポリスチレン換算の値である。
As the modified butadiene polymer rubber comprising the modified butadiene polymer rubber and / or modified styrene-butadiene polymer rubber obtained above, those having a mass average molecular weight of 0.6 to 1.7 million are used. If the weight average molecular weight is within the range, a pneumatic tire having excellent wear resistance can be obtained, and the processability of the rubber composition is good. Preferably, it is in the range of 0.6 to 1.7 million, more preferably in the range of 10 to 1.2 million. The modified styrene-butadiene polymer rubber preferably has a mass average molecular weight in the range of 1,700,000 to 1,000,000, and the modified butadiene polymer rubber has a mass average molecular weight of 100,000 to 1,000,000. A range is preferred.
In addition, the said mass mean molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography method (GPC method).

重合体の分子量を調整する製造方法としては、例えば有機溶媒中において、上記有機リチウムなどの触媒の存在下に重合して得られた重合体ゴムにカップリング剤を反応させて分子量を増大させることにより、所望の分子量をもつブタジエン系重合体ゴムを製造する方法を採用することができる。
カップリング剤としては、例えば四塩化スズなどのポリハロゲン化スズ化合物、テトラクロロシランなどのポリハロゲン化ケイ素化合物、1,3,5−トリ(ブロモメチル)ベンゼンなどのポリハロゲン化置換炭化水素化合物、アジピン酸ジエチルなどのポリカルボン酸エステル類、エポキシ化液体ポリブタジエンやエポキシ化植物油などのポリエポキシ化合物、ポリイソシアネート化合物、ポリイミン化合物、ポリアルデヒド類、ポリケトン類、ポリカルボン酸無水物、ジグリシジルアミノ基含有多官能化合物などが用いられる。
このように溶液重合法により製造することにより、質量平均分子量をコントロールできる他、ブタジエン部のミクロ構造すなわち、シス、トランス及びビニル結合量やスチレン含量を任意にコントロールすることができ、ゴム組成物の要求特性に合った、所定分子量の変性ブタジエン系重合体ゴムを得ることができる。
As a production method for adjusting the molecular weight of the polymer, for example, in an organic solvent, the molecular weight is increased by reacting a polymer rubber obtained by polymerization in the presence of a catalyst such as organolithium with a coupling agent. Thus, a method for producing a butadiene polymer rubber having a desired molecular weight can be employed.
As the coupling agent, for example, polyhalogenated tin compounds such as tin tetrachloride, polyhalogenated silicon compounds such as tetrachlorosilane, polyhalogenated substituted hydrocarbon compounds such as 1,3,5-tri (bromomethyl) benzene, adipine Polycarboxylic acid esters such as diethyl acid, polyepoxy compounds such as epoxidized liquid polybutadiene and epoxidized vegetable oil, polyisocyanate compounds, polyimine compounds, polyaldehydes, polyketones, polycarboxylic acid anhydrides, diglycidylamino group-containing poly A functional compound or the like is used.
Thus, by manufacturing by the solution polymerization method, the mass average molecular weight can be controlled, and the microstructure of the butadiene part, that is, the amount of cis, trans and vinyl bonds and the styrene content can be arbitrarily controlled. A modified butadiene polymer rubber having a predetermined molecular weight that meets the required characteristics can be obtained.

本発明のゴム組成物は、ゴム成分全量に対して、上記(A)変性ブタジエン系重合体ゴムを10質量%以上、特に、60質量%以上含むことが好ましい。上記(A)変性ブタジエン系重合体ゴムを含むことによって、後述するシリカ及びヒドラジド化合物との効果が十分に高まる。
ゴム成分としては、上記(A)変性ブタジエン系重合体ゴム以外に、天然ゴム、通常のポリブタジエンゴム、スチレン−ブタジエン共重合ゴム、合成イソプレンゴム、エチレン−プロピレン−ジエンゴム、クロロプレンゴムなどを含めることができる。
(A)変性ブタジエン系重合体ゴム中の変性スチレン−ブタジエン重合体ゴムは、ゴム成分100質量部中に10質量部以上を含むことが好ましく、特に、30〜90質量部が好ましい。
また、(A)変性ブタジエン系重合体ゴム中の変性ブタジエン重合体ゴムは、ゴム成分100質量部中に、0〜30質量部の範囲で含むことが好ましく、特に5〜25質量部の範囲で含むことが好ましい。また、変性ブタジエン重合体ゴムが上記(I)及び(II)のアミノ基又は環状のアミノ基を有する変性ゴムにあっては、ゴム成分100質量部中に10〜30質量部を含むことが好ましく、特に、10〜20質量部が好ましい。
The rubber composition of the present invention preferably contains 10% by mass or more, particularly 60% by mass or more of the (A) modified butadiene polymer rubber with respect to the total amount of the rubber component. By including the (A) modified butadiene-based polymer rubber, the effect of the silica and hydrazide compound described later is sufficiently enhanced.
The rubber component may include natural rubber, ordinary polybutadiene rubber, styrene-butadiene copolymer rubber, synthetic isoprene rubber, ethylene-propylene-diene rubber, chloroprene rubber, etc. in addition to the above-mentioned (A) modified butadiene polymer rubber. it can.
(A) The modified styrene-butadiene polymer rubber in the modified butadiene-based polymer rubber preferably contains 10 parts by mass or more, particularly preferably 30 to 90 parts by mass, in 100 parts by mass of the rubber component.
Further, the modified butadiene polymer rubber in the modified butadiene polymer rubber (A) is preferably contained in the range of 0 to 30 parts by mass, particularly in the range of 5 to 25 parts by mass, in 100 parts by mass of the rubber component. It is preferable to include. In the modified rubber having the amino group or cyclic amino group of the above (I) and (II), the modified butadiene polymer rubber preferably contains 10 to 30 parts by mass in 100 parts by mass of the rubber component. In particular, 10 to 20 parts by mass is preferable.

<(B)シリカ>
本発明に使用するシリカは、100〜350m/gのBET比表面積で、表面の含水率が0.50〜5.00質量%のシリカである。
シリカは、本発明の目的、その他の補強性、加工性、ウェットグリップ性、耐摩耗性のバランス等の面から、BET法による窒素吸着比表面積(NSA)が100〜350m/gである。好ましくは、150〜350m/gであり、特に200〜300m/gであることがより好ましい。
また、シリカ表面の含水率が0.50〜5質量%であり、好ましくは、0.6〜4.0質量%であり、特に1.0〜3.0質量%であることがより好ましい。このようなシリカは、比較的比表面積が大きいためゴム成分中での分散性が良い。その一方で、シリカ同士の相互作用は、表面の水分量が抑制されて、大きくならないので比較的大きな比表面積でも、加硫ゴムにおいてゴム収縮を生じさせないし、ゴムの加工性を悪化させることがない。また表面の水分量がある程度保持されるのでゴム分子と親和性、結合性があり、ヒドラジド化合物が共存してもゴム組成物の耐摩耗性を向上させ、タイヤにおける低燃費性も向上させることができる。
好適なシリカとしては、例えば東ソー・シリカ(株)製のAQ、VN3、LP、NA等、デグッサ社製のウルトラジルVN3等が挙げられる。
シリカ表面の含水率は、乾燥工程によって調整することができる。シリカ表面の含水率の測定は、シリカを加熱し、減量分にて算出する。
シリカは、ゴム成分100質量部に対して80〜250質量部含む。好ましくは、70〜200質量部であり、特に50〜100質量部であることがより好ましい。
<(B) Silica>
The silica used in the present invention is a silica having a BET specific surface area of 100 to 350 m 2 / g and a surface moisture content of 0.50 to 5.00% by mass.
Silica has a nitrogen adsorption specific surface area (N 2 SA) according to the BET method of 100 to 350 m 2 / g from the object of the present invention and other aspects such as balance of reinforcement, workability, wet grip properties, and wear resistance. is there. Preferably, a 150~350m 2 / g, and more preferably is particularly 200 to 300 m 2 / g.
Moreover, the moisture content of the silica surface is 0.50-5 mass%, Preferably, it is 0.6-4.0 mass%, It is more preferable that it is 1.0-3.0 mass% especially. Since such a silica has a relatively large specific surface area, the dispersibility in the rubber component is good. On the other hand, the interaction between silica does not increase because the moisture content on the surface is suppressed, and even with a relatively large specific surface area, it does not cause rubber shrinkage in the vulcanized rubber and may deteriorate the processability of the rubber. Absent. In addition, the moisture content on the surface is retained to some extent, so it has affinity and binding properties with rubber molecules, and even if a hydrazide compound coexists, it can improve the wear resistance of the rubber composition and improve the fuel efficiency of the tire. it can.
Suitable silica includes, for example, AQ, VN3, LP, NA, etc. manufactured by Tosoh Silica Co., Ltd. and Ultrazil VN3, manufactured by Degussa.
The moisture content on the silica surface can be adjusted by a drying process. The water content on the silica surface is measured by heating the silica and calculating the weight loss.
Silica contains 80 to 250 parts by mass with respect to 100 parts by mass of the rubber component. The amount is preferably 70 to 200 parts by mass, and more preferably 50 to 100 parts by mass.

<(C)ヒドラジド化合物>
本発明に用いる(C)ヒドラジド化合物は、ゴム成分の主鎖等の部分と架橋することによって、ゴム組成物の耐テアー性を大幅に向上させることができる。ここで、ヒドラジド化合物の配合量は、ゴム成分100質量部に対して0.2〜4質量部を含む。好ましくは、0.5〜2質量部である。この範囲にあれば、十分な耐テアー性と低発熱性が得られる。
<(C) hydrazide compound>
The (C) hydrazide compound used in the present invention can greatly improve the tear resistance of the rubber composition by crosslinking with the main chain portion of the rubber component. Here, the compounding quantity of a hydrazide compound contains 0.2-4 mass parts with respect to 100 mass parts of rubber components. Preferably, it is 0.5-2 mass parts. If it is in this range, sufficient tear resistance and low heat build-up can be obtained.

また、上記ヒドラジド化合物としては、ナフトエ酸ヒドラジド類及びサリチル酸ヒドラジド類が好ましく、具体的には、1-ヒドロキシ-N'-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N'-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N'-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N'-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N'-(2,6-ジメチル-4-ヘプチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(2,6-ジメチル-4-ヘプチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N'-(1,2-ジフェニルエチリデン)-2-ナフトエ酸ヒドラジド等のナフトエ酸ヒドラジド類;N'-(1-メチルエチリデン)-サリチル酸ヒドラジド、N'-(1-メチルプロピリデン)-サリチル酸ヒドラジド、N'-(1-メチルブチリデン)-サリチル酸ヒドラジド、N'-(1,3-ジメチルブチリデン)-サリチル酸ヒドラジド、N'-(2,6-ジメチル-4-ヘプチリデン)-サリチル酸ヒドラジド等のサリチル酸ヒドラジド類が好適に挙げられる。なお、これらヒドラジド化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。   The hydrazide compounds are preferably naphthoic acid hydrazides and salicylic acid hydrazides. Specifically, 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′. -(1-Methylpropylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N '-(1-methylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N'-(1,3-dimethylbutyrate) Ridene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(2,6-dimethyl-4-heptylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylethylidene) -2- Naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy- N '-(1,3-Dimethylbutylidene) -2 -Naphthoic acid hydrazide, 3-hydroxy-N '-(2,6-dimethyl-4-heptylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N'-(1,2-diphenylethylidene) -2-naphthoic acid Naphthoic acid hydrazides such as hydrazide; N ′-(1-methylethylidene) -salicylic acid hydrazide, N ′-(1-methylpropylidene) -salicylic acid hydrazide, N ′-(1-methylbutylidene) -salicylic acid hydrazide, N Preferred examples include salicylic acid hydrazides such as '-(1,3-dimethylbutylidene) -salicylic acid hydrazide and N'-(2,6-dimethyl-4-heptylidene) -salicylic acid hydrazide. In addition, these hydrazide compounds may be used individually by 1 type, and may use 2 or more types together.

本発明のゴム組成物では、上記補強充填剤と共にシランカップリング剤及びカーボンブラックを補強用充填剤として用いることが好ましい。   In the rubber composition of the present invention, it is preferable to use a silane coupling agent and carbon black as a reinforcing filler together with the reinforcing filler.

カーボンブラックを配合することによって、ゴム組成物の耐摩耗性を向上することができる。カーボンブラックの使用量は、好ましくはゴム成分100質量部に対して80質量部以下で、カーボンブラックとシリカを合わせた総配合量が120質量部以下であることが好ましい。総配合量をゴム成分100質量部に対して120質量部以下とすることで、低発熱性及び耐摩耗性を十分に向上させる。   By blending carbon black, the wear resistance of the rubber composition can be improved. The amount of carbon black used is preferably 80 parts by mass or less with respect to 100 parts by mass of the rubber component, and the total amount of carbon black and silica combined is preferably 120 parts by mass or less. By setting the total amount to 120 parts by mass or less with respect to 100 parts by mass of the rubber component, low heat buildup and wear resistance are sufficiently improved.

また、シランカップリング剤はシリカ表面に残存するシラノール基とゴム成分ポリマーと反応して、シリカとゴムとの結合橋として作用し補強相を形成する。
本発明で用いられるシランカップリング剤は、一般的なものでも良く、シランカップリング剤の使用量は、カップリング剤としての効果およびゲル化防止などの点からシリカ量に対して、1〜20質量%が好ましく、特に5〜15質量%の範囲が好ましい。
具体的なシランカップリング剤としては、ビス−(3−トリエトキシシリルプロピル)テトラスルフィド、ビス−(3−トリメトキシシリルプロピル)テトラスルフィド、ビス−(3−メチルジメトキシシリルプロピル)テトラスルフィド、ビス−(3−トリエトキシシリルエチル)テトラスルフィド、ビス−(3−トリエトキシシリルプロピル)ジスルフィド、ビス−(3−トリメトキシシリルプロピル)ジスルフィド、ビス−(3−トリエトキシシリルプロピル)トリスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリメトキシシリルプロピルメタクリロイルモノスルフィド等が挙げられる。
これらの中で補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)ポリスルフィドおよび3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
The silane coupling agent reacts with the silanol group remaining on the silica surface and the rubber component polymer to act as a bonding bridge between silica and rubber to form a reinforcing phase.
The silane coupling agent used in the present invention may be a general one, and the amount of the silane coupling agent used is 1 to 20 with respect to the amount of silica in terms of the effect as a coupling agent and prevention of gelation. % By mass is preferable, and a range of 5 to 15% by mass is particularly preferable.
Specific silane coupling agents include bis- (3-triethoxysilylpropyl) tetrasulfide, bis- (3-trimethoxysilylpropyl) tetrasulfide, bis- (3-methyldimethoxysilylpropyl) tetrasulfide, bis -(3-triethoxysilylethyl) tetrasulfide, bis- (3-triethoxysilylpropyl) disulfide, bis- (3-trimethoxysilylpropyl) disulfide, bis- (3-triethoxysilylpropyl) trisulfide, 3 -Mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropyl Examples include benzothiazolyl tetrasulfide and 3-trimethoxysilylpropylmethacryloyl monosulfide.
Among these, bis (3-triethoxysilylpropyl) polysulfide and 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide are preferable from the viewpoint of reinforcing effect.
One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.

本発明のゴム組成物には、ゴム成分、シリカ、ヒドラジド化合物、カーボンブラック及びシランカップリング剤以外に、その他成分、例えば、特定構造のシリカ以外のシリカ、無機充填材、加硫剤、加硫促進剤、酸化亜鉛、ステアリン酸、老化防止剤等のゴム業界で通常使用される配合剤を、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。また、上記ゴム組成物は、ゴム成分と、特定構造のシリカとヒドラジド化合物と、適宜選択した各種配合剤とを配合して、バンバリーミキサー、ロール、インターナルミキサー、インテンシブミキサー等を用いて混練り後、熱入れ、押出等することにより調製することができる。   In addition to the rubber component, silica, hydrazide compound, carbon black and silane coupling agent, the rubber composition of the present invention includes other components such as silica other than silica having a specific structure, inorganic fillers, vulcanizing agents, vulcanizing agents. A compounding agent usually used in the rubber industry such as an accelerator, zinc oxide, stearic acid, anti-aging agent and the like can be appropriately selected and compounded within a range not impairing the object of the present invention. As these compounding agents, commercially available products can be suitably used. The rubber composition is prepared by blending a rubber component, silica having a specific structure and a hydrazide compound, and various appropriately selected compounding agents, and kneading using a Banbury mixer, roll, internal mixer, intensive mixer, or the like. Thereafter, it can be prepared by heating, extruding, or the like.

<タイヤ>
本発明のタイヤは、上記ゴム組成物をタイヤ部材のいずれかに適用したことを特徴とする。ここで、本発明のタイヤにおいては、本発明のゴム組成物をトレッドに用いることが特に好ましく、上記ゴム組成物をトレッドに用いたタイヤは、耐摩耗性に優れると共に、ウエットグリップ性、低燃費性に優れる。なお、本発明のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。本発明のゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
<Tire>
The tire of the present invention is characterized in that the rubber composition is applied to any of tire members. Here, in the tire of the present invention, it is particularly preferable to use the rubber composition of the present invention for a tread. The tire using the rubber composition for a tread has excellent wear resistance, wet grip properties, and low fuel consumption. Excellent in properties. In addition, as gas with which the tire of the present invention is filled, normal or air with a changed oxygen partial pressure, or an inert gas such as nitrogen is exemplified. When the rubber composition of the present invention is used for a tread, for example, it is extruded on a tread member, and is pasted and molded by a usual method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire.

次に、本発明を実施例により、更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、ゴム組成物の加硫ゴムの耐摩耗性、低燃費性及びウェットグリップ性(WET)を、下記の方法に従って評価した。
(1)加硫ゴムの耐摩耗性
JIS K 6264−1:2005に準拠し、ランボーン型摩耗試験機を用い、室温にてスリップ率60%の摩耗量を測定した。結果は、各例の摩耗量の逆数を、比較例1において得られた摩耗量の逆数の値を100として指数化した。数値が大きい程、耐摩耗性が優れることを示す。
(2)RR(低燃費性)
低燃費性は、外径1708mmのドラム上に内圧196kPaに調整した供試タイヤを設置し、JATMAで定める最大負荷能力を負荷させた後、80km/hで30分間予備走行させて空気圧を再調整し、200km/hの速度までドラム回転速度を上昇させた後、ドラムを惰行させ、185km/hから20km/hまでドラム回転速度が低下するまでの慣性モーメントから次式で算出したものである。即ち、タイヤの転がり抵抗=ds/dt(ID/RD+It/Rt)−ドラム単体の抵抗。なお、式中IDはドラムの慣性モーメント、Itはタイヤの慣性モーメント、RDはドラム半径、Rtはタイヤ半径である。そして、上式にて求めた50km/hのときの転がり抵抗を代表値として求め、比較例1のタイヤを100として指数表示したものである。ここで、転がり抵抗の値が小さい方が指数として大きくなるようにしたので、指数は大きい値であるほど低燃費性が良好であることを示している。なお、環境は24±2℃にコントロールされた室内で測定している。
(3)ウェットグリップ性
ブリティシュ・ポータブル・スキッドテスターを用いて、湿潤コンクリート路面に対する加硫ゴム試験片の抵抗値を測定した。比較例1を100とした指数表示で、数値が大きいものほど抵抗値が大きくウェットグリップ性がよいことを示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the abrasion resistance of the vulcanized rubber of a rubber composition, low fuel consumption, and wet grip property (WET) were evaluated in accordance with the following method.
(1) Wear resistance of vulcanized rubber In accordance with JIS K 6264-1: 2005, the wear amount with a slip rate of 60% was measured at room temperature using a Lambone type wear tester. The results were indexed with the reciprocal of the amount of wear in each example, with the value of the reciprocal of the amount of wear obtained in Comparative Example 1 being 100. It shows that abrasion resistance is excellent, so that a numerical value is large.
(2) RR (low fuel consumption)
Low fuel consumption is achieved by installing a test tire adjusted to an internal pressure of 196 kPa on a drum with an outer diameter of 1708 mm, loading the maximum load capacity specified by JATMA, and pre-running at 80 km / h for 30 minutes to readjust the air pressure. Then, after increasing the drum rotation speed to a speed of 200 km / h, the drum is coasted and calculated from the moment of inertia until the drum rotation speed is decreased from 185 km / h to 20 km / h by the following equation. That is, tire rolling resistance = ds / dt (ID / RD 2 + It / Rt 2 ) −resistance of a single drum. In the formula, ID is a moment of inertia of the drum, It is a moment of inertia of the tire, RD is a drum radius, and Rt is a tire radius. Then, the rolling resistance at 50 km / h obtained by the above equation is obtained as a representative value, and the tire of Comparative Example 1 is indicated as 100 as an index. Here, the smaller the value of rolling resistance is, the larger the index is. Therefore, the larger the index is, the better the fuel economy is. The environment is measured in a room controlled at 24 ± 2 ° C.
(3) Wet grip property Using a British portable skid tester, the resistance value of the vulcanized rubber test piece against the wet concrete road surface was measured. In the index display with Comparative Example 1 as 100, the larger the value, the larger the resistance value and the better the wet grip property.

実施例1〜3及び比較例1〜3
第1表に示す配合組成の9種類のゴム組成物をバンバリーミキサーを用いて調製した。各ゴム組成物について、加硫温度145℃、加硫時間45分間の条件で加硫ゴムサンプルを作製し、耐摩耗性を評価した。その結果を第1表に示す。
Examples 1-3 and Comparative Examples 1-3
Nine types of rubber compositions having the compounding compositions shown in Table 1 were prepared using a Banbury mixer. About each rubber composition, the vulcanized rubber sample was produced on the conditions of vulcanization temperature 145 degreeC and vulcanization time 45 minutes, and abrasion resistance was evaluated. The results are shown in Table 1.

<変性ブタジエン重合体ゴム(変性BR)の製造例>
乾燥し、窒素置換した約900mLの耐圧ガラス容器に、シクロヘキサン283g、1,3−ブタジエン50g、2,2−ジテトラヒドロフリルプロパン0.0057mmol、及びヘキサメチレンイミン0.513mmolを加え、更にn−ブチルリチウム(BuLi)0.57mmolを加えた後、撹拌装置を具えた50℃の温水浴中で4.5時間重合を行った。この際の重合転化率は、ほぼ100%であった。次に、この重合反応系に、変性剤(カップリング剤)として四塩化スズ0.100mmolを速やかに加え、更に50℃で30分間攪拌して変性反応を行った。その後、重合反応系に、2,6−ジ−t−ブチル−p−クレゾール(BHT)のイソプロパノール溶液(BHT濃度:5質量%)0.5mLを加えて、反応を停止させ、更に常法に従って乾燥して変性ポリブタジエンゴムを得た。得られたBRは、ブタジエン部分のビニル結合量が14%で、ガラス転移温度(Tg)が−95℃で、カップリング効率が65%であった。質量平均分子量は、東ソー株式会社製HLC8020(カラムGMHX×2)を用いてGPC分析により測定し、220、000であった。
なお、得られた変性BRについて、H−NMRスペクトルの積分比からブタジエン部分のビニル結合量を、ゲルパーミエーションクロマトグラフィー(GPC)による分子量分布曲線の全体の面積に対する最も高分子量側のピーク面積の割合からカップリング率を、DSCの曲線の変曲点からガラス転移温度を求めた。
<Example of production of modified butadiene polymer rubber (modified BR)>
Add about 283 g of cyclohexane, 50 g of 1,3-butadiene, 0.0057 mmol of 2,2-ditetrahydrofurylpropane, and 0.513 mmol of hexamethyleneimine to a pressure-resistant glass container of about 900 mL that has been dried and purged with nitrogen, and further n-butyl. After 0.57 mmol of lithium (BuLi) was added, polymerization was carried out in a hot water bath at 50 ° C. equipped with a stirrer for 4.5 hours. The polymerization conversion rate at this time was almost 100%. Next, 0.100 mmol of tin tetrachloride as a modifying agent (coupling agent) was quickly added to this polymerization reaction system, and the mixture was further stirred at 50 ° C. for 30 minutes to carry out a modification reaction. Thereafter, 0.5 mL of an isopropanol solution (BHT concentration: 5% by mass) of 2,6-di-t-butyl-p-cresol (BHT) was added to the polymerization reaction system to stop the reaction, and further according to a conventional method. Drying gave a modified polybutadiene rubber. The obtained BR had a vinyl bond content of the butadiene portion of 14%, a glass transition temperature (Tg) of −95 ° C., and a coupling efficiency of 65%. The weight average molecular weight was 220,000 as measured by GPC analysis using HLC8020 (column GMHX × 2) manufactured by Tosoh Corporation.
In addition, about the obtained modified BR, the peak area on the most high molecular weight side with respect to the entire area of the molecular weight distribution curve by gel permeation chromatography (GPC) is determined based on the integration ratio of the 1 H-NMR spectrum. From the ratio, the coupling rate was obtained, and the glass transition temperature was obtained from the inflection point of the DSC curve.

<変性スチレン−ブタジエン共重合体ゴム(変性SBR)の製造例>
40Lのオートクレーブにシクロヘキサン16L、1,3−ブタジエン2.9kg、スチレン1.1kgを仕込み、テトラヒドロフラン200g添加後、重合温度を70℃に調節し、テトラメチレン−1,4−ジリチウム24mmolを添加して重合を行なった。重合終了後、ジメチルジクロロシラン24mmolでカップリングしてポリマーを得、その後ジ−tert−ブチル−p−クレゾールをポリマー100質量部に対して0.5質量部、伸展油(アロマオイル)をポリマー100質量部に対して60.0質量部加え、乾燥して溶液重合スチレン−ブタジエン共重合体ゴムを得た。
得られた溶液重合スチレン−ブタジエン共重合体ゴムの質量平均分子量は、東ソー株式会社製HLC8020(カラムGMHX×2)を用いてGPC分析により測定し、1、500、000であった。
<Production Example of Modified Styrene-Butadiene Copolymer Rubber (Modified SBR)>
A 40 L autoclave was charged with 16 L of cyclohexane, 2.9 kg of 1,3-butadiene and 1.1 kg of styrene, 200 g of tetrahydrofuran was added, the polymerization temperature was adjusted to 70 ° C., and 24 mmol of tetramethylene-1,4-dilithium was added. Polymerization was performed. After completion of the polymerization, the polymer is obtained by coupling with 24 mmol of dimethyldichlorosilane, and then 0.5 parts by mass of di-tert-butyl-p-cresol with respect to 100 parts by mass of the polymer and 100% of the extension oil (aromatic oil). 60.0 parts by mass with respect to part by mass was added and dried to obtain a solution-polymerized styrene-butadiene copolymer rubber.
The mass average molecular weight of the solution-polymerized styrene-butadiene copolymer rubber obtained was 1,500,000 as measured by GPC analysis using HLC8020 (column GMHX × 2) manufactured by Tosoh Corporation.

<シリカA>
東ソー_社製(商標名:AQ)シリカ(BET法による窒素吸着比表面積(NSA)が220m/gで、シリカの表面の水分率が3.0質量%である。)
<シリカB>
攪拌機を備えた容量180リットルのジャケット付ステンレス製反応槽に、水93Lとケイ酸ナトリウム水溶液(SiO160g/L、SiO/NaOモル比3.3)0.6Lを入れ96℃に加熱した。得られた溶液中のNaO濃度は0.005mol/Lであった。
この溶液の温度を96℃に維持しながら、上記と同じのケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNaO濃度を0.01mol/L以下の範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を96℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。得られたケイ酸スラリーをフィルタープレスで濾過、水洗を行なって湿潤ケーキを得た。次いで、湿潤ケーキを乳化装置を用いてスラリーとして、噴霧式乾燥機で乾燥して湿式法シリカBを得た。得られたシリカBは、BET法による窒素吸着比表面積(N2SA)が280m/gで、シリカの表面の水分率が3.0質量%である。
<Silica A>
(Trade name: AQ) silica manufactured by Tosoh Corporation (nitrogen adsorption specific surface area (N 2 SA) by BET method is 220 m 2 / g, and moisture content on the surface of silica is 3.0% by mass)
<Silica B>
In a stainless steel reaction vessel with a capacity of 180 liters equipped with a stirrer, 93 L of water and 0.6 L of an aqueous sodium silicate solution (SiO 2 160 g / L, SiO 2 / Na 2 O molar ratio 3.3) were placed at 96 ° C. Heated. The Na 2 O concentration in the obtained solution was 0.005 mol / L.
While maintaining the temperature of this solution at 96 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.01 mol / L or less. From the middle of the reaction, white turbidity started, and the viscosity increased at 47 minutes to form a gel solution. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 96 ° C. for 30 minutes. The silica concentration in the resulting solution was 55 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry. The obtained silicic acid slurry was filtered with a filter press and washed with water to obtain a wet cake. Next, the wet cake was made into a slurry using an emulsifier and dried with a spray dryer to obtain wet process silica B. The obtained silica B has a nitrogen adsorption specific surface area (N2SA) by BET method of 280 m 2 / g and a moisture content on the surface of silica of 3.0% by mass.

<ヒドラジド化合物>
大塚化学(株)製,BMH(ナフトエ酸ヒドラジド),N-(1,3-ジメチルブチリデン)-3-ヒドロキシ-2-ナフトヒドラジド.
<Hydrazide compound>
BMH (naphthoic acid hydrazide), N- (1,3-dimethylbutylidene) -3-hydroxy-2-naphthohydrazide, manufactured by Otsuka Chemical Co., Ltd.

Figure 2013082788
Figure 2013082788

[注]
*1.前記製造例にて得られたブタジエン重合体ゴム
*2.前記製造例にて得られた高分子量スチレン−ブタジエン共重合体ゴム
*3.旭カーボン(株)製 N110
*4.前記したシリカA
*5.前記したシリカB
*6.前記したヒドラジド化合物
*7.デグサ社製、商品名「Si69」
*8.N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン:大内新興化学工業(株)製「ノクラック6C」
*9.ジフェニルグアニジン:大内新興化学工業(株)製「ノクセラーD」
[note]
* 1. Butadiene polymer rubber obtained in the above production example * 2. High molecular weight styrene-butadiene copolymer rubber obtained in the above production example * 3. Asahi Carbon Co., Ltd. N110
* 4. Silica A described above
* 5. Silica B mentioned above
* 6. The aforementioned hydrazide compound * 7. Product name “Si69” manufactured by Degussa
* 8. N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine: “NOCRACK 6C” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 9. Diphenylguanidine: “Noxeller D” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

表1から、以下に示すことが分かる。
実施例1は、本発明に係わるシリカB及びヒドラジド化合物を含むことにより、比較例1(コントロール)の従来のシリカAと比較して、耐摩耗性及びRRが優れ、ウェットグリップ性も改善する。
比較例2はシリカBのみでは、シリカBの悪い効果がRR性能に出って低下するが、実施例2は比較例2に対してヒドラジド化合物を含むことにより、RRがシリカBの影響を受けないで向上する。比較例3はヒドラジド化合物のみで、通常のシリカAを使用するとヒドラジド化合物による耐摩耗性及びWET性能に影響がでる。
From Table 1, it can be seen that:
Example 1 includes silica B and a hydrazide compound according to the present invention, so that it has superior wear resistance and RR and improved wet grip properties as compared with conventional silica A of Comparative Example 1 (control).
In Comparative Example 2, when Silica B alone is used, the bad effect of Silica B appears in the RR performance and decreases. However, Example 2 contains hydrazide compound as compared with Comparative Example 2, so that RR is affected by Silica B. Improve without. In Comparative Example 3, only the hydrazide compound is used. When ordinary silica A is used, the wear resistance and WET performance of the hydrazide compound are affected.

本発明のゴム組成物は、変性ブタジエン重合体及び/又は変性スチレン−ブタジエン共重合体からなる変性ブタジエン系重合体ゴムと特定の性能のシリカとヒドラジド化合物とを組み合わせることにより、耐摩耗性及びウェットグリップ性能が良好で、低燃費性のある空気入りタイヤを与えることができる産業上の利用性の高いものである。   The rubber composition of the present invention comprises a modified butadiene polymer and / or a modified butadiene polymer rubber composed of a modified styrene-butadiene copolymer, a combination of silica and a hydrazide compound having specific performance, and thereby provides abrasion resistance and wetness. It has high industrial applicability and can provide a pneumatic tire with good grip performance and low fuel consumption.

Claims (6)

ゴム成分として、(A)質量平均分子量が0.6〜170万である溶液重合した変性ブタジエン重合体及び/又は変性スチレン−ブタジエン共重合体からなる変性ブタジエン系重合体ゴムを10質量%以上含み、
補強充填剤として、(B)100〜350m/gのBET比表面積で、表面の含水率が0.50〜5.00質量%のシリカをゴム成分100質量部に対して80〜250質量部含み、また、(C)ヒドラジド化合物をゴム成分100質量部に対して0.2〜4質量部を含むことを特徴とするゴム組成物。
The rubber component contains (A) 10% by mass or more of a modified butadiene polymer rubber comprising a solution-polymerized modified butadiene polymer and / or a modified styrene-butadiene copolymer having a mass average molecular weight of 0.6 to 1,700,000. ,
80 to 250 parts by mass of (B) silica having a BET specific surface area of 100 to 350 m 2 / g and a surface moisture content of 0.50 to 5.00% by mass as a reinforcing filler. And (C) 0.2 to 4 parts by mass of a hydrazide compound with respect to 100 parts by mass of the rubber component.
前記変性重合体ゴムに導入される官能基がヒドロキシシリル基、アルコキシシリル基、アミノ基またはハロゲン原子の少なくとも1つである請求項1記載のゴム組成物。   The rubber composition according to claim 1, wherein the functional group introduced into the modified polymer rubber is at least one of a hydroxysilyl group, an alkoxysilyl group, an amino group, or a halogen atom. 前記変性ブタジエン系重合体ゴムに、下記式(I)及び(II)で表わされるアミノ基及び環状のアミノ基からなる群から選択された少なくとも1以上の官能基を有する変性ブタジエン系重合体ゴムをゴム成分100質量部中に10質量部以上含む請求項1又は2記載のゴム組成物。
(R)N− ・・・(I)(式中、複数のRは、それぞれ異なっても良い総炭素数1〜12の範囲にある、アルキル基、シクロアルキル基及びアラルキル基を示す。)
=N− ・・・(II)(式中、R=はイレン結合を示し、Rは総炭素数3〜16の範囲にある、アルキレン基、ハロゲン、OH、又はNHの置換基を有するアルキレン基、アルキルオキシアルキレン基、又はアルキルアミノアルキレン基を示す。)
A modified butadiene polymer rubber having at least one functional group selected from the group consisting of an amino group and a cyclic amino group represented by the following formulas (I) and (II): The rubber composition according to claim 1 or 2, comprising 10 parts by mass or more in 100 parts by mass of the rubber component.
R 1 (R 1 ) N— (I) (wherein the plurality of R 1 are alkyl groups, cycloalkyl groups, and aralkyl groups each having a total carbon number of 1 to 12 which may be different from each other. Show.)
R 2 = N— (II) (wherein R 2 = represents an ylene bond, and R 2 is an alkylene group, halogen, OH, or NH 2 in the range of 3 to 16 carbon atoms in total. An alkylene group having a group, an alkyloxyalkylene group, or an alkylaminoalkylene group.)
前記ブタジエン系重合体ゴムは、活性部位にヒドロカルビロキシシラン化合物を反応させて得られる変性重合体ゴムであって、該活性部位が炭化水素溶媒中でアルカリ金属系又はアルカリ土類金属系の開始剤を用いてアニオン重合させて得られる金属の活性部位である請求項1〜3の何れかの項に記載のゴム組成物。   The butadiene polymer rubber is a modified polymer rubber obtained by reacting an active site with a hydrocarbyloxysilane compound, and the active site is an alkali metal based or alkaline earth metal based initiator in a hydrocarbon solvent. The rubber composition according to any one of claims 1 to 3, which is an active site of a metal obtained by anionic polymerization using an agent. 補強充填剤として更に、シリカ量に対して、シランカップリング剤を1〜20質量%を含む請求項1〜4の何れかの項に記載のゴム組成物。   The rubber composition according to any one of claims 1 to 4, further comprising 1 to 20% by mass of a silane coupling agent relative to the amount of silica as the reinforcing filler. 請求項1〜5のいずれかの項に記載のゴム組成物を用いたタイヤ。   A tire using the rubber composition according to any one of claims 1 to 5.
JP2011222688A 2011-10-07 2011-10-07 Rubber composition and tire using the same Active JP5930649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222688A JP5930649B2 (en) 2011-10-07 2011-10-07 Rubber composition and tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222688A JP5930649B2 (en) 2011-10-07 2011-10-07 Rubber composition and tire using the same

Publications (3)

Publication Number Publication Date
JP2013082788A true JP2013082788A (en) 2013-05-09
JP2013082788A5 JP2013082788A5 (en) 2014-07-24
JP5930649B2 JP5930649B2 (en) 2016-06-08

Family

ID=48528311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222688A Active JP5930649B2 (en) 2011-10-07 2011-10-07 Rubber composition and tire using the same

Country Status (1)

Country Link
JP (1) JP5930649B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234448A (en) * 2013-05-31 2014-12-15 株式会社ブリヂストン Rubber composition
WO2019115470A1 (en) * 2017-12-11 2019-06-20 Compagnie Generale Des Etablissements Michelin Method for synthesising a functional or non-functional polymer having a specific structure
JP7441114B2 (en) 2020-05-25 2024-02-29 大塚化学株式会社 Low heat build-up agent for rubber compositions, tires, and rubber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146102A (en) * 2000-09-01 2002-05-22 Bridgestone Corp Rubber composition and pneumatic tire for heavy load using the same
JP2006104372A (en) * 2004-10-07 2006-04-20 Bridgestone Corp Rubber composition for belt and belt
JP2009114427A (en) * 2007-10-17 2009-05-28 Sumitomo Rubber Ind Ltd Tread rubber composition and tire having tread comprised thereof
JP2009263587A (en) * 2008-04-28 2009-11-12 Bridgestone Corp Tire
JP2010090290A (en) * 2008-10-08 2010-04-22 Bridgestone Corp Rubber composition for tread and tire using the same
JP2010155967A (en) * 2009-07-31 2010-07-15 Daiso Co Ltd Filler for rubber and rubber composition
JP2010209256A (en) * 2009-03-11 2010-09-24 Jsr Corp Rubber composition and pneumatic tire
JP2011057946A (en) * 2009-09-14 2011-03-24 Bridgestone Corp Rubber composition and tire using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146102A (en) * 2000-09-01 2002-05-22 Bridgestone Corp Rubber composition and pneumatic tire for heavy load using the same
JP2006104372A (en) * 2004-10-07 2006-04-20 Bridgestone Corp Rubber composition for belt and belt
JP2009114427A (en) * 2007-10-17 2009-05-28 Sumitomo Rubber Ind Ltd Tread rubber composition and tire having tread comprised thereof
JP2009263587A (en) * 2008-04-28 2009-11-12 Bridgestone Corp Tire
JP2010090290A (en) * 2008-10-08 2010-04-22 Bridgestone Corp Rubber composition for tread and tire using the same
JP2010209256A (en) * 2009-03-11 2010-09-24 Jsr Corp Rubber composition and pneumatic tire
JP2010155967A (en) * 2009-07-31 2010-07-15 Daiso Co Ltd Filler for rubber and rubber composition
JP2011057946A (en) * 2009-09-14 2011-03-24 Bridgestone Corp Rubber composition and tire using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234448A (en) * 2013-05-31 2014-12-15 株式会社ブリヂストン Rubber composition
WO2019115470A1 (en) * 2017-12-11 2019-06-20 Compagnie Generale Des Etablissements Michelin Method for synthesising a functional or non-functional polymer having a specific structure
JP7441114B2 (en) 2020-05-25 2024-02-29 大塚化学株式会社 Low heat build-up agent for rubber compositions, tires, and rubber

Also Published As

Publication number Publication date
JP5930649B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP3895446B2 (en) Method for producing polymer, obtained polymer, and rubber composition using the same
EP2075278B1 (en) Process for production of modified conjugated diene polymers, modified conjugated diene polymers produced by the process, rubber compositions, and tires
JP4159993B2 (en) Method for producing modified polymer, modified polymer and rubber composition obtained by the method
JP4265971B2 (en) Method for producing modified polymer, modified polymer and rubber composition obtained by the method
EP1113024B1 (en) Polymer, process for making the polymer, and rubber composition using the polymer
RU2630800C2 (en) Rubber mixture for tire treads
JP6627293B2 (en) Pneumatic tire
JP5451167B2 (en) Modified low molecular weight conjugated diene polymer
JP4111590B2 (en) Method for producing polymer, obtained polymer, and rubber composition using the same
JP5914216B2 (en) Rubber composition for tire tread
JP2006274049A (en) Rubber composition and pneumatic tire using the same
JP2001131230A (en) Polymer, method for production thereof, and rubber composition prepared by using same
JP4944376B2 (en) Rubber composition, method for producing the same, and tire
JP3949437B2 (en) Modified diene polymer, rubber composition and pneumatic tire
JP4801827B2 (en) Polymer, process for producing the same, and rubber composition using the same
JP4151835B2 (en) Modified polymer, method for producing the same, and rubber composition
JP5930649B2 (en) Rubber composition and tire using the same
EP3006227B1 (en) Rubber composition and pneumatic tire
EP3006493B1 (en) Rubber composition and pneumatic tire
JP4391583B2 (en) Rubber composition and pneumatic tire
JP5086883B2 (en) Process for producing modified polymer, modified polymer and rubber composition using the modified polymer
JP6431938B2 (en) Rubber composition for tire tread
JP5887218B2 (en) Rubber composition for tire tread
CN110325560B (en) Conjugated diene polymer, rubber composition, crosslinked rubber, rubber product, and tire
JP4354874B2 (en) Rubber composition and pneumatic tire

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250